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Chapter 1IntrodutionNanotehnology is one of the researh priorities of present-day industrial soieties. The vast amount of emergingappliations of possible miniaturization was predited by Rihard Feynmann already in 1959 in his famousleture, "There's Plenty of Room at the Bottom". In our days, the potential bene�ts of nanotehnology ininformation tehnology, advaned manufaturing, mediine and health, transportation, environment and energyindustry, et. are enormous.Giant Magnetoresistane (GMR) [1℄ is also based on nanotehnology, in partiular on thin magneti �lms.GMR has made its way to appliations [2℄ like magneti sensors, spin valves, spin-tunneling juntions and themagneti random aess memory (MRAM). The underlying e�et, viz. the antiferromagneti (AF) oupling ofmagneti layers was disovered in 1986 by Grünberg et al [3℄. The trilayer onsisted of ferromagneti Fe layerssandwihed by Cr spaers. Despite the fat that AF oupling was found in many multilayer (ML) systems,Fe/Cr MLs ertainly belong to the most investigated ones. This is partly due to the still not fully understoodoupling behaviour of this system.Another aspet of the AF-oupled MLs is their domain struture. In ontrast to ferromagneti �lms andstrutures in a strongly AF-oupled ML, the stray �eld of the domains is in large ompensated thus other foresmay in�uene the appearane of the domains. This is also obvious from the omparison of the path-like AFdomains to the harateristi ripple domains of ferromagneti thin �lms. Formation of path domains is mainlygoverned by �utuations of the AF oupling resulting in a lateral distribution of the saturation �eld. Theseemingly small e�et of external �eld believed to prohibit the manipulation of the AF domains [4℄. However,one may wish to ontrol the domain size, a parameter profoundly in�uening the noise of magnetoresistivedevies.The phase diagram of AF-oupled MLs with di�erent phenomenologial (mainly biquadrati) ouplingterms and magneti anisotropies still holds new phenomena in store to desribe. For example, in a veryreent artile [5℄ J. Meersshaut et al. reported on experimental evidenes of the hard-axis spin-reorientationtransition, a phenomenon also disussed in the present work (2.6). This transition may exist in AF-oupledFe/Cr MLs with fourfold in-plane anisotropy.Not too many papers have been published so far on the morphology of AF domains, due to the di�ulties indiret visualization of these ompensated objets. Therefore indiret methods, �rst of all those based on photonand neutron sattering, play an indispensable role in studying domains in AF-oupled multilayers. Satteringtehniques often deliver valuable information about AF domains. For example, the �rst experimental evideneof the rapid growth of the AF domains during the bulk spin �op transition was disovered by our group usingSynhrotron Mössbauer Re�etometry (SMR) and Polarized Neutron Re�etometry (PNR) [6℄.In the �rst part of this work an introdution is given to the phenomenologial models of AF-oupled MLs.The e�ets of �nite staking, anisotropies and di�erent oupling terms are disussed. Phase diagrams are al-ulated for MLs with fourfold anisotropy. After the theoretial introdution, the Fe/Cr ML is presented. Thestruture and the magnetization of the sample are �tted with various experimental tehniques. An extendedbilinear-biquadrati (BB) model was developed to �t the magnetization loops. The main aim of the work wasto oherently desribe the phase and domain transitions of the AF-oupled ML. For this purpose a short intro-dution to the momentum spae and the applied methods (SMR and PNR) is given. Two �rst-approximationtheories for domain ripening are also presented. Diret evidene of the bulk spin �op transition is given and,in the �nal part of this thesis, the domain measurements are disussed.1
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Chapter 2Energy terms and phase diagrams2.1 IntrodutionThe building blok of the desribed magneti MLs (Fig. 2.1) is the layer, whih is in�nite in the x − y planeof the sample and a few monolayers thik in the perpendiular z diretion. The phenomenologial desriptionof the oupled MLs involves `lassial magneti moments' assoiated to eah magneti building blok. Theinvestigated physial behavior of suh a ML is mainly due to the so-alled `spaer layers', whih may ause aninterlayer oupling between the magneti layers.PSfrag replaementsss
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Figure 2.1: Sketh of a ML. The individual layers are a few atoms thik in the z diretion, while marosopi in the
x − y plane. On the right the oordinate system of the two-sublattie model (see later) is shown.The energy of suh a model system per surfae unit area is [7, 8℄:
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Midi (2.1)where the magneti layers (total of n) are numbered starting with 0, Mi is the magnetization of thegiven layer i (the spaer layers being taken into aount only by the J oupling onstant), M̂i = Mi/Mi, diare the layer thiknesses, Ji,i+1 (Ji,i+1 > 0, ∀ i) are the AF oupling onstants, Bi,i+1 (Bi,i+1 > 0, ∀ i) arethe biquadrati oupling onstants, Ai are the in-plane anisotropy terms being funtion of the magnetizationdiretion, H is the external �eld and µ0 = 4π · 10−7 Vs/Am is the permeability of free spae. All magnetizationvetors are assumed to lie in the plane of the sample (the x− y plane), thus the unit vetor M̂i an be writtenas
M̂i =

(
cosϑi

sin ϑi

) (2.2)where ϑi is the angle between the x-axis and the i-th layer magnetization vetor.Equation (2.1) onforms to the SI units. From now on, we will use a slightly modi�ed-SI system in the sensethat the quantity µ0H will be alled external �eld, will be denoted by H, but will be nevertheless measuredin tesla. Furthermore, exept when noted, all alulations will be performed in the lab system1 and with the1This implies that the anisotropy term may depend on the orientation of the sample ϑS. ϑSi in (2.3) notes the possiblemisalignment of a layer's anisotropy ompared to ϑS. 3



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 4external �eld pointing along the x-axis (ϑH = 0). Finally we introdue M̃i = Midi. With the above ommentswe an write:
̺E =
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n−2∑
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S
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i=0

M̃i cos (ϑi − ϑH) . (2.3)Note that in the following for shorthand we omit the tilde from M̃ , but still mean layer magnetization timeslayer thikness.2 The above model funtion is a `single domain' approximation, in-plane domain formation andthus hysteresis of this kind is not desribed by the model.In a typial measurement the material parameters (oupling and anisotropy terms) are �xed and a derivedquantity of ̺E is measured. Mostly the net magneti moment Mnet is measured as a funtion of the magneti�eld H . To reprodue the hysteresis urves we minimize (2.3) for eah H numerially, then alulate thesimulated result of the measurement from the equilibrium values. In the following the disussion of the energyterms will be developed starting from the simplest model.2.2 Pure antiferromagneti ouplingIn ase of pure bilinear AF oupling with no additional anisotropy terms,3 the trilayer (or two magnetilayer) model and the in�nite layer model an be treated analytially. Due to symmetry onsiderations (thebilinear term depends only on the angle di�erenes), we may align the external �eld arbitrarily. For the easeof desription we hoose ϑH = 0◦. Also we introdue a salar H �eld allowing for H < 0 values whih isequivalent with ϑH = 180◦ in the vetor piture.2.2.1 Two magneti layersMagneti �lms on both side of a non magneti layer makes the simplest ML, the trilayer. Our fous is onompensated AF oupled MLs, thus we will set equal magneti moments for the two layers (M0 = M1 = M):
̺E (H) = J cos (ϑ1 − ϑ0) − HM (cosϑ0 + cosϑ1) . (2.4)In (2.4) the oupling term depends only on angles between the layers, thus the net magneti moment shouldbe parallel with the external �eld. This ondition implies that ϑ0 = −ϑ1. We will all the independent angle

ϑ = ϑ0 in (2.4):
̺E (H) = J cos 2ϑ − 2HM cosϑ. (2.5)To get the energy minimum of (2.5), the zero derivatives of angles with positive seond derivative should befound. Calulating the derivative will lead to:

∂̺E

∂ϑ
= −2J sin 2ϑ + 2HM sin ϑ = 0 ⇒ (2.6)

−4J sin ϑ cosϑ + 2HM sin ϑ = 0 ⇒
{

sin ϑ = 0 → ϑ = 0◦

−4J cosϑ + 2HM = 0 → cosϑ = HM
2J

(2.7)It is easy to verify that above the saturation �eld Hs = 2J
M , the ϑ = 0◦ solution will be energetially favourable,while below saturation the net magneti moment per unit area of the trilayer depends linearly on the external�eld in the range −Hs ≤ H ≤ Hs:

Mnet (H) = 2M cosϑ =
HM2

J
. (2.8)In the saturation regions, Mnet = ±2M .2Or equivalently layer magneti moment per unit area.3In the trivial ase of unoupled layers with no anisotropy the magnetization will be always parallel to the applied external�eld.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 5

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.67

-0.33

0

0.33

0.67

1

PSfrag replaementsss
̺E

Mnet
M

/Ms
H/HsEnergyperun

itarea(J/m2 )

Figure 2.2: Energy per unit area (left side) and normalized net magneti moment (right side) of an AF oupled modeltrilayer (J = 1/2 J/m2 and M̃ = 1 A) as a funtion of redued external �eld.The energy of the system is paraboli in the unsaturated region and linear, when saturated (see Fig. 2.2):
̺E (H) = −J

(
1 +

1

2

(
HM

J

)2
) , if |H | ≤ Hs (2.9)

̺E (H) = J − 2 |H |M , if |H | > Hs (2.10)Finally, it is worth noting that the number of independent parameters in the above model is one. Thediretion of the layer magnetizations as well as the energy and the net magneti moment depend only on
h′ = HM/J . The modi�ation of M and J resales the magnetization loop, but the independent parameter isthe normalized external �eld h′.2.2.2 Two-sublattie modelThe trilayer was the smallest representation of the magneti MLs, while a ML with in�nite number of layers isloated on the opposite end of the spetrum. The usually used model of the in�nite stak is a �nite ML withperiodi boundary onditions (i.e. the �rst layer is assumed to be idential with the last one). The simplestof those models is the two-sublattie model. Care should be taken when mapping the two-sublattie model tothe trilayer as due to the periodi boundary ondition the oupling terms will double. We note the quantitiesof the two-sublattie model with ∞, for example the saturation �eld will be H∞s .2.2.3 Finite number of layersThe majority of MLs are neither trilayers nor in�nitely staked but belong to the lass of MLs with `�nitestaking'. For this arbitrary magneti layer number (2.3) an be minimized numerially. The freedom of the`dangling' end layers due to their asymmetri oupling results in often negleted e�ets that we all `�nitestaking' e�ets. The onsequenes on the net magnetization (Fig. 2.3) are minute, but may well be seenby depth-seletive methods (Fig. 2.4) as the deviation from the bulk is strongest in the �rst few layers.4 Aomprehensive theoretial review on �nite staking e�ets5 was published by U. K. Röÿler and A. N. Bogdanovreently [8℄.For numerial simulations of �nite staked MLs we use onjugate gradient minimization based on NumerialReipes optimization subroutines [9℄ and oded by the author. The ode an searh for loal and global minimumenergy paths with �exible and easily expandable model library.4Anisotropy and biquadrati oupling may suppress �nite-staking e�ets.5Or as they refer to it in [8℄, �nite-size e�ets.
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CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 7The e�et of �nite staking is most pronouned in the low-�eld region for even number of layers.6 If wemap the two-sublattie model to the �nite stak, then ϑ0 = −ϑ1 = ϑ2 = · · ·−ϑn−1. However if we do not forethe outermost layers to follow the stritly alternating order, then states with a new symmetry and lower energymay appear. At arbitrarily low �elds a `global' twisted state appears, whih involves the whole sample [10℄.The deviation from the two-sublattie model loalizes at the ends as the �eld is inreased. On Fig. 2.5 theresult of the numerial simulation is shown. In zero �eld (a) all �rst neighbors are antiparallel. In the small�eld region (b − d) a global `linear' phase emerges with a very small asymmetry towards the x-axis giving thenet moment of the ML. At plot (e) the seond layers from outside (n = 1 and 98) reah their maximal negativeangle and from this point on all moments are rotating towards the external �eld. Inreasing the �eld further
(f−h) the seond layers are retarded ompared to the average while in the high �eld region (k) they are rotatedbefore the `bulk'. On the boundary of the two phase (i) all moments exept the outermost ones are in theirbulk position. An analytial solution exist for this boundary �eld.7 A seond �eld was found (j) where thenumber of deviating layers has loal minima (see also Fig. 2.7). Inreasing the �eld further the ML is reahingsaturation (k) and �nally saturates (l).If the number of layers is small, then even the entral layers annot reah their equivalent two-sublattievalue, thus the system annot be separated to bulk and surfae regions. On Fig. 2.6 the regions where at leastthe entral layers are in the bulk position are shown. Note that the seletion of the region depends on the valueof the di�erene threshold.When the ML an be deomposed to bulk and surfae regions one may ask how many layers are deviatingfrom the two-sublattie solution. Fig. 2.7 also highlights the fat that, due to the �rst-neighbor oupling, if onelayer reahed the bulk angle then all the layers towards the enter are also in that position. Thus the numberof deviating layers L is independent of the total number of layers n for L < n. On Fig. 2.8 L is shown as afuntion of external �eld. To ompare our results with the work of Nörtemann et al. [10℄, one should divide ournumbers by two, as we used staks with two free ends, while Nörtemann assumed a semi-in�nite staking [10℄.The e�et of �nite staking on global magnetization is `minute'. Even for a stak with n = 4 the saturationis 85% of the in�nite staking and 93% for n = 6, whih is muh smaller deviation than that suggested byParkin et al. [12℄. They assumed a redution in the saturation �eld Hs proportional to 1 − 1/n. This wouldgive 75% and 83% for n = 4 and n = 6, respetively. The di�erene still exists for larger staks. For examplein the ase of n = 20 numerial alulation yields 99.3%, while Parkin's formula gives 95%.As mentioned in the beginning of this subsetion, the e�ets of �nite staking are often negleted when eval-uating measurements on MLs. To our knowledge the �rst diret experimental evidene for a non-homogenousanting angle due to �nite staking was published in 2002 by Lauter-Pasyuk et al. [13℄. They utilized polar-ized neutron re�etometry on AF oupled Fe/Cr MLs and took into aount the speular and di�use satteringto estimate the magneti on�guration (both plane-perpendiular and plane-parallel).2.2.4 Distribution of the parametersIn an ideal ML all layer magnetizations and ouplings are equal to eah other (∀ i Mi = M, Ji = J). Whendesribing real MLs, di�erenes an our in the plane of the sample (x − y) and perpendiularly (alongthe z-axis). The plane-parallel variation in layer thikness8 gives rise to �utuations in Ji = Ji (x, y) and
Mi = Mi (x, y) a possible ause for domain formation (see later). Even if Ji does not depend on (x, y) dueto the growth proess the global parameters (Ji and Mi) an hange with i. In partiular ases even fulldeoupling (Ji = 0) of given layers an our [11℄.On Fig. 2.9 we show a few examples of possible e�ets of Ji and Mi distribution.9 We assume that themagneti moment of a given layer grows linearly with layer thikness. As an be seen on urve (m) of the�gure the distribution of Mi is not very pronouned. A small hange in the AF oupling onstant is even lessnotieable (urve (ja)) and only a drasti hange (whih signals a badly prepared ML) shows up signi�antly(urve (jb)). Note that our main interest are Fe/Cr MLs where the oupling osillates strongly with the layerthikness [7, 14�16℄ thus even a small shift in the interlayer thikness an lead to drasti oupling strengthhange.6We are interested only in ompensated MLs. In Refs. [10,11℄ odd numbers of layers were also treated.7If any spin is in the `bulk' angle then all spins inwards are also in the `bulk state'. This is due to the �rst neighbor oupling.The ritial bulk angle ϑc of the `knot' point [8℄ is determined from cos ϑc =

p

3/8. Thus ϑ0 = −23.28◦ and ϑ1 = ϑc = 52.24◦.8Caused by roughness for example.9The AF oupling is `linear', thus even with the Ji and Mi distribution the saturation �eld is well de�ned.
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CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 112.3 Additional oupling termsSoon after the disovery of AF oupling in Fe/Cr MLs a magneti on�guration aused by biquadrati oupling10was found by M. Rühriget al. [17℄. The possible ause and phenomenologial desription of the anted ouplingis still an open �eld of researh. Aording to J. C. Slonzewski [18℄, the origin of the biquadrati ouplingis extrinsi, i.e. it is related to the atual parameters (thikness �utuations of the spaer, step density et.)of the ML. In ontrary, J. Barna± attributes the biquadrati oupling to intrinsi mehanisms [19, 20℄. Themain di�erene between the two argumentation is that in the �rst ase the AF oupling with the thikness�utuation produes the biquadrati oupling, while in the seond ase the biquadrati oupling is present foratomially �at interfaes too. The ontroversial origin [21℄ does not a�et the `everyday' use of the bilinearbiquadrati formalism for magnetization �tting. For the ase of weak AF oupling other phenomenologialmodels were also proposed (see later).2.3.1 Biquadrati modelThe experimental observations of M. Rühriget al. [17℄ ould be desribed by a biquadrati oupling, whihaligns the neighbouring moments perpendiularly to eah other. It an be observed best, when the bilinearoupling is small or vanishing but it an a�et the global magnetization even in the ase of strong AF oupling.The mirosopial origin of the biquadrati oupling is still muh debated. It is related to di�erent mehanismsin di�erent systems, at di�erent temperatures and di�erent spaer thiknesses (see for example [18�27℄ andreferenes in [19, 25℄). The energy per unit area of a trilayer with pure biquadrati oupling is:
̺E (ϑ) = B cos2 2ϑ − 2HM cosϑ (2.11)where ϑ is the angle from the diretion of the external �eld (the x-axis) and B > 0 is the biquadrati ouplingonstant.11 The �rst derivative of the (2.11):

∂̺E

∂ϑ
= −2B sin 4ϑ + 2HM sin ϑ = 0 (2.12)From this follows:

−8B sin ϑ cosϑ cos 2ϑ + 2HM sin ϑ = 0. (2.13)There are two ases. Either sinϑ = 0 → ϑ = 0◦ or
−4B cosϑ cos 2ϑ + HM = 0 → 2x3 − x − HM

4B
= 0. (2.14)We used x = cosϑ for shorthand.Following the derivation of the bilinear ase, here again should be an external �eld value Hs above whihthe ϑ = 0 is the energy minimum, the fored parallel order. Let us examine the seond derivative at ϑ = 0!

∂2̺E

∂ϑ2
= −8B + 2HM > 0 (2.15)Thus at all H > Hs ϑ = 0 is stable were Hs = 4B

M . Below saturation one ould solve the third degree polynomialin cosϑ, but it is easier to use numerial minimization.12 The two-sublattie or in�nite model an be derivedfrom the trilayer by setting B′ = 2B similarly to the bilinear ase. For in�nite number of layers
Hs =

8B

M
. (2.16)At zero external �eld (H = 0) the system prefers the 90◦alignment, whih means ϑ = 45◦. The antedstate in remanene auses a jump in the magnetization when the sign of the external �eld is hanged. Thefurther analysis of the pure biquadrati oupling ould be done similarly to the bilinear ase, but our interestis strongly AF oupled MLs13 with a possible small biquadrati oupling, thus we skip this analysis.10The oupling angle was found to be 90◦in remanene.11The two moments should align symmetrially to the external �eld to minimize the energy. The oupling depends on angledi�erene that is the soure of 2ϑ, while both moments ouple equally to the external �eld.12In a more general ase J is also present leading to di�ult � but still analytial � results.13Strong ompared to the rystal anisotropies.
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̺E = J cos 2ϑ − B cos2 2ϑ − 2HM cosϑ. (2.17)The derivative:
∂̺E

∂ϑ
= −2J sin 2ϑ − 2B sin 4ϑ + 2HM sin ϑ = 0. (2.18)It is easy to see that ϑ = 0 is a solution of (2.18). The stability ondition is:

∂2̺E

∂ϑ2
|ϑ=0 = −2J cos 2ϑ − 4B cos 4ϑ + HM cosϑ = −2J − 4B + HM > 0. (2.19)Thus the saturation �led is equal to Hs = (2J + 4B) /M . The H(M) urve is again a solution of a third-degreepolynomial. In ase of strong bilinear oupling (J > 2B) the behaviour of the trilayer is similar to that of thepure bilinear ase, as we will demonstrate in the following. If ϑ 6= 0 then

∂̺E

∂ϑ

sin ϑ
= −2J cosϑ − 4B cosϑ cos 2ϑ + HM = 0 (2.20)If cosϑ = 0 → ϑ = 90◦ then H = 0. We only have to hek that at H = 0 this is a minimum:

∂2̺E

∂ϑ2
|ϑ=90◦ = −2J cos 2ϑ − 4B cos 4ϑ = 2J − 4B > 0 → J > 2B (2.21)Thus if J > 2B then the behaviour is bilinear-like. In the following we will only fous on this parameter region.In the ase of MLs, the usual J ′ = 2J and B′ = 2B substitution should be used. A demonstration of thein�uene of the biquadrati term on the global magnetization for an n = 20 layer is shown in Fig. 2.10.In onlusion, the presene of a small biquadrati oupling does not hange the `type' of the magnetizationloop, but an slightly modify the saturation �eld and the shape of the urves.14In ase of rystal anisotropies, the symmetry an break-down, allowing for non symmetri `L-shaped' on�gurations.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 132.3.2 Pinhole ouplingThe phenomenologial biquadrati oupling was attributed to di�erent origins (see Se. 2.3.1) but only a fewauthors onsidered expliitly the e�et of diret ferromagneti oupling via magneti pinholes [28℄. Magnetipinholes are diret `bridges' between the onseutive ferromagneti layers. Depending on the growth mode it ispossible that in spite of the best e�orts, atomially �at surfaes annot be ahieved prohibiting the produtionof MLs with ideally �at layers. In ase of unorrelated roughness the spaer thikness ould vanish as thesublayers of the MLs are generally only a few monolayers thik.We will follow the argumentation of Demokritov et al. [29℄ to show that for the ML we investigated thepinholes ould not play a major role. In our partiular ase the ≈ 13 Å of Cr spaer orresponds to 9 ML ofCr. The interfae roughness was found by low angle X-ray re�etion to be around 1 ML (see Table 5.2). Forthis roughness value aording to Demokritov et al. [29℄ with a Gaussian �t no pinholes should be present(the probability of pinhole forming is ≈ 2 · 10−10. If we assume a symmetri roughness of 2 MLs, the pinholeformation probability will be ≈ 2 · 10−4. The formation mehanism of pinholes is, of ourse not so trivial thuswe an give only approximations for the pinhole density based on magnetization measurements. In onlusion,pinhole formation is possible, but in our partiular ase the pinhole density is very small.The e�ets of the surfae roughness and pinhole formation on Fe/Cr MLs were investigated by ion irradiation [29�33℄.As a general onlusion the derease of AF oupling with inreasing dose was found. Small doses, however, enhaned theAF oupling [29℄. Interestingly the bombardment had almost no e�et on the X-ray re�etivity urves of the MLs [30℄.Also enhanement of the biquadrati ontribution was found in some ases [32℄.2.3.3 Proximity modelJ.C. Slonzewski proposed a simple heuristi model [18℄, whih is in some sense a generalization of the bi-quadrati model. The oupling energy term of the proximity magnetism model is
Ec = C+ {∆ϑ}2

φ + C− {∆ϑ − π}2
φ (2.22)where ∆ϑ = ϑi − ϑi+1 the angle di�erene between neighbouring magneti layers, C± (≥ 0) are the ouplingoe�ients and {ϕ}φ is the �normalized angle di�erene�, whih means adding of multiples of 2π to ϕ while

|ϕ + n · 2π| ≤ π is satis�ed (n ∈ Z). This new ϕ + n · 2π value is {ϕ}φ.The oupling oe�ients C+ and C− in eq. (2.22) are the ferromagneti and AF oupling strengths, respe-tively. In a general ase, when both oe�ients oexist, the oupling favours a non-ollinear alignment. In thespeial ase of C+ = C− we get bak the perpendiular magnetization alignment.The simple model of eq. (2.22) is based on the assumption that the AF spaer is polarized by the neighbouringferromagneti layers and only a small angle deviation ours between onseutive atomi planes in the AF spaer thusthe desription inluding the �rst (quadrati) energy term is adequate. The main advantage of the proximity model thepredition of an asymptoti saturation behaviour often observed in Fe/Cr MLs.152.3.4 Spin-Density Wave (SDW) modelThe role of the spin-density wave (SDW) within the Cr spaer of Fe/Cr tri- and MLs has been the subjet ofontroversy sine the �rst disoveries of AF oupling and giant magnetoresistane. For a ritial review see[25℄. Reently, based on a self-onsistent model taking into aount the SDW of Cr a theoretial model funtionwas given by V. N. Men'shov and V. V. Tugushev [34,35℄.
Ec ∝ −

(
Λ cos

∆ϑ

2
+ (1 − Λ) sin

∆ϑ

2

) (2.23)where ∆ϑ = ϑi − ϑi+1 is the angle di�erene of neighbouring magneti layers, Λ is the fration of the spaerfragments ontaining an odd number of Cr monolayers. The above result is valid in the limit of low density ofsteps,16 while in the high density of steps and Λ = 1/2 the previously introdued bilinear-biquadrati formalismis regained. The oupling desribed by (2.23) is also alled half angle oupling [37℄. Equation 2.23 is valid onlyat H = 0, as the applied external �eld an hange the type of the SDWs [38℄, whih was not investigated. Theother limiting parameters are the Cr layer thikness, whih should be at least 30 − 40 Å and the temperatureof the measurement, whih should be higher than 300 − 350 K [38℄.The SDW model in the low step density limit also gives non-ollinear oupling in remanene with a non-trivial angle depending on Λ.15Models with biquadrati oupling predit a well-de�ned saturation �eld.16Even for smooth interfaes further energy orretions may our [36℄, whih will not be treated in this work.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 142.3.5 ConlusionsAs ould be seen from the previous part, the interpretation of magnetization measurements on Fe/Cr MLs isnot a trivial task. The growing number of theoretial models show the di�ulties of the phenomena. We haveto note, however that only the bilinear-biquadrati formalism with strong bilinear oupling gives a ollinearAF alignment in zero external �eld, while in the general ases the other models would predit anted states forremanene. The previously desribed models give a di�erent magnetization �eld history, whih an be hekedfor omparison with experimental results.17 Finally we would like to note that other oupling e�ets are stillpossible, see for example the e�et of the dipole oupling [39℄.182.4 Global versus loal energy minimizationAnother aspet of our investigations is the `loal' nature of energy minimization. The numerial models usedin the literature are `single-domain' models, rendering one vetor to eah magneti layer thus the e�ets ofdomain formation (for example hysteresis onneted with domain wall motion) annot be taken into aount.By using the single domain energy funtion the equilibrium state of a oupled ML an be found. Changingthe external �eld, the evolution of the system along loal minima an be traed. In some ases more thanone stable state with loal energy minimum exists, in this ase the global minimum is the one with the lowestenergy. As was noted by Dienyet al. [40, 41℄ the loal and global minima are the borders, whih envelope thereal behaviour of the ML.The energy minimum of the purely AF oupled ML is unique, thus always global (see Setion 2.2). Notounting the geometrial degeneray, there is only one on�guration for eah external �eld, whih one analulate analytially for trilayers, or numerially for MLs. By introduing rystal anisotropies to the system,the situation will hange. In the following we will take a short glimpse on the e�ets of anisotropies,19 mainlyin the view of the loal/global minimum approximation. To have an even simpler piture for demonstrationpurposes, we are investigating a single magneti layer.2.4.1 Uniaxial anisotropyMagneti anisotropies in the ase of ferromagneti layers may have various forms depending on the orientationof rystal planes and the epitaxy of growth. For demonstration, we take the uniaxial anisotropy, whih an bedesribed with the following energy funtion:
̺E = −U cos 2

(
ϑ − ϑS)− HM cosϑ (2.24)The uniaxial anisotropy has one easy axis set by ϑS, while the perpendiular axis is the hard axis (U > 0). Tounderstand the above-desribed system better, let us take some speial ases.Easy diretionNow ϑS = 0 thus in this ase:

̺E = −HM cosϑ − U cos 2ϑ (2.25)The �rst derivative should be zero:
d̺E

dϑ
= HM sin ϑ + 4U sinϑ cosϑ = 0 (2.26)Case a): sin ϑ = 0 ⇒ ϑ = 0◦ or 180◦. First we examine ϑ = 0◦. Let us see if this is a stable minimum:

d2̺E

dϑ2
> 0 ⇒ HM cosϑ + 4U cos 2ϑ > 0 (2.27)and ϑ = 0 ⇒ HM + 4U > 0 ⇒ H > −4U

M
(2.28)17Aording to N. M. Kreines et al. [37℄ the proximity-magnetism model and the half-angle-oupling model desribe equallywell a given set of Fe/Cr MLs. This is related to the fat that the energy funtions of the two models are numerially very loseto eah other. We think that this ould be true for speial ases.18In [39℄ numerial alulations were made on two magneti layers separated by a nonmagneti spaer. Depending on theorrelated roughness (orrugation) ferromagneti or AF like oupling was obtained.19The anisotropies a�et the behaviour of the oupled ML system. If the oupling is strong ompared to the anisotropies, wewill still have a behaviour resembling the one desribed in the previous setion. If the anisotropies are strong, then the magnetimoments are fored in the easy diretions of the anisotropy, resulting in disontinuous jumps [8℄.
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Figure 2.11: Magneti layer with uniaxial anisotropy, easy diretion. Global and loal energy minimization. The arrowsare representing the magneti moment of the layer.For ϑ = 180◦ the same applies:
−HM + 4U > 0 ⇒ H <

4U

M
. (2.29)Case b): ϑ 6= 0.

HM + 4U cosϑ = 0 ⇒ cosϑ = −HM

4U
(2.30)But is (2.30) a loal minimum? Calulating the seond di�erential of (2.27):

HM cosϑ + 4U cos 2ϑ = 4U

(
HM

4U
cosϑ +

(
cos2 ϑ − sin2 ϑ

))
= (2.31)(substituting cosϑ from (2.30))

= 4U
(
(− cosϑ) cosϑ + 2 cos2 ϑ − 1

)
= 4U

(
cos2 −1

)
. (2.32)Beause cos2 < 1 for ϑ 6= 0 and U > 0, ase b) de�nes a maximum. In other words, in the ase of uniaxialanisotropy and easy diretion magnetization the layer magnetization an be parallel or antiparallel to theexternal �eld, but not anted. In zero external �eld we have two equilibrium positions (0◦ and 180◦), while ininreasing external �eld the two minima are shifted relative to eah other. The parallel minimum gets deeper,while the antiparallel minimum shifts up in energy (by the −HM cosϑ term) to the border point de�ned by(2.29) and then eases to be a minimum. In onsequene, in the loal-minimum approximation we will have ahysteresis loop, while in the global-energy approximation there appears a jump at zero external �eld (Fig 2.11).The magnetization of a real system will be always between those two extrema. For a thorough desriptionof trilayers with di�erent anisotropies we refer to the work of Dieny et al., where the authors ompared theloal [40℄ and global [41℄ energy paths for AF oupled trilayers and MLs with ubi (fourfold) and uniaxialanisotropy.Hard diretionNow ϑS = 90◦ thus the energy will be: ̺E = U cos 2ϑ−HM cosϑ. We an repeat the above disussion with −Uinstead of U (U > 0). Now in ase a) H > 4U/M for ϑ = 0◦ and ϑ = 180◦ is stable for H < −4U/M , while forthe external �elds between ase b is the stable minimum with cosϑ = HM/4U , whih is the global minimum.If we take the parallel omponent of the magnetization versus the external �eld then we have the `well-known'
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Figure 2.12: Uniaxial anisotropy of a single layer in hard diretion. The arrows are representing the anting of themagneti moment.linear behaviour. The role of the uniaxial anisotropy in the hard diretion is similar to the bilinear oupling ofa trilayer, as the energy funtion is similar. In onlusion, in hard diretion we have only one energy minimum(no hysteresis) and a well-de�ned saturation magnetization value.45◦ alignmentFinally we investigate a third ase, when ϑS = 45◦. Substituting this value to (2.24):
̺E = −U sin 2ϑ − HM cosϑ (2.33)
d̺E

dϑ
= −2U cosϑ + HM sinϑ (2.34)Equation 2.34 an be solved for sin ϑ, and the investigation of the minima/maxima an be done as previously.The resulting loal and global magnetization urves are shown on Fig 2.13. Here we would like to ommenton the asymptotial nature of saturation. From (2.34) it is easy to see that only for H → ∞ will be ϑ = 0◦beause for ϑ = 0◦ d̺E/dϑ = 2U and not 0! The anisotropy term has no extremum at ϑ = 0◦ but a maximalslope thus the plae of the energy minimum (paraboli + `slope' as a �rst approximation) will depend from the�eld H , resulting in asymptoti saturation.From the above short setion we have learned the di�erene between loal and global energy minimumtraes. From the intermediate orientation (45◦) we have onluded that the `normal' behaviour of the systemsis the asymptoti saturation, and only exat alignment along speial diretions (maxima and minima of theanisotropy) gives well-de�ned saturation �eld values. The hysteresis in loal minimum approximation is alsotypial for the anisotropy term, missing only in speial ases.2.4.2 Fourfold anisotropyIn this thesis we are fousing on MLs of fourfold anisotropy. We shortly summarize the analytial results forthis ase based on the alulations presented in the previous setion. The energy funtion in this ase:

̺E = −HM cosϑ − K

8
cos 4

(
ϑ − ϑS) . (2.35)
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Figure 2.13: Uniaxial anisotropy of a single layer in the 45◦ diretion.Easy diretionThe fourfold anisotropy has four easy diretions loated along two perpendiular easy axes. In global energyminimum the easy magnetization is a `saturation-to-saturation' anhystereti loop. In loal energy minima,depending on the starting onditions, di�erent on�gurations may exist. In the traditional magnetization loop(positive saturation to negative saturation) the obtained hysteresis loop will be very similar to the uniaxialase. The magnetization parallel to the external �eld in saturation will �ip only when the loal minimum easesto be a minimum. It is easy to show that the saturation �eld is equal to Hs = − (2K) /M .If we prepare the magnetization in remanene for example by rotating the sample, then di�erent senariosmay our. For example, by turning the sample by 180◦ we an get bak the `global' loop but more importantly,by turning 90◦ the magnetization starts from a perpendiular axis.20 Now the magnetization will be draggedby the external �eld resulting in ontinuous rotation towards the hard diretion and a sudden jump to 0◦, whenthe Zeeman term ompetes with the anisotropy barrier. The jump will our when
HM sinϑ +

K

2
sin 4ϑ = 0 (2.36)

HM cosϑ + 2K cos 4ϑ = 0 (2.37)Equation 2.36 sets the loal extremum (or in�etion point), while (2.37) shows the end of the loal minima.Substituting sin 4ϑ = 4 cos 2ϑ cosϑ sin ϑ and assuming ϑ 6= 0 we get the following equation: cos 2ϑ cos2 ϑ =
cos4ϑ. Solving this equation graphially and taking into aount the position of the minima we get ϑrit = 65.9◦and Hrit = 0.544 K

M . In H/Hs units Hrit = 0.272. The resulting magnetization loop is displayed in Fig. 2.14.Hard diretionThe global-minimum loop in this ase will start from an easy diretion in remanene and saturating at the hardaxis parallel to the external �eld. The loop goes smoothly as the moment `limbs' the top of the anisotropy-energy barrier. The only jump will our at remanene, when the spin �ips by 90◦. If we take a loal-minimumloop then a small hysteresis will our in the middle due to the fat that the moment annot jump to the`towards-the-�eld' preferred minimum. The magnetization loops are presented in Fig. 2.15. The ritial �eldand angle is the same as for the easy 90◦ alignment as the same equations have to be solved.2120This on�guration will get pratial importane when we ombine the anisotropy with the AF oupling, as the AF ouplingprefers the perpendiular-to-�eld axis in remanene.21Equations (2.36) and (2.37) only the sign of K is hanging (+K → −K).
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Figure 2.14: Theoretial magnetization loops of a single layer with fourfold anisotropy in the easy axis.
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Figure 2.15: Theoretial magnetization loops of a single layer with fourfold anisotropy along a hard axis.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 19Finally we would like to note that the fourfold anisotropy ase is similar to the uniaxaial in the sense thatif we are not pointing exatly along an extremum of the rystalline anisotropy, then the magnetization willsaturate asymptotially.2.5 Bulk-spin-�op transitionAs already noted, the measured magnetization of a real ML will be between the global and loal energylimit. The global energy minimum urve orresponds to the an-hystereti magnetization proess involving nodissipative energy terms. In loal minimum approximation, the system an only jump to a new minimum ifthe atual one eases to be a minimum, no energy barrier rossing is permitted. The transition alled `bulkspin �op' (BSF) is a typial example of the global vs. loal behaviour of a real ML.In two-sublattie bulk antiferromagnets with uniaxial anisotropy two stable spin on�gurations exist. Atlow external �eld the anisotropy fores the spins into the easy axis (parallel and antiparallel alignment), whileat high �elds the moments are perpendiular to the �eld, forming a <-like shape. In global energy minimizationa �rst order transition (spin �op) ours when the �eld is inreased through the ritial �eld value Hsf preditedby Néel (see for example page 388 in [42℄).In ase of fourfold rystalline anisotropy22 the parallel/antiparallel and perpendiular AF on�gurationshave the same energy in zero external �eld. Applying the �eld along an easy axis, the perpendiular AF statehas a lower energy, thus in global energy alulation the parallel/antiparallel state is unstable. In loal energyalulation, however the latter state will be an energy minimum for a while, setting an upper limit to the Hsfvalue. For AF-oupled MLs the BSF transition was observed by polarized neutrons by K. Temst et al. [43℄.The history of the spin-�op phase in thin �lms starts with the disovery of the Fe/Cr AF oupling. In thefamous paper of Grünberg et al. [3℄ the authors show that �..not only [...℄ the magnetization of the two Fe �lmsis antiparallel but also that it is perpendiular to the small external �eld. This is in omplete analogy to thespin-�op phase of an antiferromagnet�. They used single rystal (epitaxial) Fe/Cr trilayer with fourfold in-planeanisotropy. Later Parkin et al. [12℄ showed on polyrystalline Fe/Cr MLs by polarized neutron re�etometrythat the initially randomly oriented domains turn to arrangement of ±90◦ from the applied �eld.In this work we will use the term `bulk spin �op' (BSF) to refer to the transition of magneti moments(`spins') from one easy diretion to the perpendiular one of the fourfold in-plane anisotropy. We will use thefollowing energy density per surfae area for the system:
̺E =

n−2∑

i=0

Ji,i+1 cos (ϑi+1 − ϑi) +

n−2∑

i=0

Bi,i+1 cos2 (ϑi+1 − ϑi)+

n−1∑

i=0

K̃1
i cos2 (ϑi − ϑK) sin2 (ϑi − ϑK) − H

n−1∑

i=0

M̃i cos (ϑi − ϑH) . (2.38)Here, K̃1
i = K1

i di and M̃i = Midi (di is the thikness of layer i). The notation of the anisotropy goes aordingto [44℄ (p. 130):
Fa = K0 + K1

(
α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1

)
+ . . . (2.39)where the αs are the diretion osines. In our notation K0 = 0 (a onstant will not hange the behaviour ofthe system � it gives vanishing term in the derivatives). For the investigated models magnetizations are inplane, thus only α2

1α
2
2 is nonzero. We will use both notations (K1 = K1) whihever is more onvenient. If notonfusing then the tilde will be omitted from K̃ and M̃ in the following. Note that the anisotropy term in(2.38) an be re-written using

cos2 ϑ sin2 ϑ =
1

4
sin2 2ϑ =

1

8
(1 − cos 4ϑ) . (2.40)This transformation speeds up the omputations, beause no square omputing is neessary. In this notation

J > 0 for AF oupling, B > 0 for the biquadrati oupling. We use ϑK to desribe the angle of the easy axisand K1 > 0 for the anisotropy term.2322This is the ase for Fe/Cr(100) as a result of the projetion of the ubi anisotropy to the (100) plane.23From here on we stik to the bilinear-biquadrati formalism. In the experimental part we will return to the question of modelseletion.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 202.5.1 BSF in a real MLAs mentioned above, the BSF transition is nonexistent in the global energy piture. In a real system the layerparameters may vary; here we investigate shortly the possible e�ets.Numerial alulations show that the slight variation of the oupling onstants will ause no dramati e�et.The magnetization urve will have a somewhat di�erent shape but due to the still ompensated AF stak, theperpendiular alignment is energetially still more favorable.In the ase of net magneti moment (aused by the variation of the layer thikness), the situation is abit di�erent. In the global-energy piture the net moment will fore the system in the parallel/antiparallelalignment at arbitrarily low external �elds. Then, depending on the net moment, a global spin �op wouldour.24 This �op should be always observable, independent of the �eld history, whih was not the ase in ourmeasurements. In loal-energy approximation a slight variation in the layer magnetizations will not hange thealready disussed BSF senario, as the perpendiular alignment is favored by the anisotropy energy barrier. Inthe following we will return to the ideal ompensated MLs.2.5.2 Two magneti layersEquation (2.38) is valid for �nite number of layers. If we hoose n = 2 then we desribe a trilayer. To get thein�nite (two-sublattie) model J ′ = 2J should be set.First we alulate the ritial �elds for the trilayer, then with the introdution of the new oupling onstant(J ′) the two-sublattie ase. From now on all layers are equivalent, thus K1
i = K1, Mi = M et. Also we willexamine the easy diretion (ϑK = 0).The requirements of a minimum if two variables are present:

0. f ′
x0

(P0) = 0, f ′
x1

(P0) = 0, (2.41a)
1. f ′′

x0x0
(P0) > 0, (2.41b)

2. det
(
D2
)

> 0. (2.41)The derivatives:
∂̺E

∂ϑ0
= J sin (ϑ1 − ϑ0) + B sin 2 (ϑ1 − ϑ0) +

1

2
K1 sin 4ϑ0 + HM sin ϑ0, (2.42)

∂̺E

∂ϑ1
= −J sin (ϑ1 − ϑ0) − B sin 2 (ϑ1 − ϑ0) +

1

2
K1 sin 4ϑ1 + HM sin ϑ1. (2.43)The four seond derivatives:

∂2̺E

∂ϑ2
0

= −J cos (ϑ1 − ϑ0) − 2B cos 2 (ϑ1 − ϑ0) + 2K1 cos (4ϑ0) + HM cosϑ0, (2.44)
∂2̺E

∂ϑ2
1

= −J cos (ϑ1 − ϑ0) − 2B cos 2 (ϑ1 − ϑ0) + 2K1 cos (4ϑ1) + HM cosϑ1, (2.45)
∂2̺E

∂ϑ0ϑ1
=

∂2̺E

∂ϑ1ϑ0
= J cos (ϑ1 − ϑ0) + 2B cos 2 (ϑ1 − ϑ0) . (2.46)In our ase, we are interested in the [0;180℄ minimum25 i.e. ϑ0 = 0, ϑ1 = π:

D2̺E [0; 180] =

(
J − 2B + 2K1 + HM −J + 2B

−J + 2B J − 2B + 2K1 − HM

) (2.47)The determinant should be positive: 4K2
1 + 4K1 (J − 2B) − H2M2 > 0. Thus
Htribsf =

2
√

K1 (K1 + J − 2B)

M
. (2.48)Condition (2.41b): ̺′′Eϑ0ϑ0 > 0 is ful�lled at �eld Htribsf. Note that we are interested in strongly AF-oupledsystems, thus J > 2B. In this ase J − 2B + 2K1 + HM > 0 if H > 0 (we start from zero external �eld andapply a positive �eld to get the spin �op).24In the ase of ompensated ML the parallel/antiparallel alignment results in a onstant energy urve, while the perpendiular(<-shape) starts as a parabola looking downwards. In the ase of net moment the energy of the parallel/antiparallel alignment islinear, thus there is a region where this latter alignment is the global energy minimum.25[a; b] := [ϑ2n = a◦, ϑ2n+1 = b◦]



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 21At saturation ϑ0 = 0; ϑ1 = 0. Now the seond derivative matrix:
D2̺E [0; 0] =

(
−J − 2B + 2K1 + HM J + 2B

J + 2B −J − 2B + 2K1 + HM

) (2.49)the determinant: (2K1 + HM) (2K1 + HM − 2J − 4B) > 0, thus
Htris = 2

J + 2B − K1

M
. (2.50)It is easy to verify that ondition (2.41b) is also ful�lled at Htris .2.5.3 Finite number of layersThe trilayer model an be mapped to the two-sublattie model by introduing J ′ = 2J, B′ = 2B:

H∞bsf =
2
√

K1 (K1 + 2J − 4B)

M
, H∞s = 2

2J + 4B − K1

M
(2.51)In a ML of �nite number of layers the saturation �eld will be lose to the H∞

sat value, however the spin-�op�eld will be the same as for the trilayer model as it will be shown below.First, let us examine the saturation �eld. Here the �rst and the last spins are only `half-oupled' relativeto the inner ones, thus they are losing more easily. The omputer simulations show that the di�erene fromthe in�nite model is dereasing rapidly with inreasing number of layers.The spin-�op �eld is the same as for the two-sublattie model and an be alulated analytially. This anbe shown identially to the proof of A. L. Dantas and A. S. Carrio [45℄. In their artile they used the seonddi�erential matrix (D2̺E) to show their lemma.For two layers it is easy to see from the derivative matrix
M2 =

(
a b
b c

) (2.52)that the instability ours when ac = b2. The elements of the matrix are (in our ase): a = J−2B+2K1−HM ,
b = −J + 2B, c = J − 2B + 2K1 + HM . They prove in their artile that for any even number of layers n > 2the instability will our at an external magneti �eld where ac = b2. To do this they quote the matrix for fourlayers:

M4 =




a b 0 0
b c − b b 0
0 b a − b b
0 0 b c


 . (2.53)Then by transforming the above matrix to an upper triangular form they show that the last element of theprodut is the smallest and it will vanish in a �eld where ac = b2. Then they show by mathematial indutionthat this is valid for the last element of the produt for a matrix with two more layers. Thus the spin-�opalways starts at the same external �eld value independently of the number of even layers. Also the valuesof the other terms were alulated. The even-numbered terms (exept the last one) onverge to −b, whilethe odd-numbered ones all onverge to a. Thus the lemma is valid only for a > 0 and b < 0. The atualdevelopment of the spin-�op is of ourse dependent on the number of layers. In their derivation they useduniaxaial anisotropy and no biquadrati oupling. By hanging the symmetry of the anisotropy only a onstanthanges in the derivatives in a given point and the introdution of the biquadrati oupling is equal of thehange of the AF oupling. The only onstraint is that J > 2B otherwise b < 0 will not hold. We are interestedin strongly AF-oupled MLs, so we will investigate the region of J > 2B. It is trivial that the a term is alsopositive at Hbsf,26 whih in our ase equals to

Htribsf =
2
√

K1 (K1 + J − 2B)

M
. (2.54)In onlusion, the ritial �elds of the 2n �nite system (2n is the even number of magneti layers) are:

H2nbsf =
2
√

K1 (K1 + J − 2B)

M
, (2.55)

H2ns = 2
2J + 4B − K1

M
. (2.56)26At Hbsf ac = b2 and c > 0 thus a > 0.
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H2nbsf ≈ 2
√

K1 (J − 2B)

M
. (2.57)2.6 Hard axis spin reorientationIf we magnetize the AF oupled sample along the hard diretion, a new reorientation transition (`�op') willour [8℄. The AF oupling prefers a perpendiular-to-�eld state near remanene, while the anisotropy foresthe spins to easy axes ±45◦ o� the external �eld. Depending on the K/J ratio the behaviour will follow morethe AF or the anisotropy-driven ase. The spin-�op �eld may depend on the type of minima we follow. In theglobal minimum piture it is always lower, than in the loal minimum ase, and in the former ase the entralAF state always spans a symmetri �eld range and shows a symmetri hysteresis loop, while the latter ouldprodue asymmetri range and hysteresis loop. The �nite staking e�ets are also important in this ase.2.6.1 TrilayersWhen the system is a simple trilayer then we have only two moments (`spins') and thus the resulting phasediagram is also `easy' (Fig. 2.16). The limits of behaviour for an AF-oupled ML are set by the global and loalminima paths. When performing a magnetization measurement, usually the loop is done by sanning the �eldfrom positive saturation to negative saturation and bak. When alulating loal minimum for suh a loop, themiddle AF type state might be not reahed. The resulting phase diagram is show in Fig. 2.17. The di�erentregions an be separated as follows:1. Small-anisotropy region (K/J < 0.1): The loal and global minima paths oinide. This is the AF-oupling dominated region where the rystalline anisotropy turns ontinuously the spins to the 45◦ easyaxis lose to remanene. No anisotropy-indued hysteresis is present.2. Middle region (0.1 ≤ K/J < 2): The anisotropy and oupling term are of the same order of magnitude.The maximal spin-�op �eld is loated at H/Hs = 0.222, K/J = 0.258. As the anisotropy inreases, thespin-�op �eld dereases, both in loal and global path. In the loal minima ase (Fig 2.17) the spin-�opreahes Hrit. = 0 at K/J = 1.4, and dereases further. The asymmetry in the loal magnetization loopsis anisotropy-indued.3. High-anisotropy region (K/J ≥ 2): Anisotropy dominates. In the loal piture the two spins moveunoupled.27 In the region K/J > 2.5 parallel alignment of the spins is possible after the �op, and the`<' phase an jump to '>' phase with no middle AF phase. The global minimum path shows the stillexistent but diminishing e�et of the AF oupling. Detailed investigation of this part ould help theunderstanding of weakly oupled AF MLs.In onlusion, from the trilayer model (n = 2) we learned that, as expeted, there is a smooth transitionbetween the AF-oupling dominated and the anisotropy-ruled regions. The spin-�op has a ritial point at

Rc ≈ 0.1 K/J . Below Rc the transition is ontinuous (rotation of the spins), above Rc a �rst order phasetransition (spin �op) ours. For the two-sublattie model28 we may onlude that the maximal spin-�op �eldwill be at K/J ≈ 0.5.2.6.2 MultilayersThe on�gurational freedom arising from the �nite staking lowers the equilibrium energy by the introdutionof new phases. Depending on the minimization used, di�erent loops are possible. The detailed analysis of the`preliminary' phase diagram29 (Fig 2.18) yields the following major ranges in the funtion of the external �eld:1. AF alignment along an easy axis, with small anting. Here the external �eld ats as perturbation,driving the system to a state with the net magnetization lose to the perp. easy axis (and 45◦ from theexternal �eld). This is the region from zero �eld up to the global (b) line and in the loal minimumsenario up to the �rst line of dots.27The onsequene of independent alignment is the onstant spin-�op �eld of Hrit = 0.272.28To get the parameters of the two-sublattie model, one should substitute J ′ = 2J .29Preliminary in the sense that we have tried to �nd the easiest measures for the desription of the omplex phase diagram.To analyze all �ops and phase transitions a more thorough study is needed. The situation beomes even more di�ult with theaddition of further oupling terms.
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Figure 2.16: Loal and global phase diagram of AF-oupled (J) trilayer of fourfold anisotropy (K) magnetized along ahard axis. In remanene the two spins are antiparallel (AF alignment) along one easy axis (see the bottom arrows). Asthe �eld is inreased (along the x-axis of the graph) the phase transition to the < shape ours (see top arrows). Takingthe loal energy path the layer opposite to the external �eld �ops towards the �eld independently of the AF ouplingat large K values, while on the global energy path the diminishing e�et of the oupling an be still seen.
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Figure 2.17: Loal and global phase diagram of AF oupled (J) trilayer with fourfold anisotropy (K) magnetized alonga hard axis. The external �eld was `sanned' from positive to negative saturation. The AF oupling fores the phasetransition from the `<' phase to the AF one near to remanene. The global path is symmetri while, due to theanisotropy barrier, the loal loop gets asymmetri at K/J > 0.1. The anisotropy delays the �rst phase transition (loal(a)), shifting it to the negative region, while the seond phase shift (bak to the `>' state, loal (b)) has an anisotropy-setlower limit (see Fig. 2.16).
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Figure 2.18: Phase diagram of an n = 20 ML. The magnetization was swept from zero �eld to saturation along a hardaxis. The loal paths were started with a global minimum (AF state along easy diretion in remanene). The lowanisotropy region K/J ≤ 1 is zoomed, while for the rest 1 < K/J ≤ 10 only the loal minima jumps and the in�nitetwo sublayer model results are shown. For desription of the urves see text.2. `SSF' phase. In this region very similar phases [5℄ exist to the surfae spin-�op (SSF) transition30 [46℄.In the global minimum approximation the ML is separated to two orthogonal regions by the four middlelayers forming a `vertial domain wall'. This phase is stable up to the �eld denoted by the global (a) line,where the ML swithes to the next phase (`<' phase). In the loal energy path disrete jumps (markedby blak dots) and ontinuous rotation an be seen. The last spin �ops are loated in the region, wherethe in�nite two-sublattie system would have the transition (∞ loal) whih is a property of the SSFtransition.313. `<' phase. In this region the anisotropy ats as perturbation and the layers are forming the well known`<' phase (the external �eld is oriented along the x-axis). The total magnetization is parallel with the�eld and the spins are rotating smoothly up to saturation.After the analysis of the phase diagram along the magnetization axis we investigate the di�erent anisotropyregions. Three parts an be distinguished:1. Small-anisotropy region (K/J < 0.1): The spins from the AF alignment along the easy axis rotate tothe anted AF phase (`<') symmetri to the external �eld. The SSF phase is absent.2. Intermediate-anisotropy region (0.1 ≤ K/J < 2): The SSF region dominates the transition. Theglobal (a) line approahes the ∞ global line showing the diminishing e�et of �nite oupling as theanisotropy gets higher.3. High-anisotropy region (K/J ≥ 2): The spins are moving `quasi independently', however, due to the�nite staking, the topmost layer pointing `in the wrong diretion' will �op earlier than the rest (whihwill �op together) produing the lower dotted line in this region. The �nal jump ours at the ritial�eld of the in�nite two-sublayer model. Global minimization was not alulated for this region.30The SSF phase ours when an AF oupled ML with �nite number of layers is magnetized along the easy diretion of theuniaxial in-plane anisotropy.31The deeper analysis of the SSF-like phase was not amongst our goals thus it is possible that the phase diagram is not omplete.We used the threshold of δφ > 0.01 to �nd disrete jumps in the loal graph, where φ was the angle of the net magnetization(measured from the x-axis). For the distintion of global phases φ > 0.01 and φ > 0.45 limits were set for phase global (b) andglobal (a), respetively.
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Figure 2.19: Phase diagram envelope of an n = 20 ML. The magnetization was swept from positive saturation to negativesaturation along a hard axis. Up to K/J = 0.2 the two phases (X and /) have a �rst order transition, while above thatpoint the /-state is not reahed, only two small jumps are visible in the magnetization urves (at the �eld denoted bydashed lines).Finally the magnetization loop from positive to negative saturation is simulated in loal energy approxima-tion. Now the details of the spin-�op are not shown, only the two phase-border lines (Fig. 2.19). Starting fromsaturation the symmetri-to-�eld <-phase transforms to the /-state at very low anisotropy values, rotating tothe anisotropy symmetri (easy axis) AF-state in remanene, then aligning in the �eld symmetri <-state. Athigher anisotropy values (K/J ≥ 0.1) the vertial domain wall state (X-state) emerges, splitting the spins inall four easy diretions. Above K/J = 0.2 the `pure AF' state is not reahed anymore, as the �ops lead to adi�erent X-state. The remanent state (aording to these simulations) depends on the K/J ratio. It an bethe AF state (up to K/J ≈ 0.15) or the X-state.In onlusion, the e�ets of �nite staking were again underlined. The �niteness of the `spin hain', themissing oupling term leads to an interesting spin-�op phenomenon resembling the SSF transition. The loaland global minimization algorithms suggest di�erent spin alignments, depending on �eld history, leading todi�erent remanent states. Only measurements on real samples an show, whih path is taken by the sample.32The e�et of higher order oupling terms have to be taken also into aount for the partiular sample.

32By areful sample preparation the starting on�guration an be �xed. In our ase by saturating the sample in an easy diretionand letting down the �eld, then turning the sample by 45◦ will set the global AF alignment.



Chapter 3Classial magnetization measurementsAfter the familiarization with di�erent models of AF oupled MLs we an proeed in the desription of a realsample. First the global magneti behaviour (full magnetization loops and bulk-spin-�op transition) will bepresented. The sample under investigation is a MgO(100)/[57Fe (26 Å) /Cr (13 Å)]
20

strongly AF oupled ML.The 57Fe isotope will be important for the Mössbauer studies. Details of strutural haraterization will followlater in Chapter 5.3.1 Sample desriptionThe AF-oupled Fe/Cr ML desribed in our work was grown in Leuven by RIBER MBE. The date of growthwas 1999.06.17; the sample was grown by Johan Dekoster and Stephan Degroote. The identi�ation string ofthe sample was 990608. A leaned and UHV-degassed (at 600 ◦C for 30 min.) MgO(100) substrate of 1 × 1 cm2was used. The pressure before growth was 3 · 10−11 Torr, during growth 3 · 10−10 Torr. The deposition rateswere 0.35 Å/s for Cr and 0.1 Å/s for 57Fe, respetively. The sample was rotated during growth to ahieve betterlateral homogeneity. The nominal substrate temperature was 450 K during growth. Neither bu�er nor appinglayer was grown. The nominal thikness pro�le of the sample was MgO/[57Fe (25 Å) /Cr (14 Å)]
20
. The 57Fesoure was a speial small volume e�usion ell, while Cr was grown from an eletron gun. The ML is epitaxial, aswas on�rmed by in-situ RHEED measurements and ex-situ X-ray di�ratograms [47℄. It follows the well-known[48℄ epitaxy of Fe(001)[100℄||MgO(001)[110℄. From Synhrotron Mössbauer Re�etometry measurements [47℄and the measurement tehniques detailed in Chapter 5 the struture of [57Fe (26 Å) /Cr (13 Å)]

20
was dedued.3.2 SQUID and VSM global ylesThe topis of Fe/Cr MLs would not be so interesting if the oupling through the Cr interlayer would beunderstood in all details. In the following we will see how to �t a phenomenologial model to the hysteresismeasurements (Fig. 3.1). The methods used, vibrating-sample magnetometry (VSM) and the superondutingquantum interferene devie (SQUID) are both apable of measuring the average magnetization of a sampleversus the external �eld with high preision.3.2.1 First �tsTo get a �rst view, the SQUID measurements1 were normalized and evaluated.2 From Fig. 3.2 it is evidentthat the sample is strongly AF-oupled. The hysteresis is minute, the remanent magnetization is less, than1%. It an be also seen that the magnetization reahes saturation asymptotially whih is not the featureof the bilinear-biquadrati model. The easy- and hard-diretion-averaged3 loops were simultaneously �tted1Earlier VSM measurements su�er from the `phase-slip' e�et, see later.2The SQUID measurements were taken by László Kiss (MTA SZFKI) in May 2002.3The up and down branhes were averaged in order to get rid of the hysteresis.26
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Figure 3.1: The VSM urve of sample 990608 measured in hard diretion. The horizontal dimensions of the sample were
A = 7.12 × 10.2 mm2. The net satuartion moment of the sample wasMnet ·A = 4.723 · 10−6 Am2.
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Figure 3.3: Bilinear-biquadrati (BB) �t to the averaged SQUID data. The hard-diretion urves are shifted by 0.1 unitsfor larity. The solid lines are the best �tting urves in the frame of the BB model.onstant literature value SI value
Kbulk 4.75 · 105 erg/m3 4.75 ·104 J/m3

Mbulk 1717 emu/m3 (in �4πG� units) 1.717× 106 A/mTable 3.1: Literature value [49℄ of the bulk magnetization density and anisotropy onstant of Fe.by a �nite layer model (Fig. 3.3) and we gained the best �t at the following parameter values with notationaording to (2.38): J = 1, B = 0.239, K̃ = 0.059 and M̃ = 8.363. Those numerial values are parametersof the minimizing algorithm. We ompare all oupling and anisotropy terms to the AF oupling, thus J = 1by de�nition.4 Finally all parameters are saled aording to the measured saturation magnetization of thesample (see Table 3.2 for example).Unfortunately the measured total magnetization of the sample depends on the exat geometry (produingdi�erent results even for the same orientation). Furthermore, sine the SQUID measurements were also takenon a small piee of the sample for averaging on the whole sample the VSM measurements were performed andevaluated. The magneti moment of the sample as obtained from the hard-diretion VSM measurement was
Mnet ·A = 4.72 ·10−6 Am2 (see Fig. 3.1). The area of the sample is 7.12 × 10.2 mm2. The total iron thikness(20 layers) is approximately 51 nm (see Chapter 5.1.2). Thus the total iron volume is 3.78 ·10−12 m3. From thisthe magnetization5 is M = 1.275 ·106 A/m . This is not far from the ≈ 1.4 · 106 A/m measured by Fullertonet al. [14℄, whih is less than the bulk value (see Table 3.1). The number of unertainties (VSM alibration,phase shift,6 total Fe thikness, measurement along the hard axis) all sum up in our ase.Alternative modelsAs the bilinear-biquadrati (BB) model did not give a good enough �t in the high-�eld region, other ouplingmodels were �tted. The proximity magnetism model for example did not give a better �t, as it predits an4We ould add the units here diretly, but this ould onfuse the reader, as in fat we determine only the ratios of the parameters(J/M̃ , B/M̃ , K̃/M̃) beause we �t M/Ms urves51 emu=1 Gm3, but this G is in �4π� units. See for example [49℄. Note that Mbulk is magnetization (gives the magnetimoment per unit volume). We `measure' magnetization in A/m (1 G orresponds to 103 A/m).6Due to the lok-in phase shift of the partiular VSM set-up it was impossible to give the exat magneti moment. The lok-inangle was drifting for small samples, thus the slopes of the saturated regions were unequal. It resulted in interseting or openloops.



CHAPTER 3. CLASSICAL MAGNETIZATION MEASUREMENTS 29AF alignment in remanene only if C+ = 0. This onstraint does not give enough degrees of freedom7 to �tthe magnetization urves appropriately. The other alternative oupling models are also giving a non-ollinearoupling angle in remanene. In onlusion, none of the alternative models an desribe the strongly AF-oupled ML with AF alignment in remanene and asymptoti saturation, thus we should apply a di�erentphenomenologial model to get a better �t for our sample.Results of the biquadrati �tAs one an see, the BB �t is better for low �eld values than for the saturation region. The main shortomingof the �t is the underestimation of the saturation �eld. It would give Hsat of approximately 0.7 T, while themeasured Hsat is ≈ 1.1 T.8 Nevertheless, aepting the BB model, we an approximate the values of thevariables desribing the ML. As noted above, we will aept M = 1.275 ·106 A/m for magnetization. From thisthe anisotropy density will be K = 0.9 ·104 J/m3, whih is only ≈ 20% of the bulk value. J = 0.389 ·10−3 J/m2and B = 0.929 ·10−4 J/m2.As we have seen from the above paragraph, there is no `simple' �t in the frame of literature models ofour sample. We de�ne a �t `simple' when all layer parameters are equal (Ji = J , Mi = M , . . . ∀i) andthe �nite-staking e�ets are inluded. No distributions of parameters and even no deviation of any kind arepermitted.After the realization of the shortomings of the simple model, a natural way would be to allow distributions,deviations of the parameters. In priniple with high enough number of parameters a good �t an be produedwith almost any kind of model. Unfortunately enough, we have no diret measurements of the sublattie anglesone by one for example,9 thus from the magnetization data we annot selet amongst the `sophistiated' models.3.2.2 Extended bilinear-biquadrati modelA di�erent approah to the extension of the model is the addition of new energy terms to the energy. Based onthe two-sublattie inversion (Appendix 9.1) we take the Fourier omponents of the energy funtion up to the12th order.10 In the two-sublattie model the spins are symmetri to the external �eld, thus only the followingenergy terms are taken into aount:
̺E (ϑ) =

6∑

m=1

Jm

m
cos (mδϑ) − A4

4
cos 4ϑ − hM cosϑ. (3.1)Here δϑ = ϑi+1 − ϑi = 2ϑ (in the two-sublattie model) and J1 − J6 and A4 are the oupling and anisotropyFourier harmonis, respetively.11 To ompare with existing models the biquadrati and anisotropy terms weresubstituted:
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cosϑi. (3.2)Here ϑS is the orientation of an easy axis ompared to the external �eld.Equation (3.2) is an extended version of the BB model. It allows for `simple' �tting of the magnetizationurve with a few variables. Numerial �tting on an n = 20 layer model by sequentially minimizing theparameters give a good agreement with the magnetization measurements as shown in Fig. 3.4. The saturationregion �tting is still not perfet, but muh better than with the simple BB model. The parameters of the modelare summarized in Table 3.2.7Only C− an be �tted.8It is not easy to give a well-de�ned saturation �eld value from the magnetization measurements alone due to the asymptotialbehaviour of the magnetization.9This ould be ahieved by enrihing only a single layer with 57Fe.10The higher order Fourier terms give only very small ontribution aording to the two-sublattie inversion.11Based on measurements we an exlude uniaxial anisotropy (A2 = 0). The higher anisotropy terms were exluded by �ttingthe magnetization urves. A better distintion between possible higher order anisotropy and oupling terms ould be made onlybased on magnetization loops taken along more diretions.
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Figure 3.4: Fit by the extended bilinear-biquadrati model of the averaged SQUID data. The hard-diretion urves areshifted by 0.1 units for larity. The lines are the �ts to the data.
param. model sample
M̃ = M · d 8.367 1.25 ·106 A/m · 2.6 nm

K̃ = K · d 0.126 1.88 ·104 J/m3 · 2.6 nm
J 1.0 0.388 ·10−3 J/m2

B 0.2556 0.876 ·10−4 J/m2

J3 0.0435 0.169 ·10−4 J/m2

J4 0.0482 0.187 ·10−4 J/m2

J5 0.0201 0.781 ·10−5 J/m2

J6 0.0244 0.948 ·10−5 J/m2Table 3.2: Parameters of the extended model. The olumn model shows the numerial values used in the �tting program,while the last olumn shows the values realulated for the given sample.



CHAPTER 3. CLASSICAL MAGNETIZATION MEASUREMENTS 31The extended model shows a muh better �t in the high-�eld range (H > 0.5 T) ompared to the BB modeland it also yields a larger rystalline anisotropy, whih is almost 40% of the bulk value. The saturation �eldsare Hesat = 0.935 T and Hhsat = 0.995 T in easy and hard diretions, respetively. Comparing the ommon terms
M, J, B the values are approximately the same, whih is no way a surprise, as the BB model is the subset ofthe extended Fourier series.3.2.3 Model-independent parametersBefore we proeed with the elaboration of the magnetization urves, we take a short glane on the model-independent parameters. Based on VSM measurements, we have an approximation on the total magnetizationof the ML and the magnetization density (see page 28). We an also approximate the anisotropy of the ironlayers.12In the following we will show that the total anisotropy energy is proportional to the area di�erene betweenthe easy- and hard-diretion magnetization loops. Supposing that we have only fourfold anisotropy, subtratingthe area of the two magnetization loops13 we get ∆E = 0.425 ·10−2 T. The anisotropy onstant is obtainedfrom K = 4M∆E, where M is the magnetization (we use 1.25 ·106 A/m) and ∆E is the area di�erene. Weget K = 2.125 ·104 J/m3, whih is not very far from the value obtained in the frame of the extended model.To obtain the anisotropy from the magnetization loops one may proeed similarly to [44℄ (p. 131). As the external�eld is oupled to the ML only via the magneti moments we an write:

Hs
Z

0

M dH = −

Hs
Z

0

∂̺E

∂H
dH = ̺E (0) − ̺E (Hs) . (3.3)More preisely, as a diret onsequene of (3.2) for example, ∂̺E/∂H = −M

Pn−1

i=0
cos ϑ, whih is in turn the measuredVSM signal.Assuming global energy path behaviour, the sample in remanene is in the AF-phase. When saturated, the ouplingenergy term is the same for the easy and hard orientation, only the anisotropy energy hanges. From (3.2) it is easyto see that the di�erene is K/4 ·n, where n is the number of layers. As the magnetization is also a `bulk' parameter,we an resale the equation to a single layer, or even to the bulk density, arriving at ∆E = K/4. Here ∆E is the areadi�erene of the magnetization loops of a unit volume of the ML. If we measure M/Msat, then we must multiply theresult by the bulk magnetization: (∆E/M) ·M = K/4.3.2.4 Distribution of the parametersIn the previous paragraphs we showed that the sample ould be relatively well desribed by a `simple' extendedFourier model. This is a phenomenologial model. We ould follow the other way, by adding distributionsof some parameters. However from the magnetization yles alone it is impossible to deide between a broaddistribution � plane-parallel and/or plane-perpendiular � of some parameters and a di�erent model. We annotdeide on those issues by a single sample. In Appendix 9.2 a brief introdution is given, how one an start toexamine the distribution ase.Numerial investigations of the model (not detailed here) show that if a single parameter (for example thebiquadrati oupling) has a distribution (a narrow Gaussian type for example), then the magnetization urveis almost the same as it would be for the average of the distribution, di�ering only a tiny bit from it at thesaturation region. This �nding prefers the Fourier model against the distribution one.Finally we have to stress that really good desription of a ML ould be given only based on the knowledge ofthe `building bloks' themselves. It does not only inlude the independent measurement of the anisotropy, bulkmagnetization and other model parameters, but the investigation of smaller systems (single layers, trilayerset.) of the same type. As was measured by Parkin et al. [12℄ even a single Fe layer sandwihed between Crlayers an show a non-retangular hysteresis loop.3.3 Bulk spin �opThe bulk spin �op (BSF) was �rst observed by MOKE14 on sample 990608 (see Fig. 3.5). As mentionedin Se. 2.5 BSF transition may our in uniaxial atomi antiferromagnets or in antiferromagnets of fourfold12Normally one should measure the anisotropy of a single layer whih was grown under similar ondition as the ML, but we donot possess suh sample.13More preisely the M/Msat loops.14Measurements were taken by Johan Swerts and László Bottyán in Leuven Aug. 2000.
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Figure 3.5: BSF transition observed by MOKE (for details see text). The inset shows the zoomed BSF region.rystalline symmetry. In the latter ase the BSF is related to a loal energy minimum path, thus it is onlyobservable in AF-oupled MLs. To observe the BSF a speial magneti sample preparation is needed. The`spins' should be turned parallel/antiparallel to the �eld. This an be ahieved by inreasing the �eld overthe ritial �eld of the BSF, then going to remanene and turning the external �eld by 90◦ ompared to thelast seen �eld. This an be done most easily by turning the sample itself, the atual proedure that was usedat the MOKE measurements. First a `simple magnetization loop' was reorded in the −150 : 150 mT range(not shown), then the sample was turned by 90◦, saturated in µ0H = 0.95 T. The �eld was removed and thesample was turned bak by 90◦. A seond loop was taken, starting from zero �eld. As an be seen in theinset of Fig. 3.5 the magnetization �rst stayed parallel/antiparallel up to ≈ 10 mT. Then it swithed to theperpendiular alignment. The BSF transition was over at ≈ 16 mT. Further BSF sans were taken (not shown)after aligning the spins in (smaller-than-saturation) �elds of15 150 mT and 30 mT with exatly the same BSFtransition range and shape.After the MOKE justi�ation of the BSF, VSM measurements were also done. First the experimentaldi�ulties lead to no signi�ant result, thus the sample was ooled down in order to enhane the BSF. Theperpendiularly magnetized sample16 was turned by 90◦, then ooled to 20 K and measured (Fig. 3.6). Thespin �op ourred between 12 mT and 30 mT (but it was not so well de�ned as for the MOKE ase.17 Later thepreparation of the magnetizations was improved by the help of an external magnet. The sample rod was plaedbetween the poles of the magnet, whih magnetized the sample in the proper way. Now the room temperatureobservation of the BSF was possible, see Fig 3.7. The spin �op is now well-de�ned, and ourred at ≈ 12 mT.In onlusion, we proved indiretly18 the existene of the BSF transition. The low-temperature and room-temperature measurements led to similar results and showed an Hbsf ≈ 12 mT. In the following we will omparethese results with theoretial preditions.15By passing the BSF transition from below the spins will align to the perpendiular-to-�eld orientation. There is no need tosaturate the sample.16In this stage the magnetization was done by the superonduting solenoids of the VSM mahine.17This ould be attributed to the improper magnetization proedure for example.18The VSM and MOKE measurements give an inoherent sum of all sublayer magnetizations. We annot exlude other spinon�gurations leading to a similar result.
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CHAPTER 3. CLASSICAL MAGNETIZATION MEASUREMENTS 343.3.1 Theoretial onsiderationsThe e�ets of the �nite staking were disussed in Setion 2.5. The only di�erene is now that the ouplingis extended with further Fourier terms. As this is not hanging the `global' behaviour, the BSF �eld andsaturation �eld equations still hold. The new ritial �elds will be the following:19
Hbsf =

2
√

K (K + J − 2B + 3J3 − 4J4 + 5J5 − 6J6)

M
, (3.4)

Hs = 2
2 (J + 2B + 3J3 + 4J4 + 5J5 + 6J6) − K

M
. (3.5)Substituting the values obtained by the �ts this will result in Hbsf = 60.4 mT, Hseasy = 0.965 T, Hshard =

1.025 T. Those results are in extremely good agreement with the numerial simulation, verifying the algorithmsused by the optimization ode for this partiular ase.20 The obtained Hbsf �eld however is muh larger thanthe measured 12 mT. This is a strong indiation that the spin �op ours by intralayer domain wall movementand not oherent rotation of the lattie spins [47℄. The domain wall movement an drive the spins throughthe loal energy barriers. The spin-�op �eld is not zero, thus the system moves between the global and loalminimum path, loser to the global side.3.4 Hard-axis spin reorientationThe easy-diretion hysteresis loop of a strongly AF-oupled sample with fourfold anisotropy is a `smoothurve'. When the sample is saturated, all magneti vetors point parallel to the external �eld, and to an easydiretion. When the �eld is lowered, the moments open smoothly through a <-phase. They pass the hard axesontinuously, arriving at the easy-axis orientation in remanene. In a hard-diretion senario the moments arepointing parallel to a hard axis in saturation, while loated along easy diretions in remanene. The hysteresisloop in hard diretion and the transition of the magnetizations from the hard to easy axes an be smoothor sharp depending on the model parameters (for detailed analysis see Se. 2.6). In our partiular ase themagnetization urve showed a well-de�ned jump in the hard-axis MOKE measurements (Fig. 3.8). Numerialsimulation with global energy minimization21 also pointed out a sharp phase transition (see Fig. 3.9).At inreasing �elds the �rst smoothly rotating magnetizations jump when the system hooses a state withdi�erent symmetry. This phenomenon is also related to the �nite staking `freedom' of the ML, as opposed tothe two-sublayer model, the layer magnetizations an oupy all four perpendiular easy diretions by reationof a 'domain wall' (see the 26 mT state in Fig. 3.9). The rearrangement of magnetization ould be seen bymagnetization measurements. MOKE measurements on the sample did show the jump at ≈ 32 mT, but itwas not observable either on the VSM urves or in SQUID measurements. The SQUID loop was taken with
10 mT/point in this region, thus it was too oarse to see suh a jump. The step width of the VSM measurement(0.88 mT/point) would allow the observation of suh a jump, but it was not observed on the loops.The reasons of the missing jump in the global methods (VSM, SQUID) ould stem from many fators. Firstof all, the jump in the parallel magnetization is minute, 0.04 in units of saturation magnetization, see insetin Fig. 3.8. A small distribution in the parameters an smear it out to the noise region. Seondly, VSM andSQUID sees the magnetization of the whole sample, while at MOKE measurements only a tiny fration of thesample is illuminated with the laser beam. Finally MOKE is `surfae sensitive' in the sense that it enhanesthe signal oming from the �rst layers and due to mixing of di�erent MOKE signals the jump is even morepronouned thanks to the `negative' kink of the magnetization loop.The e�et of sample misorientation was investigated. Up to ±5◦ the `jump' is preserved in the MOKEmeasurements (not shown) with the same averaged �op �eld of 32 mT. The numerial simulations for thesample reprodue this feature, however showing a slight shift in the ritial �eld.Finally we note that Alievet al. found a similar e�et on the hard-diretion AC magneti suseptibil-ity data [50℄, whih they attributed to the spin reorientation from easy to hard diretion. Their sample[Fe (30 Å) /Cr (13.5 Å)]

10
was very similar to `990608', and numeri simulation of an n = 10 ML show an even19Modifying the alulations presented in 2.5.3 with the onstraint that the additional oupling terms do not destroy the generalsymmetri AF oupling behaviour.20The numerially ahieved values: Hbsf = 60.28 − 60.65 mT, Hseasy = 0.959 T, Hshard = 1.0196 T21As already noted, the ML an move between the global and loal minima. For the easy-diretion BSF transition we observedsuh behaviour lose to the global minimum. In the ase of hard axis reorientation the loal minimum loop would lead to anasymmetri spin reorientation, not observed in the MOKE measurements.
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Figure 3.8: MOKE hysteresis loop in the hard diretion. The �eld history was 0 → 150 → −150 → 150 mT. The�rst loop (a) was taken after an easy diretion loop, while the seond one (b) was a repetition of (a). In the inset atthe bottom right orner the result of the numerial simulation is shown. The jump on the net magnetization is 0.04measured in units of M/Ms.more pronouned jump. In this ase the transition region dominates the stak, leaving only ≈ 2 − 2 outer lay-ers in the AF on�guration. In our view the jump is not a onsequene of an 'easy-hard' transition but an
/ − X one.3.5 ConlusionsAfter the introdution of the e�ets of �nite staking in the previous part, we tried to magnetially haraterizeour samples with `traditional' magnetometry. We used an extended phenomenologial model, based on thebilinear-biquadrati formalism to �t the hysteresis loops of sample `990608'. In this Chapter we also introduedtwo types of spin �op transitions for AF-oupled arti�ial MLs with fourfold anisotropy. The BSF transitionand the hard-axis spin-reorientation (HASR) transition were numerially investigated with the parametersobtained from the �t of the hysteresis loops. In the ase of BSF we onluded that domain wall motion, ratherthan oherent rotation plays major role in the transition.22 For HASR transition the numerial simulation withglobal minimization showed good agreement with the MOKE measurements.

22We will see that even not domain wall motion, but domain wall annihilation ours at the BSF transition.
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Chapter 4Measurements in momentum spaeIn the previous hapters we dealt with `diret spae' measuring methods. In the following we will introduetehniques that are working in the momentum spae. For the investigation of AF oupled MLs it is oftenfavorable to `dress up' the ML struture with the magneti information. After the introdution to synhrotronMössbauer re�etometry (SMR) and polarized neutron re�etometry (PNR) we brie�y review the momentum-spae representation, and �nally a short part is devoted to oherene issues, whih may be important formagneti domain measurements.4.1 SMRNulear resonant sattering of synhrotron radiation (NRS of SR) [51℄, also referred to as Synhrotron Möss-bauer re�etometry (SMR) [52℄, is a powerful method for analyzing hyper�ne �elds and thus magnetization ofthin �lms and MLs ontaining nulear resonant isotopes. In SMR measurement the illuminated sample sat-ters the radiation oherently, whih an make evaluation of the measured urves a hard task. Without theknowledge of the underlying struture (layer thiknesses, hyper�ne �elds, et.) it is not possible to get a reli-able piture. For homogenous thin �lms the determination of the layer parameters may be easy. In the ase ofFe/Cr MLs, however, the number of parameters to be �tted (hyper�ne struture of the interfae regions, thestrutural roughness, et.) may prohibit the orret evaluation.One ould ask, what are the bene�ts of SMR in suh a omplex system ompared to `lassial' magnetizationmeasurements (like MOKE or VSM)? The answer lies in the oherent nature of SMR. As it an distinguishdi�erent regions in the reiproal spae, it may show diret evidene of magneti strutures, separate magnetiorrelations (domains) from strutural roughness.1 SMR is also good in mapping path-domains of AF-oupledMLs.4.1.1 Introdution to SMR and PNRTotal external re�etion (TER) of x-rays [53, 54℄ and neutrons [55℄ from �at surfaes are phenomena datingbak to the �rst half of the twentieth entury. The real part of the index of refration n of most materialsfor thermal neutrons and of all materials for non-resonant x-rays is by about 10−5 less than unity. At lowenough angles of grazing inidene θ < θc =
√

2 (1 − n) the waves are totally re�eted. The intensity of there�eted speular beam for θ > θc rapidly dereases with inreasing wave vetor transfer q = 2k sin θ where
k is the length of the wave vetor of the inident radiation. In a strati�ed medium, re�eted and refratedbeams appear at eah interfae. The interferene of the re�eted beams leads to patterns of the re�etivityvs. wave vetor transfer spetrum R(q) that bear information on the depth pro�le of the index of refration
n(z), the argument z being the oordinate perpendiular to the sample surfae. R(q) an be alulated from
n(z), e.g. using the method of harateristi matries [56, p. 51℄. Therefore, in frames of a given model for thestrati�ed system, n(z) an be reonstruted from R(q) = |r(q)|2 where r(q) is the re�etivity amplitude. Thislatter approah is the basi idea of speular x-ray and neutron re�etometry, two methods that an be used formapping the eletron density and the isotopi/magneti struture of thin �lms, respetively.1In fat, the `oherene-related' statements are also true for polarized neutron sattering.37
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Figure 4.1: Shemati drawing of the measurement setup. The inoming beam k1 is sattered on the sample to k2. Thesattering is desribed by angle 2θ in the lab system. In sample oordinates with axes x and z the sattering is desribedby angles θi and θf . In the �gure the angles are unrealistially large for demonstration purposes (θi = 20◦, θf = 10◦).The �gure shows an o�-speular ase (θi 6= θf ), thus q in not parallel to z.The oherent forward sattering of a salar wave of momentum muh higher than that of the satterers anbe desribed [57℄ by the index of refration lose to unity
n = 1 +

2πN

k2
f (4.1)where N is the density of satterers and f is the sattering amplitude. The eletron density for non-resonantx-rays or nulear and magneti sattering length density for neutrons is implied in the latter quantity [58℄.X-ray re�etometry may optionally be performed with nulear resonant photons. We shall all this teh-nique, heneforth, Mössbauer re�etometry (MR). MR bene�ts from the fat that, lose to the nulear reso-nane, the photon sattering amplitude f is strongly energy-dependent and ontains the matrix elements ofthe hyper�ne interations. MR is therefore suitable to study the magneti struture of thin �lms.A serious limitation of MR with onventional soures [59℄ is the small ( 10−5) solid angle involved. Dueto its high ollimation, synhrotron radiation (SR) is muh better suited for re�etometri experiments thanradioative soures. Synhrotron Mössbauer re�etometry (SMR) is the appliation of grazing inidene nulearresonant sattering of SR [60℄ to thin �lm and ML struture analysis.4.1.2 SMR measurementsThe sketh of the experimental arrangement of an SMR experiment is shown in Fig. 4.1. The photons from thehigh-resolution monohromator (not shown) hit the sample mounted on a two-irle goniometer of adjustableheight at an angle of grazing inidene θi. The re�eted (sattered) photons are deteted by an avalanhe photodiode (APD). The detetor position de�nes the sattering angle 2θ. The angle θi is often referred to as ω.An SMR measurement is performed in either time integral or time di�erential regime. Time integral SMR(TISMR) reords the total number of delayed photons from t1 to t2 as a funtion of θi and/or 2θ (for details seebelow). Here t1 is a few nanoseonds determined by the bunh quality of the radiation soure and by the deadtime of the detetor and the eletronis, while t2 is set to a value somewhat below the bunh repetition timeof the storage ring. Time di�erential (TD) SMR is a time response measurement performed at various �xedvalues of θi and 2θ. Like in the forward sattering ase [61℄, hyper�ne interation results in quantum beats ofthe time response. Finally we note that with TISMR spetra usually the `prompt' spetra are also taken. Theprompt tag refers to the non-resonant x-ray sattering.In a θ − 2θ experiment the wave vetor transfer q is perpendiular to the sample surfae. For a periodiML, in the �rst Born approximation (kinemati theory), Bragg maxima appear at q =

√
(2π/d)

2
+ q2

c , where
d is the strutural or hyper�ne (magneti) period length perpendiular to the �lm plane and qc is the ritialwave vetor transfer of the TER (typially about 0.5 nm−1). Thus a θ − 2θ san reveals the average plane-perpendiular struture of the ML. In-plane inhomogeneities redue the speular re�etion. Lateral dimensionsof inhomogeneities suh as strutural and magneti roughness, waviness, magneti domains, et., however,annot be further studied in a θ − 2θ experiment.
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Figure 4.2: Calulated TDSMR of a thin Fe foil magnetized in di�erent diretions (B). In the right olumn thepolarizations of the hyper�ne transitions are skethed (for details see text), after [61℄.In an ω-san experiment for small q values the perpendiular-to-plane omponent of the wave vetor transferis onstant (qz = 2kθ) while varying θi, the in-plane parallel-to-beam omponent of the wave vetor transfer issanned: qx = 2kθ(θi − θ). The di�erent san types will be detailed in Se. 4.3. In order to have signi�antintensity, the detetor height is set to qz of a Bragg peak. In the �rst Born approximation, the width of the
ω-san (i.e., qx san) is inversely proportional to the longitudinal orrelation length

ξ =
2π

∆qx
(4.2)where ∆qx is the width of the qx san (exluding the speular sattering). ξ is the orrelation length of thequantity the perpendiular-to-plane periodiity of whih the Bragg peak is due to. Therefore, setting 2θ inan ω-san experiment to an eletronially forbidden pure nulear re�etion the lateral orrelation length ofinhomogeneities of the hyper�ne interation (magneti roughness, magneti domains) an be determined.4.1.3 Magneti informationDue to the full linear polarization, nulear resonant sattering of SR is extremely sensitive to the diretion of thehyper�ne magneti �eld [61,64℄, see Fig. 4.2. The same holds true for the grazing inidene geometry [51℄. BothTISMR and TDSMR an be used to determine the layer magnetization diretion in thin �lms and MLs. Figs. 4.3and 4.4 show alulated θ − 2θ sans and time response urves of an AF-oupled [57Fe (20 Å) /Cr (26.2 Å)]

20ML (the sattering plane is perpendiular to the eletri �eld vetor of the SR). The magneti struture ofthe ML is supposed to be ollinear so that the diretions of the hyper�ne �eld B alternate aross onseutiveCr layers. The total re�etion peak (`0th order Bragg re�etion') and the strutural Bragg peak (`1st orderBragg re�etion') show up in the time integral sans at the same value of θ as in the prompt san. If B is(anti)parallel to the wave vetor k of the SR, AF super-re�etions (`1/2th and 3/2th order Bragg re�etions')an be observed whih are missing if B is perpendiular to k. In fat, the photon sattering amplitude f onlydepends on the angle of k and B and so no AF ell doubling for f is possible if k ⊥ B. This is how time integralSMR an haraterize the orientation of the AF ordered lattie magnetization. The shape of the time responseurves strongly depends on θ. This is due to the fat that the phases of the waves sattered at di�erent depthare shifted with respet to eah other depending on θ. The shape of the time response urves is most sensitive
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20
ML for three di�erent diretions ofthe hyper�ne �eld B (the hyper�ne �eld of the other sublattie is not shown). The sattering plane is perpendiular tothe eletri �eld vetor E of the SR. The arrows indiate the Bragg re�etions of di�erent order.� [62℄
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ML for three di�erentdiretions of the hyper�ne �eld B (the hyper�ne �eld of one of the two sublatties is not shown). The sattering planeis perpendiular to the eletri �eld vetor E of the SR. Integer and half-integer numbers indiate the order of thestrutural and hyper�ne (magneti) Bragg re�etions, respetively.� [63℄to the diretion of B at the AF (half integer order) re�etions. The way to thin �lm magneti struture analysiswith SMR has been opened by Toellner et al. who demonstrated the existene of pure nulear re�etions in anFe/Cr ML [65℄.It is interesting to note that the quantum-beat patterns at the strutural Bragg peak of the AF aligned ML,belonging to magnetization diretions parallel to the beam or parallel to the polarization of SR are idential(see Fig. 4.4). This independeny of the orientation of B an be easily understood in analogy with the forwarddiretion ase. For a single domain of ferromagneti Fe �lm the the stik diagrams in the right olumn ofFig. 4.2 show the polarization of the hyper�ne-split lines. For an AF-aligned ML, if the hyper�ne magneti�eld is parallel to the beam for one sublattie, it is antiparallel for the other. Therefore left and right irularpolarized transitions appear at the same energy for the one and the other sublattie, respetively. Consequently,all transitions an interfere with eah other, whih results in the same quantum-beat pattern as if the hyper�ne�eld is parallel to the polarization of the SR. In this latter ase all transition remain σ-polarized for an AF-aligned ML so that no hange is expeted as ompared to ase of a ferromagnet shown in the right-hand side ofFig. 4.2. The same magneti on�guration and thus same TDSMR spetrum is obtained in the ase of ML withparallel magnetization (in saturation for example) parallel to the polarization of the SR. For an AF aligned MLnot only the quantum-beat patterns for in-plane magnetization parallel and perpendiular to the beam but forany in-plane diretion of the magnetization are idential [63℄. In transversal sample setup (when the diretionof the applied external �eld H is perpendiular to k) even at intermediate �elds, when the ML is in the <-state,the spetra at strutural Bragg positions will be almost the same, as model alulations with EFFI revealed.4.2 PNRNeutron sattering is also sensible to the loal magneti �eld. Polarized neutron re�etometry (PNR) beame aroutine measurement tehnique for haraterization of �lms and MLs [66�70℄. We de�ne the sattering geometrysimilarly to the SMR ase (see Fig. 4.1). In the ase of our investigations even the de Broglie wavelength ofthe neutrons and the wavelength of the nulear-resonant γ-rays were in the same range (λn ≈ 1 − 2 Å, whilefor 14.4 keV λγ = 0.86 Å).The PNR measurements desribed in this work were arried out in JINR, Dubna at the REMUR re�e-tometer [71℄. In that partiular setup the polarized neutrons are guided by a small magneti �eld from the



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE 42polarizator till the detetor. The spin state relative to quantization axis de�ned by the applied �eld an behanged by spin-�ippers. In the re�etometry experiment the neutron beam is polarized by supermirrors. Theinitial spin-state is set by the �rst spin �ipper. The seond �ipper is loated after the sample. External mag-neti �eld may be applied to the sample. After the seond �ipper the neutrons reah the analyzer, whih is afan shaped supermirror and lets trough the neutrons of one polarization to the detetor. The re�etivity spe-tra are taken in four hannels, two non-spin-�ip (++ and R−−) and two spin-�ip (+− and −+). The signsrefer to the initial and �nal spin-state. The above desribed spin analysis allows to see the spins of di�erentorientations in one single measurement. Indeed, if the sattering spins are parallel to the neutron spin, thenit gives ontrast in the non-spin-�ip re�etivity (R++ and R−−), while for perpendiular alignment spin-�ipsattering ours (R+− and R−+) (see Fig. 4.5). Note that on the �gure the external �eld H is parallel to k,while at REMUR H ⊥ k setup was used.4.3 Momentum-spae representationThe aim of the Q−spae measurements is to gain information on the lateral and plane-perpendiular strutureof the ML. With elasti neutron and γ−photon sattering we are probing the sample in the momentum orreiproal spae, hereafter alled Q-spae. In time-of-�ight (TOF) neutron measurements we are ountingpartiles in the λ− 2θ oordinates, while in SMR measurements we are measuring the so-alled θ−ω or θ− 2θurves. Both of those measurements an be mapped to qx − qz oordinates for omparison. In priniple withsans along the qz-axis the strutural and magneti depth pro�le, while with qx sans at onstant qz the lateralorrelations of the ML an be investigated.4.3.1 Measurements is Q−spaeWe will desribe the sattering in lab oordinate system �rst (see Fig. 4.1). In the lab system the inomingbeam is �xed and the sample and the detetor is moved. Let us denote k1 the inoming and k2 the de�etedwave vetor. For elasti sattering |k1| = |k2| = k = 2π/λ, where λ is the wavelength of the radiation.2 If wede�ne the angle between k1 and k2 as 2θ then the length of the sattering vetor will be q = |q| = |k2 − k1| =
4π/λ sin θ. From the above it is trivial that for �xed wavelength the length of the sattering vetor q dependsonly on the sattering angle 2θ. However, The orientation of q relative to the sample will depend on the angleof the sample. We have to keep this in mind when desribing the sattering in sample oordinate system.4.3.2 Sample oordinate systemIn general sattering geometry in sample oordinate system the impinging and re�eted beams an be desribedby angles θi and θf measured from the sample surfae (see Fig. 4.1). The equation θi + θf = 2θ onnets thisdesription with the lab system one. It is easy to see that for wave vetor |k| = 2π/λ the momentum transferin sample oordinate system will be [67℄:

qx =
2π

λ
(cos θf − cos θi) , qz =

2π

λ
(sin θf + sin θi) . (4.3)4.3.3 PNR and Q-spaeIn the ase of TOF PNR we ollet ounts in a two dimensional grid of time (∝ λ) and displaement (∝ 2θ). Themeasurement is made at onstant θi. To get the atual transformation rules, we have to substitute θf = 2θ−θito (4.3):

qx =
2π

λ
(cos (2θ − θi) − cos θi) , (4.4a)

qz =
2π

λ
(sin (2θ − θi) + sin θi) . (4.4b)2Or the de Broglie wavelength of the neutron.
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PSfrag replaementsss[mrad℄[mrad℄onst.onst.onst.onst.onst.border[mrad℄[mrad℄[mrad℄[mrad℄[mrad℄Figure 4.5: �The orientation and magnitude of the sample magnetization M(z) relative to the applied �eld H determinesthe relative proportions of spin-�ip (SF) and non-spin-�ip (NSF) sattering. (a) M(z) in the plane of the surfae,parallel to H produes no SF sattering, but reates di�erent spin-dependent refrative indies for neutrons polarizedparallel and anti-parallel to H . (b) M(z) anted at an arbitrary angle in the surfae plane produes both SF and NSFintensity. () M(z) omponents normal to the surfae have no e�et on neutron speular intensity. (d) The preseneof domains ompliates interpretation of SF and NSF intensities. O�-speular methods o�er a means of haraterizingthese domains.� [69℄ Note that the �gure shows the experiment in `top view', while on Fig. 4.1 we see the side view ofthe same setup.



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE 44Inverse transformation for TOF measurementsIn order to evaluate TOF measurements it is useful to alulate the inverse transformation of (4.4). The reasonis obvious. To be able to integrate or to average data easily in Q−spae, an equidistant grid is useful. To getthis grid, the inverse transformation should be applied to the Q−grid and data shall be averaged in the (λ, θ)system aording to this grid. Then, the averaged data an be transformed bak to the proper grid and datamanipulation and representation is easily done. It is not di�ult to show that the inverse transformation of(4.4) will be:
δ = −2 arctan

qx

qz
, (4.5a)

λ =
4π√

q2
z + q2

x

sin

(
θi − arctan

qx

qz

)
=

4π√
q2
z + q2

x

sin

(
θi +

δ

2

)
. (4.5b)Here δ = θf − θi i.e. the angle measured from the speular re�etion (θf = θi). When qx ≪ qz, then (4.5) anbe approximated as:

δ ≈ −2
qx

qz
, (4.6a)

λ ≈ 4π

qz

(
θi +

δ

2

)
. (4.6b)From (4.6b) we an get δ (λ) = qzλ/ (2π) − 2θi. For onstant qz this is a straight line in the (λ, δ) spae withthe slope

m = qz/ (2π) . (4.7)The above-desribed equations an be used to determine the Q−sale of the measurement. If the position ofthe diret beam on the angular sale of the position sensitive detetor (PDS) is known ompared to the speularre�etion, then no more data are needed for the absolute alibration of q (θi is known from 2θspe = 2θi andfrom (4.4b) qz = q an be also alulated). In the ase of no diret beam information the q sale an be still�gured out. If we know qz for a given Bragg re�etion, then again θi = qzλ/4π. And �nally by �tting the slope(4.7) of a Bragg sheet3 yields the qz of the Bragg sheet, with no need of knowledge of the sample struture.When qz is known, then for the speular (δ = 0) hannel θi = qzλ/4π.
θi − θf sanNeutron sans are also taken with monohromati beam (see [72℄ for example). In this ase the wavelength is�xed and the sample and detetor are rotated. The resulting mapping is shown in Fig. 4.6.4.3.4 SMR and Q-spaeIn the following we will show the di�erent san modes, whih an be used in x-ray re�etometry experiments.In fat, due to the known (θi, θf ) → (qx, qz) transformation (4.3) for any angle pairs we may get the mappingin the Q-spae. Nevertheless, it seems reasonable to plot the transformation for the di�erent san modesseparately.We note that the SMR measurements were taken with horizontal sample arrangement, i.e. the samplere�eted the horizontal beam in the vertial plane. Laking appropriate 1D avalanhe photodiode (APD)arrays, in ontrast to the � already two dimensional � neutron measurements, so far at all SMR experimentshave been performed by sanning along a 1D urve in the Q-spae.In the following we will outline the sanmodes and will disuss the possible urves in ase of systemati errors (detetor o�set, sample zero angle o�setand `open' slits).
θ − 2θ sansThe most `traditional' san type is the θ − 2θ san. In this ase θi = θ, θf = θ and we san4 angle θ. It is easyto see that in this ase (4.3) beomes:

qx = 0, qz =
4π

λ
sin θ ≈ 4π

λ
θ. (4.8)3After weighting to the diret beam pro�le and subtrating the bakground.4Then name originates form the fat that in a �xed-beam setup the detetor should be moved 2θ when the sample is rotatedby θ.
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Figure 4.6: θi − θf san in the Q-spae. The q units are normalized to 2π/λ. In the inset the original grid of onstant θiand θf values is shown. The alulated range is similar to the one used for the measurements of this work. The pattern`1' helps to see the orientation of the transformation. The speular line, i.e. the θ − 2θ san (θi = θf ) is also shown.The approximation sin θ ≈ θ is valid in our ase, beause θ is typially not exeeding 1◦. The θ − 2θ sanis speular (qx = 0), probing the vertial struture of the ML. The θ − 2θ san is onventionally done withwide detetor slits [73℄ (integral measurement mode). In this ase we `ut' the reiproal spae normal to thesurfae. If the detetor slit is narrowed, then only the real speular range is inluded.O�-speular or ω sansIn the ω san the position of the soure and detetor is �xed thus θi + θf = 2θ =onst. It is best to introdue
ω by ω = (θi − θf ) /2 thus θi = θ + ω, θf = θ − ω. This is equivalent to the roking by ω from the speular
θi = θf = θ position. The equations now are:

qx =
2π

λ
(cos (θ − ω) − cos (θ + ω)) =

4π

λ
sin θ sinω ≈ 4π

λ
θω, (4.9a)

qz =
2π

λ
(sin (θ − ω) + sin (θ + ω)) =

4π

λ
sin θ cosω ≈ 4π

λ
θ. (4.9b)In general ase the ω sans are spheres with radius (4π/λ) sin θ but in our speial small angle limit, the sanwill be a perpendiular line to qz (Fig. 4.7). Thus we probe the di�use (o�-speular) sattering of the sample.In other words, we are mapping the lateral strutures. The ω sans are always taken with narrow slits. Weemphasize again: to move along the θ axis in the lab system, one should rotate the sample by θ while thedetetor should be moved by 2θ. For movement along the ω axis, the detetor should stay in-plae, while thesample should be rotated around the θ axis (roking urve).Note that in an SMR ω san the atual value of ω is measured from the beam position. Thus in a `real san'the sanned oordinates in the lab system are: ω and 2θ whih an be transformed to sample oordinates inthe following way: θi = ω and θf = 2θ − ω. This di�erene has onsequenes for an ω san with a 1D detetorarray as it an be seen in Fig. 4.8. The onstant ω urves are no straight lines anymore.Longitudinal o�-speular or o�set θ − 2θ sanThe o�set θ−2θ san (or longitudinal o�-speular san) also provides information about the o�-speular range.This is a θ − 2θ san with slightly misaligned sample or detetor. The misalignment should be big enough not
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Figure 4.7: ω − 2θ san family in symmetri sample oordinates. In this ase θi = θ + ω, θf = θ −ω. The inset with thepattern `1' shows the original oordinates ful�lling the onditions θi ≥ 0, θf ≥ 0.
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Figure 4.8: The normalized plot of the ω−san in lab oordinates (θi = ω, θf = 2θ − ω). The inset with the pattern `1'shows the original oordinates ful�lling the onditions θi ≥ 0, θf ≥ 0. The speular line (θ−2θ) is shown for omparisonwith the symmetri sample oordinate system (see Fig. 4.7).
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Figure 4.9: The Q−spae plot of the longitudinal sans. θi = θ, θf = θ + δ. The inset with the pattern `1' showsthe original oordinates ful�lling the onditions θi ≥ 0, θf ≥ 0. When taking θ − 2θ sans with slit width ∆, then weintegrate from θf = θ−∆ to θ+∆. This symmetri range will be onverted to an asymmetri one in qx−qz oordinates.to inlude the speular (qx = 0) ridge [74℄. First, we investigate the sample misalignment. Let us denote themisalignment angle with δ, thus θi = θ + δ, θf = θ − δ. It is easy to see that this regime is similar to the ωsan exept that now δ is �xed and θ is sanned. The θ − 2θ san is a speial ase of this type of san (δ = 0).For δ 6= 0 the sanned urve is a line, starting from the (0, 0) point. The slope of the line is 1/δ. The θ − 2θ,
ω and o�set θ − 2θ sans belong to one branh, alled ω − 2θ, desribing the system in the reiproal spaeaording to the mapping presented in Fig. 4.7.In the seond ase, the detetor has a �xed o�set of δ i.e., in sample oordinates: θi = θ, θf = θ + δ. Inthis ase

qx =
2π

λ
(cos (θ + δ) − cos θ) , qz =

2π

λ
(sin (θ + δ) + sin θ) . (4.10)When taking the θ − 2θ san in integral mode (wide detetor slits) it is equivalent to integrating in themomentum spae in the ±δ range. As an be seen from Fig. 4.9, the integration region is not perpendiular to

qz . The above-desribed sans may be used to evaluate the plane-perpendiular orrelation of the lateral rough-ness. For unorrelated roughness the di�use sattering ours in the whole Q-spae, while for orrelated rough-ness it is onentrated along Bragg-sheets [74℄. One method to investigate the di�use sattering is the o�set
θ − 2θ san while a onstant qz line an be sanned by ω sans. By sanning di�erent regions of the Q-spaeinformation on the orrelated roughness (strutural or magneti) an be dedued after orreting the measure-ments for geometrial fators. The details will be presented at the sample evaluation.Detetor sanThe detetor san regime has been rarely used by us. It beomes important with the introdution of the 1Ddetetor array. This is in fat similar to the longitudinal o�-speular san, but in this ase the detetor ismoved, thus θ is �xed and δ is the variable. Fig. 4.9 shows the two latter san types.



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE 484.3.5 The qy omponentUp to now we looked only at sattering in the qx − qz plane. However, of- speular sattering may our in the
qy diretion as well [68℄. To treat the whole Q−spae we will rewrite (4.3) to ontain the qy omponent:

qx =
2π

λ
(cos θf cosϕ − cos θi) , (4.11a)

qy =
2π

λ
cos θf sin ϕ, (4.11b)

qz =
2π

λ
(sin θf + sin θi) . (4.11)The new angle ϕ is the azimuthal angle of k2 or the angle o� the re�etion plane [68℄. It follows from (4.11)that qz is not a�eted by ϕ. In the ase of synhrotron measurements the detetor is not position sensitive andthe horizontal slit is in the order of millimetres, thus we integrate a huge region in qy. Let us write the anglesin symmetrial sample oordinates:

qx =
2π

λ
(cos (θ − ω) cosϕ − cos (θ + ω)) ≈ 4π

λ
θω, (4.12a)

qy =
2π

λ
cos (θ − ω) sinϕ ≈ 2π

λ
ϕ. (4.12b)The above approximations are valid in the range of ϕ used at synhrotron measurements. For example: a 4 mmwide slit plaed at ≈ 75 cm orresponds to ±0.15◦ (2.7 mrad). In qx and qz sans we use the vertial omponentof q, while for qy sans the horizontal omponent ounts. This is the reason of the missing θ proportionalityfator. In other words, 2θω = ϕ. Beause θ is in the range of 0.5◦, to san the same range in qy as in qx amuh smaller ϕ angle (resolution) should be applied. Or otherwise, we integrate to the full qy range in ourmeasurements. To see the possible feasibility of a 2D detetor, let us alulate the neessary resolution for a

qy san at the AF Bragg position (0.4◦) of sample 990608. We know that a vertial slit5 height of 0.1 mm(→ 66 µrad) gave satisfatory resolution in qx. For the same resolution we need 90 nrad → 1.36 µm horizontalslit setting in this ase.We an draw the onlusion that we integrate to qy in all ω−sans. Also, if we would not approximate butevaluate (4.12) as it is, then we would see that for a onstant θ and ω if we san ϕ, then we are moving alonga irular path in the qx − qy plane. But this would be relevant only for higher qy values, where the satteringis already negligible.The integration in reiproal spae from zero to high values means an integration in diret spae fromin�nity down to a ritial length. Beause qy sales as qz only sattering from lateral inhomogeneities smallerthan a few Å are not inluded. The domains we investigate are well seen in qy sans, thus they are muhlarger than the lower integration limit. In onlusion, due to broad horizontal slit setting the qy omponent isintegrated and we measure domain distribution along one dimension.4.4 Coherene lengthWhen mapping the sample in reiproal spae, we make use of the oherent nature of the sattering. Eahimpinging neutron and photon `sees' the whole6 vertial struture in z, resulting in Bragg peaks and Kiessigfringes7. We will disuss in the following the onepts of the di�erent oherene lengths.4.4.1 Geometrial onsiderationsThe geometrial unertainties are the main soure of loss of transverse oherene length. We an de�ne twotransverse lengths. One is the `horizontal' oherene length, related to the beam ollimation parallel to thesample surfae, while the `vertial' oherene length is related to the beam ollimation parallel to the plane ofthe speular sattering (and almost perpendiular to the sample surfae). When mapping lateral strutures ofthe ML we assumed that the neutrons and photons are sattered oherently. The oherene length will set the5We all a slit vertial, if it uts the beam vertially. The SMR measurements were taken with vertial plane of re�etion.6For resonant photons the penetration depth an be smaller, than the layer thikness, but still enough repetition is `seen' forthe appearane of Bragg peaks.7The neutron and photon soures are inoherent. The average resonant photon yield at ESRF is still muh less than
1 photon/bunch.



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE 49upper limit of domains that an be measured. For the ase of neutrons ≈ 100 µm was reported [69℄, but theinstrumental resolution sets an even lower limit of 10 − 30 µm [75, 76℄.For photons the lateral oherene length an be estimated from simple geometrial onsiderations. Thetransverse oherene length will be
Ltr =

λ

2π

S

s
(4.13)where λ is the wavelength of the inident radiation, S is sample-detetor distane and s is the detetor slitwidth. When we take grazing angle re�etion, then lateral strutures smaller than the projetion of Ltr an beresolved. In other words:

Llat =
Ltr
θ

. (4.14)Here θ is the inident angle.For the SMR measurements Ltr = 51 nm and Llat ≈ 10 µm for a typial ω san at the �rst AF Bragg peak(θ = 0.4◦). The instrumental resolution has an upper limit of ≈ 5 µm being the primary limiting fator.In onlusion, for both PNR and SMR measurements the instrumental resolution sets the limit of lateralresolution in pratie.



Chapter 5Sample haraterisationOne of the main points of this work is the thorough magneti haraterization of a strongly AF oupled Fe/CrML. Information on both plane-parallel and plane-perpendiular magneti strutures is obtained. To ahievethis goal, oherent sattering methods are utilized. To be able to feed the oherent models with struturalinformation, desription by independent `traditional' strutural and magnetization measurements of the MLis needed. Some of the magnetization results were already disussed in Chapter 3. Before we present theSMR measurements, we should desribe the sample in aordane with the preision needed for the oherentmethods.5.1 Thikness alibrationProper thikness alibration is of utmost importane for the evaluation of re�etivity data. Our goal is todesribe the Fe/Cr sample 990608, nominally MgO/[57Fe (25 Å) /Cr (14 Å)]
20

(see 3.1).5.1.1 RBS and PIXE measurementsIn the literature mainly x-ray re�etivity is used to alibrate sample thiknesses. The high-angle x-ray re�e-tivity measurements are sensitive to the interatomi distanes, while the low-angle measurements are sensitiveto the total �lm and the bilayer thiknesses. In our ase the individual layer thiknesses annot be resolved dueto the low ontrast of Fe and Cr in the given energy range, thus we used applied nulear physis methods to getthe individual thikness of the layers. From ombined evaluation of Rutherford baksattering (RBS) and lowangle x-ray measurements the values [57Fe (26 Å) /Cr (13 Å)]
20

were onluded [6℄. The sample was measuredwith partile indued x-ray emission (PIXE) spetrometry [77℄. Aording to the PIXE measurements madeon the side of the sample the total thikness was 526.7 ± 44.5 Å Fe and 246.2 ± 19.5 Å Cr, respetively. Thehomogeneity of the sample was heked by measuring two 1 mm radius spot in the middle of both ends of thesample.1 The thikness of the sample was homogenous aording to the PIXE measurements (±3%). Assumingno plane-perpendiular thikness distribution of Fe and Cr, a [57Fe (26.3 Å) /Cr (12.3 Å)]
20

was dedued.2Both RBS and PIXE are sensitive to the plane-perpendiular projetion of the atomi density, thus to geta thikness value one has to assume a density, whih an di�er in MBE-grown MLs from the bulk value. Low-angle x-ray measurements ould be more preise in determining individual layer thiknesses if the ontrast werebetter and the `bulk' parameters (eletron density, absorption, layer roughness) were known from independentmeasurements.3The main bene�t of the appliation of nulear methods was to exlude the `inverse' system (with thik Crand thin Fe layers), whih gave a better �t to some of the resonant x-ray data. The �nally obtained struturean be used as a base for �ne-tuning the thikness and related parameters in the resonant x-ray re�etivityurves.1The line onneting the spots was parallel to the longer edge of the sample piee of 10 × 7 mm.2RBS measurements were done by Edit Szilágyi. PIXE measurements were performed by András Kosonya.3This approah was used by R. Shad [48℄, but it is not too widely used.50



CHAPTER 5. SAMPLE CHARACTERISATION 515.1.2 Measured thikness valuesThe bilayer thikness an be determined from the position of the higher-order Bragg peaks (both strutural andmagneti) in SMR and PNR measurements. By this method d1 = 38.1 ± 0.4 Å and d2 = 38.5 ± 0.15 Å bilayerthikness was found from SMR measurements taken at ESRF and SPring-8, respetively. From PNR sans d =
39.3 ± 2.3 Å was ahieved. From the �tting of the prompt x-ray re�etivity of the SPring-8 measurements d =
38.2 Å was found with layer division of [57Fe (25.2 Å) /Cr (13 Å)]

20
. From all the above-desribed results wewill use MgO/[57Fe (26 Å) /Cr (13 Å)]

20
[47℄. Calulating with the bulk Fe and Cr lattie onstants of 2.87 Åand 2.88 Å and taking into aount the orientation of the ML the bilayer struture onsists of 9 monolayers ofCr and almost 18 monolayers (17.75) of Fe.5.2 Non-resonant x-ray measurements5.2.1 High angle x-ray re�etometryThe high-angle x-ray re�etometry san (not shown) of sample 990608 is similar to the one reported by Fullertonet al. for similar systems [14℄. The only di�erene is the appearane of two small peaks indiating possibleoxidization. The extra peaks annot orrespond to a Fe/Cr(211) plane; due to the position of the supposedpeak and they vanish in the o�-speular4 θ − 2θ sans. A splitting of the Fe/Cr(200) peak ould be seen, butthis ould be related to the not proper alignment of the sample and the detetor. On the o�-speular sans themultilayer peaks are more pronouned.The presene of oxides ould result from the fat that neither bu�er nor apping layers were used, givingplae to possible bottom and top oxidization.5.2.2 Low angle x-ray re�etometryIn the ase of low angle speular and roking urves we are lukier, beause all the SMR measurementsautomatially generate a non-resonant ounterpart. Due to the exellent ontrol of the experimental parameterslike wavelength, slit size, angle (exept the zero-position unertainty whih we will disuss later) and the highbrilliane, fast and reproduible measurements are possible.Lateral inhomogeneities of the layer parametersComparing the di�erent measuring methods (see Setion 5.1) we onlude that the overall thikness �utuationsof the sample do not exeed 3%. This is a small value, but an be still seen by the re�etometri methods. Onthe other hand, from x-ray re�etivity measurements taken with very small slits (h = 25 µm) the perfet loalhomogeneity of the ML is seen in two orthogonal diretions along the middle of the sample (Fig. 5.1).5 This isnot surprising, as the sample was rotated during growth. All SMR measurements were taken in the middle ofthe sample, while for neutron sans the whole sample width was used. Finally we note that omparison witholder sans shows that the struture of the sample (at least as seen by the x-rays at low angle) did not hangeduring the years.Evaluation of low-angle prompt x-ray measurementsBefore we an add the `nulear information' to the multilayer it is of immense importane to orretly �t thestrutural part. For this reason we take measurements taken at SPring-8,6 beause the sample alignment washere the best.7From re�etivity simulations arried out with the IMD software [78℄ it turned out that the top layers'roughness and thikness are essential parameters to the non-resonant �t. They determine the details of thewhole urve. The intensity ratios of the Bragg peaks are also strongly roughness-dependent. We used literatureroughness values reported by Shad et al. on similar Fe/Cr systems [48℄ as starting parameter set. The relevantdata are summarized in Table 5.1. With these starting roughness values and the help of IMD a good �t was4O�-speular by 0.3◦.5In fat the di�erene between the two sans is so small that they look like a single line.6http://www.spring8.jp/ENGLISH/faility/bl/PubliBeamline/BL09XU/index.html7At the ESRF measurements the sample was plaed in a huge Dewar �ask, and the whole Dewar �ask was rotated, while inSPring-8 a small preision goniometer was used.
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Figure 5.1: X-ray re�etivity (λ = 0.86022 Å) urves of 990608 taken at SPring-8 BL09XU in Otober 2002. The twoeasy axes measurement are perpendiular to eah other. The detetor slit size was 25 µm×1.5 mm (vertial×horizontal).The beam divergene is 0.0023 mrad× 0.23 mrad (vertial×horizontal). The sattering plane is vertial. The two sansare orreted for θ0 misalignment and sample size.



CHAPTER 5. SAMPLE CHARACTERISATION 53ahieved. The �nal parameters are reported in Table 5.2. Finite instrumental resolution ould be applied tosmear out the deep minima by onvolution, but EFFI has no suh parameter, thus it was not applied.Low-angle x-ray re�etometry is a powerful tool to see ertain parameters of the sample. From IMD simu-lations and the good reproduibility of the spetra it is obvious that the ML struture is laterally homogenousand vertially periodi (the possible random error of the individual Fe and Cr thiknesses is < 1 Å). But re-�etometry gives an `integral' view of the sample. The oxide for example plays a major role in the exat shapeof the re�etivity urve. Also there is no �best� �t, but many possible andidates due to the enormous numberof parameters (layer thiknesses, re�etivity values, roughness, possible top and bottom oxidation, et.). Pa-rameter ross orrelations inevitably exist. As a onsequene, the more parameters are known in advane fromindependent measurements, the better hane we have to obtain not only a good-looking, but also a physiallyrealisti model and �t. Fortunately, essential data on similar MLs an be found in the literature [48℄.In onlusion, sample 990608 is laterally homogenous and the layer thiknesses are also onstant along theplane-perpendiular diretion. Aording to expetations, the top Cr layer is partly oxidized. The interfaesare relatively sharp with average roughness ≈ 1 monolayer. No bottom layer oxidization was found.Finally we note that that a) the ESRF spetra signi�antly di�er from the SPring-8 spetra8 and b) thatin the range of total re�etion � �rst strutural Bragg peak aording to EFFI the roughness is not importanteven with the resonant θ − 2θ urves.
σsubstrate 3.4 Å
σCr 3 Å
σFe 3 Å
σoxide 6 ÅOxide thikness 15 ÅTable 5.1: Thikness and roughness values reported by Shad et al. [48℄ for a Fe/Cr multilayer grown on MgO.layer 1-n [1e-6℄ k [1e-6℄ thikness [Å℄ σ [Å℄oxide1 2.373 0.122 6.36 3.41oxide2 4.257 0.122 10.48 5.21Cr1 6.735 0.243 7.97 3.44Fe1 7.428 0.339 25.2 0†Cr 6.735 0.243 13 1.0 / 1.23Fe 7.428 0.339 25.2 1.46MgO 3.566 0.012 ∞ 1.24Table 5.2: Thikness and roughness values gained by �tting the SPring-8 low angle prompt measurement (λ =

0.860220 Å). The assumed struture was: MgO/[Fe/Cr℄19/Fe1/Cr1/oxide2/oxide1. The σ values orrespond to thetop interfaes (for example σoxide 1 is the vauum/oxide 1 interfae). The two σ values in the Cr row are the Fe1/Crand Fe/Cr roughness values, respetively. For further details, see text. († The model was not sensitive to this roughnessparameter.)5.3 SMR measurementsUp to now we disussed non-resonant x-ray re�etometry results. By analysis of the delayed re�etivity urveswe now fous on the `magneti dress-up' of the struture. As those measurements depend on a huge numberof parameters, �rst we try to dedue some basi information by omparing the measurements to eah other.Then we will disuss the problems arising due to the integral mode θ − 2θ sans. Finally notes on possiblemodel alulations and �ts will be presented.SMR sans are taken in the time-di�erential (TD) and-time integral (TI) modes Time-di�erential modemay be better in evaluating the detailed hyper�ne parameters, while TISMR helps to get a fast overview ofthe `landsape' (see Fig 5.3 for example). For AF oupled MLs both method may show the alignment of thelayer magnetizations. The majority of SMR measurements, disussed in this work, was done in TI mode, thuswe will restrit ourselves to the evaluation of the TISMR measurements.8This is due to instrumental unertainty as the slits were not well ontrolled in the �rst series of the ESRF spetra (in Otober1999), while very aurately reorded at SPring-8.
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9The region was even non-symmetri in q-spae, as one an see at the detetor san graph Fig. 4.9.
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Chapter 6Diret evidene of Bulk Spin FlopAfter the introdution to reiproal spae and momentum transfer measurement methods we return to the BSFthread. As emphasized earlier, only indiret evidene of the BSF transition was presented in this work. Byusing oherent methods the reiproal spae an be mapped and sattering of di�erent origin distinguished. Inour partiular ase we are able to detet the sattering arising due to magneti ell doubling, unambiguouslyshowing the BSF transition [6, 47, 79℄.If a ML with in-plane fourfold rystalline anisotropy is saturated along an easy axis and then the �eld isredued to remanene, the layer magnetizations will align perpendiularly to the given easy axis. An inreasing�eld along the orthogonal easy axis1 auses the so-alled bulk-spin-�op (BSF) transition [47℄.The indiret evidene (MOKE and VSM) was desribed in Setion 3.3. The �rst diret evidene in thease of sample 990608 ame from SMR measurements at BW4 in HASYLAB (Hamburg) [47℄. Due to the lowresonant ount rate only the presene of the BSF was on�rmed, the details of the transition were lari�ed ina subsequent measurement at ESRF ID18 [79℄.6.1 BSF and magnetization orientationIn Fig. 6.2 the BSF transition an be followed in a spetaular way.2 In the starting situation the layer magneti-zations of the AF oupled multilayer are parallel/antiparallel to the external �eld diretion3 and perpendiularto k. This results in no AF re�etion. With inreasing external �eld the AF intensities (peaks marked with1/2 and 3/2) inrease. The area of the �rst AF peak divided by the area of the �rst Bragg peak on Fig. 6.1learly shows the BSF transition region between 10 − 20 mT. The transition is probably even sharper extend-ing in the range of 12 − 16 mT. The unertainty is aused by the statistial �utuations and the hange in themeasurement geometry whih auses the hange of the footprint angle4 leading to systemati errors in the AFpeak intensity. The 3/2 peak, whih is not a�eted by the footprint orretion and bakground ounts from thetotal-re�etion peak starts to appear at 12 mT and has a usp at 16 mT. The �rst san (0 mT) was originallytaken in 600 points, 0.5 point/s while all the others are taken in 300 points thus two hannels were averagedfor the �rst san. The sans at 2.5, 5, 20, 25 and 37.5 mT are not shown (they do not ontain new information� no hange in the ratios). The sans are normalized to the strutural Bragg peak. The θ-misalignments arealso normalized to eah other. Note that at 12 mT 3 sans were taken (12a−). A re�ll ourred between 12aand 12b. Sans from 12b−18 mT were taken with double time (1 s/channel).In onlusion, diret evidene of the BSF transition was shown and sharp BSF range of 12 − 16 mT wasdedued [63℄. Later in the domain desription part we will show PNR evidene of the BSF transition and thedomain oarsening related to the BSF will be disussed.
1This an be ahieved by either rotating the external �eld, or equivalently by rotating the sample in remanene, the latter beingthe easier in the synhrotron ase.2The ESRF measurements were done in Otober 1999 (SI-508).3This was ahieved by saturating the sample in 2 T, releasing the �eld and turning the sample by 90◦.4The angle at whih the sample bloks the inoming radiation totally.56
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Chapter 7Antiferromagneti domainsMagneti thin �lms and ferromagnetially oupled layers often show ripple domains perpendiular to theexternal �eld in order to minimize the stray �eld energy [4,17℄. In ontrast, strongly AF-oupled magnetiallyompensated MLs like to form `path-like' domains. The diret visualization of those domains is di�ultdue to the vertial ompensation of the magnetization in the ML stak.1 Indiret methods (for exampleresistane noise, magnetoresistane) and reiproal spae measurements (unpolarized and polarized neutronre�etometry) showed ontraditory results on domain evolution [6℄. The domain-size distribution in AF-oupled MLs is important, as the domain-size dependent resistane noise may be as large as to limit GMR-sensor appliations [80℄. Our group was the �rst to show that by appropriate magnetization history the domainsan be enlarged by at least one order of magnitude (domain oarsening) [6℄.In remanene, a magneti ML is in multidomain state. In a strongly AF-oupled ML the magneti domainstruture of the individual ferromagneti (FM) layers is stritly orrelated through the ML stak from substrateto surfae. This results in zero net magnetization magneti super-struture domains in a periodi ML of aneven number of equally thik FM layers. We will use the term `AF domains' for those path domains. Thevertial orrelation allows for a two-dimensional representation, e.g. aording to the domains of the topmostmagneti layer.We found a omplex domain history in Fe/Cr MLs. The �rst e�et, viz. domain ripening an be best de-sribed by traking the domain evolution from saturation to remanene. In saturation the sample is singledomain: all magnetizations are parallel with the external �eld. When the �eld is lowered, the fored ferro-magneti state starts to break up into multidomain state. The angle of magnetization between neighboringdomains, i.e. the domain-wall angle is small in high �elds, and the domain wall energy is also minute. On de-reasing the �eld to remanene, the domain-wall angle grows to 180◦. The inreasing angle results in inreasingdomain-wall energy, whih is in turn an be lowered by inreasing the average size of the domains and, thereby,dereasing the domain-wall energy per unit area, a proess that we shall all, henefort, domain ripening. Do-main ripening is realized by domain-wall motion, whih is a dissipative proess, thus the one enlarged domainswill not shrink bak on inrease of the external �eld again.The ripened domains may grow further by passing the BSF transition. At the BSF transition the perpen-diularly applied �eld ignites a domain oarsening. As here no domain wall motion, but annihilation plays themain role, the resulting domains an be in the range of the sample. The one oarsened domains will againnot shrink bak on onseutive BSF transitions. It seems, that the domain size (ripened or oarsened) doesnot play role in the �eld range of the BSF transition. We have MOKE evidene on this point as the BSF wasrepeated with relatively low `aligning �elds', showing the same loop eah time (see Se. 3.3).Before detailing the experimental results we present theories of domain ripening andMonte Carlo simulationson `unsaturation' domain formation and domain oarsening.7.1 Domain ripeningIn the following we will present two, admittedly simpli�ed, models of the ripening proess. Nevertheless thesemodels will desribe the main features of domain ripening and will allow estimating the size of the ripeneddomains.1To our knowledge, the only MOKE mirosopy observation on Fe/Cr was made on thik trilayers [17℄.59



CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 607.1.1 Theory 1In the �rst theory we will alulate the average domain size of a single magneti layer in ontinuum approxi-mation. All magnetization vetors are assumed to lie in plane. The total energy of a round AF domain will bealulated [81℄.Energy termsIn the �rst model only one layer is taken into aount. The AF-oupled ML is onsidered by negleting thestray �eld energy, whih an be done as in the AF-oupled stak no energy gain is assoiated with the reationof domains. In this ase, domains are formed as a onsequene of laterally random unsaturation.First we alulate the bulk ferromagneti oupling within the Fe layers. As a �rst approximation, we takea straight domain wall, with a linear wall pro�le. Let φ (x) denote the in-plane angle of the magnetization atthe position x and let l be the domain width with the loal magnetization varying as φ (x) = {π/2, if x < 0,
π/2 − πx/l, if 0 ≤ x ≤ l and −π/2 if x > l}. In this ase the exhange energy will be: Ex =

∫
A (φ′)

2
dV(see [4, pp. 112, 217℄). A slab of width w, total height tFe and wall width l has the energy of2 Ex = AtFewπ2/l.Here A is the exhange onstant of bulk iron.For the same type of wall the anisotropy energy an be also easily alulated, in our ase EK being equalto3 (see for example [4, p. 113℄): EK =

∫
K sin2 φ cos2 φdV . Integrating with respet to the given volume wewill have4 EK = tFewKl/8. The total energy is the sum of the two previous terms:

Ew = Ex + EK = tFew(Aπ2

l
+

Kl

8

)
. (7.1)In ase of equilibrium dE/dl should vanish. From this we get:5

l = 2π

√
2A

K
. (7.2)Substituting l in the energy funtion we �nally have:

Ew = πtFew√AK/2. (7.3)If we bend the domain wall to get a round domain of diameter ξ ≫ l then all the above argumentation staysvalid with the substitution w = πξ. Thus the energy of a domain of diameter ξ is
Ew = π2tFeξ√AK/2. (7.4)In ase of applied external �eld the diretions of the momenta will hange less. The previous argumentsould be repeated with a new φ (x) funtion: φ (x) = φ0, if x < 0, = φ0 − 2φ0x/l, if 0 ≤ x ≤ l and

= −φ0 if x > l. In this ase the exhange energy will be: Ex = 4AtFewφ2
0/l. The anisotropy energy is:6

EK = tFewKl (4φ0 − sin 4φ0)/32φ0. Thus the total energy equals to:
Ew = tFew(4Aφ2

0

l
+

Kl (4φ0 − sin 4φ0)

32φ0

)
. (7.5)From dE/dl = 0 we get:

l =

√
128Aφ3

0

K (4φ0 − sin 4φ0)
(7.6)Substituting l to the energy term, the �nal equation is

Ew = tFew√AKφ0 (4φ0 − sin 4φ0)

2
. (7.7)2φ (x) = π/2 − πx/l → φ (x)′ = −π/l, Ae = A
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3, where mi-s are the angle osines (or the magnetization omponentsalong the ubi axes). In our oordinate system m1 = sinϑ cos φ, m2 = sinϑ sinφ, m3 = cos ϑ and ϑ = π/2. We are negletingthe seond term (Kc2 = 0).4Again, the integrand depends only on x. The result was rossheked by Mathematia.5This result is √8 times the wall width, one an obtain by variational alulus. See [4, pp. 215-219℄ for example.6To see the relationship with the previous ase: 4φ0−sin 4φ0
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CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 61And for a round domain of diameter ξ

Ew = πtFeξ√AKφ0 (4φ0 − sin 4φ0)

2
. (7.8)Now we have to alulate the energy loss due to magnetization reversal. This is the so-alled hysteresisloss, whih is related to oerivity. When the loal layer-magnetization �ips one bak and forth the energyloss due to oerivity will be equal to the area of the `virtual' H − M graph. In �rst approximation, this is

Ec = 4µ0HcMV where µ0Hc is the oerive �eld, M is the bulk Fe magnetization and V is the volume involved.For a round domain expanding its diameter from ξ to ξ + δξ where δξ ≪ ξ we will have7
δEc = 2πξtFeµ0HcMδξ. (7.9)In the ase of φ0 < π/2 the magnetization reversal loss is less. Only the perpendiular-to-�eld omponenthas to �ip, whih is proportional to sin φ0. Thus the �nal form of δEc:

δEc = 2πξtFeµ0HcM sin (φ0) δξ. (7.10)The hysteresis loss is a dissipative, always ating against the domain wall movement, it atually resemblesfrition. When oming from saturation, the domain size is small, governed by the primary domain formationrules (see later). Close to saturation, the domain-wall energy is small then by lowering the external �eld itgrows. The system would like to get rid of the extra exess energy. In this simple model the domains will growto make less domain walls and, thereby, reduing the domain-wall density. They an do so only as long as theenergy `drive' is bigger than the dissipative term. If a round domain of diameter ξ expands to ξ + δξ, where
δξ ≪ ξ then the energy gain is:

δEw = πtFe√AKφ0 (4φ0 − sin 4φ0)

2
δξ. (7.11)Taking δEw = δEc we have for ξ:

ξ =

√
AKφ0 (4φ0 − sin 4φ0)

2
√

2µ0HcM sin φ0

. (7.12)As expeted, this equation does not depend on tFe, beause only bulk parameters were used, and due to thesymmetry of the problem, this is a two-dimensional ase. In the limiting ase (φ0 = π/2) we will have:
ξmax =

π
√

AK

2
√

2µ0HcM
. (7.13)We an plot the domain evolution as the funtion of ξ/ξmax (Fig. 7.1).The oerive �eld Hc is only known with a large error. Indeed, due to the fully ompensated, AF-ouplednature of the investigated ML, Hc annot be dedued from onventional magnetization measurements. Inthe following we shall use the rough estimate 0.2 mT < µ0Hc < 3 mT. Substituting the parameters A =

2.1 · 10−11 J/m K = 4.7 · 104 J/m3, M = 1.7 ·106 A/m from [81℄, we have 220 nm < ξmax < 3.45 µm.This model is laking a basi parameter, namely the interlayer AF oupling. This model not only does notdepend on J , but in the limiting ase of K = 0 breaks down (the energy beomes zero and wall width in�nite).A seond shortoming of this model is the exlusion of the Zeeman energy, whih would lower the domain wallenergy in external �elds and would make the domains slightly bigger but would not hange ξmax. This will alsobe orreted in the next model.7.1.2 Theory 2The rede�ned model takes into aount the interlayer oupling and assumes a symmetri wall struture whihruns perpendiular to the ML stak (see Fig.7.2). In the �rst approximation we will neglet the magnetorys-talline anisotropy. In this ase the two energy terms are the FM intralayer oupling and the uniaxial-type8 AFinterlayer oupling. We will again integrate with respet to the whole stak, but neglet �nite-staking e�ets.The energy terms are Ex = A
∫

(φ′)
2

dV and EJ = J
∫

cos 2φdAt where dAt means integration with respetto all Fe interfaes. In our ase this would mean EJ = nJ
∫

cos 2φdA where dA is the area of the domain wall.7We took only half of the total hysteresis loss urve beause, during ripening the moments should turn only one.8cos 2φ = 2 cos2 φ − 1. And we an neglet onstant terms in the energy expression.



CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 62

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90

PSfragreplaementsss[mrad℄[mrad℄onst.onst.onst.onst.onst.border[mrad℄[mrad℄[mrad℄[mrad℄[mrad℄

φ0[
◦]

ξ/
ξ max

Figure 7.1: The angle dependene of ξ in `Theory 1' in units of ξmax. The angle is measured from the external �eld, zeromeaning saturation.PSfrag replaementsss[mrad℄[mrad℄onst.onst.onst.onst.onst.border[mrad℄[mrad℄[mrad℄[mrad℄[mrad℄layer 1layer 2Figure 7.2: The sketh of a symmetri wall in strongly AF-oupled ML aording to `Theory 2'. The two layers arealigned symmetrially relative to the applied (in this ase horizontal) external �eld. The arrows are representing thein-plane angle φ of the layer magnetizations.



CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 63Let us denote the thikness of a single Fe layer with t1, thus tFe = nt1 where n is the number of the Fe layers.For this model we will alulate everything for a single layer with two oupled surfaes.The energy, whih has to be minimized for a domain wall along the x-axis9 beomes in remanene:
Ew = Ex + EJ = At1w

∞∫

−∞

(
φ (x)

′)2
dx + 2Jw

∞∫

−∞

cos2 φ (x) dx (7.14)This an be diretly substituted to the energy density of eq. (3.105) in [4℄ with the onstants A = A and
2J/t1 = K and, integrating the result, the wall energy [4, p. 217℄ will be:

Ew = 4w
√

2At1J (7.15)In the ase of external �eld (inluding the Zeeman term in a two-sublattie model), with domains having angles
φ0 and −φ0 a more generalized formula will apply. In this ase we an use the formula (3.111) from [4℄. In theoriginal formula the generalized energy density term is G (φ) − G∞ = Ku1 (cosφ − cosφ0)

2 whih we shouldintegrate to get the wall energy in one dimension: γw = 2
√

A
∫ φ0

−φ0

√
G (φ) − G∞ dφ yielding:

γw = 2
√

AKu1

φ0∫

−φ0

cosφ − cosφ0 dφ = 4
√

AKu1 (sin φ0 − φ0 cosφ0) . (7.16)In our ase integrating γw with respet to the other two dimensions and substituting the onstants and alu-lating for a domain with diameter ξ we have:
Ew = 4πξ

√
2At1J (sin φ0 − φ0 cosφ0) . (7.17)The hysteresis loss will be the same as for (7.10). Making the two variations equal we get:

ξ = 2

√
2AJ

t1

1 − φ0

tan φ0

µ0HcM
. (7.18)We will get the maximal domain size at φ0 = π/2. Substituting the literature values the range of ξmax isnow 1.6 µm < ξmax < 24 µm.We an inlude anisotropy in this seond model. We will alulate only ξmax (H = 0 T). The equation wewill start from is again taken from [4℄ (3.128): Ew = Ku1

(
cos2 φ + κ cos4 φ

) where κ = Ku1/Ku2In our ase the integrand of the energy term10 (fourfold anisotropy and uniaxial type oupling) is:
ew =

2J

t1
cos2 φ + K cos2 sin2 φ =

(
2J

t1
+ K

)
cos2 φ − K cos4 φ. (7.19)To get the wall density we should substitute the values Ku1 = 2J/t1 + K, Ku2 = −K and κ = − K

2J/t1+K , thus
κ < 0. In this ase the wall energy density:

γw = 2
√

AKu1

(
1 +

1 + κ√
−κ

arctanh
√
−κ

)
. (7.20)If we integrate for one layer (thikness and width) and write our variables:

Ew = 2wt1
√

A (2J/t1 + K)

(
1 +

2J/t1√
K (2J/t1 + K)

)
arctanh

√
−κ. (7.21)Taking the atual values of J , t and K κ will be small. In this range tanhx ≈ x, thus

Ew = 2wt1
√

A (2J/t1 + K)

(
2 − K

2J/t1 + K

)
. (7.22)9φ (−∞) = π/2, φ (∞) = −π/210cos2 φ sin2 φ = cos2 φ − cos4 φ
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Figure 7.3: The angle dependene of ξ in `Model 2' in units of ξmax. The angle is measured from the external �eld, zerobelonging to saturation.With K = 0 equation 7.15 will be a speial ase of (7.22). For a round domain (w = πξ) the energy of the wallwill be
Ew = 2πξt1

√
A (2J/t1 + K)

(
2 − 1

2J
Kt1

+ 1

)
. (7.23)The hysteresis loss (7.11) at zero �eld is δEc = 2πξt1µ0HcMδξ. From this maximal domain diameter atzero �eld is:

ξmax =

√
A (2J/t1 + K)

(
2 − 1

2J

Kt1
+1

)

µ0HcM
(7.24)Substituting all numerial parameters, we will result in a maximal domain diameter in the interval of 1.6 − 24.1 µm.Note that pratially no di�erene an be seen ompared to the K = 0 ase, whih will be evident if we makefurther approximations for the small anisotropy term (α = t1K/2J ≪ 1).

Ew = 2πξ
√

2t1AJ (1 + α)

(
2 − 1

1
α + 1

) (7.25)
2 − 1

1
α + 1

= 1 +
1

1 + α
, (7.26)

1

1 + α
≈ 1 − α,

√
1 + α ≈ 1 +

1

2
α, (7.27)

√
1 + α

(
1 +

1

1 + α

)
≈
(

1 +
1

2
α

)
(2 − α) = 2 − 1

2
α2, (7.28)

Ew ≈ πξ
(
4 − α2

)√
2t1AJ (7.29)In onlusion, the leading �perturbative term� vanishes, thus the anisotropy energy aounts only for ≈ 0.86hlowering of the wall energy, whih an be safely negleted.`Theory 2' is also a `�rst-guess' model'. A better domain-ripening model ould only be made by the use ofmiromagneti alulations. Note that both models predit a ontinuous domain ripening.



CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 657.1.3 AF-domain formationIn the previous part we treated the ripening of the already existing AF domains. But how are those AF domainsformed initially? In the following Monte Carlo simulation we will try to give a phenomenologial answer tothis question [82℄.Let us assume a lateral distribution of the saturation �eld (aused for example by Fe and Cr layer roughness).This inevitably leads to independent AF domain nuleation enters. When the external �eld is lowered fromsaturation, the strongest-oupled parts will form AF domains �rst. They an do this in two di�erent ways.The top layer may start rotating to the right or to the left (lokwise or ounter-lokwise). The two typesof domains will grow until the whole sample is unsaturated. In our model we assoiate the domain formationwith the orrelation length of the saturation �eld. We assume the absolute thikness variations of Cr and Feto be equivalent. Due to the strong osillatory thikness dependene of the oupling in the Fe/Cr system [83℄,the atual orrelation length of the AF oupling and, onsequently that of the unsaturation domains is muhsmaller than the orrelation length of the Cr spaer thikness.Pixel representationDue to the vertially orrelated domains, the strongly-oupled AF stak an be modeled as a two-dimensionalgrid of pixels. Eah pixel represents the diretion of the magnetization of the topmost layer in a given pixelarea. The mesh size of the grid should be taken smaller than the atual domain size. In our model, eahpixel possesses a marosopi lassial magnetization, saturation �eld and anisotropy energy. The domains areformed on this grid by �rst-neighbor rules explained later. Domains are represented as ontiguous sets of pixelsof the same olor.Saturation �eld distributionThe unsaturation or primary domain formation is governed by the distribution of the saturation �eld. Thehigher the saturation �eld of a given pixel is the sooner will the pixel unsaturate. First we reate a grid ofunorrelated random numbers U (r) of Gaussian distribution aording to [9℄ (p. 288), where r = (x, y) is theposition vetor. The saturation �eld distribution is generated by smoothing the grid by an empirial width ωaording to
D (r) =

∑

|r−r
′|<ω

(
1 − (r − r′)

2

ω2

)
U (r′) (7.30)Periodi boundary onditions are used. Dereasing the external magneti �eld Hext from saturation, the MLgradually unsaturates. When Hext mathes the saturation �eld value Hs of a given pixel, the pixel unsaturates.The pixel will hoose its sense of rotation aording to so-alled �ipping rules. When Hext < min (Hs), the wholeML is ompletely unsaturated. We an represent the domains aording to their top layer's magnetization:white=left, blak=right, gray=still saturated.Flipping rulesThe set of �rst-neighbor rules governs the deision of eah pixel. In our model, all eight �rst neighbors haveequal weights. To avoid reating domain walls, the pixel to deide hooses the sense of rotation of the majority11or hooses at random if no deision an be made using the previous rule. The �ipping rules involve only �rstneighbors, allowing for a fast realization of the above algorithm. The grid is sanned for saturated pixels.When found, it is heked if all still-saturated neighbors possess a lower Hs value than the one found. If yes,the pixel is allowed to hoose its sense of rotation aording to the above �ipping rules. If not, the next pixelis hosen. The san of the grid is repeated as long as all saturated pixels �ip to either left or right (blak orwhite). Finally, the temporal evolution of the domains is reprodued and a movie of the domain formation isonstruted from the �nal state (Fig 7.4).The above-desribed Monte Carlo simulation was tested with MOKE mirosopy data from Fe/Cr trilayers[82, 84℄ with good agreement (see Fig. 7.5. In the desription of the unsaturation domain formation therystalline anisotropy term an be negleted, thus the primary domain size does not depend on the in-planesample orientation. When we are in the low-�eld region (after the ripening) the orientation does ount as willbe seen in the following.11Neighbor pixels still in saturation have no in�uene
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Figure 7.5: �The autoorrelation funtion of the Kerr mirosopi image (Fig. 4b in [17℄ as ompared with the autoor-relation of the simulated image in Fig. 7.4b with ω = 10 and pixel size of 146 × 146 nm2.� [84℄7.1.4 Domain ripening in easy diretionIn the easy-diretion unsaturation senario the moments rotate smoothly to the AF-remanent state from theFM alignment in saturation. The �ipping rules do not ontain the domain wall energy expliitly, thus from thismodel no ripening is expeted. A more sophistiated miromagneti simulation (expliitly inluding domainwalls) should give a better Monte Carlo desription.The ripening of the domains is onneted with the oerivity of the Fe �lms, as disussed in the previousmodels (7.1.1 and 7.1.2). As the �eld dereases, the domain-wall angle and, onsequently, the domain-wallenergy per unit are inreases. Therefore also the domains inrease in order to derease the domain-wall densityand, thereby, to minimize the domain-wall energy. This spontaneous growth of the domains is limited by thedomain-wall pinning (oerivity) and the gain in domain-wall energy is not enough to inrease the averagedomain size beyond a ertain limit. The domains are bound to their original sense of rotation as long as themagneti �eld remains parallel to the original axis of magnetization, sine in higher �elds the Zeeman energy,in lower �elds the magneto-rystalline anisotropy stabilizes the domain orientation.7.1.5 Domain ripening in hard diretionIn the hard-axis senario there is a seond `ritial point', viz. the hard-axis reorientation transition (seeSetion 2.6). Now the system is in a frustrated state between di�erent energy minimum paths. The role ofdomain walls will be enhaned. In a simple model unsaturation along a hard axis result in nearly 180◦ domainwalls when approahing a ritial �eld Hprt [85℄. At this �eld, the sublayer magnetizations are direted alongthe hard axis and perpendiular to the �eld, a on�guration that beomes energetially unfavorable on furtherreduing the �eld.12 In remanene the magnetizations will lie parallel to the easy axes. See Fig. 7.6 for theevolution of domain ripening in hard diretion.Assuming that the domains do not hange shape but rotate, the domain image remains the same downto Hprt as it was in omplete unsaturation, only the angles of the layer magnetizations hange. At the spin-partition �eld Hprt (r) the pixel magnetizations start partitioning, i.e., rotating lokwise or antilokwise. TheAF domains gradually develop into four di�erent orientations along the easy axes in remanene resulting in
±45◦ relative rotation from the Hprt state. The domain nuleation of this partition spin-�op is now governedby the e�etive orrelation length of the spin-�op �eld, whih is muh broader than that of the saturation �eld.A pixel an hoose its new diretion if all pixels with higher spin-�op �eld have already deided. A left-diretedpixel (e.g., top layer pointing left) an now hoose between up-left and down-left diretions. The rules aresimilar to the unsaturation rules, but here the energy penalty of a neighbor pixel is proportional to the squareof the relative angle of the neighbors.13. The pixel to deide will hoose the diretion with the least total12This is an oversimpli�ed piture as we know that for �nite number of layers omplex reorientation transition ours, but themain idea, i.e. the frustration of the magnetizations (domains) is still valid.13We assume, that in �rst approximation the domain wall energy is proportional to the square of the angle of the wall
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CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 69energy penalty. Consequently, the remanent domain struture following a hard axis unsaturation remembersthe primary domain struture. The four types of domains are not randomly distributed, but in groups of twoin order to avoid 180◦ domain walls. Indeed, if a left-direted pixel has hosen to rotate left-up, a neighboringright-direted domain will de�nitely rotate right-up rather than right-down sine the domain-wall angle in thisase will be only 90◦.7.1.6 Domain oarsening on BSFAt the BSF transition the magneti moments are swithed by ±90◦ by the external �eld. This abrupt hangein layer magnetization gives the hane to hange the domain struture. In Fe/Cr MLs, we found a oarseningof the domains on BSF transition [6℄.The mehanism of the BSF-indued oarsening basially di�ers from that of the unsaturation domainformation and ripening. Indeed, when an inreasing magneti �eld is applied in the magnetization-paralleldiretion, the anisotropy energy preserves the primary domain struture only for H < Hbsf. At Hbsf, thesystem beomes energetially unstable and the layer magnetizations �ip to the �eld-perpendiular diretion.There is again a freedom in the sense of rotation and, similar to Hs, also Hbsf obeys a distribution. However,at H ≈ Hbsf the system is lose to an energy maximum and behaves like an explosive material: it may jumpto an energy minimum by 90◦ or −90◦ rotation of the magnetization. One the �rst region with the lowestvalue of Hbsf `deides' between a 90◦ or −90◦ �op, it will `ignite' the neighbor regions, whih will hoose thesame diretion of magnetization to avoid reating new domain walls. In ontrast to primary domain formation,seondary domains at the BSF transition may grow without any long-range domain-wall motion, and thisgrowth is, therefore, not limited by oerivity. BSF-indued domain oarsening is an explosion-like 90◦ �opof the magnetization annihilating primary 180◦ walls. Consequently, the seondary path domain size mightbeome omparable with the sample size.In the BSF Monte Carlo simulations [82℄ we used similar spin-�ip rules, whih ensure the unneessaryreation of exess domain walls. A pixel an hoose now its new diretion if all pixels with lower spin-�op�eld have already deided. The rules are now the same as those during unsaturation, but the pixels may now�ip from the left/right into the up/down orientation. In a simple model of the domain-wall energy, the energypenalty is proportional to the sum of the square of the relative angle of the neighbors. It an be shown that withthese onditions, the seondary domain formation is independent of the primary struture and only dependson the lateral distribution of the spin-�op �eld. The BSF domain oarsening is shown in Fig. 7.4.7.1.7 Domain stability and proessIf in the ML isolated round domains would exist, they ould be annihilated below a ritial size. For a MLwith path-domains, a hessboard-like struture is more realisti. The wall-energy alulations an be repeatedin this ase, and will lead to the same ritial size but with stable domains. [81℄We presented two theories, where AF-domain grows ontinously with dereasing external �eld. We alsonoted, that if a domain is oarsened, then it will stay like that unless the sample is (super)saturated. We alsoknow, that the primary domain formation results in a given orrelation width of the `saturation domains'. Fromthe above it follows, that domain ripening will start only, when the theoretial size of the ripened domainsreahes the atual primary domain size.



Chapter 8Domain experiments on the Fe/Cr sample8.1 IntrodutionIn the �rst part of the experiments, we investigated the speular spetra, whih orresponded to the qx = 0speular ridge in the momentum spae, showing the plane-perpendiular orrelations of the sample. In the lastpart of the thesis we will deal with lateral strutures (in our ase mainly domains) of the AF-oupled MLs fromexperimental point of view. Magneti domains stritly AF-orrelated through the ML stak give rise to di�usesattering at Bragg positions (Bragg sheets) as will be detailed later. They an be mapped in qz = onst.sans, whih orrespond to ω sans in SMR. Domain ripening observed in the easy and hard diretions of thefourfold in-plane anisotropy is disussed as well as domain oarsening at the bulk-spin-�op transition.The physial quantity that we would like to obtain from the o�-speular SMR and PNR measurements isthe lateral autoorrelation funtion of the AF domains. In the �rst Born approximation, negleting magnetiinterfae roughness, we obtain the Fourier transform of the domain autoorrelation in the reiproal spae [86℄.Magneti domains in AF-oupled MLs have been investigated by PNR for a long time [67, 68, 87℄. SMRan yield the same information for nulear resonant isotopes (in our ase 57Fe). Reently, X-ray MagnetiSattering has been also utilized to study Fe/Cr MLs [88,89℄. The evolution of di�erent tehniques leads to agrowing ompetition of measurement methods. We will fous only on PNR and SMR, whih were used in ourexperiments.As already mentioned, oherent sattering tehniques give diret information on the magneti struture.Sattering ontributions of strutural and magneti origin separate in reiproal spae for well-hosen ondi-tions. For AF-oupled MLs, this manifest in the appearane of pure magneti sattering peaks. Those peaksare the result of the unit ell doubling by the alternating AF magneti ordering of the ML, giving rise to `halforder', struturally forbidden peaks. Those AF Bragg peaks are of pure magneti origin.In this work the majority of our statements is based on SMR sans. The fast development in user environ-ment and beam ollimation at ESRF resulted in an inrease of an order of magnitude in resonant yield, thusthe last taken sans are the most reliable ones.1 In the future the environment will evolve further by the intro-dution of on-line sample-height monitor and adjuster. The parameters we measure are the peak heights (from
θ − 2θ sans) and the di�use shoulder parameters (from ω sans).In spite of the di�erent probing depth the PNR results basially mathed well with SMR data. In theTOF PNR measurements the sample position is onstant thus minimizing the systemati errors stemming fromsample `sliding', but the neutron yield is low, leading to long measurement times and, onsequently, to a lownumber of data sets measured as a funtion of the external magneti �eld. In the following we will disuss theresults from the SMR point of view, inserting PNR measurements, where available.8.1.1 Domain ripening and oarsening as seen by SMR and PNRIn saturation all sublayer magnetizations are parallel to the external �eld. This fored ferromagneti alignmenteases with dereasing �eld, giving rise to domain growth. The evolution of the domains in the high-�eld regionis governed by random proesses, due to the mirror symmetry of the magneti on�guration. The net magneti1For the sample 990608 the measurements with best statistis and most detailed �eld dependene were arried out in Februaryand Deember 2003 at the ESRF ID18 beamline. 70



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 71moment of the AF stak does not depend on the symmetry of the domains (top layer left or right) and themagneti �eld lines are shortut by the AF struture, thus the stray �eld plays no role. We attribute the pathlike domain formation [17℄ to the distribution of the saturation �eld and the simple rule of domain wall energyminimization (see Chapter 7).Both the SMR and PNR measurements on�rmed the existene of the stritly orrelated AF domains. Thedomain ripening ourred in a narrow �eld range of (0.2 − 0.1 T) in both easy and hard diretion loops. Wefound that domain ripening is an irreversible proess, in the sense that the domain size does not hange oninreasing or reverted �elds. This meets our expetations as the ripening involves long-range domain wallmovement, thus it is inevitably a dissipative proess.To obtain again the small (`virgin') domain state, the sample has to be saturated, in order to erase all`domain memory'. Our experiments revealed that `simple' magneti saturation was not enough, but a �eldhigher than the apparent saturation must be applied to retain the primary domain state. We all this e�et`supersaturation' e�et. The supersaturation �eld was found in a narrow �eld range between 1.25 − 1.3 T,independently of the orientation of the sample (easy or hard diretion). The saturation �eld was less than
1.05 T even for the hard diretion loop.The supersaturation e�et was investigated in full hysteresis loop to exlude the minor-loop e�et.2 Wefound that ompleting the loop by saturation of −1.1 T did not hange the domain distribution.Traditional hysteresis loops are taken along one diretion. For AF-oupled MLs with fourfold in-planeanisotropy also a trikier magnetization history is possible. Doing a half-hysteresis loop (up to saturation,then bak to remanene) and applying a perpendiular �eld (in pratie by rotating the sample by 90◦), thebulk-spin-�op (BSF) transition (see Setion 2.5) ours, induing a domain oarsening (see Setion 7.1.6). Themajority of the resulting domains were larger than the experimental resolution.The supersaturation e�et was also investigated at low temperature. Starting with oarsened domains thesample was ooled to 15 K in zero �eld. At this temperature the saturation �eld was Hs = 1.55 T (indiated bythe disappearane of the AF Bragg peak), but the supersaturation �eld was larger than 2.5 T. Laking su�ientbeamtime, it was only possible to establish that the supersaturation �eld at 15 K was less than 4.07 T. Indeed,having applied this latter �eld, the lateral orrelation funtion determined from ω−san in remanene wasequivalent to that of the `virgin' domains.8.1.2 SMR measurements and sample orrelationsThe SMR measurements map the sample in reiproal spae. The θ − 2θ sans are re�eting the plane-perpendiular struture and orrelations, for example the layer thikness and average roughness parameters.The ω sans are basially onstant-qz sans, mapping the o�-speular (or di�use) sattering. The origin ofdi�use sattering an be strutural or magneti lateral inhomogeneities.Rough interfaesRough and di�used interfaes lead to the derease of speular X-ray sattering and appearane of o�-speularor di�use sattering [90�92℄. If the applied method is magnetization-sensitive then the magneti roughness alsoontributes to the di�use sattering [86,93℄. The distribution of the o�-speular sattering in the Q−spae de-pends on the plane-perpendiular orrelation of the roughness. For unorrelated roughness, the o�-speularsattering is basially the sum of the sattering of the individual layer roughnesses [94℄, giving rise to di�usesattering in the whole reiproal spae, while for perfet spatial repliation of the interfaes (orrelated or `on-formal' roughness [95℄) the o�-speular sattering will our at the so-alled Bragg sheets (Fig. 8.1), summingup the amplitudes, resulting in an intensity higher by a fator proportional to the number of layers [94℄. Thuso�-speular (ω and longitudinal o�-speular) sans reveal the degree of plane-perpendiular orrelation and thelateral orrelations of the interfaes. From speular sans only the average roughness and magnetization pro�lean be dedued.Magneti satteringNot only strutural roughness breaks the lateral symmetry of the interfaes. Magneti roughness, as alreadydisussed, also ontributes to the o�-speular sattering. Magneti domain formation is also modulating the2In SMR and PNR measurements normally the hysteresis loops were minor loops. The �eld was yled from saturation toremanene and then bak to saturation. H. Zabel suggested that the supersaturation is an artefat of the unompleted (fullsaturation) yle.
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PSfrag replaementsss[mrad℄[mrad℄onst.onst.onst.onst.onst.border[mrad℄[mrad℄[mrad℄[mrad℄[mrad℄Figure 8.1: Sketh of orrelated and unorrelated interfaial roughness and intensity distribution from the roughness inthe reiproal lattie (after [96℄).magnetization-dependent sattering. In general, both magneti interfae roughness and domains give ontri-bution to the o�-speular wings [86℄. If, however, the interfae is unorrelated, we shall see only the domaininformation.8.1.3 SMR sans, slit settings and systemati errorsBefore desribing the measurement results in detail, we have to disuss the soures of systemati errors. Thisis important as in our ase systemati errors often prohibit the quantitative analysis of the data.In SMR sans we mapped the momentum spae with θ − 2θ, ω and o�-speular longitudinal sans (seeSetion 4.3.4). The θ − 2θ and o�-speular sans were measured in integral mode with `broad' detetor slits,while the ω sans were taken with `narrow' slits. In the February 2003 shift at ESRF ID18 the `broad' slitorresponded to 3 mm vertial aperture, whih is equivalent to an aeptane angle of3 ∆2θ = 2 mrad, whilethe `narrow' slit setting was 0.2 mm, whih gives ∆2θ = 0.13 mrad. From a previous session4 it is known thatthe sample's speular re�etion width is ≈ 0.087 mrad at the �rst AF peak. When measuring with slit settinglarger than this value, we do see line broadening due to the inadequate instrumental resolution.The majority of the θ − 2θ sans were taken with broad slits. The horizontal slits were wide enough tointegrate along qy for all sans (see Setion 4.3.5). The prompt and resonant θ − 2θ sans show a part of thedi�use (o�-speular) sattering due to the integral mode measurements.The longitudinal o�-speular sans were also taken in integral mode (broad detetor slits) and they ontainedthe speular re�etion, too. Consequently, they were not appropriate for deduing the `pure' di�use sattering,however, we learned from them that sometimes the so-alled speular θ − 2θ measurements were in fat o�-speular ones. The reason is the unertainty in the angle ω, as the sample stage ould move a bit betweenand during measurements ausing small shifts of sample's position and angle. We all this latter e�et the θ0unertainty. The θ0 unertainity results in systemati errors as it may hange the peak ratios. When measuringslightly o�-speular then, due to the broad o� speular AF wings, the AF peak does not hange muh whilethe narrow speular peaks are lowered biasing strongly the peak ratios, as shown in Fig 8.2. The θ0 and samplestage height instability also resulted in systemati errors onerning o�-speular sans. By measuring at wrong

qz positions the ω−sans ould be �o�-peak�, resulting in slightly modi�ed di�use sattering pro�le.3From the sample-detetor distane (whih was alibrated to be 74.48 cm): 1◦=26.0 mm on the z-stage.4The ω sans with highest resolution were taken at session SI-735 (August 2001). The FWHM of the prompt peak did nothange muh when a detetor slit of 0.04 mm (∆2θ = 0.026 mrad) or 0.1 mm (∆2θ = 0.066 mrad) was used. However, the FWHMdoubled when the aperture was inreased to 0.4 mm. The FWHM with the narrowest slit setting (0.04 mm) of the prompt ω−sanwas 0.087 mrad (0.005◦) at the AF peak (ω = 0.39◦). The delayed FWHM was 0.12 mrad (0.007◦) for the same slit setting.
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×10 magni�ation from 1.2◦ on the delayed data. The sans were taken at ESRF (2003 Deember). Sample 990608was measured along an easy axis in transversal setup. The preeding �eld history was 4 T → . . . → 0 T → 0.3 T. Themeasurements were taken in 0.3 T.Peak ratios in θ − 2θ sansAs mentioned above, the θ−2θ sans were done with relatively wide slits. The inlusion of the part of the di�usesattering means that the height of the AF Bragg peak depends not only on the speularly re�eted radiationbut the distribution of the o�-speular sattering an also have a dramati e�et (Fig. 8.3). The large di�ereneis not so surprising if we take a look at the ω san at the �rst AF peak (Fig. 8.4). The partial integration ofthe wide delayed o�-speular wing ompared to the narrow strutural one auses the huge di�erene. We willuse this `integral e�et' later to study the domain history.A resonant photon ounter would help to normalize the speular and o�-speular sattering5 relative tothe number of inident resonant photons per seond. The possible energy shifts aused by the displaementof the monohromator rystals and the drift of the sample indued a systemati unertainty in the absoluteresonant yield. Without the possibility of external normalization, the measured urves had to be normalizedintrinsially.The `data mining' inluded integration of all resonant peak areas (total re�etion, strutural and AF Braggpeaks) in the SMR sans and the tabulation of peak heights. For analysis mainly the peak areas were usedbeause in some ases the peaks were broad with two maxima. The onlusions did not hange essentiallydepending on the height or area seletion. In some ases an alternative approah of linear ombination ofspetra was used. This gave again qualitatively the same result.Gathering magneti data by omparison of peaks is possible only if the information is `loalized' to givenregions. The existene of AF peaks is the diret onsequene of the magneti `unit ell' doubling. On the otherhand the magneti struture itself in�uenes the sattering in general. For our partiular measurement setupwe have seen no hange of the sattering with the hanges of the magnetization angles at the �rst struturalBragg peak. This is a onsequene of the partiular geometrial setup (see Se. 4.1.3).The appearane of AF peaks in TISMR spetra and the absene of magneti sensitivity at the strutural5In ase of the neutron measurements the normalization is easier as the inoming �ux is monitored. In PNR TOF measurementsthe sample and the detetor are not moving, whih makes the measurement geometrially more reliable than in ase of an SMRsan.
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Figure 8.5: The �rst AF and �rst strutural Bragg peaks in easy diretion. The AF resonant o�-speular intensityhanges with �eld while the Bragg peak is `onstant' and oinides with the prompt o�-speular san. The sans weretaken at ESRF, session SI-508b (July 2002). The intensity was saled to the speular hannel.peak has onsequenes on the o�-speular re�etivity, too. It implies that the onseutive magneti layers arestritly AF orrelated through the ML [6℄. If it were not the ase then, as it was observed for weakly oupledCo/Cu MLs by Borhers et al. [97℄ the AF peak would disappear.In the following we will use the area of the Bragg peak to normalize the spetra based on the previoustheoretial and following pratial onsiderations, assuming that it ontains only strutural information butnot magneti:1. The resonant ω−sans taken at the strutural Bragg peak in low (7 mT) and high (1 T) external �eldshowed idential peaks, while the ω−san at the �rst AF peak had no o�-speular sattering (see Fig. 8.5)at high �elds.62. The ω−san at the strutural Bragg peak was the same for the prompt and delayed photons (exept forthe norm. fator) independently of the sample ondition (temperature, external �eld). See Fig. 8.6.Finally we note, that by analysis of θ − 2θ sans taken with broad and narrow slit, magneti satteringwas found only at the AF peaks.7 This means, that in priniple the total-re�etion peak ould also be usedfor normalizing the peaks. In pratie it is not a good idea, beause of the systematially hanging footprintorretion.8.2 Domain ripeningDomain ripening is the proess, when the average domain size grows from its `native' (just below saturation)state to the zero-�eld equilibrium size (see Chapter 7). We performed SMR and PNR measurements to studythe details of the hange of the domain size distribution. Similar measurements were previously done by PNRon AF-oupled systems (see for example [72, 76℄ and further referenes in [67℄) but the present SMR study isthe �rst thorough and systemati investigation of the domain evolution proess.6In 1 T we measured at the possible `AF position', as no AF peak was present.7Normalizing to the prompt yield, the broad-slit and narrow-slit urves were ompared for a whole loop (in easy diretion ofSI-962.)
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Figure 8.6: ω sans at the �rst strutural Bragg peak at di�erent parameters. The prompt (lines) and delayed (points)data are saled to a ommon urve. The sans were taken at ESRF, session SI-962 (Deember 2003).8.2.1 Easy diretionThe SMR mapping of domain transformation in easy diretion was one of the �rst of our o�-speular synhrotronmeasurements (ESRF, SI-735, August 2001). The feasibility of o�-speular sanning was demonstrated in earliershifts (SI-508, July 2000; SI-618, Deember 2000) but at that time the brilliane of the beam did not allow forsystemati investigation with aeptable ount rate. The easy-axis loop was repeated in Deember 2003 withmuh better statistis (session SI-962). Here both θ − 2θ and ω−sans were taken. Starting from well abovesaturation (Hmax. = 4.065 T) the �eld was lowered to 1.2 T and then Q−spae mapping was done. Reduingthe external �eld step by step, the domain history was sanned.From the θ − 2θ sans with wide slits [81℄ we see an irreversible domain ripening8 (Fig. 8.7). The AFpeak rises sharply below H = 0.2 T and when the �eld is inreased again, the peak ratio stays well above the�eld-derease branh.From the ω−sans the domain ripening an be investigated in details. The intensity of the di�use satteringis proportional to the `roughness', while the form of the funtion orrelates with the in-plane magneti struture.We will not analyse quantitatively the intensity of the o�-speular sans as yet, no proper theory of the di�useSMR is available and the geometrial unertainties give too muh error on the absolute yield.The intensity of the o�-speular sattering depends on the magneti `ontrast', whih ontains not only theautoorrelation funtion of the in-plane magnetization, but also the angle di�erene between the neighbouringdomains. At high external �elds the angle di�erene and thus the magneti di�use sattering at the AF peakis small. To be able to ompare the autoorrelation funtions, we normalized the o�-speular parts to theshoulder next to the speular peak.In Fig. 8.8 the ω−sans in dereasing �eld (after supersaturation) are olleted down to 0.2 T. From earliermeasurements9 we already expeted the ripening to our in a small �eld range starting at 0.2 T, thus we tooklarger steps in the upper magnetization region. The normalized ω−sans are idential, showing no hange inthe shape of the o�-speular sattering. The urve at 0.2 T shows a small ripening, but we attribute it tosystemati errors (integral of the o�-speular peak is anomalously low, the previously taken θ − 2θ sans with8In the SI-962 session θ − 2θ sans up to the third strutural Bragg peak were taken. In priniple all three strutural/AFpeak ratios should give the same information. We found that due to geometrial e�ets, the usage of higher order pairs gave lessinstrumental errors (at lower angles the θ0 and sample height unertainty plays a bigger role). On the other hand, at too highangles the resonant ount rate is not high enough for reliable omparison. For this sample the seond Bragg and AF peak werethe best hoie.9ESRF shift SI-735, August 2001.
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0.3 T and 0.15 T. If omparing the branhes of dereasing �eld to those of inreasing �eld, then we see thatthe peak is higher at inreasing �eld. Reduing the �eld a seond time to 9 mT gives idential sattering tothe �rst maximum. The above behaviour is onsistent with the domain ripening shown by the SMR. From theo�-speular �gure (Fig 8.13) the domain distribution an be mapped. We show the primary domains at 0.3 Tand the domain state after ripening (9 mT). The domain �ts will be desribed later.SupersaturationRipening is an irreversible proess. We all irreversibility the fat that in inreasing external �eld the oneripened domains are not shrinking bak. The only way to get bak the primary domains is to supersaturatethe sample. The supersaturation e�et was investigated by SMR. The �rst evidene of supersaturation was10The layer magnetizations were perpendiular to the spin on the impinging neutron beam.
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CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 80

 0.7

 0.8

 0.9

 0.7

 0.8

 0.9

 0.7

 0.8

 0.9

-6 -5 -4 -3 -2 -1  0  1  2

 0.7

 0.8

 0.9

-6 -5 -4 -3 -2 -1  0  1  2

A

C

E

G

B

D

F

H

Q
z
 [

n
m

-1
]

Qx [10
-3

 nm
-1

]

PSfrag replaementsss[mrad℄[mrad℄onst.onst.onst.onst.onst.border[mrad℄[mrad℄[mrad℄[mrad℄[mrad℄Intensity [arb. units℄[ ℄Figure 8.11: Polarized neutron measurements at the �rst AF peak with no spin analysis. Negative hannel (�rst spin�ipper ative). After supersaturation the �eld was released to A: 0.6 T, B: 0.45 T, C: 0.3 T, D: 0.15 T and E: 9 mT.Inreasing the �eld, F: 0.3 T, G: 0.6 T, and again to remanene: H: 9 mT. The `grey' axis is logarithmi. Themeasurements were done on the re�etometer REMUR at IBR-2, Dubna in January, 2003.



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 81

 0.7  0.75  0.8  0.85  0.9  0.95

qz [1/nm]

0.6 T (down)

0.45 T (down)

0.3 T (down)

0.15 T (down)

9 mT (down)

0.3 T (up)

0.6 T (up)

9 mT (down 2)

PSfragreplaementsss[mrad℄[mrad℄onst.onst.onst.onst.onst.border[mrad℄[mrad℄[mrad℄[mrad℄[mrad℄

Intensity[arb.
units℄

[℄

Figure 8.12: PNR measurement at the �rst AF peak integrated along qx. The integration region was [-6:1.2℄ 1/µm.

-6 -5 -4 -3 -2 -1  0  1

0 T

0.3 T

PSfragreplaementsss[mrad℄[mrad℄onst.onst.onst.onst.onst.border[mrad℄[mrad℄[mrad℄[mrad℄[mrad℄

Intensity[arb.
units℄
[℄

qx [1/µm℄Figure 8.13: PNR measurement at the �rst AF peak integrated along qz . The integration region was [7.5:9℄ nm−1. Thesolid lines are Lorentzian �ts with ξ = 0.272 ± 0.009 µm (0.3 T) and ξ = 1.23 ± 0.01 µm (0 T), respetively. The dashedline is an exponential �t with ξ = 0.989 ± 0.013 µm. For de�nition of ξ see 8.3.



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 82

 0.01

 0.1

 1

-4 -2  0  2  4

1.1 T -> 0 T

1.2 T-> 0 T

1.25 T -> 0 T

1.3 T -> 0 T

1.35 T -> 0 T

PSfragreplaementsss[mrad℄[mrad℄onst.onst.onst.onst.onst.border[mrad℄[mrad℄[mrad℄[mrad℄[mrad℄
Intensity[arb.units℄[℄

I
/
I max

qx [1/µm℄Figure 8.14: Easy diretion supersaturation measured after domain oarsening (SI-618, Deember 2000). The ω−sanswere measured in zero external �eld. Change in the o�-speular sattering at 1.3 T an be seen.

 1

 10

 100

 1000

−4 −2  0  2  4

a

b

c

d

e

PSfragreplaementsss[mrad℄[mrad℄onst.onst.onst.onst.onst.border[mrad℄[mrad℄[mrad℄[mrad℄[mrad℄
Intensity[arb.units℄[℄

Counts[a.u.℄

qx [1/µm℄Figure 8.15: Easy-diretion domain-ripening yle. The sample was �rst supersaturated in 4 T, then the �eld was releasedto zero, then Hext = 1.1 T was applied, afterwards redued to Hext = 0.5 T where the �rst ω−san was measured (a).To hek the diretion-independene of the domain ripening, a negative �eld of Hext = −1.1 T was applied, and the
ω−san measured at Hext = −0.5 T (b). The previous two sans show the same domain properties as that, measuredon the sample in Hext = 0.6 T inreasing �eld from remanene (). To ompare the ripened domains with the small-domain state, the ω−san prior to ripening at Hext = 0.45 T (d) (oming from supersaturation) is ompared with theontinuation of (b) by applying Hext = −1.2 T, then measuring at Hext = −0.5 T (e).



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 83

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

decreasing

increasing

decr/incr

PSfragreplaementsss[mrad℄[mrad℄onst.onst.onst.onst.onst.border[mrad℄[mrad℄[mrad℄[mrad℄[mrad℄
Intensity[arb.units℄[℄


Hext [T℄Figure 8.16: Linear ombination of hard diretion θ − 2θ sans. After supersaturation in 4 T, the �eld was dereased to

0 T then inreased to 1.35 T. The der/inr urve show the dereasing c values divided by the inreasing c values. Thepoints above 1.1 T are not shown.line shape down to 0.2 T. As shown in Fig. 8.17 in saturation we see no di�erene in the prompt and delayeddi�use sattering around the speular part. When the �eld is lowered, only the intensity of the magneti di�usesattering hanges, but not the line shape. We attribute this hange to the hanging domain angle.Lowering the external �eld further in hard diretion the domain ripening an be observed between 0.2 Tand 0.125 T (see Fig. 8.18). The ripened domains do not hange when the �eld is lowered further to remanenefrom 0.1 T. At inreasing �elds the shape is not hanging, just the di�use intensity is getting lower.SupersaturationWhen the sample is in saturation (H ≥ Hs) then the AF peak vanishes, thus no diret information an beobtained from it.14 In order to detet the domain transformation around saturation the �eld was loweredprior to measurement to 0.5 T (to be above the ritial �eld for domain ripening) where AF sattering isalready measurable. The maximal �eld to be investigated was inreased in small steps from measurement tomeasurement. This way, the supersaturation `memory e�et' was mapped. Aording to the measurements, inhard diretion the domains are transformed bak to the `virgin' (small domain) state in a narrow �eld rangebetween 1.20 and 1.25 T (Fig 8.19). This is the same �eld range, where the easy diretion supersaturation wasobserved.8.3 Domain history at low temperatureThe supersaturation e�et was also demonstrated at low temperature, in easy diretion (SI-962, Deember2003). After two onseutive spin-�op transitions at room temperature, the sample was ooled to 15 K. Bylooping the external �eld step by step to higher and higher values and measuring θ − 2θ sans in-�eld, and
ω−sans in zero �eld the saturation �eld was sanned and the supersaturation investigated.Due to the spin-�op, in remanene the sample was in the `large domain' state [6℄. By inreasing theexternal �eld the AF moments were fored to rotate towards a ferromagneti alignment. The saturation �eldwas ≈ 1.5 T (Fig. 8.20). To be sure to inlude all o�-speular sattering, the vertial detetor slits were wide14The di�use sattering, still present, is proportional to the prompt ω san (see for example Fig. 8.17), giving only struturalinformation.
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0.2 − 0.125 T after supersaturation. Ripening is irreversible, the domains do not hange on inreasing the �eldup to supersaturation. The supersaturation region is again a narrow �eld region of 1.25 − 1.3 T. Ripening andsupersaturation our in the same way for easy and hard diretion loops (same �eld ranges, same ω−sans),thus it seems that anisotropy plays no role in those phenomena. At 15 K the supersaturation is even more pro-nouned and no ripening ours. Finally, the non-ontinuity of ripening is not an artefat of the SMR sans,15This slit setting is probably wider, than the whole ative area of the detetor.16This is the reason why the total-re�etion peak has never been inluded in the �t.17The unexpeted derease at 0.4 T is also onneted to sample alignment and it is missing in the higher-angle �t.
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CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 87Field [T℄ Fit type ξ [µm℄0.25 Lorentzian (a) 0.66 ± 0.04Exponential (b) 0.64 ± 0.04Gaussian () 0.66 ± 0.010 Lorentzian (a) 1.64 ± 0.03Exponential (b) 1.35 ± 0.01Table 8.1: Easy diretion ξ �ts with di�erent autoorrelation trial funtions of the SMR ω−sans (SI-962, Deember2003).as PNR sans on�rm our �ndings.Domain sizeNow we would like to answer the following question: How big are the AF domains? We used reiproal-spae measurement methods, thus the results have to be interpreted aording to suitable models. For theevaluation of PNR and SMR measurements we will use �rst Born approximation,18 in whih the domain sizeis the Fourier transform of the orrelation length measured in the reiproal spae. As a �rst guess, we useexponential autoorrelation funtion in real spae [86℄, leading to Lorentzian line-shape in reiproal spae.Also due to the slit setting we integrate with respet to qy, reduing the problem to one dimension. For theautoorrelation funtion
C(x) = e−|x|/ξ (8.1)where ξ is the `average domain size' along the x-axis the funtion to be �tted will be

f(qx) =
A

1 + (qxξ)2
. (8.2)

A is the intensity normalization fator. We start with �tting the PNR results. In Fig 8.13 the small andlarge domain state was �tted. The virgin domain size was ξ = 0.272± 0.009 µm (measured in 0.3 T) and theripened domain state had ξ = 1.23 ± 0.01 µm (0 T), respetively. The ripening fator is 4.5. As we have seenexponential-like ω sans in the SMR measurements, the di�use sattering peaks of the ripened domains werealso �tted with an exponential (orresponding to Lorentzian autoorrelation funtion in diret spae). Theresulting orrelation length was ξ = 0.989± 0.013 µm, whih is in the same range as for the Lorentzian �t.For the SMR sans we got di�erent qualitative results. Even the funtion �tting best an be di�erent. Weused three trial funtions:
a)

A

1 + (qxξ)2
(8.3a)

b) Ae−|qxξ| (8.3b)
c) Ae−

1

2
(qxξ)2 (8.3)For the small domain state there is no real good �t.19 The best is the Gaussian �t (funtion c). Interestinglythe obtained ξ values are almost idential independently of the model funtion used. The �tting results aresummarized in Table 8.1.The domain oarsening was also investigated in the hard diretion by SMR. In the SI-847 shift (February2003) the oarsening was thoroughly mapped. We have seen again the manifestation of the θ0 instability leadingto systemati errors, whih make the proper data interpretation quite di�ult. From the non-reproduibilityand asymmetry of the shoulders of the prompt ω sans one an onlude that systemati errors an alter18To obtain the average domain size and domain autoorrelation funtions an o�-speular �t would be neessary with properlyseleted model parameters (average roughness, orrelation length, et.). The starting parameters should be fed to the �ttingalgorithm, the results orreted with possible geometri e�ets and �nally onvolved with the instrumental resolution funtion.This is the way how Savage et al. proeeded in the ase of prompt x-ray roking urves [74℄. The theory of o�-speular Mössbauerre�etometry is being developed and will be available soon [98℄. In the ase of magneti information not only domain struture, butalso the magneti roughness (originating from the strutural roughness) may modify the results [86℄. In this setion a `�rst-glane'desription of the SMR and PNR ω sans is given.19The speular peak was exluded (±0.5 µm−1) from the �t.



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 88

 0

 200

 400

 600

 800

 1000

-4 -2  0  2  4

0.25 T

a

b

c

PSfragreplaementsss[mrad℄[mrad℄onst.onst.onst.onst.onst.border[mrad℄[mrad℄[mrad℄[mrad℄[mrad℄

Intensity[arb.
units℄
[℄

qx [µm−1℄Figure 8.22: O�-speular san showing the primary domain state. The lines are �ts with the trial funtions de�ned inthe text. The best �tting funtion is c, the Gaussian. The sans were taken at ESRF shift SI-962 (Deember 2003).

 0

 200

 400

 600

 800

 1000

-4 -2  0  2  4

0 T

a

b

PSfragreplaementsss[mrad℄[mrad℄onst.onst.onst.onst.onst.border[mrad℄[mrad℄[mrad℄[mrad℄[mrad℄

Intensity[arb.
units℄
[℄

qx [µm−1℄Figure 8.23: O�-speular san showing the ripened domain state. The lines are �ts with the trial funtions de�ned inthe text. Now the exponential funtion b gave the best result. The sans were taken at ESRF shift SI-962 (Deember2003).



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 89the measurements in di�erent ways. The geometrial hanges are not big but they are magni�ed due to thegrazing-inidene setup. The resonant roking urves are sometimes also asymmetri. The o�-speular partsof the ω−sans20 ould be desribed phenomenologially by sum of Gaussian and exponential funtions. Wedo not detail the numerial results, as with no proper model the interpretation of the data is very di�ult.21We would like only to summarize some general trends. On Figures 8.22 and 8.23 the domain state before andafter ripening an be seen with di�erent trial �tting funtions (8.3).When unsaturating the sample along a hard diretion from supersaturation the ω san an be desribed by aGaussian funtion. The shape of the autoorrelation funtion hanges with the ripening proess to exponentialin the range of 0.2 − 0.125 T. The exponential nature stays when the �eld is inreased from remanene. Theorrelation length seems to grow in inreasing �eld (in the range of 0.5 − 0.8 T) but we attribute this e�et tothe hanging domain angles and not to the ripening of the domains.22 In the easy-diretion SMR ω sans nosuh e�et was seen. The obtained ξ values are in good agreement with the easy diretion SMR sans.The ripening fator for SMR measurements is 2 (or 2.5 depending on the funtion), whih is smaller thanthe 4.5 fator obtained from PNR measurements. We attribute this di�erene to the di�erenes in methods,i.e. in our opinion the small virgin domains are simply too small to be resolved by SMR. The o�-speularsattering amplitude is limited by geometrial e�ets and in our ase this envelope is reahed, whih an bealso noted from the shape hange of the sattering. The same di�ulties were not present on the PNR san,where the ross setion of the sattering is muh smaller, and thus the penetration depth exeeds the samplevolume even in grazing inidene setup.In onlusion, we observed domain ripening in both easy and hard diretions. The ripening proess developsin the same way, independently of the orientation of the sample. This fat, and the diretion independeneof the supersaturation �eld suggests that domain ripening is not onneted with rystalline anisotropy. Theripening ours in a well-de�ned �eld range, enlarging the average domain size by roughly a fator of 5. Theresulting large domains are in the order of µm. Both PNR and SMR measurements of the ripened domainsan be �tted best by exponentials, indiating a Lorentzian autoorrelation funtion of the domains. This is inontradition with the exponential shape, generally assumed in the literature [86℄.

20Exluding the ±0.015◦ region of the speular peak.21The ω−sans were evaluated but �nally we deided not to inlude the detailed evaluation in this work for the previouslymentioned reasons.22The same `extra' ripening ould been dedued from PNR measurements, where in the easy diretion the lowering peaks ininreasing �eld showed an inreasing autoorrelation length.



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 908.4 BSF and domain oarseningFinally, after the domain ripening, we desribe the domain oarsening onneted to the BSF transition [6,47,79℄.As disussed in Setions 3.3 and 6 when a sample with fourfold in-plane rystalline anisotropy is saturated alongan easy diretion and then the �eld is redued to remanene, the layer magnetizations will be perpendiular tothe diretion of the vanishing �eld. The BSF is indued by the appliation of a perpendiular in-plane magneti�eld. The BSF results in the oarsening of the AF domains [6℄.During BSF, the magnetizations turn by ±90◦. In the ase of SMR measurements two perpendiular set-upsare neessary to see the di�erent domains. Conversely, with PNR measurement a single san is enough, beausehere the orthogonal domains separate to the spin-�ip and non spin-�ip hannels, respetively.In the following we ite parts from the work of our group [6℄. The domain oarsening an be monitoredby polarized neutron di�use sattering, without rotating the sample. Prior to the PNR experiment the samplewas ex-situ saturated in 2.1 T, i.e., well above Hs and even the supersaturation �eld. The sample layermagnetizations were parallel/antiparallel in zero �eld to the inident neutron polarization. PNR maps taken ininreasing external �eld are shown in Fig. 8.24. Left and right olumns in Fig.8.24 represent non-spin-�ip andspin-�ip re�etivities (here R−− and R−+), orresponding to magnetization omponents parallel/antiparalleland perpendiular to the neutron spin, respetively. In a �eld below HSF (Fig. 8.24A) the AF re�etion appearsonly in the non-spin-�ip hannels and onsists of a broad di�use sheet. In ontrast, in Fig. 8.24C, in a �eld abovethe transition, the AF re�etion is only observed in the spin-�ip hannels. While the non-spin-�ip hannelsonsist only of o�-speular di�use sheets, the spin-�ip hannels show mainly speular sattering.23 Midway thetransition (Fig. 8.24B), the AF re�etion shows up in both hannels, in full aordane with the SMR results,detailed below.In the SMR experiment (SI-618, Deember 2000), the sample was �rst saturated along the Fe[100℄ easy di-retion in 4.07 T, a �eld well above Hs and Hsup. sat.. In Fig. 8.25, ω sans are shown as a funtion of thelongitudinal in-plane omponent qx of the sattering vetor [6℄. When the �eld was released, the layer magne-tizations lay in the perpendiular Fe[010℄ easy diretion, parallel or antiparallel to k, the photon wave vetor(inset of Fig. 8.25B). While a sharp speular re�etion was observed in the prompt re�etivity (Fig. 8.25A), onlya broad di�use shoulder appeared in the (delayed) SMR ω san (Fig. 8.25B). On rotating the sample by 90◦,the magnetizations turned perpendiular to k, and the AF re�etions disappeared sine for k-perpendiularhyper�ne �eld no AF re�etions are expeted in time-integral θ − 2θ SMR sans [62℄. The intensity of theAF re�etions reovered, when a �eld of 12 to 16 mT was applied along the Fe[010℄ diretion perpendiularto the photon wave vetor k and the ML passed the BSF [47℄. Fig. 8.25C shows two ω sans of onsider-ably di�erent width, taken in two mutually perpendiular orientations of the sample relative to k followingan exposure of the ML to 13 mT, half way in the BSF transition. At this point, the �ipped regions of theML (left inset of Fig. 8.25C) mainly give rise to a narrow speular peak, whereas the not-yet-�ipped regions(right inset of Fig. 8.25C) stay to show a broad di�use shoulder in the delayed intensity. By exposing the sam-ple to 35 mT, the BSF transition is ompletely passed (inset of Fig. 8.25D) and the ω san is dominated bya speular peak (Fig. 8.25D). No further hange in the shape of the ω san ould be indued by any �eld y-le inluding repeated generation of BSF transitions, until the system was fully saturated. However, exposingthe sample to 4.07 T �eld again, the ω sans beame idential with that shown in Fig.8.25B, i.e., the speularpeak disappeared from the SMR ω san.8.4.1 Experimental resultsThe interpretation of the oarsened domain state is not an easy task. As it an be seen from Fig 8.25D, thesattering from the large (oarsened) domains is almost speular, but there is still a small magneti shoulder.This shoulder is better seen24 in Fig. 8.21.In Fig. 8.26 the domain oarsening during the BSF transition is shown. The �rst interesting point isthat even before the BSF transition we do see o�-speular sattering (left side, 0 T), when no AF magnetisattering is present. Seondly, during the spin �op the shape of the o�-speular sattering narrows (rightside) as the ripened domains are turning perpendiular, but we see no hange in the line shape on the left side(where the domains should give ontribution after the �op). The latter observation suggests that the oarseneddomains are larger, than the resolution of our experiment. From the �rst statement it follows that not only AFdomains, but also orrelated magneti interfae roughness an ontribute to the o�-speular sattering at the23The intensity of the PNR urves did not allow us to quantitatively desribe the evolution of the domain struture.24The sans in Fig. 8.21 were olleted at low temperature (15 K). The oarsened state is the same, as was seen in the earliershift, but the statistis is muh better here.
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R−− (left side) and in R−+ (right side) hannels as a funtion of the sattering vetor omponents qx and qz .� [6℄AF position.25 The experiment with the best statistis was SI-962 (2003 Deember). We were able to �t theo�-speular spetra of Fig. 8.21 with the sum of two exponentials. The ξ values obtained are: ξ1 = 1.5 ± 0.3 µm,
ξ2 = 14 ± 0.9 µm. The ontribution of subspetra was 11% and 89% for ξ1 and ξ2, respetively. ξ2 gives a lowersize estimation of the oarsened domains, while the interpretation of the part with ξ1 is not so straightforward.As was noted before, if they originated fully from AF-domain sattering, then we would not see this ontributionbefore the spin �op (at 7 mT) and we would see an inreasing shoulder with inreasing �eld at the spin-�opregion (Fig 8.26 left side). It is not easy to say if suh inrease was observed, as the statistis was low in thosemeasurements. On the other hand the good agreement of ξ1 with the oarsened domains suggest that thisontribution originates from AF domain `islands', whih retain their ripened state. A �nal deisive statementould be given only based on measurements with better statistis, and perhaps at a higher-order AF peak.The supersaturation e�et was �rst investigated after the domain oarsening. In Fig. 8.27 the qz and qxsans are seen during the �rst test of supersaturation. At that time the e�ets of ripening were not known,thus all spetra were taken in remanene. The qz sans show a widening of the AF peak, while the qx sansshow the reappearane of small domain after saturation in 1.3 T. As now we know, those domains are alreadyripened domains.Following measurements with muh better statistis did on�rm the details of the supersaturation. Here weonly would like to note that the already oarsened domains also does not `shrink' bak prior to supersaturation.8.4.2 DisussionWe found domain oarsening related to the BSF transition. The resulting domains were larger, than ourinstrumental resolution. The oarsened domains are thus at least by an order of magnitude larger, than theripened ones, or in other words the `oarsening fator' is greater than 10. If we take a look at the mehanismof the oarsening, then even domains, omparable with the size of the sample annot be exluded [6℄.In ontrast to domain ripening, whih involves domain wall movement, and thus limited by oerivity [6℄, atthe spin �op the domain walls an annihilate by the ±90 degree rotation of the magnetizations, thus oarseningis not limited by oerivity. Furthermore at the BSF the system is in energy maximum, thus the domain growthis explosion like. If one part deided, the neighbors will follow to avoid the reation of new domain walls.In onlusion, we found two proesses related do domain wall energy, viz. domain ripening and oarsening.Both proesses are irreversible in the sense that the sample has to be supersaturated to reover the `virgin'domain state. From the omparison of easy and hard diretion hysteresis loops we onluded that domain25In saturation this ontribution is the same as the prompt sattering (Fig 8.5), while in zero �eld extra shoulders an be seen.
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Figure 8.26: The BSF transition in momentum spae portrayed by SMR (SI-618, Deember 2000‡). The AF state isperpendiular to k in the left sans, while parallel/antiparallel in the right sans. As the BSF ours, the moments turnperpendiular, dereasing the original AF sattering, and giving rise to the perpendiular one. All measurements werearried out in zero �eld. The labels show the last seen highest �eld value. The open symbols show the prompt urvesin the o�-speular sans, while the losed ones are the resonant ones. (‡ All measurements were taken at SI-618, exeptfor the 0 T ω san, marked with †. This san was taken in shift SI-735, August 2001. We inluded it, as no san withsuh onditions was taken in SI-618.)
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Chapter 9Appendix9.1 Inversion of the magnetization urveWe show, that with ertain limitations, energy urves an be alulated from the magnetization loops (`inverseproblem'). The reversed approah is trivial and it is pratied by all �tting routines: take the energy funtion,then minimize the energy at eah external �eld value and alulate the magnetization loop. To solve the inverseproblem, one have to make some assumptions. For a �rst approah we take a trilayer, with on�gurationssymmetrial to the external �eld only. In this ase the angle between the two layers desribes the trilayerunambiguously. For onveniene, we de�ne this angle as 2ϑ. In this ase the energy of the trilayer will be
̺E (ϑ, H) = ̺0

E (ϑ) − HM cosϑ. (9.1)When displaying the magnetization measurements as redued1 magnetization loop m(H), we `measure' theangle2 m(H) = cosϑ. The inversion is straightforward: ϑ = arccosm (H).In eah point of the magnetization yle the system is in equilibrium, ∂̺E/∂ϑ = 0. If we assume that theoupling, anisotropy and other terms do not depend on the external magneti �eld, then from (9.1):
∂̺0

E

∂ϑ
= −HM sinϑ. (9.2)We only have to substitute ϑ to get the derivative funtion:

∂̺0
E

∂ϑ
= −HM sin (arccosm (H)) = −HM

√
1 − m2 (H). (9.3)By plotting −HM

√
1 − m2 versus ϑ = arccosm (not shown) we obtain the derivative urve. Note that theintegration is done most easily numerially as the base points are not equally distributed.

̺0
E (ϑ) =

ϑ∫

0

∂̺0
E

∂ϑ′
dϑ′. (9.4)We negleted the integration onstant as it does not ount in the minimum alulations. The absolute valueof the energy density is proportional to M . The above derivation is also valid for `in�nite staked' MLs in thetwo-sublattie approximation. As an example, the SQUID measurements of sample 990608 are transformed.The �ts in Fig. 9.1 are aording to the bilinear-biquadrati formalism with fourfold anisotropy. In this modelthe �eld-independent energy density per unit area3 is:

̺0
E = J cos 2ϑ +

B

2
cos 4ϑ ∓ K

8
tFe cos 4ϑ. (9.5)1We plot the data in units of saturation moment.2This is exat result for the trilayer ase and a good approximation for MLs with �nite staking.3−K: easy diretion, +K: hard diretion. 95
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Figure 9.1: Inversion of the SQUID magnetization urves of sample 990608 (Fig. 3.2) to energy versus angle in thetwo-sublayer model. The easy and hard diretion loops are shifted for larity. The lines are �ts by the two-sublayerbilinear-biquadrati model with fourfold rystal anisotropy.An appropriate �tting funtion for the above equation is: f(ϑ) = a0 + a1 ∗ cos 2ϑ + a2 ∗ cos 4ϑ. From the�ts the easy and hard diretion parameters (ae
1, ae

2, ah
1 , ah

2 ) may be obtained. As only the �rst term of theright-hand side of equation (9.5) is a funtion of cos 2ϑ, we map it to a1. Also we found that ae
1 ≈ ah

2 , asit should be. From the ombination of the a2 terms one may get the biquadrati and anisotropy terms too:
ah
2 − ae

2 = K/4, ah
2 + ae

2 = B/d. As shown in in Fig. 9.1 the �t is worse at the low-angle region, whih isthe losest to saturation part of the magnetization yle. By applying new �tting funtions, the energy urvesould be �tted better.9.2 Distribution inversionIf a ML has only broadly distributed bilinear AF oupling then it is possible to dedue the distribution ofsaturation �eld ωsat (H) from the magnetization loop by the following formula:
ωsat (H) = −HM ′′ (H) . (9.6)Interpolating the measured magnetization data by analytial funtions the distribution ω will be also smoother.To hek the proess of inversion one an integrate ω. The easy-diretion VSM loop of sample 990608 was�tted as an example. In our partiular ase the �tting funtion was omposed of two parts:

f1(x) = a0 tanh(b0x) + a1 tanh(b1x) + a2 tanh(b2x) + a3 tanh(b3x), (9.7)
f2(x) = h sin(nx) exp(−n2x

2). (9.8)The onstants were �tted with gnuplot4 �rst �tting with f1 then the remaining error was minimized by intro-duing f2 and �tting it. The derivatives and seond derivatives were alulated by maple5 and introdued intognuplot to produe the distribution plot (Fig. 9.2). We used otave6 to integrate the result. The resulting dis-tribution is shown in Fig. 9.2. Note that the above alulation works stritly in the ase when only bilinearAF oupling is present. If other oupling terms, anisotropies are also present then the transformation will leadwrong result.4http://www.gnuplot.info/5http://www.maplesoft.om/produts/maple/6http://www.otave.org/
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