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Chapter 1

Introduction

Nanotechnology is one of the research priorities of present-day industrial societies. The vast amount of emerging
applications of possible miniaturization was predicted by Richard Feynmann already in 1959 in his famous
lecture, "There’s Plenty of Room at the Bottom". In our days, the potential benefits of nanotechnology in
information technology, advanced manufacturing, medicine and health, transportation, environment and energy
industry, etc. are enormous.

Giant Magnetoresistance (GMR) [1] is also based on nanotechnology, in particular on thin magnetic films.
GMR has made its way to applications [2] like magnetic sensors, spin valves, spin-tunneling junctions and the
magnetic random access memory (MRAM). The underlying effect, viz. the antiferromagnetic (AF) coupling of
magnetic layers was discovered in 1986 by Griinberg et al [3]. The trilayer consisted of ferromagnetic Fe layers
sandwiched by Cr spacers. Despite the fact that AF coupling was found in many multilayer (ML) systems,
Fe/Cr MLs certainly belong to the most investigated ones. This is partly due to the still not fully understood
coupling behaviour of this system.

Another aspect of the AF-coupled MLs is their domain structure. In contrast to ferromagnetic films and
structures in a strongly AF-coupled ML, the stray field of the domains is in large compensated thus other forces
may influence the appearance of the domains. This is also obvious from the comparison of the patch-like AF
domains to the characteristic ripple domains of ferromagnetic thin films. Formation of patch domains is mainly
governed by fluctuations of the AF coupling resulting in a lateral distribution of the saturation field. The
seemingly small effect of external field believed to prohibit the manipulation of the AF domains [4]. However,
one may wish to control the domain size, a parameter profoundly influencing the noise of magnetoresistive
devices.

The phase diagram of AF-coupled MLs with different phenomenological (mainly biquadratic) coupling
terms and magnetic anisotropies still holds new phenomena in store to describe. For example, in a very
recent article [5] J. Meersschaut et al. reported on experimental evidences of the hard-axis spin-reorientation
transition, a phenomenon also discussed in the present work (2.6). This transition may exist in AF-coupled
Fe/Cr MLs with fourfold in-plane anisotropy.

Not too many papers have been published so far on the morphology of AF domains, due to the difficulties in
direct visualization of these compensated objects. Therefore indirect methods, first of all those based on photon
and neutron scattering, play an indispensable role in studying domains in AF-coupled multilayers. Scattering
techniques often deliver valuable information about AF domains. For example, the first experimental evidence
of the rapid growth of the AF domains during the bulk spin flop transition was discovered by our group using
Synchrotron Méssbauer Reflectometry (SMR) and Polarized Neutron Reflectometry (PNR) [6].

In the first part of this work an introduction is given to the phenomenological models of AF-coupled MLs.
The effects of finite stacking, anisotropies and different coupling terms are discussed. Phase diagrams are cal-
culated for MLs with fourfold anisotropy. After the theoretical introduction, the Fe/Cr ML is presented. The
structure and the magnetization of the sample are fitted with various experimental techniques. An extended
bilinear-biquadratic (BB) model was developed to fit the magnetization loops. The main aim of the work was
to coherently describe the phase and domain transitions of the AF-coupled ML. For this purpose a short intro-
duction to the momentum space and the applied methods (SMR and PNR) is given. Two first-approximation
theories for domain ripening are also presented. Direct evidence of the bulk spin flop transition is given and,
in the final part of this thesis, the domain measurements are discussed.
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Chapter 2

Energy terms and phase diagrams

2.1 Introduction

The building block of the described magnetic MLs (Fig. 2.1) is the layer, which is infinite in the x — y plane
of the sample and a few monolayers thick in the perpendicular z direction. The phenomenological description
of the coupled MLs involves ‘classical magnetic moments’ associated to each magnetic building block. The
investigated physical behavior of such a ML is mainly due to the so-called ‘spacer layers’, which may cause an
interlayer coupling between the magnetic layers.

Figure 2.1: Sketch of a ML. The individual layers are a few atoms thick in the z direction, while macroscopic in the
x — y plane. On the right the coordinate system of the two-sublattice model (see later) is shown.

The energy of such a model system per surface unit area is [7,8]:

n—2 PN n—2 P 2 n—1 e n—1
0FE = Z Jiiv i MM, 41 + Z B it1 (MiMiJrl) + Z A; (Mz) — poH Z M, d; (2.1)
i—0 i—0 i=0 i=0

where the magnetic layers (total of n) are numbered starting with 0, M; is the magnetization of the
given layer ¢ (the spacer layers being taken into account only by the J coupling constant), ﬁl = M;/M;, d;
are the layer thicknesses, J; ;41 (Jii11 > 0, Vi) are the AF coupling constants, B; ;11 (Bii+1 > 0, Vi) are
the biquadratic coupling constants, A; are the in-plane anisotropy terms being function of the magnetization
direction, H is the external field and o = 47-10~7 Vs/Am is the permeability of free space. All magnetization
vectors are assumed to lie in the plane of the sample (the = — y plane), thus the unit vector MZ can be written

as
= [cos;
M; = <sin19i> (2.2)
where ¥; is the angle between the z-axis and the i-th layer magnetization vector.
Equation (2.1) conforms to the ST units. From now on, we will use a slightly modified-SI system in the sense

that the quantity poH will be called external field, will be denoted by H, but will be nevertheless measured
in tesla. Furthermore, except when noted, all calculations will be performed in the lab system® and with the

IThis implies that the anisotropy term may depend on the orientation of the sample 5. 792-3 in (2.3) notes the possible
misalignment of a layer’s anisotropy compared to 95.
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external field pointing along the z-axis (¢y = 0). Finally we introduce M, = M;d;. With the above comments
we can write:

n—2 n—2

OE = Z Jiiv1cos (Vip1 —U;) + Z B ip1c08® (Vi41 — i) +
i=0 i—0
n—1 n—1 B
DA (0:,95,0%) — HY  M;cos (0 —9n). (2.3)
i=0 i=0

Note that in the following for shorthand we omit the tilde from M, but still mean layer magnetization times
layer thickness.? The above model function is a ‘single domain’ approximation, in-plane domain formation and
thus hysteresis of this kind is not described by the model.

In a typical measurement the material parameters (coupling and anisotropy terms) are fixed and a derived
quantity of op is measured. Mostly the net magnetic moment M is measured as a function of the magnetic
field H. To reproduce the hysteresis curves we minimize (2.3) for each H numerically, then calculate the
simulated result of the measurement from the equilibrium values. In the following the discussion of the energy
terms will be developed starting from the simplest model.

2.2 Pure antiferromagnetic coupling

In case of pure bilinear AF coupling with no additional anisotropy terms? the trilayer (or two magnetic
layer) model and the infinite layer model can be treated analytically. Due to symmetry considerations (the
bilinear term depends only on the angle differences), we may align the external field arbitrarily. For the ease
of description we choose ¥y = 0°. Also we introduce a scalar H field allowing for H < 0 values which is
equivalent with ¥z = 180° in the vector picture.

2.2.1 Two magnetic layers

Magnetic films on both side of a non magnetic layer makes the simplest ML, the trilayer. Our focus is on
compensated AF coupled MLs, thus we will set equal magnetic moments for the two layers (Mo = My = M):

op (H) = Jcos (91 — o) — HM (cos g + cosvy) . (2.4)

In (2.4) the coupling term depends only on angles between the layers, thus the net magnetic moment should
be parallel with the external field. This condition implies that g = —1};. We will call the independent angle
¥ =g in (2.4):

op (H) = Jcos20 — 2HM cos . (2.5)

To get the energy minimum of (2.5), the zero derivatives of angles with positive second derivative should be
found. Calculating the derivative will lead to:

0
% = —2Jsin29 + 2HMsin9 =0 = (2.6)
iny =0 ¥ =0°
—4Jsin¥cos¥ +2HM sinv =0 = S - M (2.7)
—4JcosV+2HM =0 — cost = S5

It is easy to verify that above the saturation field Hy = %, the ¥ = 0° solution will be energetically favourable,
while below saturation the net magnetic moment per unit area of the trilayer depends linearly on the external
field in the range —Hy < H < Hj:

HM?
Myet (H) = 2M cost) = .

(2.8)

In the saturation regions, Mpe = £2M.

20r equivalently layer magnetic moment per unit area.
3Tn the trivial case of uncoupled layers with no anisotropy the magnetization will be always parallel to the applied external
field.
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Figure 2.2: Energy per unit area (left side) and normalized net magnetic moment (right side) of an AF coupled model
trilayer (J = 1/2 J/m? and M =1 A) as a function of reduced external field.

The energy of the system is parabolic in the unsaturated region and linear, when saturated (see Fig. 2.2):

op (H) = —J (1 + % (%) ) Jif |H| < H, (2.9)

op (H) =J —2|H| M, if |H| > H, (2.10)

Finally, it is worth noting that the number of independent parameters in the above model is one. The
direction of the layer magnetizations as well as the energy and the net magnetic moment depend only on
W = HM/J. The modification of M and J rescales the magnetization loop, but the independent parameter is
the normalized external field h'.

2.2.2 Two-sublattice model

The trilayer was the smallest representation of the magnetic MLs, while a ML with infinite number of layers is
located on the opposite end of the spectrum. The usually used model of the infinite stack is a finite ML with
periodic boundary conditions (i.e. the first layer is assumed to be identical with the last one). The simplest
of those models is the two-sublattice model. Care should be taken when mapping the two-sublattice model to
the trilayer as due to the periodic boundary condition the coupling terms will double. We note the quantities
of the two-sublattice model with *°, for example the saturation field will be H®.

2.2.3 Finite number of layers

The majority of MLs are neither trilayers nor infinitely stacked but belong to the class of MLs with ‘finite
stacking’. For this arbitrary magnetic layer number (2.3) can be minimized numerically. The freedom of the
‘dangling’ end layers due to their asymmetric coupling results in often neglected effects that we call ‘finite
stacking’ effects. The consequences on the net magnetization (Fig. 2.3) are minute, but may well be seen
by depth-selective methods (Fig. 2.4) as the deviation from the bulk is strongest in the first few layers.* A
comprehensive theoretical review on finite stacking effects® was published by U. K. RoRler and A. N. Bogdanov
recently [8].

For numerical simulations of finite stacked MLs we use conjugate gradient minimization based on Numerical
Recipes optimization subroutines [9] and coded by the author. The code can search for local and global minimum
energy paths with flexible and easily expandable model library.

4 Anisotropy and biquadratic coupling may suppress finite-stacking effects.
50r as they refer to it in [8], finite-size effects.
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Figure 2.3: The effect of finite stacking on the magnetization of AF coupled MLs. The relative freedom of the end layers
due to missing neighbors results in excess magnetization and an earlier saturation compared to the infinite case. The
excess magnetization rapidly diminishes with increasing number of layers.
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Figure 2.4: The effect of finite stacking on the layer magnetization angles (¢¥;) in an AF coupled ML with n = 100
magnetic layers. The outermost layer (¢ = 0) is always closer to the z-axis as the ‘bulk’ (denoted by co). The next layer
(‘1) is retarded first, then it is also comes before the others. To make comparison easier the odd-numbered angles were

negated (i.e. mirrored to the x-axis).
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The effect of finite stacking is most pronounced in the low-field region for even number of layers.® If we
map the two-sublattice model to the finite stack, then ¥y = —19; =95 = --- —19,,_1. However if we do not force
the outermost layers to follow the strictly alternating order, then states with a new symmetry and lower energy
may appear. At arbitrarily low fields a ‘global’ twisted state appears, which involves the whole sample [10].
The deviation from the two-sublattice model localizes at the ends as the field is increased. On Fig. 2.5 the
result of the numerical simulation is shown. In zero field (a) all first neighbors are antiparallel. In the small
field region (b — d) a global ‘linear’ phase emerges with a very small asymmetry towards the z-axis giving the
net moment of the ML. At plot (e) the second layers from outside (n = 1 and 98) reach their maximal negative
angle and from this point on all moments are rotating towards the external field. Increasing the field further
(f —h) the second layers are retarded compared to the average while in the high field region (k) they are rotated
before the ‘bulk’. On the boundary of the two phase (i) all moments except the outermost ones are in their
bulk position. An analytical solution exist for this boundary field.” A second field was found (j) where the
number of deviating layers has local minima (see also Fig. 2.7). Increasing the field further the ML is reaching
saturation (k) and finally saturates (1).

If the number of layers is small, then even the central layers cannot reach their equivalent two-sublattice
value, thus the system cannot be separated to bulk and surface regions. On Fig. 2.6 the regions where at least
the central layers are in the bulk position are shown. Note that the selection of the region depends on the value
of the difference threshold.

When the ML can be decomposed to bulk and surface regions one may ask how many layers are deviating
from the two-sublattice solution. Fig. 2.7 also highlights the fact that, due to the first-neighbor coupling, if one
layer reached the bulk angle then all the layers towards the center are also in that position. Thus the number
of deviating layers L is independent of the total number of layers n for L < n. On Fig. 2.8 L is shown as a
function of external field. To compare our results with the work of Nortemann et al. [10], one should divide our
numbers by two, as we used stacks with two free ends, while Nortemann assumed a semi-infinite stacking [10].

The effect of finite stacking on global magnetization is ‘minute’. Even for a stack with n = 4 the saturation
is 85% of the infinite stacking and 93% for n = 6, which is much smaller deviation than that suggested by
Parkin et al. |12]. They assumed a reduction in the saturation field Hy proportional to 1 — 1/n. This would
give 75% and 83% for n = 4 and n = 6, respectively. The difference still exists for larger stacks. For example
in the case of n = 20 numerical calculation yields 99.3%, while Parkin’s formula gives 95%.

As mentioned in the beginning of this subsection, the effects of finite stacking are often neglected when eval-
uating measurements on MLs. To our knowledge the first direct experimental evidence for a non-homogenous
canting angle due to finite stacking was published in 2002 by Lauter-Pasyuk et al. [13]. They utilized polar-
ized neutron reflectometry on AF coupled Fe/Cr MLs and took into account the specular and diffuse scattering
to estimate the magnetic configuration (both plane-perpendicular and plane-parallel).

2.2.4 Distribution of the parameters

In an ideal ML all layer magnetizations and couplings are equal to each other (Vi M; = M, J; = J). When
describing real MLs, differences can occur in the plane of the sample (z — y) and perpendicularly (along
the z-axis). The plane-parallel variation in layer thickness® gives rise to fluctuations in J; = J; (z,y) and
M; = M, (z,y) a possible cause for domain formation (see later). Even if J; does not depend on (z,y) due
to the growth process the global parameters (J; and M;) can change with ¢. In particular cases even full
decoupling (J; = 0) of given layers can occur [11].

On Fig. 2.9 we show a few examples of possible effects of J; and M; distribution.” We assume that the
magnetic moment of a given layer grows linearly with layer thickness. As can be seen on curve (m) of the
figure the distribution of M; is not very pronounced. A small change in the AF coupling constant is even less
noticeable (curve (ja)) and only a drastic change (which signals a badly prepared ML) shows up significantly
(curve (jb)). Note that our main interest are Fe/Cr MLs where the coupling oscillates strongly with the layer
thickness 7,14 16] thus even a small shift in the interlayer thickness can lead to drastic coupling strength
change.

6We are interested only in compensated MLs. In Refs. [10,11] odd numbers of layers were also treated.

7If any spin is in the ‘bulk’ angle then all spins inwards are also in the ‘bulk state’. This is due to the first neighbor coupling.
The critical bulk angle ¥ of the ‘knot’ point [8] is determined from cos 9. = 1/3/8. Thus 99 = —23.28° and ¥ = J. = 52.24°.

8Caused by roughness for example.

9The AF coupling is ‘linear’, thus even with the J; and M; distribution the saturation field is well defined.



< ¢ 55

= oy g
Y / g5
/\/ 23 =
\/ 5 o=
S %=

/ Eo 3

, 21 5

[V / = o =
AVAVAVAVAVAN Y ° =
ot o o L

AL

WY

b

)

,\

il

/Mﬂm i
NINN

\

AL

WY

\
\

e

il

il

Wi

\
:

N

3

Wiy

N
N

N

i

<

>

gz

[

RS L3

- 5

Lo =) o}
\ “wﬁw
© ;
1 w B :
“ g &2 3

= © 9

-

LI

A

L .= 5]
"UU>}£
:"C!"Q
2 o0
Q_‘Q'Ug
< O
) £ 3
T v %=
oS =
- 2 g
=

= 2
Ry ] =& 83
3

AL

WY

\
J

it
ANDZS

R

=
aef

N
RS

N

»
[in}
—
o
—~
7o)

\

|
NN

\
)

i
i
i)

Ry

N




CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 9

100

90

80

70

60

50

No. of layers

40

30

20

10

b) —— ) —t—

0 01 02 03 04 05 06 07 08 09 1
H/H®

Figure 2.6: The region where the central layers (¢ = n/2) are in the bulk position. Line type a represents the regions
where the angle difference of the central layer compared to the bulk value is less than 1° while in the b case the threshold
is 107% rad ( 6-1072 deg). Note that for a short region even n = 4 (bottom line) the central layers (i = 1,2 in this
case) are in bulk position. From the experimental point of view (line type a) for n > 30 the central layer is always in
the ‘bulk position’.
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Figure 2.7: Number of deviating layers (L) from the two-sublattice model for different magnetic layer numbers n. The
condition was: ¥; — 9 < 107* rad.
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Figure 2.8: Number of deviating layers (L) from the two-sublattice model of a ML with n = 100 layers with different
threshold values (|¢; — 9°°| < «).
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Figure 2.9: Distribution of J; and M; in an n = 20 ML. Curve (0) is the case where Vi J; = J, M; = M, on (m) the layer
magnetizations are Mo = 1.2M, ..., M;—1 = 0.8M (the £20% deviation from the average is linearly distributed in z),
on (ja)  which is almost identical to (0)  Jo,1 = J, Jo,10 = 0.95J, Jis,19 = 0.9J (10% deviation from top to bottom)
and on graph (jb) Jo,1 = J, Jo,10 = 0.5J, Jis,;19 = 0.1J (a factor of 10 linearly distributed from top to bottom).
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2.3 Additional coupling terms

Soon after the discovery of AF coupling in Fe/Cr MLs a magnetic configuration caused by biquadratic coupling'®
was found by M. Riihriget al. [17]. The possible cause and phenomenological description of the canted coupling
is still an open field of research. According to J. C. Slonczewski [18], the origin of the biquadratic coupling
is extrinsic, i.e. it is related to the actual parameters (thickness fluctuations of the spacer, step density etc.)
of the ML. In contrary, J. Barna$ attributes the biquadratic coupling to intrinsic mechanisms [19,20]. The
main difference between the two argumentation is that in the first case the AF coupling with the thickness
fluctuation produces the biquadratic coupling, while in the second case the biquadratic coupling is present for
atomically flat interfaces too. The controversial origin [21] does not affect the ‘everyday’ use of the bilinear
biquadratic formalism for magnetization fitting. For the case of weak AF coupling other phenomenological
models were also proposed (see later).

2.3.1 Biquadratic model

The experimental observations of M. Riihriget al. [17] could be described by a biquadratic coupling, which
aligns the neighbouring moments perpendicularly to each other. It can be observed best, when the bilinear
coupling is small or vanishing but it can affect the global magnetization even in the case of strong AF coupling.
The microscopical origin of the biquadratic coupling is still much debated. It is related to different mechanisms
in different systems, at different temperatures and different spacer thicknesses (see for example [18 27| and
references in [19,25]). The energy per unit area of a trilayer with pure biquadratic coupling is:

op (9) = Bcos? 29 — 2HM cos ¥ (2.11)

where 1 is the angle from the direction of the external field (the z-axis) and B > 0 is the biquadratic coupling
constant.'! The first derivative of the (2.11):

0
% — —2Bsin49 + 2HM sin9 = 0 (2.12)
From this follows:
—8Bsinv cos¥ cos 20 + 2H M sind) = 0. (2.13)

There are two cases. Either sind =0 — 9 = 0° or

HM
—4Bcos19005219+HM=0—>2:53—;v—Ezo. (2.14)
We used x = cos ¢ for shorthand.
Following the derivation of the bilinear case, here again should be an external field value Hg above which
the ¥ = 0 is the energy minimum, the forced parallel order. Let us examine the second derivative at ¢ = 0!

9? OFE

Thus at all H > Hg ¥ = 0 is stable were Hy = %. Below saturation one could solve the third degree polynomial
in cos, but it is easier to use numerical minimization.'?> The two-sublattice or infinite model can be derived
from the trilayer by setting B’ = 2B similarly to the bilinear case. For infinite number of layers
8B

At zero external field (H = 0) the system prefers the 90°alignment, which means ¥ = 45°. The canted
state in remanence causes a jump in the magnetization when the sign of the external field is changed. The
further analysis of the pure biquadratic coupling could be done similarly to the bilinear case, but our interest
is strongly AF coupled MLs'? with a possible small biquadratic coupling, thus we skip this analysis.

10T he coupling angle was found to be 90°in remanence.

"The two moments should align symmetrically to the external field to minimize the energy. The coupling depends on angle
difference that is the source of 29, while both moments couple equally to the external field.

2Tn a more general case J is also present leading to difficult — but still analytical — results.

13Strong compared to the crystal anisotropies.
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Figure 2.10: The effect of biquadratic coupling on the global magnetization of a ML with n = 20 layers.

Bilinear and biquadratic coupling

In the following we will shortly analyze the result of a small biquadratic term added to the bilinear one. Due

to symmetry considerations the 19 = —1; case is taken.'* The energy per unit area to be minimized will be:
o = J cos 29 — B cos® 20 — 2H M cos 1. (2.17)
The derivative:
0
% = —2Jsin29 — 2Bsindy + 2HM sind) = 0. (2.18)

It is easy to see that ¥ = 0 is a solution of (2.18). The stability condition is:

0? OFE

Wlﬂ:o = —2Jcos20 —4Bcos4d + HM cos¥ = —2J — 4B+ HM > 0. (2.19)

Thus the saturation filed is equal to Hs = (2J + 4B) /M. The H(M) curve is again a solution of a third-degree
polynomial. In case of strong bilinear coupling (J > 2B) the behaviour of the trilayer is similar to that of the
pure bilinear case, as we will demonstrate in the following. If ¥ # 0 then

= —2Jcos —4Bcostvcos20+ HM =0 (2.20)

If cosy = 0 — ¢ = 90° then H = 0. We only have to check that at H = 0 this is a minimum:

0? OFE

Whgzgoo = —2Jcos29 —4Bcos49 =2J —4B > 0— J > 2B (2.21)

Thus if J > 2B then the behaviour is bilinear-like. In the following we will only focus on this parameter region.
In the case of MLs, the usual J’ = 2.J and B’ = 2B substitution should be used. A demonstration of the
influence of the biquadratic term on the global magnetization for an n = 20 layer is shown in Fig. 2.10.
In conclusion, the presence of a small biquadratic coupling does not change the ‘type’ of the magnetization
loop, but can slightly modify the saturation field and the shape of the curves.

11n case of crystal anisotropies, the symmetry can break-down, allowing for non symmetric ‘L-shaped’ configurations.
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2.3.2 Pinhole coupling

The phenomenological biquadratic coupling was attributed to different origins (see Sec. 2.3.1) but only a few
authors considered explicitly the effect of direct ferromagnetic coupling via magnetic pinholes [28]. Magnetic
pinholes are direct ‘bridges’ between the consecutive ferromagnetic layers. Depending on the growth mode it is
possible that in spite of the best efforts, atomically flat surfaces cannot be achieved prohibiting the production
of MLs with ideally flat layers. In case of uncorrelated roughness the spacer thickness could vanish as the
sublayers of the MLs are generally only a few monolayers thick.

We will follow the argumentation of Demokritov et al. [29] to show that for the ML we investigated the
pinholes could not play a major role. In our particular case the ~ 13 A of Cr spacer corresponds to 9 ML of
Cr. The interface roughness was found by low angle X-ray reflection to be around 1 ML (see Table 5.2). For
this roughness value according to Demokritov et al. [29] with a Gaussian fit no pinholes should be present
(the probability of pinhole forming is ~ 2-1071%. If we assume a symmetric roughness of 2 MLs, the pinhole
formation probability will be ~ 2-10~%. The formation mechanism of pinholes is, of course not so trivial thus
we can give only approximations for the pinhole density based on magnetization measurements. In conclusion,
pinhole formation is possible, but in our particular case the pinhole density is very small.

The effects of the surface roughness and pinhole formation on Fe/Cr MLs were investigated by ion irradiation [29-33].
As a general conclusion the decrease of AF coupling with increasing dose was found. Small doses, however, enhanced the
AF coupling [29]. Interestingly the bombardment had almost no effect on the X-ray reflectivity curves of the MLs [30].
Also enhancement of the biquadratic contribution was found in some cases [32].

2.3.3 Proximity model

J.C. Slonczewski proposed a simple heuristic model [18], which is in some sense a generalization of the bi-
quadratic model. The coupling energy term of the proximity magnetism model is

E, = Cy {AV}, + C_{AY — 7} (2.22)

where AY = ¥; — 9,41 the angle difference between neighbouring magnetic layers, C+ (> 0) are the coupling
coefficients and {gp}¢ is the “normalized angle difference”, which means adding of multiples of 27 to ¢ while
lo +n-2m| < is satisfied (n € Z). This new ¢ +n -2 value is {¢},.

The coupling coefficients Cy and C_ in eq. (2.22) are the ferromagnetic and AF coupling strengths, respec-
tively. In a general case, when both coefficients coexist, the coupling favours a non-collinear alignment. In the
special case of C = C_ we get back the perpendicular magnetization alignment.

The simple model of eq. (2.22) is based on the assumption that the AF spacer is polarized by the neighbouring
ferromagnetic layers and only a small angle deviation occurs between consecutive atomic planes in the AF spacer thus
the description including the first (quadratic) energy term is adequate. The main advantage of the proximity model the
prediction of an asymptotic saturation behaviour often observed in Fe/Cr MLs.'?

2.3.4 Spin-Density Wave (SDW) model

The role of the spin-density wave (SDW) within the Cr spacer of Fe/Cr tri- and MLs has been the subject of
controversy since the first discoveries of AF coupling and giant magnetoresistance. For a critical review see
[25]. Recently, based on a self-consistent model taking into account the SDW of Cr a theoretical model function
was given by V. N. Men’shov and V. V. Tugushev [34, 35].

AY AY
E, x — <Acos - + (1 —A)sin T) (2.23)

where AY = ¢; — ¥;41 is the angle difference of neighbouring magnetic layers, A is the fraction of the spacer
fragments containing an odd number of Cr monolayers. The above result is valid in the limit of low density of
steps,'S while in the high density of steps and A = 1/2 the previously introduced bilinear-biquadratic formalism
is regained. The coupling described by (2.23) is also called half angle coupling [37]. Equation 2.23 is valid only
at H = 0, as the applied external field can change the type of the SDWs [38], which was not investigated. The
other limiting parameters are the Cr layer thickness, which should be at least 30 — 40 A and the temperature
of the measurement, which should be higher than 300 — 350 K [38].

The SDW model in the low step density limit also gives non-collinear coupling in remanence with a non-
trivial angle depending on A.

15Models with biquadratic coupling predict a well-defined saturation field.
6Even for smooth interfaces further energy corrections may occur [36], which will not be treated in this work.
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2.3.5 Conclusions

As could be seen from the previous part, the interpretation of magnetization measurements on Fe/Cr MLs is
not a trivial task. The growing number of theoretical models show the difficulties of the phenomena. We have
to note, however that only the bilinear-biquadratic formalism with strong bilinear coupling gives a collinear
AF alignment in zero external field, while in the general cases the other models would predict canted states for
remanence. The previously described models give a different magnetization field history, which can be checked
for comparison with experimental results.!” Finally we would like to note that other coupling effects are still
possible, see for example the effect of the dipole coupling [39]."8

2.4 Global versus local energy minimization

Another aspect of our investigations is the ‘local’ nature of energy minimization. The numerical models used
in the literature are ‘single-domain’ models, rendering one vector to each magnetic layer thus the effects of
domain formation (for example hysteresis connected with domain wall motion) cannot be taken into account.
By using the single domain energy function the equilibrium state of a coupled ML can be found. Changing
the external field, the evolution of the system along local minima can be traced. In some cases more than
one stable state with local energy minimum exists, in this case the global minimum is the one with the lowest
energy. As was noted by Dienyet al. [40,41] the local and global minima are the borders, which envelope the
real behaviour of the ML.

The energy minimum of the purely AF coupled ML is unique, thus always global (see Section 2.2). Not
counting the geometrical degeneracy, there is only one configuration for each external field, which one can
calculate analytically for trilayers, or numerically for MLs. By introducing crystal anisotropies to the system,
the situation will change. In the following we will take a short glimpse on the effects of anisotropies,' mainly
in the view of the local/global minimum approximation. To have an even simpler picture for demonstration
purposes, we are investigating a single magnetic layer.

2.4.1 Uniaxial anisotropy

Magnetic anisotropies in the case of ferromagnetic layers may have various forms depending on the orientation
of crystal planes and the epitaxy of growth. For demonstration, we take the uniaxial anisotropy, which can be
described with the following energy function:

op = —Ucos2 (0 —9°) — HM cos¥ (2.24)

The uniaxial anisotropy has one easy axis set by 9%, while the perpendicular axis is the hard axis (U > 0). To
understand the above-described system better, let us take some special cases.

Easy direction

Now 95 = 0 thus in this case:

o = —HM cos9 — U cos 29 (2.25)
The first derivative should be zero:
% = HMsin® + 4U sind cos 9 = 0 (2.26)
Case a): sinY =0 = 9 = 0° or 180°. First we examine 9 = 0°. Let us see if this is a stable minimum:
d*op
W>OéHMcos19+4Ucos219>O (2.27)
4U
and19=0:HM+4U>O:>H>—M (2.28)

17 According to N. M. Kreines et al. [37] the proximity-magnetism model and the half-angle-coupling model describe equally
well a given set of Fe/Cr MLs. This is related to the fact that the energy functions of the two models are numerically very close
to each other. We think that this could be true for special cases.

'8In [39] numerical calculations were made on two magnetic layers separated by a nonmagnetic spacer. Depending on the
correlated roughness (corrugation) ferromagnetic or AF like coupling was obtained.

97T he anisotropies affect the behaviour of the coupled ML system. If the coupling is strong compared to the anisotropies, we
will still have a behaviour resembling the one described in the previous section. If the anisotropies are strong, then the magnetic
moments are forced in the easy directions of the anisotropy, resulting in discontinuous jumps [8].
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Figure 2.11: Magnetic layer with uniaxial anisotropy, easy direction. Global and local energy minimization. The arrows
are representing the magnetic moment of the layer.

For ¢ = 180° the same applies:

4U
—HM +4U > 0 = H<ﬁ' (2.29)

Case b): 9 #0.
HM

HM +4U cosv =0 = cosﬁz—w (2.30)

But is (2.30) a local minimum? Calculating the second differential of (2.27):

HM cos ¥ + 4U cos 29 = 4U (Z[]y cos? + (cos® ¥ — sin” 19)) = (2.31)

(substituting cos¥ from (2.30))
= 4U ((— cos) cos ¥ + 2 cos® ¥ — 1) = 4U (cos® —1). (2.32)

Because cos? < 1 for 9 # 0 and U > 0, case b) defines a maximum. In other words, in the case of uniaxial
anisotropy and easy direction magnetization the layer magnetization can be parallel or antiparallel to the
external field, but not canted. In zero external field we have two equilibrium positions (0° and 180°), while in
increasing external field the two minima are shifted relative to each other. The parallel minimum gets deeper,
while the antiparallel minimum shifts up in energy (by the —H M cos® term) to the border point defined by
(2.29) and then ceases to be a minimum. In consequence, in the local-minimum approximation we will have a
hysteresis loop, while in the global-energy approximation there appears a jump at zero external field (Fig 2.11).
The magnetization of a real system will be always between those two extrema. For a thorough description
of trilayers with different anisotropies we refer to the work of Dieny et al., where the authors compared the
local [40] and global [41] energy paths for AF coupled trilayers and MLs with cubic (fourfold) and uniaxial
anisotropy.

Hard direction

Now 95 = 90° thus the energy will be: o = U cos 20 — HM cos®. We can repeat the above discussion with —U
instead of U (U > 0). Now in case a) H > 4U/M for 9 = 0° and ¥ = 180° is stable for H < —4U /M, while for
the external fields between case b is the stable minimum with cost = HM/4U, which is the global minimum.
If we take the parallel component of the magnetization versus the external field then we have the ‘well-known’
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Figure 2.12: Uniaxial anisotropy of a single layer in hard direction. The arrows are representing the canting of the
magnetic moment.

linear behaviour. The role of the uniaxial anisotropy in the hard direction is similar to the bilinear coupling of
a trilayer, as the energy function is similar. In conclusion, in hard direction we have only one energy minimum
(no hysteresis) and a well-defined saturation magnetization value.

45° alignment

Finally we investigate a third case, when 95 = 45°. Substituting this value to (2.24):

o = —Usin29 — HM cosd (2.33)
d
% = —2U cos¥ + HM sin? (2.34)

Equation 2.34 can be solved for sin ), and the investigation of the minima/maxima can be done as previously.
The resulting local and global magnetization curves are shown on Fig 2.13. Here we would like to comment
on the asymptotical nature of saturation. From (2.34) it is easy to see that only for H — oo will be ¢ = (0°
because for ¥ = 0° dpg/d¥ = 2U and not 0! The anisotropy term has no extremum at ¢ = 0° but a maximal
slope thus the place of the energy minimum (parabolic + ‘slope’ as a first approximation) will depend from the
field H, resulting in asymptotic saturation.

From the above short section we have learned the difference between local and global energy minimum
traces. From the intermediate orientation (45°) we have concluded that the ‘normal’ behaviour of the systems
is the asymptotic saturation, and only exact alignment along special directions (maxima and minima of the
anisotropy) gives well-defined saturation field values. The hysteresis in local minimum approximation is also
typical for the anisotropy term, missing only in special cases.

2.4.2 Fourfold anisotropy

In this thesis we are focusing on MLs of fourfold anisotropy. We shortly summarize the analytical results for
this case based on the calculations presented in the previous section. The energy function in this case:

O0F = —HMcosﬁ—%cosél(ﬁ—ﬁS). (2.35)
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Figure 2.13: Uniaxial anisotropy of a single layer in the 45° direction.

Easy direction

The fourfold anisotropy has four easy directions located along two perpendicular easy axes. In global energy
minimum the easy magnetization is a ‘saturation-to-saturation’ anhysteretic loop. In local energy minima,
depending on the starting conditions, different configurations may exist. In the traditional magnetization loop
(positive saturation to negative saturation) the obtained hysteresis loop will be very similar to the uniaxial
case. The magnetization parallel to the external field in saturation will flip only when the local minimum ceases
to be a minimum. It is easy to show that the saturation field is equal to Hy = — (2K) /M.

If we prepare the magnetization in remanence for example by rotating the sample, then different scenarios
may occur. For example, by turning the sample by 180° we can get back the ‘global’ loop but more importantly,
by turning 90° the magnetization starts from a perpendicular axis.?? Now the magnetization will be dragged
by the external field resulting in continuous rotation towards the hard direction and a sudden jump to 0°, when
the Zeeman term competes with the anisotropy barrier. The jump will occur when

K
HMsin19+Esin419:O (2.36)

HM cosd + 2K cos4d =0 (2.37)

Equation 2.36 sets the local extremum (or inflection point), while (2.37) shows the end of the local minima.
Substituting sin41 = 4 cos2¢¥ cos¥sin¥ and assuming ¢ # 0 we get the following equation: cos2¥cos? ¥ =
cos49. Solving this equation graphically and taking into account the position of the minima we get J¢pi, = 65.9°
and H..q = 0.544%. In H/Hj units H..it = 0.272. The resulting magnetization loop is displayed in Fig. 2.14.

Hard direction

The global-minimum loop in this case will start from an easy direction in remanence and saturating at the hard
axis parallel to the external field. The loop goes smoothly as the moment ‘climbs’ the top of the anisotropy-
energy barrier. The only jump will occur at remanence, when the spin flips by 90°. If we take a local-minimum
loop then a small hysteresis will occur in the middle due to the fact that the moment cannot jump to the
‘towards-the-field” preferred minimum. The magnetization loops are presented in Fig. 2.15. The critical field
and angle is the same as for the easy 90° alignment as the same equations have to be solved.?!

20This configuration will get practical importance when we combine the anisotropy with the AF coupling, as the AF coupling
prefers the perpendicular-to-field axis in remanence.
2 Equations (2.36) and (2.37) only the sign of K is changing (+K — —K).
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Figure 2.14: Theoretical magnetization loops of a single layer with fourfold anisotropy in the easy axis.
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Figure 2.15: Theoretical magnetization loops of a single layer with fourfold anisotropy along a hard axis.
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Finally we would like to note that the fourfold anisotropy case is similar to the uniaxaial in the sense that
if we are not pointing exactly along an extremum of the crystalline anisotropy, then the magnetization will
saturate asymptotically.

2.5 Bulk-spin-flop transition

As already noted, the measured magnetization of a real ML will be between the global and local energy
limit. The global energy minimum curve corresponds to the an-hysteretic magnetization process involving no
dissipative energy terms. In local minimum approximation, the system can only jump to a new minimum if
the actual one ceases to be a minimum, no energy barrier crossing is permitted. The transition called ‘bulk
spin flop’ (BSF) is a typical example of the global vs. local behaviour of a real ML.

In two-sublattice bulk antiferromagnets with uniaxial anisotropy two stable spin configurations exist. At
low external field the anisotropy forces the spins into the easy axis (parallel and antiparallel alignment), while
at high fields the moments are perpendicular to the field, forming a <-like shape. In global energy minimization
a first order transition (spin flop) occurs when the field is increased through the critical field value Hge predicted
by Néel (see for example page 388 in [42]).

In case of fourfold crystalline anisotropy?? the parallel/antiparallel and perpendicular AF configurations
have the same energy in zero external field. Applying the field along an easy axis, the perpendicular AF state
has a lower energy, thus in global energy calculation the parallel /antiparallel state is unstable. In local energy
calculation, however the latter state will be an energy minimum for a while, setting an upper limit to the Hgs
value. For AF-coupled MLs the BSF transition was observed by polarized neutrons by K. Temst et al. [43].

The history of the spin-flop phase in thin films starts with the discovery of the Fe/Cr AF coupling. In the
famous paper of Griinberg et al. [3] the authors show that “.not only [...] the magnetization of the two Fe films
is antiparallel but also that it is perpendicular to the small external field. This is in complete analogy to the
spin-flop phase of an antiferromagnet”. They used single crystal (epitaxial) Fe/Cr trilayer with fourfold in-plane
anisotropy. Later Parkin et al. [12] showed on polycrystalline Fe/Cr MLs by polarized neutron reflectometry
that the initially randomly oriented domains turn to arrangement of £90° from the applied field.

In this work we will use the term ‘bulk spin flop’ (BSF) to refer to the transition of magnetic moments
(‘spins’) from one easy direction to the perpendicular one of the fourfold in-plane anisotropy. We will use the
following energy density per surface area for the system:

n—2 n—2
OFE = Z Ji,iJrl cos (’l9i+1 — 191) + Z Bi,i+1 COS2 (191'+1 — 191) +
1=0 1=0
n—1 ~ n—1 ~
Z K} cos? (9; — O ) sin® (9; — 0) — H Z M;cos (0; — ). (2.38)
=0 1=0

Here, f(zl = Kildl- and Mi = M,d; (d; is the thickness of layer 7). The notation of the anisotropy goes according
to [44] (p. 130):
F, =Ko+ K (ofa3 + o303 + ajef) + ... (2.39)

where the as are the direction cosines. In our notation Ky = 0 (a constant will not change the behaviour of
the system — it gives vanishing term in the derivatives). For the investigated models magnetizations are in
plane, thus only a?a3 is nonzero. We will use both notations (K; = K') whichever is more convenient. If not
confusing then the tilde will be omitted from K and M in the following. Note that the anisotropy term in
(2.38) can be re-written using

1
cos® ¥ sin? ) = 1 sin? 209 = = (1 — cos4d) . (2.40)

| —

This transformation speeds up the computations, because no square computing is necessary. In this notation
J > 0 for AF coupling, B > 0 for the biquadratic coupling. We use ¥k to describe the angle of the easy axis
and K; > 0 for the anisotropy term.??

22This is the case for Fe/Cr(100) as a result of the projection of the cubic anisotropy to the (100) plane.
23From here on we stick to the bilinear-biquadratic formalism. In the experimental part we will return to the question of model
selection.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 20

2.5.1 BSF in a real ML

As mentioned above, the BSF transition is nonexistent in the global energy picture. In a real system the layer
parameters may vary; here we investigate shortly the possible effects.

Numerical calculations show that the slight variation of the coupling constants will cause no dramatic effect.
The magnetization curve will have a somewhat different shape but due to the still compensated AF stack, the
perpendicular alignment is energetically still more favorable.

In the case of net magnetic moment (caused by the variation of the layer thickness), the situation is a
bit different. In the global-energy picture the net moment will force the system in the parallel/antiparallel
alignment at arbitrarily low external fields. Then, depending on the net moment, a global spin flop would
occur.?* This flop should be always observable, independent of the field history, which was not the case in our
measurements. In local-energy approximation a slight variation in the layer magnetizations will not change the
already discussed BSF scenario, as the perpendicular alignment is favored by the anisotropy energy barrier. In
the following we will return to the ideal compensated MLs.

2.5.2 Two magnetic layers

Equation (2.38) is valid for finite number of layers. If we choose n = 2 then we describe a trilayer. To get the
infinite (two-sublattice) model J" = 2.J should be set.

First we calculate the critical fields for the trilayer, then with the introduction of the new coupling constant
(J') the two-sublattice case. From now on all layers are equivalent, thus Kll = Ky, M; = M etc. Also we will
examine the easy direction (Jx = 0).

The requirements of a minimum if two variables are present:

0. fr, (Po)=0, f; (P)=0, (2.41a)
L. f;/(,mo (PO) >0, (241b)
2. det (D?) > 0. (2.41c)
The derivatives:
dor . . 1 . .
S0 = Jsin (91 — 9g) + Bsin2 (91 — Jg) + EKI sin49¢ + H M sin 9y, (2.42)
0
dor . . 1 . .
50— —Jsin (Y1 —Yg) — Bsin2 (¢ — o) + §K1 sin4v9, + HM sin 9. (2.43)
1
The four second derivatives:
82
Bgf = —Jcos (V1 —g) — 2B cos2 (V1 — Vo) + 2K cos (49¢) + HM cos Jy, (2.44)
0
32913
597 = —Jcos (91 —9g) — 2B cos2 (91 — Jg) + 2K cos (491) + HM cos V1, (2.45)
1

d*op  0%op
0991 9919

= Jcos (191 — 190) + 2B cos?2 (191 — 190) . (246)

In our case, we are interested in the [0;180] minimum?® i.e. 99 = 0,91 = 7:

J—-2B+2K,+HM -J+2B
2 , _ 1
Dor[0;180] = ( —J+2B J— 2B+ 2K, — HM) (247)
The determinant should be positive: 4K? + 4K, (J — 2B) — H?M? > 0. Thus
. 2y Ky (KG+J—-2B

M

Condition (2.41b): ¢,y > 0 is fulfilled at field H{Y. Note that we are interested in strongly AF-coupled
systems, thus J > 2B. In this case J — 2B + 2K, + HM > 0 if H > 0 (we start from zero external field and
apply a positive field to get the spin flop).

24Tn the case of compensated ML the parallel /antiparallel alignment results in a constant energy curve, while the perpendicular
(<-shape) starts as a parabola looking downwards. In the case of net moment the energy of the parallel/antiparallel alignment is
linear, thus there is a region where this latter alignment is the global energy minimum.

25[[1? b] = [192'” =a°, Yont1 = bo}
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At saturation g = 0;19; = 0. Now the second derivative matrix:

s o (—=J—2B+2K,+HM J + 2B
D0 [0;0] = < J+2B ~J 2B+ 2K, + HM (2.49)
the determinant: (2K + HM) (2K, + HM —2J — 4B) > 0, thus
. J+2B - K,
HW=2" " "~ 2.50
S M ( )
It is easy to verify that condition (2.41b) is also fulfilled at H!".
2.5.3 Finite number of layers
The trilayer model can be mapped to the two-sublattice model by introducing .J' = 2.J, B’ = 2B:
2/ K1 (K 2J — 4B 2J+4B — K
e, = 2V 1}; ), H§°:2—+M ! (2.51)

o0

oo, value, however the spin-flop

In a ML of finite number of layers the saturation field will be close to the H
field will be the same as for the trilayer model as it will be shown below.

First, let us examine the saturation field. Here the first and the last spins are only ‘half-coupled’ relative
to the inner ones, thus they are closing more easily. The computer simulations show that the difference from
the infinite model is decreasing rapidly with increasing number of layers.

The spin-flop field is the same as for the two-sublattice model and can be calculated analytically. This can
be shown identically to the proof of A. L. Dantas and A. S. Carrico [45]. In their article they used the second
differential matrix (D?pg) to show their lemma.

For two layers it is easy to see from the derivative matrix

M, = (Z lc’> (2.52)

that the instability occurs when ac = b%. The elements of the matrix are (in our case): a = J—2B+2K;—HM,
b=—-J+2B,¢c=J —2B+2K; + HM. They prove in their article that for any even number of layers n > 2
the instability will occur at an external magnetic field where ac = b2. To do this they quote the matrix for four
layers:

a b 0 0
b c—b b 0

M,y = 0 b aeb b (2.53)
0 0 b

Then by transforming the above matrix to an upper triangular form they show that the last element of the
product is the smallest and it will vanish in a field where ac = b?. Then they show by mathematical induction
that this is valid for the last element of the product for a matrix with two more layers. Thus the spin-flop
always starts at the same external field value independently of the number of even layers. Also the values
of the other terms were calculated. The even-numbered terms (except the last one) converge to —b, while
the odd-numbered ones all converge to a. Thus the lemma is valid only for @ > 0 and b < 0. The actual
development of the spin-flop is of course dependent on the number of layers. In their derivation they used
uniaxaial anisotropy and no biquadratic coupling. By changing the symmetry of the anisotropy only a constant
changes in the derivatives in a given point and the introduction of the biquadratic coupling is equal of the
change of the AF coupling. The only constraint is that J > 2B otherwise b < 0 will not hold. We are interested
in strongly AF-coupled MLs, so we will investigate the region of J > 2B. It is trivial that the a term is also
positive at Hyg,2® which in our case equals to

oK (K T 2B
i = 2V }\; ) (2.54)

In conclusion, the critical fields of the 2n finite system (2n is the even number of magnetic layers) are:

2/K, (K, + J — 2B)

bsf M ’ ( )
. 2] +4B — K,
H' = 27— (2.56)

26 At Hper ac = b2 and ¢ > 0 thus a > 0.
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For K < J

2 /K (J — 2B
Hg’}z+ (2.57)

2.6 Hard axis spin reorientation

If we magnetize the AF coupled sample along the hard direction, a new reorientation transition (‘flop’) will
occur [8]. The AF coupling prefers a perpendicular-to-field state near remanence, while the anisotropy forces
the spins to easy axes +45° off the external field. Depending on the K/.J ratio the behaviour will follow more
the AF or the anisotropy-driven case. The spin-flop field may depend on the type of minima we follow. In the
global minimum picture it is always lower, than in the local minimum case, and in the former case the central
AF state always spans a symmetric field range and shows a symmetric hysteresis loop, while the latter could
produce asymmetric range and hysteresis loop. The finite stacking effects are also important in this case.

2.6.1 Trilayers

When the system is a simple trilayer then we have only two moments (‘spins’) and thus the resulting phase
diagram is also ‘easy’ (Fig. 2.16). The limits of behaviour for an AF-coupled ML are set by the global and local
minima paths. When performing a magnetization measurement, usually the loop is done by scanning the field
from positive saturation to negative saturation and back. When calculating local minimum for such a loop, the
middle AF type state might be not reached. The resulting phase diagram is show in Fig. 2.17. The different
regions can be separated as follows:

1. Small-anisotropy region (K/J < 0.1): The local and global minima paths coincide. This is the AF-
coupling dominated region where the crystalline anisotropy turns continuously the spins to the 45° easy
axis close to remanence. No anisotropy-induced hysteresis is present.

2. Middle region (0.1 < K/J < 2): The anisotropy and coupling term are of the same order of magnitude.
The maximal spin-flop field is located at H/Hg = 0.222, K/J = 0.258. As the anisotropy increases, the
spin-flop field decreases, both in local and global path. In the local minima case (Fig 2.17) the spin-flop
reaches Hit, = 0 at K/J = 1.4, and decreases further. The asymmetry in the local magnetization loops
is anisotropy-induced.

3. High-anisotropy region (K/J > 2): Anisotropy dominates. In the local picture the two spins move
uncoupled.?” In the region K/J > 2.5 parallel alignment of the spins is possible after the flop, and the
‘<’ phase can jump to ">’ phase with no middle AF phase. The global minimum path shows the still
existent but diminishing effect of the AF coupling. Detailed investigation of this part could help the
understanding of weakly coupled AF MLs.

In conclusion, from the trilayer model (n = 2) we learned that, as expected, there is a smooth transition
between the AF-coupling dominated and the anisotropy-ruled regions. The spin-flop has a critical point at
R. =~ 0.1 K/J. Below R. the transition is continuous (rotation of the spins), above R, a first order phase
transition (spin flop) occurs. For the two-sublattice model?® we may conclude that the maximal spin-flop field
will be at K/J ~ 0.5.

2.6.2 Multilayers

The configurational freedom arising from the finite stacking lowers the equilibrium energy by the introduction
of new phases. Depending on the minimization used, different loops are possible. The detailed analysis of the
‘preliminary’ phase diagram?’® (Fig 2.18) yields the following major ranges in the function of the external field:

1. AF alignment along an easy axis, with small canting. Here the external field acts as perturbation,
driving the system to a state with the net magnetization close to the perp. easy axis (and 45° from the
external field). This is the region from zero field up to the global (b) line and in the local minimum
scenario up to the first line of dots.

27The consequence of independent alignment is the constant spin-flop field of Heyn = 0.272.

28To get the parameters of the two-sublattice model, one should substitute J' = 2.J.

29Preliminary in the sense that we have tried to find the easiest measures for the description of the complex phase diagram.
To analyze all flops and phase transitions a more thorough study is needed. The situation becomes even more difficult with the
addition of further coupling terms.
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Figure 2.16: Local and global phase diagram of AF-coupled (J) trilayer of fourfold anisotropy (K) magnetized along a
hard axis. In remanence the two spins are antiparallel (AF alignment) along one easy axis (see the bottom arrows). As
the field is increased (along the z-axis of the graph) the phase transition to the < shape occurs (see top arrows). Taking
the local energy path the layer opposite to the external field flops towards the field independently of the AF coupling
at large K values, while on the global energy path the diminishing effect of the coupling can be still seen.
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Figure 2.17: Local and global phase diagram of AF coupled (J) trilayer with fourfold anisotropy (K) magnetized along
a hard axis. The external field was ‘scanned’ from positive to negative saturation. The AF coupling forces the phase
transition from the ‘<’ phase to the AF one near to remanence. The global path is symmetric while, due to the
anisotropy barrier, the local loop gets asymmetric at K /J > 0.1. The anisotropy delays the first phase transition (local
(a)), shifting it to the negative region, while the second phase shift (back to the ‘>’ state, local (b)) has an anisotropy-set
lower limit (see Fig. 2.16).
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Figure 2.18: Phase diagram of an n = 20 ML. The magnetization was swept from zero field to saturation along a hard
axis. The local paths were started with a global minimum (AF state along easy direction in remanence). The low
anisotropy region K/J < 1 is zoomed, while for the rest 1 < K/J < 10 only the local minima jumps and the infinite
two sublayer model results are shown. For description of the curves see text.

2. ‘SSF’ phase. In this region very similar phases [5] exist to the surface spin-flop (SSF) transition®® [46].
In the global minimum approximation the ML is separated to two orthogonal regions by the four middle
layers forming a ‘vertical domain wall’. This phase is stable up to the field denoted by the global (a) line,
where the ML switches to the next phase (‘<’ phase). In the local energy path discrete jumps (marked
by black dots) and continuous rotation can be seen. The last spin flops are located in the region, where
the infinite two-sublattice system would have the transition (oo local) which is a property of the SSF

transition.?!

3. ‘<’ phase. In this region the anisotropy acts as perturbation and the layers are forming the well known
‘<’ phase (the external field is oriented along the z-axis). The total magnetization is parallel with the
field and the spins are rotating smoothly up to saturation.

After the analysis of the phase diagram along the magnetization axis we investigate the different anisotropy
regions. Three parts can be distinguished:

1. Small-anisotropy region (K/J < 0.1): The spins from the AF alignment along the easy axis rotate to
the canted AF phase (‘<’) symmetric to the external field. The SSF phase is absent.

2. Intermediate-anisotropy region (0.1 < K/J < 2): The SSF region dominates the transition. The
global (a) line approaches the oo global line showing the diminishing effect of finite coupling as the
anisotropy gets higher.

3. High-anisotropy region (K/J > 2): The spins are moving ‘quasi independently’, however, due to the
finite stacking, the topmost layer pointing ‘in the wrong direction’ will flop earlier than the rest (which
will flop together) producing the lower dotted line in this region. The final jump occurs at the critical
field of the infinite two-sublayer model. Global minimization was not calculated for this region.

30The SSF phase occurs when an AF coupled ML with finite number of layers is magnetized along the easy direction of the
uniaxial in-plane anisotropy.

31The deeper analysis of the SSF-like phase was not amongst our goals thus it is possible that the phase diagram is not complete.
We used the threshold of d¢ > 0.01 to find discrete jumps in the local graph, where ¢ was the angle of the net magnetization
(measured from the z-axis). For the distinction of global phases ¢ > 0.01 and ¢ > 0.45 limits were set for phase global (b) and
global (a), respectively.
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Figure 2.19: Phase diagram envelope of an n = 20 ML. The magnetization was swept from positive saturation to negative
saturation along a hard axis. Up to K/J = 0.2 the two phases (X and /) have a first order transition, while above that
point the /-state is not reached, only two small jumps are visible in the magnetization curves (at the field denoted by
dashed lines).

Finally the magnetization loop from positive to negative saturation is simulated in local energy approxima-
tion. Now the details of the spin-flop are not shown, only the two phase-border lines (Fig. 2.19). Starting from
saturation the symmetric-to-field <-phase transforms to the /-state at very low anisotropy values, rotating to
the anisotropy symmetric (easy axis) AF-state in remanence, then aligning in the field symmetric <-state. At
higher anisotropy values (K/J > 0.1) the vertical domain wall state (X-state) emerges, splitting the spins in
all four easy directions. Above K/J = 0.2 the ‘pure AF’ state is not reached anymore, as the flops lead to a
different X-state. The remanent state (according to these simulations) depends on the K/J ratio. It can be
the AF state (up to K/J = 0.15) or the X-state.

In conclusion, the effects of finite stacking were again underlined. The finiteness of the ‘spin chain’, the
missing coupling term leads to an interesting spin-flop phenomenon resembling the SSF transition. The local
and global minimization algorithms suggest different spin alignments, depending on field history, leading to
different remanent states. Only measurements on real samples can show, which path is taken by the sample.??
The effect of higher order coupling terms have to be taken also into account for the particular sample.

32By careful sample preparation the starting configuration can be fixed. In our case by saturating the sample in an easy direction
and letting down the field, then turning the sample by 45° will set the global AF alignment.



Chapter 3

Classical magnetization measurements

After the familiarization with different models of AF coupled MLs we can proceed in the description of a real
sample. First the global magnetic behaviour (full magnetization loops and bulk-spin-flop transition) will be
presented. The sample under investigation is a MgO(100)/[5"Fe (26 A) /Cr (13 A)] 50 Strongly AF coupled ML.
The °"Fe isotope will be important for the Mossbauer studies. Details of structural characterization will follow
later in Chapter 5.

3.1 Sample description

The AF-coupled Fe/Cr ML described in our work was grown in Leuven by RIBER MBE. The date of growth
was 1999.06.17; the sample was grown by Johan Dekoster and Stephan Degroote. The identification string of
the sample was 990608. A cleaned and UHV-degassed (at 600 °C for 30 min.) MgO(100) substrate of 1 x 1 cm?
was used. The pressure before growth was 3-10~'! Torr, during growth 310719 Torr. The deposition rates
were 0.35 A/s for Cr and 0.1 A/s for ®"Fe, respectively. The sample was rotated during growth to achieve better
lateral homogeneity. The nominal substrate temperature was 450 K during growth. Neither buffer nor capping
layer was grown. The nominal thickness profile of the sample was MgO/[5"Fe (25 A)/cr (14 A)]20' The 5"Fe
source was a special small volume effusion cell, while Cr was grown from an electron gun. The ML is epitaxial, as
was confirmed by in-situ RHEED measurements and ex-situ X-ray diffractograms [47]. It follows the well-known
[48] epitaxy of Fe(001)[100]{|MgO(001)[110]. From Synchrotron Mdéssbauer Reflectometry measurements [47]
and the measurement techniques detailed in Chapter 5 the structure of [57Fe (26 A) /Cr (13 A)} 50 Was deduced.

3.2 SQUID and VSM global cycles

The topics of Fe/Cr MLs would not be so interesting if the coupling through the Cr interlayer would be
understood in all details. In the following we will see how to fit a phenomenological model to the hysteresis
measurements (Fig. 3.1). The methods used, vibrating-sample magnetometry (VSM) and the superconducting
quantum interference device (SQUID) are both capable of measuring the average magnetization of a sample
versus the external field with high precision.

3.2.1 First fits

To get a first view, the SQUID measurements® were normalized and evaluated.? From Fig. 3.2 it is evident
that the sample is strongly AF-coupled. The hysteresis is minute, the remanent magnetization is less, than
1%. Tt can be also seen that the magnetization reaches saturation asymptotically which is not the feature
of the bilinear-biquadratic model. The easy- and hard-direction-averaged® loops were simultaneously fitted

IBarlier VSM measurements suffer from the ‘phase-slip’ effect, see later.
>The SQUID measurements were taken by Laszlo Kiss (MTA SZFKI) in May 2002.
3The up and down branches were averaged in order to get rid of the hysteresis.

26
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Figure 3.1: The VSM curve of sample 990608 measured in hard direction. The horizontal dimensions of the sample were
A =7.12 x 10.2 mm?. The net satuartion moment of the sample wasMyet - A = 4.723 - 1079 Am?.
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Figure 3.2: Normalized SQUID measurements on a small piece of sample 990608 (easy- and hard-direction magnetization
loops). The measurements were taken from 0 T to 5 T and back to 0 T. The lines are guide to the eye.
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Figure 3.3: Bilinear-biquadratic (BB) fit to the averaged SQUID data. The hard-direction curves are shifted by 0.1 units
for clarity. The solid lines are the best fitting curves in the frame of the BB model.

constant | literature value | SI value
Kpuk 4.75-10° erg/cm3 4.75-10* J/m3
Mk 1717 emu/cm? (in “47G” units) | 1.717 x 10° A/m

Table 3.1: Literature value [49] of the bulk magnetization density and anisotropy constant of Fe.

by a finite layer model (Fig. 3.3) and we gained the best fit at the following parameter values with notation
according to (2.38): J =1, B = 0.239, K = 0.059 and M = 8.363. Those numerical values are parameters
of the minimizing algorithm. We compare all coupling and anisotropy terms to the AF coupling, thus J =1
by definition.* Finally all parameters are scaled according to the measured saturation magnetization of the
sample (see Table 3.2 for example).

Unfortunately the measured total magnetization of the sample depends on the exact geometry (producing
different results even for the same orientation). Furthermore, since the SQUID measurements were also taken
on a small piece of the sample for averaging on the whole sample the VSM measurements were performed and
evaluated. The magnetic moment of the sample as obtained from the hard-direction VSM measurement was
Myet - A =4.72-107% Am? (see Fig. 3.1). The area of the sample is 7.12 x 10.2 mm?. The total iron thickness
(20 layers) is approximately 51 nm (see Chapter 5.1.2). Thus the total iron volume is 3.78 - 10712 m3. From this
the magnetization® is M = 1.275-10% A/m . This is not far from the ~ 1.4-10° A/m measured by Fullerton
et al. [14], which is less than the bulk value (see Table 3.1). The number of uncertainties (VSM calibration,
phase shift,® total Fe thickness, measurement along the hard axis) all sum up in our case.

Alternative models

As the bilinear-biquadratic (BB) model did not give a good enough fit in the high-field region, other coupling
models were fitted. The proximity magnetism model for example did not give a better fit, as it predicts an

4We could add the units here directly, but this could confuse the reader, as in fact we determine only the ratios of the parameters
(J/M, B/M, K /M) because we fit M/Ms curves

51 emu=1 Gem®, but this G is in “47” units. See for example [49]. Note that M, is magnetization (gives the magnetic
moment per unit volume). We ‘measure’ magnetization in A/m (1 G corresponds to 103 A/m).

SDue to the lock-in phase shift of the particular VSM set-up it was impossible to give the exact magnetic moment. The lock-in
angle was drifting for small samples, thus the slopes of the saturated regions were unequal. It resulted in intersecting or open
loops.
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AF alignment in remanence only if Cy = 0. This constraint does not give enough degrees of freedom” to fit
the magnetization curves appropriately. The other alternative coupling models are also giving a non-collinear
coupling angle in remanence. In conclusion, none of the alternative models can describe the strongly AF-
coupled ML with AF alignment in remanence and asymptotic saturation, thus we should apply a different
phenomenological model to get a better fit for our sample.

Results of the biquadratic fit

As one can see, the BB fit is better for low field values than for the saturation region. The main shortcoming
of the fit is the underestimation of the saturation field. It would give Hgy¢ of approximately 0.7 T, while the
measured Hgye is =~ 1.1 T.8 Nevertheless, accepting the BB model, we can approximate the values of the
variables describing the ML. As noted above, we will accept M = 1.275-10% A /m for magnetization. From this
the anisotropy density will be K = 0.9-10* J/m?, which is only ~ 20% of the bulk value. J = 0.389-1072 J/m?
and B = 0.929-10~* J/m?.

As we have seen from the above paragraph, there is no ‘simple’ fit in the frame of literature models of
our sample. We define a fit ‘simple’ when all layer parameters are equal (J; = J, M; = M, ... Vi) and
the finite-stacking effects are included. No distributions of parameters and even no deviation of any kind are
permitted.

After the realization of the shortcomings of the simple model, a natural way would be to allow distributions,
deviations of the parameters. In principle with high enough number of parameters a good fit can be produced
with almost any kind of model. Unfortunately enough, we have no direct measurements of the sublattice angles
one by one for example,” thus from the magnetization data we cannot select amongst the ‘sophisticated’ models.

3.2.2 Extended bilinear-biquadratic model

A different approach to the extension of the model is the addition of new energy terms to the energy. Based on
the two-sublattice inversion (Appendix 9.1) we take the Fourier components of the energy function up to the
12th order.!? In the two-sublattice model the spins are symmetric to the external field, thus only the following
energy terms are taken into account:

6
m A
op (V) = Z % cos (mdd) — f cos 49 — hM cos 9. (3.1)

m=1

Here ¢ = ¢; 41 — ¥; = 29 (in the two-sublattice model) and J; — Jg and Ay are the coupling and anisotropy
Fourier harmonics, respectively.!! To compare with existing models the biquadratic and anisotropy terms were
substituted:

n—2 n—2 n—1
0F = JZ cos (Y41 — ;) + B Z cos? (g1 — %) + g (1 —cos4 (191- — 195))
i=0 i=0 i=0
6 J n—2 n—1
+WLZ:3E;COS’ITL(’L%+1 —191) —HM;COS’[%. (32)

Here 95 is the orientation of an easy axis compared to the external field.

Equation (3.2) is an extended version of the BB model. It allows for ‘simple’ fitting of the magnetization
curve with a few variables. Numerical fitting on an n = 20 layer model by sequentially minimizing the
parameters give a good agreement with the magnetization measurements as shown in Fig. 3.4. The saturation
region fitting is still not perfect, but much better than with the simple BB model. The parameters of the model
are summarized in Table 3.2.

7Only C_ can be fitted.

81t is not easy to give a well-defined saturation field value from the magnetization measurements alone due to the asymptotical
behaviour of the magnetization.

9This could be achieved by enriching only a single layer with 57Fe.

10The higher order Fourier terms give only very small contribution according to the two-sublattice inversion.

1 Based on measurements we can exclude uniaxial anisotropy (A2 = 0). The higher anisotropy terms were excluded by fitting
the magnetization curves. A better distinction between possible higher order anisotropy and coupling terms could be made only
based on magnetization loops taken along more directions.
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Figure 3.4: Fit by the extended bilinear-biquadratic model of the averaged SQUID data. The hard-direction curves are
shifted by 0.1 units for clarity. The lines are the fits to the data.

param. model | sample

M=DM-d| 8367 |1.25-10°A/m-2.6 nm
K=K-d | 0126 | 1.88-10*J/m?-2.6 nm
J 1.0 0.388 1073 J /m?

B 0.2556 | 0.876-10~* J/m?

J3 0.0435 | 0.169-10* J/m?

Ju 0.0482 | 0.187-107% J/m?

Js 0.0201 | 0.781-1075 J/m?

Js 0.0244 | 0.948-107° J/m?

Table 3.2: Parameters of the extended model. The column model shows the numerical values used in the fitting program,
while the last column shows the values recalculated for the given sample.
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The extended model shows a much better fit in the high-field range (H > 0.5 T) compared to the BB model
and it also yields a larger crystalline anisotropy, which is almost 40% of the bulk value. The saturation fields
are HS, = 0.935 T and H", = 0.995 T in easy and hard directions, respectively. Comparing the common terms
M, J, B the values are approximately the same, which is no way a surprise, as the BB model is the subset of
the extended Fourier series.

3.2.3 Model-independent parameters

Before we proceed with the elaboration of the magnetization curves, we take a short glance on the model-
independent parameters. Based on VSM measurements, we have an approximation on the total magnetization
of the ML and the magnetization density (see page 28). We can also approximate the anisotropy of the iron
layers.!?

In the following we will show that the total anisotropy energy is proportional to the area difference between
the easy- and hard-direction magnetization loops. Supposing that we have only fourfold anisotropy, subtracting
the area of the two magnetization loops'® we get AE = 0.425-1072 T. The anisotropy constant is obtained
from K = 4AMAE, where M is the magnetization (we use 1.25-10% A/m) and AF is the area difference. We
get K = 2.125-10* J/m?, which is not very far from the value obtained in the frame of the extended model.

To obtain the anisotropy from the magnetization loops one may proceed similarly to [44] (p. 131). As the external
field is coupled to the ML only via the magnetic moments we can write:

Hg Hy
0
[vam =~ [ S at — 06 0) - or (1), (3.3)
0 0
More precisely, as a direct consequence of (3.2) for example, Jpr/0H = —M Z;:Ol cos ¥, which is in turn the measured

VSM signal.

Assuming global energy path behaviour, the sample in remanence is in the AF-phase. When saturated, the coupling
energy term is the same for the easy and hard orientation, only the anisotropy energy changes. From (3.2) it is easy
to see that the difference is K/4-n, where n is the number of layers. As the magnetization is also a ‘bulk’ parameter,
we can rescale the equation to a single layer, or even to the bulk density, arriving at AF = K/4. Here AF is the area
difference of the magnetization loops of a unit volume of the ML. If we measure M/Mgat, then we must multiply the
result by the bulk magnetization: (AE/M) -M = K/4.

3.2.4 Distribution of the parameters

In the previous paragraphs we showed that the sample could be relatively well described by a ‘simple’ extended
Fourier model. This is a phenomenological model. We could follow the other way, by adding distributions
of some parameters. However from the magnetization cycles alone it is impossible to decide between a broad
distribution plane-parallel and/or plane-perpendicular of some parameters and a different model. We cannot
decide on those issues by a single sample. In Appendix 9.2 a brief introduction is given, how one can start to
examine the distribution case.

Numerical investigations of the model (not detailed here) show that if a single parameter (for example the
biquadratic coupling) has a distribution (a narrow Gaussian type for example), then the magnetization curve
is almost the same as it would be for the average of the distribution, differing only a tiny bit from it at the
saturation region. This finding prefers the Fourier model against the distribution one.

Finally we have to stress that really good description of a ML could be given only based on the knowledge of
the ‘building blocks’ themselves. It does not only include the independent measurement of the anisotropy, bulk
magnetization and other model parameters, but the investigation of smaller systems (single layers, trilayers
etc.) of the same type. As was measured by Parkin et al. [12] even a single Fe layer sandwiched between Cr
layers can show a non-rectangular hysteresis loop.

3.3 Bulk spin flop

The bulk spin flop (BSF) was first observed by MOKE!* on sample 990608 (see Fig. 3.5). As mentioned
in Sec. 2.5 BSF transition may occur in uniaxial atomic antiferromagnets or in antiferromagnets of fourfold

12Normally one should measure the anisotropy of a single layer which was grown under similar condition as the MT,, but we do
not possess such sample.

13More precisely the M /Msat, loops.

14 Measurements were taken by Johan Swerts and Laszlo6 Bottyan in Leuven Aug. 2000.
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Figure 3.5: BSF transition observed by MOKE (for details see text). The inset shows the zoomed BSF region.

crystalline symmetry. In the latter case the BSF is related to a local energy minimum path, thus it is only
observable in AF-coupled MLs. To observe the BSF a special magnetic sample preparation is needed. The
‘spins’ should be turned parallel/antiparallel to the field. This can be achieved by increasing the field over
the critical field of the BSF, then going to remanence and turning the external field by 90° compared to the
last seen field. This can be done most easily by turning the sample itself, the actual procedure that was used
at the MOKE measurements. First a ‘simple magnetization loop’ was recorded in the —150 : 150 mT range
(not shown), then the sample was turned by 90°, saturated in puoH = 0.95 T. The field was removed and the
sample was turned back by 90°. A second loop was taken, starting from zero field. As can be seen in the
inset of Fig. 3.5 the magnetization first stayed parallel /antiparallel up to ~ 10 mT. Then it switched to the
perpendicular alignment. The BSF transition was over at &~ 16 mT. Further BSF scans were taken (not shown)
after aligning the spins in (smaller-than-saturation) fields of'> 150 mT and 30 mT with exactly the same BSF
transition range and shape.

After the MOKE justification of the BSF, VSM measurements were also done. First the experimental
difficulties lead to no significant result, thus the sample was cooled down in order to enhance the BSF. The
perpendicularly magnetized sample!® was turned by 90°, then cooled to 20 K and measured (Fig. 3.6). The
spin flop occurred between 12 mT and 30 mT (but it was not so well defined as for the MOKE case.!” Later the
preparation of the magnetizations was improved by the help of an external magnet. The sample rod was placed
between the poles of the magnet, which magnetized the sample in the proper way. Now the room temperature
observation of the BSF was possible, see Fig 3.7. The spin flop is now well-defined, and occurred at ~ 12 mT.

In conclusion, we proved indirectly'® the existence of the BSF transition. The low-temperature and room-
temperature measurements led to similar results and showed an Hpgs ~ 12 mT. In the following we will compare
these results with theoretical predictions.

5By passing the BSF transition from below the spins will align to the perpendicular-to-field orientation. There is no need to
saturate the sample.

16Tn this stage the magnetization was done by the superconducting solenoids of the VSM machine.

7 This could be attributed to the improper magnetization procedure for example.

8 The VSM and MOKFE measurements give an incoherent sum of all sublayer magnetizations. We cannot exclude other spin
configurations leading to a similar result.
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Figure 3.6: BSF transition observed by VSM at 20 K (for details see text). The curves are guide to the eye.
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Figure 3.7: BSF tramnsition observed by VSM at RT. The curves are guide to the eye. The spin flop branch is printed in
bold for clarity.
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3.3.1 Theoretical considerations

The effects of the finite stacking were discussed in Section 2.5. The only difference is now that the coupling
is extended with further Fourier terms. As this is not changing the ‘global’ behaviour, the BSF field and
saturation field equations still hold. The new critical fields will be the following:'?

2\/K (K +J —2B+3J3 —4Jy + 5J5 — 6.J5)

Hipst = i : (3.4)
2(J + 2B+ 3Js + 4J4 + 5J5 + 6J5) — K
H, =2 (J+2B + 3+M4+ 5+ 6J) . (3.5)

Substituting the values obtained by the fits this will result in Hypg = 60.4 mT, H®Y = 0.965 T, Hhad =
1.025 T. Those results are in extremely good agreement with the numerical simulation, verifying the algorithms
used by the optimization code for this particular case.?’ The obtained Hygs field however is much larger than
the measured 12 mT. This is a strong indication that the spin flop occurs by intralayer domain wall movement
and not coherent rotation of the lattice spins [47]. The domain wall movement can drive the spins through
the local energy barriers. The spin-flop field is not zero, thus the system moves between the global and local
minimum path, closer to the global side.

3.4 Hard-axis spin reorientation

The easy-direction hysteresis loop of a strongly AF-coupled sample with fourfold anisotropy is a ‘smooth
curve’. When the sample is saturated, all magnetic vectors point parallel to the external field, and to an easy
direction. When the field is lowered, the moments open smoothly through a <-phase. They pass the hard axes
continuously, arriving at the easy-axis orientation in remanence. In a hard-direction scenario the moments are
pointing parallel to a hard axis in saturation, while located along easy directions in remanence. The hysteresis
loop in hard direction and the transition of the magnetizations from the hard to easy axes can be smooth
or sharp depending on the model parameters (for detailed analysis see Sec. 2.6). In our particular case the
magnetization curve showed a well-defined jump in the hard-axis MOKE measurements (Fig. 3.8). Numerical
simulation with global energy minimization®! also pointed out a sharp phase transition (see Fig. 3.9).

At increasing fields the first smoothly rotating magnetizations jump when the system chooses a state with
different symmetry. This phenomenon is also related to the finite stacking ‘freedom’ of the ML, as opposed to
the two-sublayer model, the layer magnetizations can occupy all four perpendicular easy directions by creation
of a ’domain wall’ (see the 26 mT state in Fig. 3.9). The rearrangement of magnetization could be seen by
magnetization measurements. MOKE measurements on the sample did show the jump at &~ 32 mT, but it
was not observable either on the VSM curves or in SQUID measurements. The SQUID loop was taken with
10 mT /point in this region, thus it was too coarse to see such a jump. The step width of the VSM measurement
(0.88 mT/point) would allow the observation of such a jump, but it was not observed on the loops.

The reasons of the missing jump in the global methods (VSM, SQUID) could stem from many factors. First
of all, the jump in the parallel magnetization is minute, 0.04 in units of saturation magnetization, see inset
in Fig. 3.8. A small distribution in the parameters can smear it out to the noise region. Secondly, VSM and
SQUID sees the magnetization of the whole sample, while at MOKE measurements only a tiny fraction of the
sample is illuminated with the laser beam. Finally MOKE is ‘surface sensitive’ in the sense that it enhances
the signal coming from the first layers and due to mixing of different MOKE signals the jump is even more
pronounced thanks to the ‘negative’ kink of the magnetization loop.

The effect of sample misorientation was investigated. Up to £5° the ‘jump’ is preserved in the MOKE
measurements (not shown) with the same averaged flop field of 32 mT. The numerical simulations for the
sample reproduce this feature, however showing a slight shift in the critical field.

Finally we note that Alievet al. found a similar effect on the hard-direction AC magnetic susceptibil-
ity data [50], which they attributed to the spin reorientation from easy to hard direction. Their sample
[Fe (30 A) /Cr (13.5 A)] 10 Was very similar to ‘990608’, and numeric simulation of an n = 10 ML show an even

9Modifying the calculations presented in 2.5.3 with the constraint that the additional coupling terms do not destroy the general
symmetric AF coupling behaviour.

20The numerically achieved values: Hyg = 60.28 — 60.65 m'T, Hs®Y = 0.959 T, Hs"a'd = 1.0196 T

21 As already noted, the ML can move between the global and local minima. For the easy-direction BSF transition we observed
such behaviour close to the global minimum. In the case of hard axis reorientation the local minimum loop would lead to an
asymmetric spin reorientation, not observed in the MOKE measurements.
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Figure 3.8: MOKE hysteresis loop in the hard direction. The field history was 0 — 150 — —150 — 150 mT. The
first loop (a) was taken after an easy direction loop, while the second one (b) was a repetition of (a). In the inset at
the bottom right corner the result of the numerical simulation is shown. The jump on the net magnetization is 0.04
measured in units of M/M;.

more pronounced jump. In this case the transition region dominates the stack, leaving only ~ 2 — 2 outer lay-
ers in the AF configuration. In our view the jump is not a consequence of an ’easy-hard’ transition but an
/ — X one.

3.5 Conclusions

After the introduction of the effects of finite stacking in the previous part, we tried to magnetically characterize
our samples with ‘traditional’ magnetometry. We used an extended phenomenological model, based on the
bilinear-biquadratic formalism to fit the hysteresis loops of sample ‘990608’. In this Chapter we also introduced
two types of spin flop transitions for AF-coupled artificial MLs with fourfold anisotropy. The BSF transition
and the hard-axis spin-reorientation (HASR) transition were numerically investigated with the parameters
obtained from the fit of the hysteresis loops. In the case of BSF we concluded that domain wall motion, rather
than coherent rotation plays major role in the transition.?? For HASR transition the numerical simulation with
global minimization showed good agreement with the MOKE measurements.

22We will see that even not domain wall motion, but domain wall annihilation occurs at the BSF transition.
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Figure 3.9: Numerical simulation by global energy minimization. The external field is parallel to the hard axis. Increasing
the field from zero the first strictly AF alignment cants smoothly up to 25 mT, then a phase transition occurs, and
from 26 mT the stack is divided to two subparts, each retaining the AF alignment, but orthogonal to each other. The
central layers act as a ‘domain wall’ rotating from one part to the other. When the field is further increased this X
structure smoothly transforms to a < as the Zeeman energy compared to the anisotropy and exchange terms gets larger
and larger.



Chapter 4

Measurements in momentum space

In the previous chapters we dealt with ‘direct space’ measuring methods. In the following we will introduce
techniques that are working in the momentum space. For the investigation of AF coupled MLs it is often
favorable to ‘dress up’ the ML structure with the magnetic information. After the introduction to synchrotron
Maéssbauer reflectometry (SMR) and polarized neutron reflectometry (PNR) we briefly review the momentum-
space representation, and finally a short part is devoted to coherence issues, which may be important for
magnetic domain measurements.

4.1 SMR

Nuclear resonant scattering of synchrotron radiation (NRS of SR) [51], also referred to as Synchrotron Moss-
bauer reflectometry (SMR) [52], is a powerful method for analyzing hyperfine fields and thus magnetization of
thin films and MLs containing nuclear resonant isotopes. In SMR measurement the illuminated sample scat-
ters the radiation coherently, which can make evaluation of the measured curves a hard task. Without the
knowledge of the underlying structure (layer thicknesses, hyperfine fields, etc.) it is not possible to get a reli-
able picture. For homogenous thin films the determination of the layer parameters may be easy. In the case of
Fe/Cr MLs, however, the number of parameters to be fitted (hyperfine structure of the interface regions, the
structural roughness, etc.) may prohibit the correct evaluation.

One could ask, what are the benefits of SMR in such a complex system compared to ‘classical’ magnetization
measurements (like MOKE or VSM)? The answer lies in the coherent nature of SMR. As it can distinguish
different regions in the reciprocal space, it may show direct evidence of magnetic structures, separate magnetic
correlations (domains) from structural roughness.! SMR is also good in mapping patch-domains of AF-coupled
MLs.

4.1.1 Introduction to SMR and PNR

Total external reflection (TER) of x-rays [53,54] and neutrons [55] from flat surfaces are phenomena dating
back to the first half of the twentieth century. The real part of the index of refraction n of most materials
for thermal neutrons and of all materials for non-resonant x-rays is by about 107° less than unity. At low
enough angles of grazing incidence 6 < 6. = /2 (1 —n) the waves are totally reflected. The intensity of the
reflected specular beam for 6 > 6. rapidly decreases with increasing wave vector transfer ¢ = 2ksinf where
k is the length of the wave vector of the incident radiation. In a stratified medium, reflected and refracted
beams appear at each interface. The interference of the reflected beams leads to patterns of the reflectivity
vs. wave vector transfer spectrum R(q) that bear information on the depth profile of the index of refraction
n(z), the argument z being the coordinate perpendicular to the sample surface. R(g) can be calculated from
n(z), e.g. using the method of characteristic matrices |56, p. 51|. Therefore, in frames of a given model for the
stratified system, n(z) can be reconstructed from R(q) = |r(q)|> where r(q) is the reflectivity amplitude. This
latter approach is the basic idea of specular x-ray and neutron reflectometry, two methods that can be used for
mapping the electron density and the isotopic/magnetic structure of thin films, respectively.

UIn fact, the ‘coherence-related’ statements are also true for polarized neutron scattering.

37
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Figure 4.1: Schematic drawing of the measurement setup. The incoming beam k; is scattered on the sample to ka. The
scattering is described by angle 20 in the lab system. In sample coordinates with axes x and z the scattering is described
by angles 6; and 6. In the figure the angles are unrealistically large for demonstration purposes (6; = 20°, 0y = 10°).
The figure shows an off-specular case (0; # 0¢), thus q in not parallel to z.

The coherent forward scattering of a scalar wave of momentum much higher than that of the scatterers can
be described [57] by the index of refraction close to unity

n=1+ 27];—2]\] f (4.1)
where N is the density of scatterers and f is the scattering amplitude. The electron density for non-resonant
x-rays or nuclear and magnetic scattering length density for neutrons is implied in the latter quantity [58].

X-ray reflectometry may optionally be performed with nuclear resonant photons. We shall call this tech-
nique, henceforth, Méssbauer reflectometry (MR). MR benefits from the fact that, close to the nuclear reso-
nance, the photon scattering amplitude f is strongly energy-dependent and contains the matrix elements of
the hyperfine interactions. MR is therefore suitable to study the magnetic structure of thin films.

A serious limitation of MR with conventional sources [59] is the small ( 107°) solid angle involved. Due
to its high collimation, synchrotron radiation (SR) is much better suited for reflectometric experiments than
radioactive sources. Synchrotron Mossbauer reflectometry (SMR) is the application of grazing incidence nuclear
resonant scattering of SR [60] to thin film and ML structure analysis.

4.1.2 SMR measurements

The sketch of the experimental arrangement of an SMR, experiment is shown in Fig. 4.1. The photons from the
high-resolution monochromator (not shown) hit the sample mounted on a two-circle goniometer of adjustable
height at an angle of grazing incidence 6;. The reflected (scattered) photons are detected by an avalanche photo
diode (APD). The detector position defines the scattering angle 2. The angle 6; is often referred to as w.

An SMR measurement is performed in either time integral or time differential regime. Time integral SMR
(TISMR) records the total number of delayed photons from ¢; to t5 as a function of 6; and/or 260 (for details see
below). Here ¢; is a few nanoseconds determined by the bunch quality of the radiation source and by the dead
time of the detector and the electronics, while 5 is set to a value somewhat below the bunch repetition time
of the storage ring. Time differential (TD) SMR is a time response measurement performed at various fixed
values of #; and 26. Like in the forward scattering case [61], hyperfine interaction results in quantum beats of
the time response. Finally we note that with TISMR spectra usually the ‘prompt’ spectra are also taken. The
prompt tag refers to the non-resonant x-ray scattering.

In a 6 — 20 experiment the wave vector transfer q is perpendicular to the sample surface. For a periodic

ML, in the first Born approximation (kinematic theory), Bragg maxima appear at ¢ = (27T/d)2 + ¢2, where
d is the structural or hyperfine (magnetic) period length perpendicular to the film plane and ¢. is the critical
wave vector transfer of the TER (typically about 0.5 nm™!). Thus a 6 — 20 scan reveals the average plane-
perpendicular structure of the ML. In-plane inhomogeneities reduce the specular reflection. Lateral dimensions
of inhomogeneities such as structural and magnetic roughness, waviness, magnetic domains, etc., however,
cannot be further studied in a 6 — 260 experiment.
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Figure 4.2: Calculated TDSMR, of a thin Fe foil magnetized in different directions (B). In the right column the
polarizations of the hyperfine transitions are sketched (for details see text), after [61].

In an w-scan experiment for small ¢ values the perpendicular-to-plane component of the wave vector transfer
is constant (g, = 2k6) while varying 6;, the in-plane parallel-to-beam component of the wave vector transfer is
scanned: ¢, = 2k0(0; — 0). The different scan types will be detailed in Sec. 4.3. In order to have significant
intensity, the detector height is set to ¢, of a Bragg peak. In the first Born approximation, the width of the
w-scan (i.e., ¢, scan) is inversely proportional to the longitudinal correlation length

- 27
- Age

3 (4.2)

where Ag, is the width of the ¢, scan (excluding the specular scattering). & is the correlation length of the
quantity the perpendicular-to-plane periodicity of which the Bragg peak is due to. Therefore, setting 26 in
an w-scan experiment to an electronically forbidden pure nuclear reflection the lateral correlation length of
inhomogeneities of the hyperfine interaction (magnetic roughness, magnetic domains) can be determined.

4.1.3 Magnetic information

Due to the full linear polarization, nuclear resonant scattering of SR is extremely sensitive to the direction of the
hyperfine magnetic field [61,64], see Fig. 4.2. The same holds true for the grazing incidence geometry [51]. Both
TISMR and TDSMR can be used to determine the layer magnetization direction in thin films and MLs. Figs. 4.3
and 4.4 show calculated # — 26 scans and time response curves of an AF-coupled [57Fe (20 A) /Cr (26.2 A)]zo
ML (the scattering plane is perpendicular to the electric field vector of the SR). The magnetic structure of
the ML is supposed to be collinear so that the directions of the hyperfine field B alternate across consecutive
Cr layers. The total reflection peak (‘Oth order Bragg reflection’) and the structural Bragg peak (‘Ist order
Bragg reflection’) show up in the time integral scans at the same value of 6 as in the prompt scan. If B is
(anti)parallel to the wave vector k of the SR, AF super-reflections (‘1/2th and 3/2th order Bragg reflections’)
can be observed which are missing if B is perpendicular to k. In fact, the photon scattering amplitude f only
depends on the angle of k and B and so no AF cell doubling for f is possible if k 1. B. This is how time integral
SMR can characterize the orientation of the AF ordered lattice magnetization. The shape of the time response
curves strongly depends on 6. This is due to the fact that the phases of the waves scattered at different depth
are shifted with respect to each other depending on 6. The shape of the time response curves is most sensitive



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE

prompt

delayed

log (counts)

0 5 10 15
© [mrad]

Figure 4.3: “Calculated 6 — 20 scans of an AF-coupled [57Fe (20 A) /Cr (26.2 A)Lo ML for three different directions of
the hyperfine field B (the hyperfine field of the other sublattice is not shown). The scattering plane is perpendicular to

the electric field vector E of the SR. The arrows indicate the Bragg reflections of different order.” [62]
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Figure 4.4: “Calculated time response curves of an AF-coupled [*"Fe (20 A) /Cr (26.2 A)]zo ML for three different
directions of the hyperfine field B (the hyperfine field of one of the two sublattices is not shown). The scattering plane
is perpendicular to the electric field vector E of the SR. Integer and half-integer numbers indicate the order of the
structural and hyperfine (magnetic) Bragg reflections, respectively.” [63]

to the direction of B at the AF (half integer order) reflections. The way to thin film magnetic structure analysis
with SMR has been opened by Toellner et al. who demonstrated the existence of pure nuclear reflections in an
Fe/Cr ML [65].

It is interesting to note that the quantum-beat patterns at the structural Bragg peak of the AF aligned ML,
belonging to magnetization directions parallel to the beam or parallel to the polarization of SR are identical
(see Fig. 4.4). This independency of the orientation of B can be easily understood in analogy with the forward
direction case. For a single domain of ferromagnetic Fe film the the stick diagrams in the right column of
Fig. 4.2 show the polarization of the hyperfine-split lines. For an AF-aligned ML, if the hyperfine magnetic
field is parallel to the beam for one sublattice, it is antiparallel for the other. Therefore left and right circular
polarized transitions appear at the same energy for the one and the other sublattice, respectively. Consequently,
all transitions can interfere with each other, which results in the same quantum-beat pattern as if the hyperfine
field is parallel to the polarization of the SR. In this latter case all transition remain o-polarized for an AF-
aligned ML so that no change is expected as compared to case of a ferromagnet shown in the right-hand side of
Fig. 4.2. The same magnetic configuration and thus same TDSMR spectrum is obtained in the case of ML with
parallel magnetization (in saturation for example) parallel to the polarization of the SR. For an AF aligned ML
not only the quantum-beat patterns for in-plane magnetization parallel and perpendicular to the beam but for
any in-plane direction of the magnetization are identical [63]. In transversal sample setup (when the direction
of the applied external field H is perpendicular to k) even at intermediate fields, when the ML is in the <-state,
the spectra at structural Bragg positions will be almost the same, as model calculations with EFFT revealed.

4.2 PNR

Neutron scattering is also sensible to the local magnetic field. Polarized neutron reflectometry (PNR) became a
routine measurement technique for characterization of films and MLs [66 70]. We define the scattering geometry
similarly to the SMR case (see Fig. 4.1). In the case of our investigations even the de Broglie wavelength of
the neutrons and the wavelength of the nuclear-resonant «-rays were in the same range (A, ~ 1 — 2 A, while
for 14.4 keV A, = 0.86 A).

The PNR measurements described in this work were carried out in JINR, Dubna at the REMUR reflec-
tometer [71]. In that particular setup the polarized neutrons are guided by a small magnetic field from the
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polarizator till the detector. The spin state relative to quantization axis defined by the applied field can be
changed by spin-flippers. In the reflectometry experiment the neutron beam is polarized by supermirrors. The
initial spin-state is set by the first spin flipper. The second flipper is located after the sample. External mag-
netic field may be applied to the sample. After the second flipper the neutrons reach the analyzer, which is a
fan shaped supermirror and lets trough the neutrons of one polarization to the detector. The reflectivity spec-
tra are taken in four channels, two non-spin-flip (++ and R——) and two spin-flip (+— and —+). The signs
refer to the initial and final spin-state. The above described spin analysis allows to see the spins of different
orientations in one single measurement. Indeed, if the scattering spins are parallel to the neutron spin, then
it gives contrast in the non-spin-flip reflectivity (R*+ and R~7), while for perpendicular alignment spin-flip
scattering occurs (RT~ and R™T) (see Fig. 4.5). Note that on the figure the external field H is parallel to k,
while at REMUR H L k setup was used.

4.3 Momentum-space representation

The aim of the ()—space measurements is to gain information on the lateral and plane-perpendicular structure
of the ML. With elastic neutron and y—photon scattering we are probing the sample in the momentum or
reciprocal space, hereafter called Q-space. In time-of-flight (TOF) neutron measurements we are counting
particles in the A\ — 26 coordinates, while in SMR measurements we are measuring the so-called § —w or 6 — 26
curves. Both of those measurements can be mapped to ¢, — ¢, coordinates for comparison. In principle with
scans along the ¢,-axis the structural and magnetic depth profile, while with ¢, scans at constant ¢, the lateral
correlations of the ML can be investigated.

4.3.1 Measurements is ()—space

We will describe the scattering in lab coordinate system first (see Fig. 4.1). In the lab system the incoming
beam is fixed and the sample and the detector is moved. Let us denote k; the incoming and ks, the deflected
wave vector. For elastic scattering |ki| = |ko| = k = 27/\, where ) is the wavelength of the radiation.? If we
define the angle between k; and ko as 20 then the length of the scattering vector will be ¢ = |q| = |ko — k1| =
4m/Asin@. From the above it is trivial that for fixed wavelength the length of the scattering vector q depends
only on the scattering angle 26. However, The orientation of q relative to the sample will depend on the angle
of the sample. We have to keep this in mind when describing the scattering in sample coordinate system.

4.3.2 Sample coordinate system

In general scattering geometry in sample coordinate system the impinging and reflected beams can be described
by angles 6; and 6 measured from the sample surface (see Fig. 4.1). The equation 6; 4+ 64 = 26 connects this
description with the lab system one. Tt is easy to see that for wave vector |k| = 27/ the momentum transfer
in sample coordinate system will be [67]:

2 2

4.3.3 PNR and ()-space

In the case of TOF PNR we collect counts in a two dimensional grid of time (x A) and displacement (o 26). The

measurement is made at constant 6;. To get the actual transformation rules, we have to substitute 8, = 20 —6;
to (4.3):

21

G =~ (cos (20 — 0;) — cos ;) , (4.4a)
™

q. = 2)\ (sin (20 — 0;) + sin ;) . (4.4b)

20r the de Broglie wavelength of the neutron.
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(a)

H

Figure 4.5: “The orientation and magnitude of the sample magnetization M (z) relative to the applied field H determines
the relative proportions of spin-flip (SF) and non-spin-flip (NSF) scattering. (a) M(z) in the plane of the surface,
parallel to H produces no SF scattering, but creates different spin-dependent refractive indices for neutrons polarized
parallel and anti-parallel to H. (b) M(z) canted at an arbitrary angle in the surface plane produces both SF and NSF
intensity. (¢) M(z) components normal to the surface have no effect on neutron specular intensity. (d) The presence
of domains complicates interpretation of SF and NSF intensities. Off-specular methods offer a means of characterizing
these domains.” [69] Note that the figure shows the experiment in ‘top view’, while on Fig. 4.1 we see the side view of
the same setup.
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Inverse transformation for TOF measurements

In order to evaluate TOF measurements it is useful to calculate the inverse transformation of (4.4). The reason
is obvious. To be able to integrate or to average data easily in (Q—space, an equidistant grid is useful. To get
this grid, the inverse transformation should be applied to the @—grid and data shall be averaged in the (), 0)
system according to this grid. Then, the averaged data can be transformed back to the proper grid and data
manipulation and representation is easily done. It is not difficult to show that the inverse transformation of
(4.4) will be:

0 = —2arctan q—w, (4.5a)
qz
47 Qx 47 1)
A= ——=sin (01- — arctan—) = ——sin (01- + —) . 4.5b
Vi +a /) it 2 (430

Here § = 6y — 6; i.e. the angle measured from the specular reflection (6; = 6;). When ¢, < ¢, then (4.5) can
be approximated as:

qx
0~ —2—, 4.6a
m (4.6a)
\ & 4_7( <9i 4 g) . (4.6b)

From (4.6b) we can get § (A\) = ¢.\/ (27) — 26;. For constant ¢, this is a straight line in the (A, d) space with
the slope
m=gq,/(2m). (4.7)
The above-described equations can be used to determine the ()—scale of the measurement. If the position of
the direct beam on the angular scale of the position sensitive detector (PDS) is known compared to the specular
reflection, then no more data are needed for the absolute calibration of ¢ (6; is known from 26,6 = 26; and
from (4.4b) ¢, = ¢ can be also calculated). In the case of no direct beam information the ¢ scale can be still
figured out. If we know ¢, for a given Bragg reflection, then again 6; = g, A/4w. And finally by fitting the slope
(4.7) of a Bragg sheet? yields the ¢, of the Bragg sheet, with no need of knowledge of the sample structure.
When g, is known, then for the specular (§ = 0) channel 6; = ¢.\/4x.

0; — ¢ scan

Neutron scans are also taken with monochromatic beam (see [72] for example). In this case the wavelength is
fixed and the sample and detector are rotated. The resulting mapping is shown in Fig. 4.6.

4.3.4 SMR and ()-space

In the following we will show the different scan modes, which can be used in x-ray reflectometry experiments.
In fact, due to the known (6;,0;) — (¢, q.) transformation (4.3) for any angle pairs we may get the mapping
in the @-space. Nevertheless, it seems reasonable to plot the transformation for the different scan modes
separately.

We note that the SMR measurements were taken with horizontal sample arrangement, i.e. the sample
reflected the horizontal beam in the vertical plane. Lacking appropriate 1D avalanche photodiode (APD)
arrays, in contrast to the — already two dimensional — neutron measurements, so far at all SMR experiments
have been performed by scanning along a 1D curve in the @-space.In the following we will outline the scan
modes and will discuss the possible curves in case of systematic errors (detector offset, sample zero angle offset
and ‘open’ slits).

0 — 260 scans

The most ‘traditional’ scan type is the § — 260 scan. In this case ; = 6, 0y = 6 and we scan* angle 6. It is easy
to see that in this case (4.3) becomes:

¢z =0, q.= 4% sinf ~ 4%9. (4.8)

3 After weighting to the direct beam profile and subtracting the background.
4Then name originates form the fact that in a fixed-beam setup the detector should be moved 20 when the sample is rotated
by 6.
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Figure 4.6: ; — 07 scan in the Q-space. The ¢ units are normalized to 27/A. In the inset the original grid of constant 6;
and 0y values is shown. The calculated range is similar to the one used for the measurements of this work. The pattern
‘1’ helps to see the orientation of the transformation. The specular line, i.e. the  — 20 scan (6; = 0y) is also shown.

The approximation sinf ~ 6 is valid in our case, because 6 is typically not exceeding 1°. The 6 — 26 scan
is specular (¢, = 0), probing the vertical structure of the ML. The # — 26 scan is conventionally done with
wide detector slits [73] (integral measurement mode). In this case we ‘cut’ the reciprocal space normal to the
surface. If the detector slit is narrowed, then only the real specular range is included.

Off-specular or w scans

In the w scan the position of the source and detector is fixed thus 0; + 0y = 20 =const. It is best to introduce
wby w=(0; —6f) /2 thus §; = 0 +w, 0y = § —w. This is equivalent to the rocking by w from the specular
0; = 05 = 0 position. The equations now are:

Qe = 2% (cos (0 — w) — cos (0 +w)) = 4% sinfsinw ~ 4;9% (4.9a)
q- = 2% (sin (0 —w) +sin (0 + w)) = 4% sinf cosw ~ 4%6‘. (4.9b)

In general case the w scans are spheres with radius (47/\)sin 6 but in our special small angle limit, the scan
will be a perpendicular line to ¢. (Fig. 4.7). Thus we probe the diffuse (off-specular) scattering of the sample.
In other words, we are mapping the lateral structures. The w scans are always taken with narrow slits. We
emphasize again: to move along the 6 axis in the lab system, one should rotate the sample by 6 while the
detector should be moved by 26. For movement along the w axis, the detector should stay in-place, while the
sample should be rotated around the 6 axis (rocking curve).

Note that in an SMR w scan the actual value of w is measured from the beam position. Thus in a ‘real scan’
the scanned coordinates in the lab system are: w and 20 which can be transformed to sample coordinates in
the following way: 6; = w and 0 = 20 — w. This difference has consequences for an w scan with a 1D detector
array as it can be seen in Fig. 4.8. The constant w curves are no straight lines anymore.

Longitudinal off-specular or offset 0 — 20 scan

The offset 6 — 26 scan (or longitudinal off-specular scan) also provides information about the off-specular range.
This is a 6 — 260 scan with slightly misaligned sample or detector. The misalignment should be big enough not
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Figure 4.7: w — 20 scan family in symmetric sample coordinates. In this case 0; = 0 +w, 0y
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pattern ‘1’ shows the original coordinates fulfilling the conditions §; > 0, 8¢ > 0.
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Figure 4.8: The normalized plot of the w—scan in lab coordinates (0; = w, 65 = 20 — w). The inset with the pattern ‘1’

shows the original coordinates fulfilling the conditions 6; > 0, 5 > 0. The specular line (0 —26) is shown for comparison
with the symmetric sample coordinate system (see Fig. 4.7).
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Figure 4.9: The Q—space plot of the longitudinal scans. 0; = 0, 0y = 0 + . The inset with the pattern ‘1’ shows
the original coordinates fulfilling the conditions 6; > 0, 65 > 0. When taking 6 — 20 scans with slit width A, then we
integrate from 6y = 6 — A to 8§+ A. This symmetric range will be converted to an asymmetric one in g, —g. coordinates.

to include the specular (g, = 0) ridge [74]. First, we investigate the sample misalignment. Let us denote the
misalignment angle with §, thus 6; = 0 + 0, 6 = 6 — 6. It is easy to see that this regime is similar to the w
scan except that now ¢ is fixed and € is scanned. The 6 — 260 scan is a special case of this type of scan (§ = 0).
For § # 0 the scanned curve is a line, starting from the (0,0) point. The slope of the line is 1/§. The 6 — 20,
w and offset § — 26 scans belong to one branch, called w — 26, describing the system in the reciprocal space
according to the mapping presented in Fig. 4.7.

In the second case, the detector has a fixed offset of § i.e., in sample coordinates: §; =0, 8y =6+ 5. In
this case

G = 2% (cos (0 +0) —cosB), q.= 2% (sin (0 + ) +sin6). (4.10)

When taking the 6 — 26 scan in integral mode (wide detector slits) it is equivalent to integrating in the
momentum space in the +6 range. As can be seen from Fig. 4.9, the integration region is not perpendicular to
q--

The above-described scans may be used to evaluate the plane-perpendicular correlation of the lateral rough-
ness. For uncorrelated roughness the diffuse scattering occurs in the whole Q-space, while for correlated rough-
ness it is concentrated along Bragg-sheets [74]. One method to investigate the diffuse scattering is the offset
6 — 26 scan while a constant g, line can be scanned by w scans. By scanning different regions of the @-space
information on the correlated roughness (structural or magnetic) can be deduced after correcting the measure-
ments for geometrical factors. The details will be presented at the sample evaluation.

Detector scan

The detector scan regime has been rarely used by us. It becomes important with the introduction of the 1D
detector array. This is in fact similar to the longitudinal off-specular scan, but in this case the detector is
moved, thus 6 is fixed and § is the variable. Fig. 4.9 shows the two latter scan types.
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4.3.5 The g, component

Up to now we looked only at scattering in the g, — ¢, plane. However, of- specular scattering may occur in the
qy direction as well [68]. To treat the whole QQ—space we will rewrite (4.3) to contain the g, component:

2
Gz = TW (cosf cosp — cosb;), (4.11a)
2
Qy = TW cos By sin @, (4.11b)
2
q- = Tﬂ- (sinfy + sin6;) . (4.11¢)

The new angle ¢ is the azimuthal angle of ky or the angle off the reflection plane [68]. It follows from (4.11c)
that ¢, is not affected by (. In the case of synchrotron measurements the detector is not position sensitive and
the horizontal slit is in the order of millimetres, thus we integrate a huge region in g,. Let us write the angles
in symmetrical sample coordinates:

2 4
Gz = 777 (cos (0 —w)cosp —cos (0 +w)) ~ Tﬁt%;, (4.12a)
2 2
Qy = TW cos (0 —w)sinp = Tﬂgp. (4.12b)

The above approximations are valid in the range of ¢ used at synchrotron measurements. For example: a 4 mm
wide slit placed at ~ 75 cm corresponds to +0.15° (2.7 mrad). In ¢, and g, scans we use the vertical component
of q, while for g, scans the horizontal component counts. This is the reason of the missing 6 proportionality
factor. In other words, 20w = ¢. Because 0 is in the range of 0.5°, to scan the same range in ¢, as in ¢, a
much smaller ¢ angle (resolution) should be applied. Or otherwise, we integrate to the full ¢, range in our
measurements. To see the possible feasibility of a 2D detector, let us calculate the necessary resolution for a
qy scan at the AF Bragg position (0.4°) of sample 990608. We know that a vertical slit® height of 0.1 mm
(— 66 urad) gave satisfactory resolution in ¢,. For the same resolution we need 90 nrad — 1.36 pm horizontal
slit setting in this case.

We can draw the conclusion that we integrate to g, in all w—scans. Also, if we would not approximate but
evaluate (4.12) as it is, then we would see that for a constant # and w if we scan ¢, then we are moving along
a circular path in the ¢, — ¢, plane. But this would be relevant only for higher g, values, where the scattering
is already negligible.

The integration in reciprocal space from zero to high values means an integration in direct space from
infinity down to a critical length. Because ¢, scales as g, only scattering from lateral inhomogeneities smaller
than a few A are not included. The domains we investigate are well seen in gy scans, thus they are much
larger than the lower integration limit. In conclusion, due to broad horizontal slit setting the g, component is
integrated and we measure domain distribution along one dimension.

4.4 Coherence length

When mapping the sample in reciprocal space, we make use of the coherent nature of the scattering. Each
impinging neutron and photon ‘sees’ the whole® vertical structure in z, resulting in Bragg peaks and Kiessig
fringes”. We will discuss in the following the concepts of the different coherence lengths.

4.4.1 Geometrical considerations

The geometrical uncertainties are the main source of loss of transverse coherence length. We can define two
transverse lengths. One is the ‘horizontal’ coherence length, related to the beam collimation parallel to the
sample surface, while the ‘vertical’ coherence length is related to the beam collimation parallel to the plane of
the specular scattering (and almost perpendicular to the sample surface). When mapping lateral structures of
the ML we assumed that the neutrons and photons are scattered coherently. The coherence length will set the

5We call a slit vertical, if it cuts the beam vertically. The SMR measurements were taken with vertical plane of reflection.

5For resonant photons the penetration depth can be smaller, than the layer thickness, but still enough repetition is ‘seen’ for
the appearance of Bragg peaks.

“The neutron and photon sources are incoherent. The average resonant photon yield at ESRF is still much less than
1 photon/bunch.



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE 49

upper limit of domains that can be measured. For the case of neutrons ~ 100 wum was reported [69], but the
instrumental resolution sets an even lower limit of 10 — 30 um [75,76].

For photons the lateral coherence length can be estimated from simple geometrical considerations. The
transverse coherence length will be

Lyp=-72 (4.13)

where A is the wavelength of the incident radiation, S is sample-detector distance and s is the detector slit
width. When we take grazing angle reflection, then lateral structures smaller than the projection of L, can be

resolved. In other words: I
Liat = 9“_ (4.14)

Here 6 is the incident angle.

For the SMR measurements L¢, = 51 nm and L, ~ 10 pm for a typical w scan at the first AF Bragg peak
(6 = 0.4°). The instrumental resolution has an upper limit of &~ 5 um being the primary limiting factor.

In conclusion, for both PNR and SMR measurements the instrumental resolution sets the limit of lateral
resolution in practice.



Chapter 5

Sample characterisation

One of the main points of this work is the thorough magnetic characterization of a strongly AF coupled Fe/Cr
ML. Information on both plane-parallel and plane-perpendicular magnetic structures is obtained. To achieve
this goal, coherent scattering methods are utilized. To be able to feed the coherent models with structural
information, description by independent ‘traditional’ structural and magnetization measurements of the ML
is needed. Some of the magnetization results were already discussed in Chapter 3. Before we present the
SMR measurements, we should describe the sample in accordance with the precision needed for the coherent
methods.

5.1 Thickness calibration

Proper thickness calibration is of utmost importance for the evaluation of reflectivity data. Our goal is to
describe the Fe/Cr sample 990608, nominally MgO/ [°"Fe (25 A)/cr(14 A)bo (see 3.1).

5.1.1 RBS and PIXE measurements

In the literature mainly x-ray reflectivity is used to calibrate sample thicknesses. The high-angle x-ray reflec-
tivity measurements are sensitive to the interatomic distances, while the low-angle measurements are sensitive
to the total film and the bilayer thicknesses. In our case the individual layer thicknesses cannot be resolved due
to the low contrast of Fe and Cr in the given energy range, thus we used applied nuclear physics methods to get
the individual thickness of the layers. From combined evaluation of Rutherford backscattering (RBS) and low
angle x-ray measurements the values [57Fe (26 A) /Cr (13 A)Lo were concluded [6]. The sample was measured
with particle induced x-ray emission (PIXE) spectrometry [77]. According to the PIXE measurements made
on the side of the sample the total thickness was 526.7 +44.5 A Fe and 246.2 + 19.5 A Cr, respectively. The
homogeneity of the sample was checked by measuring two 1 mm radius spot in the middle of both ends of the
sample.! The thickness of the sample was homogenous according to the PIXE measurements (£3%). Assuming
no plane-perpendicular thickness distribution of Fe and Cr, a [57Fe (26.3 A) /Cr (12.3 A)]% was deduced.?

Both RBS and PIXE are sensitive to the plane-perpendicular projection of the atomic density, thus to get
a thickness value one has to assume a density, which can differ in MBE-grown MLs from the bulk value. Low-
angle x-ray measurements could be more precise in determining individual layer thicknesses if the contrast were
better and the ‘bulk’ parameters (electron density, absorption, layer roughness) were known from independent
measurements.>

The main benefit of the application of nuclear methods was to exclude the ‘inverse’ system (with thick Cr
and thin Fe layers), which gave a better fit to some of the resonant x-ray data. The finally obtained structure
can be used as a base for fine-tuning the thickness and related parameters in the resonant x-ray reflectivity
curves.

I"The line connecting the spots was parallel to the longer edge of the sample piece of 10 X 7 mm.
2RBS measurements were done by Edit Szilagyi. PIXE measurements were performed by Andras Kocsonya.
3This approach was used by R. Schad [48], but it is not too widely used.

50
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5.1.2 Measured thickness values

The bilayer thickness can be determined from the position of the higher-order Bragg peaks (both structural and
magnetic) in SMR and PNR measurements. By this method d; = 38.1+ 0.4 A and dy = 38.5+ 0.15 A bilayer
thickness was found from SMR measurements taken at ESRF and SPring-8, respectively. From PNR scans d =
39.3 + 2.3 A was achieved. From the fitting of the prompt x-ray reflectivity of the SPring-8 measurements d =
38.2 A was found with layer division of [*7Fe (25.2 A) /Cr (13 A)]20‘ From all the above-described results we
will use MgO/[*"Fe (26 A) /Cr (13 A)]% [47]. Calculating with the bulk Fe and Cr lattice constants of 2.87 A
and 2.88 A and taking into account the orientation of the ML the bilayer structure consists of 9 monolayers of
Cr and almost 18 monolayers (17.75) of Fe.

5.2 Non-resonant x-ray measurements

5.2.1 High angle x-ray reflectometry

The high-angle x-ray reflectometry scan (not shown) of sample 990608 is similar to the one reported by Fullerton
et al. for similar systems [14]. The only difference is the appearance of two small peaks indicating possible
oxidization. The extra peaks cannot correspond to a Fe/Cr(211) plane; due to the position of the supposed
peak and they vanish in the off-specular? § — 26 scans. A splitting of the Fe/Cr(200) peak could be seen, but
this could be related to the not proper alignment of the sample and the detector. On the off-specular scans the
multilayer peaks are more pronounced.

The presence of oxides could result from the fact that neither buffer nor capping layers were used, giving
place to possible bottom and top oxidization.

5.2.2 Low angle x-ray reflectometry

In the case of low angle specular and rocking curves we are luckier, because all the SMR measurements
automatically generate a non-resonant, counterpart. Due to the excellent control of the experimental parameters
like wavelength, slit size, angle (except the zero-position uncertainty which we will discuss later) and the high
brilliance, fast and reproducible measurements are possible.

Lateral inhomogeneities of the layer parameters

Comparing the different measuring methods (see Section 5.1) we conclude that the overall thickness fluctuations
of the sample do not exceed 3%. This is a small value, but can be still seen by the reflectometric methods. On
the other hand, from x-ray reflectivity measurements taken with very small slits (h = 25 wm) the perfect local
homogeneity of the ML is seen in two orthogonal directions along the middle of the sample (Fig. 5.1).5 This is
not surprising, as the sample was rotated during growth. All SMR measurements were taken in the middle of
the sample, while for neutron scans the whole sample width was used. Finally we note that comparison with
older scans shows that the structure of the sample (at least as seen by the x-rays at low angle) did not change
during the years.

Evaluation of low-angle prompt x-ray measurements

Before we can add the ‘nuclear information’ to the multilayer it is of immense importance to correctly fit the
structural part. For this reason we take measurements taken at SPring-8,% because the sample alignment was
here the best.”

From reflectivity simulations carried out with the IMD software [78] it turned out that the top layers’
roughness and thickness are essential parameters to the non-resonant fit. They determine the details of the
whole curve. The intensity ratios of the Bragg peaks are also strongly roughness-dependent. We used literature
roughness values reported by Schad et al. on similar Fe/Cr systems [48] as starting parameter set. The relevant
data are summarized in Table 5.1. With these starting roughness values and the help of IMD a good fit was

40ff-specular by 0.3°.

5Tn fact the difference between the two scans is so small that they look like a single line.

Shttp://www.spring8.jp/ENGLISH /facility /bl /PublicBeamline/ BL09XU /index.html

7At the ESRF measurements the sample was placed in a huge Dewar flask, and the whole Dewar flask was rotated, while in
SPring-8 a small precision goniometer was used.
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Figure 5.1: X-ray reflectivity (A = 0.86022 A) curves of 990608 taken at SPring-8 BLO9XU in October 2002. The two
easy axes measurement are perpendicular to each other. The detector slit size was 25 pm x 1.5 mm (vertical x horizontal).
The beam divergence is 0.0023 mrad x 0.23 mrad (vertical xhorizontal). The scattering plane is vertical. The two scans
are corrected for 6y misalignment and sample size.
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achieved. The final parameters are reported in Table 5.2. Finite instrumental resolution could be applied to
smear out the deep minima by convolution, but EFFI has no such parameter, thus it was not applied.

Low-angle x-ray reflectometry is a powerful tool to see certain parameters of the sample. From IMD simu-
lations and the good reproducibility of the spectra it is obvious that the ML structure is laterally homogenous
and vertically periodic (the possible random error of the individual Fe and Cr thicknesses is < 1 A). But re-
flectometry gives an ‘integral’ view of the sample. The oxide for example plays a major role in the exact shape
of the reflectivity curve. Also there is no “best” fit, but many possible candidates due to the enormous number
of parameters (layer thicknesses, reflectivity values, roughness, possible top and bottom oxidation, etc.). Pa-
rameter cross correlations inevitably exist. As a consequence, the more parameters are known in advance from
independent measurements, the better chance we have to obtain not only a good-looking, but also a physically
realistic model and fit. Fortunately, essential data on similar MLs can be found in the literature [48].

In conclusion, sample 990608 is laterally homogenous and the layer thicknesses are also constant along the
plane-perpendicular direction. According to expectations, the top Cr layer is partly oxidized. The interfaces
are relatively sharp with average roughness ~ 1 monolayer. No bottom layer oxidization was found.

Finally we note that that a) the ESRF spectra significantly differ from the SPring-8 spectra® and b) that
in the range of total reflection — first structural Bragg peak according to EFFI the roughness is not important
even with the resonant 6 — 26 curves.

Osubstrate 3.4 A
OCr 3 A
OFe 3 A
Ooxide 6 A

Oxide thickness 15 A

Table 5.1: Thickness and roughness values reported by Schad et al. [48] for a Fe/Cr multilayer grown on MgO.

layer 1-n [le-6] k [le-6] thickness [A] o [A]

oxidel 2.373 0.122 6.36 3.41
oxide2 4.257 0.122 10.48 5.21

Crl 6.735 0.243 7.97 3.44

Fel 7.428 0.339 25.2 of

Cr 6.735 0.243 13 1.0 / 1.23
Fe 7.428 0.339 25.2 1.46
MgO  3.566 0.012 00 1.24

Table 5.2: Thickness and roughness values gained by fitting the SPring-8 low angle prompt measurement (A =
0.860220 A). The assumed structure was: MgO/[Fe/Cr]i9/Fel/Crl/oxide2/oxidel. The o values correspond to the
top interfaces (for example ooxide 1 is the vacuum/oxide 1 interface). The two o values in the Cr row are the Fel/Cr
and Fe/Cr roughness values, respectively. For further details, see text. (T The model was not sensitive to this roughness
parameter.)

5.3 SMR measurements

Up to now we discussed non-resonant x-ray reflectometry results. By analysis of the delayed reflectivity curves
we now focus on the ‘magnetic dress-up’ of the structure. As those measurements depend on a huge number
of parameters, first we try to deduce some basic information by comparing the measurements to each other.
Then we will discuss the problems arising due to the integral mode # — 26 scans. Finally notes on possible
model calculations and fits will be presented.

SMR scans are taken in the time-differential (TD) and-time integral (TI) modes Time-differential mode
may be better in evaluating the detailed hyperfine parameters, while TISMR helps to get a fast overview of
the ‘landscape’ (see Fig 5.3 for example). For AF coupled MLs both method may show the alignment of the
layer magnetizations. The majority of SMR measurements, discussed in this work, was done in TT mode, thus
we will restrict ourselves to the evaluation of the TISMR measurements.

8This is due to instrumental uncertainty as the slits were not well controlled in the first series of the ESRF spectra (in October
1999), while very accurately recorded at SPring-8.
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Figure 5.2: IMD fit of SPring-8 measurement (scan ‘Budapest54’).

The resonant 6 — 20 scans were taken in ‘integral’ slit mode (slits wide open), thus not only the specular
ridge, but a neighbouring region was integrated?. The scan history of Fig. 5.3 is the following: The sample was
saturated, then let to remanence ex situ before the first measurement. Then it was inserted to the cryostat
with layer magnetizations perpendicular to k. This resulted in § — 26 scan (not shown) with no AF Bragg peak.
The field was increased in transversal geometry, thus the sample passed the BSF transition. The emerging AF
peak was detected in the following scans (Fig. 5.3), starting with 50 mT and reaching the maximal field of 2 T.
Finally the external field was released, producing the spectra of 0 T. The AF peak is visible up to 875 mT.
We used the integral-slit mode because the low resonant count rate. In almost all ESRF measurement session
transversal-field setup was used. In this setup the external field is set perpendicular to the wave vector of the

X-Tays.

9The region was even non-symmetric in g-space, as one can see at the detector scan graph Fig. 4.9.
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Figure 5.3: TISMR spectra of the Fe/Cr multilayer along easy direction in increasing external field. The scans were
taken after the BSF transition (for details see text). In the background the prompt reflectivity is shown for comparison.



Chapter 6

Direct evidence of Bulk Spin Flop

After the introduction to reciprocal space and momentum transfer measurement methods we return to the BSF
thread. As emphasized earlier, only indirect evidence of the BSF transition was presented in this work. By
using coherent methods the reciprocal space can be mapped and scattering of different origin distinguished. In
our particular case we are able to detect the scattering arising due to magnetic cell doubling, unambiguously
showing the BSF transition [6,47,79].

If a ML with in-plane fourfold crystalline anisotropy is saturated along an easy axis and then the field is
reduced to remanence, the layer magnetizations will align perpendicularly to the given easy axis. An increasing
field along the orthogonal easy axis' causes the so-called bulk-spin-flop (BSF) transition [47].

The indirect evidence (MOKE and VSM) was described in Section 3.3. The first direct evidence in the
case of sample 990608 came from SMR measurements at BW4 in HASYLAB (Hamburg) [47]. Due to the low
resonant count rate only the presence of the BSF was confirmed, the details of the transition were clarified in
a subsequent measurement at ESRF ID18 [79].

6.1 BSF and magnetization orientation

In Fig. 6.2 the BSF transition can be followed in a spectacular way.? In the starting situation the layer magneti-
zations of the AF coupled multilayer are parallel/antiparallel to the external field direction® and perpendicular
to k. This results in no AF reflection. With increasing external field the AF intensities (peaks marked with
1/2 and 3/2) increase. The area of the first AF peak divided by the area of the first Bragg peak on Fig. 6.1
clearly shows the BSF transition region between 10 — 20 mT. The transition is probably even sharper extend-
ing in the range of 12 — 16 mT. The uncertainty is caused by the statistical fluctuations and the change in the
measurement geometry which causes the change of the footprint angle* leading to systematic errors in the AF
peak intensity. The 3/2 peak, which is not affected by the footprint correction and background counts from the
total-reflection peak starts to appear at 12 mT and has a cusp at 16 mT. The first scan (0 mT) was originally
taken in 600 points, 0.5 point/s while all the others are taken in 300 points thus two channels were averaged
for the first scan. The scans at 2.5, 5, 20, 25 and 37.5 mT are not shown (they do not contain new information

no change in the ratios). The scans are normalized to the structural Bragg peak. The #-misalignments are
also normalized to each other. Note that at 12 mT 3 scans were taken (12a—c). A refill occurred between 12a
and 12b. Scans from 12b—18 mT were taken with double time (1 s/channel).

In conclusion, direct evidence of the BSF transition was shown and sharp BSF range of 12 — 16 mT was
deduced [63]. Later in the domain description part we will show PNR evidence of the BSF transition and the
domain coarsening related to the BSF will be discussed.

IThis can be achieved by either rotating the external field, or equivalently by rotating the sample in remanence, the latter being
the easier in the synchrotron case.

>The ESRF measurements were done in October 1999 (SI-508).

3This was achieved by saturating the sample in 2 T, releasing the field and turning the sample by 90°.

4The angle at which the sample blocks the incoming radiation totally.
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Figure 6.1: The increase of the AF peaks during BSF. The areas of the first and second AF peak (AF; and AF,,
respectively) are divided by the first Bragg peak (BR). The AF peaks are the same as peaks 1/2 and 3/2 on Fig 6.2.



CHAPTER 6. DIRECT EVIDENCE OF BULK SPIN FLOP 58

poH [mT]

Counts (au.)

0 0.5 1 1.5 2 2.5
q» [1/nm]

Figure 6.2: BSF as seen on the resonant § —260 scans. Curves are shifted for clarity. On the insets the in-plane geometrical
relation of the layer magnetizations (bold arrows), the external field and the k—vector of the photons is shown. The

scans are normlized to the structural Bragg peak.



Chapter 7

Antiferromagnetic domains

Magnetic thin films and ferromagnetically coupled layers often show ripple domains perpendicular to the
external field in order to minimize the stray field energy [4,17]. In contrast, strongly AF-coupled magnetically
compensated MLs like to form ‘patch-like’ domains. The direct visualization of those domains is difficult
due to the vertical compensation of the magnetization in the ML stack.! TIndirect methods (for example
resistance noise, magnetoresistance) and reciprocal space measurements (unpolarized and polarized neutron
reflectometry) showed contradictory results on domain evolution [6]. The domain-size distribution in AF-
coupled MLs is important, as the domain-size dependent resistance noise may be as large as to limit GMR-
sensor applications [80]. Our group was the first to show that by appropriate magnetization history the domains
can be enlarged by at least one order of magnitude (domain coarsening) [6].

In remanence, a magnetic ML is in multidomain state. In a strongly AF-coupled ML the magnetic domain
structure of the individual ferromagnetic (FM) layers is strictly correlated through the ML stack from substrate
to surface. This results in zero net magnetization magnetic super-structure domains in a periodic ML of an
even number of equally thick FM layers. We will use the term ‘AF domains’ for those patch domains. The
vertical correlation allows for a two-dimensional representation, e.g. according to the domains of the topmost
magnetic layer.

We found a complex domain history in Fe/Cr MLs. The first effect, viz. domain ripening can be best de-
scribed by tracking the domain evolution from saturation to remanence. In saturation the sample is single
domain: all magnetizations are parallel with the external field. When the field is lowered, the forced ferro-
magnetic state starts to break up into multidomain state. The angle of magnetization between neighboring
domains, i.e. the domain-wall angle is small in high fields, and the domain wall energy is also minute. On de-
creasing the field to remanence, the domain-wall angle grows to 180°. The increasing angle results in increasing
domain-wall energy, which is in turn can be lowered by increasing the average size of the domains and, thereby,
decreasing the domain-wall energy per unit area, a process that we shall call, hencefort, domain ripening. Do-
main ripening is realized by domain-wall motion, which is a dissipative process, thus the once enlarged domains
will not shrink back on increase of the external field again.

The ripened domains may grow further by passing the BSF transition. At the BSF transition the perpen-
dicularly applied field ignites a domain coarsening. As here no domain wall motion, but annihilation plays the
main role, the resulting domains can be in the range of the sample. The once coarsened domains will again
not shrink back on consecutive BSF transitions. It seems, that the domain size (ripened or coarsened) does
not play role in the field range of the BSF transition. We have MOKE evidence on this point as the BSF was
repeated with relatively low ‘aligning fields’, showing the same loop each time (see Sec. 3.3).

Before detailing the experimental results we present theories of domain ripening and Monte Carlo simulations
on ‘unsaturation’ domain formation and domain coarsening.

7.1 Domain ripening

In the following we will present two, admittedly simplified, models of the ripening process. Nevertheless these
models will describe the main features of domain ripening and will allow estimating the size of the ripened
domains.

ITo our knowledge, the only MOKE microscopy observation on Fe/Cr was made on thick trilayers [17].
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7.1.1 Theory 1

In the first theory we will calculate the average domain size of a single magnetic layer in continuum approxi-
mation. All magnetization vectors are assumed to lie in plane. The total energy of a round AF domain will be
calculated [81].

Energy terms

In the first model only one layer is taken into account. The AF-coupled ML is considered by neglecting the
stray field energy, which can be done as in the AF-coupled stack no energy gain is associated with the creation
of domains. In this case, domains are formed as a consequence of laterally random unsaturation.

First we calculate the bulk ferromagnetic coupling within the Fe layers. As a first approximation, we take
a straight domain wall, with a linear wall profile. Let ¢ () denote the in-plane angle of the magnetization at
the position x and let | be the domain width with the local magnetization varying as ¢ (z) = {n/2, if z < 0,
w/2 —ma/l,if 0 < ax <[land —7/2 if x > [}. In this case the exchange energy will be: E, = fA((;ﬁ’)2 av
(see [4, pp. 112, 217|). A slab of width w, total height tr. and wall width [ has the energy of? E, = Atpown?/I.
Here A is the exchange constant of bulk iron.

For the same type of wall the anisotropy energy can be also easily calculated, in our case Ex being equal
to® (see for example [4, p. 113]): Ex = [ K sin? ¢ cos? ¢ dV. Integrating with respect to the given volume we
will have? Ex = trewK1/8. The total energy is the sum of the two previous terms:

An? Kl
E’w = Em +EK = tFe’LU (Tﬂ- + ?> . (71)

In case of equilibrium dE/dl should vanish. From this we get:’

l= 2#\/%. (7.2)

Substituting [ in the energy function we finally have:

E,, = mtrewr/ AK /2. (7.3)

If we bend the domain wall to get a round domain of diameter £ > [ then all the above argumentation stays
valid with the substitution w = w£. Thus the energy of a domain of diameter ¢ is

By, = mtpeéJ AK/2. (7.4)

In case of applied external field the directions of the momenta will change less. The previous arguments
could be repeated with a new ¢ (z) function: ¢ (z) = ¢o, if @ < 0, = ¢ — 2¢px/l, if 0 < = < [ and
= —¢g if z > I. In this case the exchange energy will be: E, = 4Atp,w¢?/l. The anisotropy energy is:
Ex = trewKl (460 — sindgy)/32¢¢. Thus the total energy equals to:

4A¢(2) Kl (4¢0 — SiIl 4¢0)
Ey = tpe . .
FelW < ] + 3200 (7.5)
From dE/dl = 0 we get:
128 A¢3
- %0 (7.6)
K (4¢o — sinddo)
Substituting ! to the energy term, the final equation is
AK g (4¢g — sin4

Ew = tFew\/ d)O ( (b(; e d)O) . (77)

26 () = 1/2 —mz/l — ¢ (x) = —m/l, Ae=A[IFdz [ dy [} (n/1)? de = Atpew (72 /1?) x I

3Fre = Ke1 (m%m% + m%m% + m%m%) + Kczm%mgmg, where m;-s are the angle cosines (or the magnetization components
along the cubic axes). In our coordinate system mi = sin¥ cos ¢, mo = sin¥sin¢, m3 = cos?¥ and ¥ = w/2. We are neglecting
the second term (Ko = 0).

4Again, the integrand depends only on x. The result was crosschecked by Mathematica.

5This result is v/8 times the wall width, one can obtain by variational calculus. See [4, pp. 215-219] for example.

670 see the relationship with the previous case: W = é (1 — %).
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And for a round domain of diameter &

By — ntet \/ AK 6o (490 — sin 46)

g : (7.8)

Now we have to calculate the energy loss due to magnetization reversal. This is the so-called hysteresis
loss, which is related to coercivity. When the local layer-magnetization flips once back and forth the energy
loss due to coercivity will be equal to the area of the ‘virtual’ H — M graph. In first approximation, this is
E. =4puoH .MV where uoH, is the coercive field, M is the bulk Fe magnetization and V is the volume involved.
For a round domain expanding its diameter from ¢ to & + 6¢ where §¢ < € we will have”

5Ec == 27T§tFe/LOHcM5§. (79)

In the case of ¢g < 7/2 the magnetization reversal loss is less. Only the perpendicular-to-field component
has to flip, which is proportional to sin ¢y. Thus the final form of §FE,:

5Ec == QWftFeMQHcM sin (¢0) 55 (710)

The hysteresis loss is a dissipative, always acting against the domain wall movement, it actually resembles
friction. When coming from saturation, the domain size is small, governed by the primary domain formation
rules (see later). Close to saturation, the domain-wall energy is small then by lowering the external field it
grows. The system would like to get rid of the extra excess energy. In this simple model the domains will grow
to make less domain walls and, thereby, reducing the domain-wall density. They can do so only as long as the
energy ‘drive’ is bigger than the dissipative term. If a round domain of diameter ¢ expands to £ + 0&, where
0¢ < & then the energy gain is:

SE, = m‘Fe\/AK% (4¢‘;_ sin46o) s (7.11)

Taking §F,, = dE. we have for &:

_ \/AK¢O (4¢0 — sin 4¢0)
2V/2uoH M sin ¢y

As expected, this equation does not depend on tpe, because only bulk parameters were used, and due to the

symmetry of the problem, this is a two-dimensional case. In the limiting case (¢o = 7/2) we will have:

™ AK
2V 2u0H M

We can plot the domain evolution as the function of /&max (Fig. 7.1).

The coercive field H,. is only known with a large error. Indeed, due to the fully compensated, AF-coupled
nature of the investigated ML, H. cannot be deduced from conventional magnetization measurements. In
the following we shall use the rough estimate 0.2 mT < poHc < 3 mT. Substituting the parameters A =
2.1-1071 J/m K = 4.7-10* J/m?®, M = 1.7-10% A/m from [81], we have 220 nm < &ay < 3.45 pm.

This model is lacking a basic parameter, namely the interlayer AF coupling. This model not only does not
depend on J, but in the limiting case of K = 0 breaks down (the energy becomes zero and wall width infinite).
A second shortcoming of this model is the exclusion of the Zeeman energy, which would lower the domain wall
energy in external fields and would make the domains slightly bigger but would not change &,.x. This will also
be corrected in the next model.

£

(7.12)

(7.13)

gmax -

7.1.2 Theory 2

The redefined model takes into account the interlayer coupling and assumes a symmetric wall structure which
runs perpendicular to the ML stack (see Fig.7.2). In the first approximation we will neglect the magnetocrys-
talline anisotropy. In this case the two energy terms are the FM intralayer coupling and the uniaxial-type® AF
interlayer coupling. We will again integrate with respect to the whole stack, but neglect finite-stacking effects.
The energy terms are E, = A [ (¢')2 dV and Ej = J [ cos2¢dA; where dA; means integration with respect
to all Fe interfaces. In our case this would mean E; = nJ [ cos2¢ dA where dA is the area of the domain wall.

“We took only half of the total hysteresis loss curve because, during ripening the moments should turn only once.
8cos 2¢ = 2cos® ¢ — 1. And we can neglect constant terms in the energy expression.
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Figure 7.1: The angle dependence of € in ‘Theory 1’ in units of &max. The angle is measured from the external field, zero
meaning saturation.
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Figure 7.2: The sketch of a symmetric wall in strongly AF-coupled ML according to ‘Theory 2’. The two layers are
aligned symmetrically relative to the applied (in this case horizontal) external field. The arrows are representing the
in-plane angle ¢ of the layer magnetizations.
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Let us denote the thickness of a single Fe layer with ¢1, thus tge = nt; where n is the number of the Fe layers.
For this model we will calculate everything for a single layer with two coupled surfaces.
The energy, which has to be minimized for a domain wall along the x-axis? becomes in remanence:

E,=E,+E;=Atjw / (¢ (x)/)2 dx + 2Jw / cos? ¢ () da (7.14)

This can be directly substituted to the energy density of eq. (3.105) in [4] with the constants A = A and
2J/t; = K and, integrating the result, the wall energy [4, p. 217] will be:

By = dw\/24t,J (7.15)

In the case of external field (including the Zeeman term in a two-sublattice model), with domains having angles
¢o and —¢g a more generalized formula will apply. In this case we can use the formula (3.111) from [4]. In the
original formula the generalized energy density term is G (¢) — G = Kyu1 (cos ¢ — cos (;50)2 which we should

integrate to get the wall energy in one dimension: 7, = 2v/A ff;o VG (¢) — G do yielding:

o3
Yo = 2v/ AK 1 / cos ¢ — cos ¢ dpp = 4/ AK 1 (sin g — ¢ cos ¢y) . (7.16)
—¢o

In our case integrating ,, with respect to the other two dimensions and substituting the constants and calcu-
lating for a domain with diameter £ we have:

E,, = 4m&\/2At1 J (sin ¢y — ¢ cos ¢) . (7.17)

The hysteresis loss will be the same as for (7.10). Making the two variations equal we get:

bo

2AJ 1- tan ¢
=24/— — 7.18
5 tl /,LQHCM ( )

We will get the maximal domain size at ¢ = w/2. Substituting the literature values the range of &max is
now 1.6 pm < &pax < 24 pm.

We can include anisotropy in this second model. We will calculate only &nax (H = 0 T). The equation we
will start from is again taken from [4] (3.128): E,, = K1 (cos? ¢ + k cos® ¢) where k = K1 /K2

In our case the integrand of the energy term!? (fourfold anisotropy and uniaxial type coupling) is:

2] 2J
Cw == cos? ¢ + K cos? sin® ¢ = (t_ + K) cos® ¢ — K cos* ¢. (7.19)
1 1

To get the wall density we should substitute the values K3 = 2J/t1 + K, K2 = —K and k = thus

K < 0. In this case the wall energy density:

___K
2T/t F K

1+k
V=K

If we integrate for one layer (thickness and width) and write our variables:

Yo = 2V AK 1 (1 + arctanh \/—/@> . (7.20)

2J/t,
K (2J/t; + K)

Ey, =2wti1\/A(2J/t;1 + K) <1 + > arctanh v/ —k. (7.21)

Taking the actual values of J, ¢t and K x will be small. In this range tanhx ~ z, thus

E, = 2wt/ A(2J/t1 + K) (2 L) . (7.22)

C2J/th+ K

¢ (—00) = /2, ¢ (00) = —7/2

10cos? ¢sin? ¢ = cos? ¢ — cos* ¢
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Figure 7.3: The angle dependence of £ in ‘Model 2’ in units of {max. The angle is measured from the external field, zero
belonging to saturation.

With K = 0 equation 7.15 will be a special case of (7.22). For a round domain (w = w§) the energy of the wall
will be

Fy = 2retin/A 2T 6 + K) <2 __1 ) . (7.23)

2J
% T1

The hysteresis loss (7.11) at zero field is 0E. = 27t ugH M JE. From this maximal domain diameter at
zero field is:

AT R (2- 27 )
Kip T1
,UOHCM

(7.24)

gmax =

Substituting all numerical parameters, we will result in a maximal domain diameter in the interval of 1.6 — 24.1 pum.
Note that practically no difference can be seen compared to the K = 0 case, which will be evident if we make
further approximations for the small anisotropy term (a = t1 K/2J < 1).

E, = 27¢ 2hAJ(L+a)<2— > (7.25)

L+
1 1
- =1 7.26
T Tita (7.26)
! ~l-—a« 1+a~1+1a (7.27)
l+a ’ T '

V1i+ta 1+—i— A 1+1a @—ayzz—lﬁ (7.28)

1+« 2 2’
E, ~wé(4—a?) /2t AT (7.29)

In conclusion, the leading “perturbative term” vanishes, thus the anisotropy energy accounts only for ~ 0.86%:
lowering of the wall energy, which can be safely neglected.

‘Theory 2’ is also a ‘first-guess’ model’. A better domain-ripening model could only be made by the use of
micromagnetic calculations. Note that both models predict a continuous domain ripening.
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7.1.3 AF-domain formation

In the previous part we treated the ripening of the already existing AF domains. But how are those AF domains
formed initially? In the following Monte Carlo simulation we will try to give a phenomenological answer to
this question [82].

Let us assume a lateral distribution of the saturation field (caused for example by Fe and Cr layer roughness).
This inevitably leads to independent AF domain nucleation centers. When the external field is lowered from
saturation, the strongest-coupled parts will form AF domains first. They can do this in two different ways.
The top layer may start rotating to the right or to the left (clockwise or counter-clockwise). The two types
of domains will grow until the whole sample is unsaturated. In our model we associate the domain formation
with the correlation length of the saturation field. We assume the absolute thickness variations of Cr and Fe
to be equivalent. Due to the strong oscillatory thickness dependence of the coupling in the Fe/Cr system [83],
the actual correlation length of the AF coupling and, consequently that of the unsaturation domains is much
smaller than the correlation length of the Cr spacer thickness.

Pixel representation

Due to the vertically correlated domains, the strongly-coupled AF stack can be modeled as a two-dimensional
grid of pixels. Each pixel represents the direction of the magnetization of the topmost layer in a given pixel
area. The mesh size of the grid should be taken smaller than the actual domain size. In our model, each
pixel possesses a macroscopic classical magnetization, saturation field and anisotropy energy. The domains are
formed on this grid by first-neighbor rules explained later. Domains are represented as contiguous sets of pixels
of the same color.

Saturation field distribution

The unsaturation or primary domain formation is governed by the distribution of the saturation field. The
higher the saturation field of a given pixel is the sooner will the pixel unsaturate. First we create a grid of
uncorrelated random numbers U (r) of Gaussian distribution according to [9] (p. 288), where r = (z,y) is the
position vector. The saturation field distribution is generated by smoothing the grid by an empirical width w
according to

D)= Y (1 - %#) U(r) (7.30)

[r—r'|<w

Periodic boundary conditions are used. Decreasing the external magnetic field Heyt from saturation, the ML
gradually unsaturates. When H,,; matches the saturation field value Hy of a given pixel, the pixel unsaturates.
The pixel will choose its sense of rotation according to so-called flipping rules. When Heyy < min (Hy), the whole
ML is completely unsaturated. We can represent the domains according to their top layer’s magnetization:
white=left, black=right, gray=still saturated.

Flipping rules

The set of first-neighbor rules governs the decision of each pixel. In our model, all eight first neighbors have
equal weights. To avoid creating domain walls, the pixel to decide chooses the sense of rotation of the majority!'!
or chooses at random if no decision can be made using the previous rule. The flipping rules involve only first
neighbors, allowing for a fast realization of the above algorithm. The grid is scanned for saturated pixels.
When found, it is checked if all still-saturated neighbors possess a lower Hy value than the one found. If yes,
the pixel is allowed to choose its sense of rotation according to the above flipping rules. If not, the next pixel
is chosen. The scan of the grid is repeated as long as all saturated pixels flip to either left or right (black or
white). Finally, the temporal evolution of the domains is reproduced and a movie of the domain formation is
constructed from the final state (Fig 7.4).

The above-described Monte Carlo simulation was tested with MOKE microscopy data from Fe/Cr trilayers
[82, 84] with good agreement (see Fig. 7.5. In the description of the unsaturation domain formation the
crystalline anisotropy term can be neglected, thus the primary domain size does not depend on the in-plane
sample orientation. When we are in the low-field region (after the ripening) the orientation does count as will
be seen in the following.

H Neighbor pixels still in saturation have no influence



CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 66

[100]

\T

Figure 7.4: Unsaturation (a,b) and BSF (c,d) domain formation [82]. In the unsaturation domain formation black and
white pixels represent top layer rotation to the left and right, respectively, gray pixels being still in saturation. The easy
axes of the fourfold anisotropy are along [100] and [010] directions. The sample was saturated in the [100] direction.
The grid contains 500 x 500 pixels. The smoothing widths of the primary and secondary distributions (before and after
the BSF transition, see below) are wi; = 10 and w2 = 100, respectively. In (¢) and (d), the system during and after the
spin flop is shown. The BSF is induced by an increasing field along the [010] direction. The secondary large domains
are perpendicular to the primary small ones. Gray-scale scheme id (d): light gray pixels: top layer up, dark gray pixels:
top layer down. The scale was adjusted [84] to a Kerr image measured by Riihrig et al. [17] with a mesh size of 146 nm.
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Figure 7.5: “The autocorrelation function of the Kerr microscopic image (Fig. 4b in [17] as compared with the autocor-
relation of the simulated image in Fig. 7.4b with w = 10 and pixel size of 146 x 146 nm?.” [84]

7.1.4 Domain ripening in easy direction

In the easy-direction unsaturation scenario the moments rotate smoothly to the AF-remanent state from the
FM alignment in saturation. The flipping rules do not contain the domain wall energy explicitly, thus from this
model no ripening is expected. A more sophisticated micromagnetic simulation (explicitly including domain
walls) should give a better Monte Carlo description.

The ripening of the domains is connected with the coercivity of the Fe films, as discussed in the previous
models (7.1.1 and 7.1.2). As the field decreases, the domain-wall angle and, consequently, the domain-wall
energy per unit are increases. Therefore also the domains increase in order to decrease the domain-wall density
and, thereby, to minimize the domain-wall energy. This spontaneous growth of the domains is limited by the
domain-wall pinning (coercivity) and the gain in domain-wall energy is not enough to increase the average
domain size beyond a certain limit. The domains are bound to their original sense of rotation as long as the
magnetic field remains parallel to the original axis of magnetization, since in higher fields the Zeeman energy,
in lower fields the magneto-crystalline anisotropy stabilizes the domain orientation.

7.1.5 Domain ripening in hard direction

In the hard-axis scenario there is a second ‘critical point’, viz. the hard-axis reorientation transition (see
Section 2.6). Now the system is in a frustrated state between different energy minimum paths. The role of
domain walls will be enhanced. In a simple model unsaturation along a hard axis result in nearly 180° domain
walls when approaching a critical field Hp, [85]. At this field, the sublayer magnetizations are directed along
the hard axis and perpendicular to the field, a configuration that becomes energetically unfavorable on further
reducing the field.'? In remanence the magnetizations will lie parallel to the easy axes. See Fig. 7.6 for the
evolution of domain ripening in hard direction.

Assuming that the domains do not change shape but rotate, the domain image remains the same down
to Hpy as it was in complete unsaturation, only the angles of the layer magnetizations change. At the spin-
partition field Hpy (r) the pixel magnetizations start partitioning, i.e., rotating clockwise or anticlockwise. The
AF domains gradually develop into four different orientations along the easy axes in remanence resulting in
+45° relative rotation from the H,,, state. The domain nucleation of this partition spin-flop is now governed
by the effective correlation length of the spin-flop field, which is much broader than that of the saturation field.
A pixel can choose its new direction if all pixels with higher spin-flop field have already decided. A left-directed
pixel (e.g., top layer pointing left) can now choose between up-left and down-left directions. The rules are
similar to the unsaturation rules, but here the energy penalty of a neighbor pixel is proportional to the square
of the relative angle of the neighbors.'®. The pixel to decide will choose the direction with the least total

12This is an oversimplified picture as we know that for finite number of layers complex reorientation transition occurs, but the
main idea, i.e. the frustration of the magnetizations (domains) is still valid.
13We assume, that in first approximation the domain wall energy is proportional to the square of the angle of the wall
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Figure 7.6: Evolution of AF domain structure during unsaturation along a hard direction of the fourfold anisotropy [85].
a) In high field, partial unsaturation, b) in intermediate field, above spin partition, c) following incomplete partition
of domains according to the two perpendicular easy directions, d) in remanence. The gray gradation represents the
direction of the top layer of a pixel according to the arrows, while the striped regions in a) are still in saturation. The
easy axes of the fourfold anisotropy are directed along the [100] and [010] crystalline axes of Fe. The grid is 500 by 500
pixels. The smoothing widths of the unsaturation and BSF distributions are w; = 10 and w2=100, respectively. The
scale was adjusted [84] to a Kerr image measured by Riihrig et al. [17] with a mesh size of 146 nm.
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energy penalty. Consequently, the remanent domain structure following a hard axis unsaturation remembers
the primary domain structure. The four types of domains are not randomly distributed, but in groups of two
in order to avoid 180° domain walls. Indeed, if a left-directed pixel has chosen to rotate left-up, a neighboring
right-directed domain will definitely rotate right-up rather than right-down since the domain-wall angle in this
case will be only 90°.

7.1.6 Domain coarsening on BSF

At the BSF transition the magnetic moments are switched by +90° by the external field. This abrupt change
in layer magnetization gives the chance to change the domain structure. In Fe/Cr MLs, we found a coarsening
of the domains on BSF transition [6].

The mechanism of the BSF-induced coarsening basically differs from that of the unsaturation domain
formation and ripening. Indeed, when an increasing magnetic field is applied in the magnetization-parallel
direction, the anisotropy energy preserves the primary domain structure only for H < Hpgr. At Hpgr, the
system becomes energetically unstable and the layer magnetizations flip to the field-perpendicular direction.
There is again a freedom in the sense of rotation and, similar to Hy, also Hps obeys a distribution. However,
at H ~ Hy the system is close to an energy maximum and behaves like an explosive material: it may jump
to an energy minimum by 90° or —90° rotation of the magnetization. Once the first region with the lowest
value of Hypg ‘decides’ between a 90° or —90° flop, it will ‘ignite’ the neighbor regions, which will choose the
same direction of magnetization to avoid creating new domain walls. In contrast to primary domain formation,
secondary domains at the BSF transition may grow without any long-range domain-wall motion, and this
growth is, therefore, not limited by coercivity. BSF-induced domain coarsening is an explosion-like 90° flop
of the magnetization annihilating primary 180° walls. Consequently, the secondary patch domain size might
become comparable with the sample size.

In the BSF Monte Carlo simulations [82] we used similar spin-flip rules, which ensure the unnecessary
creation of excess domain walls. A pixel can choose now its new direction if all pixels with lower spin-flop
field have already decided. The rules are now the same as those during unsaturation, but the pixels may now
flip from the left /right into the up/down orientation. In a simple model of the domain-wall energy, the energy
penalty is proportional to the sum of the square of the relative angle of the neighbors. It can be shown that with
these conditions, the secondary domain formation is independent of the primary structure and only depends
on the lateral distribution of the spin-flop field. The BSF domain coarsening is shown in Fig. 7.4.

7.1.7 Domain stability and process

If in the ML isolated round domains would exist, they could be annihilated below a critical size. For a ML
with patch-domains, a chessboard-like structure is more realistic. The wall-energy calculations can be repeated
in this case, and will lead to the same critical size but with stable domains. [81]

We presented two theories, where AF-domain grows continously with decreasing external field. We also
noted, that if a domain is coarsened, then it will stay like that unless the sample is (super)saturated. We also
know, that the primary domain formation results in a given correlation width of the ‘saturation domains’. From
the above it follows, that domain ripening will start only, when the theoretical size of the ripened domains
reaches the actual primary domain size.



Chapter 8

Domain experiments on the Fe/Cr sample

8.1 Introduction

In the first part of the experiments, we investigated the specular spectra, which corresponded to the ¢, = 0
specular ridge in the momentum space, showing the plane-perpendicular correlations of the sample. In the last
part of the thesis we will deal with lateral structures (in our case mainly domains) of the AF-coupled MLs from
experimental point of view. Magnetic domains strictly AF-correlated through the ML stack give rise to diffuse
scattering at Bragg positions (Bragg sheets) as will be detailed later. They can be mapped in ¢, = const.
scans, which correspond to w scans in SMR. Domain ripening observed in the easy and hard directions of the
fourfold in-plane anisotropy is discussed as well as domain coarsening at the bulk-spin-flop transition.

The physical quantity that we would like to obtain from the off-specular SMR and PNR measurements is
the lateral autocorrelation function of the AF domains. In the first Born approximation, neglecting magnetic
interface roughness, we obtain the Fourier transform of the domain autocorrelation in the reciprocal space [86].

Magnetic domains in AF-coupled MLs have been investigated by PNR for a long time [67,68,87]. SMR
can yield the same information for nuclear resonant isotopes (in our case °"Fe). Recently, X-ray Magnetic
Scattering has been also utilized to study Fe/Cr MLs [88,89]. The evolution of different techniques leads to a
growing competition of measurement methods. We will focus only on PNR and SMR, which were used in our
experiments.

As already mentioned, coherent scattering techniques give direct information on the magnetic structure.
Scattering contributions of structural and magnetic origin separate in reciprocal space for well-chosen condi-
tions. For AF-coupled MLs, this manifest in the appearance of pure magnetic scattering peaks. Those peaks
are the result of the unit cell doubling by the alternating AF magnetic ordering of the ML, giving rise to ‘half
order’; structurally forbidden peaks. Those AF Bragg peaks are of pure magnetic origin.

In this work the majority of our statements is based on SMR scans. The fast development in user environ-
ment and beam collimation at ESRF resulted in an increase of an order of magnitude in resonant yield, thus
the last taken scans are the most reliable ones.! In the future the environment will evolve further by the intro-
duction of on-line sample-height monitor and adjuster. The parameters we measure are the peak heights (from
0 — 26 scans) and the diffuse shoulder parameters (from w scans).

In spite of the different probing depth the PNR results basically matched well with SMR data. In the
TOF PNR measurements the sample position is constant thus minimizing the systematic errors stemming from
sample ‘sliding’, but the neutron yield is low, leading to long measurement times and, consequently, to a low
number of data sets measured as a function of the external magnetic field. In the following we will discuss the
results from the SMR point of view, inserting PNR measurements, where available.

8.1.1 Domain ripening and coarsening as seen by SMR and PNR

In saturation all sublayer magnetizations are parallel to the external field. This forced ferromagnetic alignment
ceases with decreasing field, giving rise to domain growth. The evolution of the domains in the high-field region
is governed by random processes, due to the mirror symmetry of the magnetic configuration. The net magnetic

IFor the sample 990608 the measurements with best statistics and most detailed field dependence were carried out in February
and December 2003 at the ESRF 1D18 beamline.
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moment of the AF stack does not depend on the symmetry of the domains (top layer left or right) and the
magnetic field lines are shortcut by the AF structure, thus the stray field plays no role. We attribute the patch
like domain formation [17] to the distribution of the saturation field and the simple rule of domain wall energy
minimization (see Chapter 7).

Both the SMR and PNR measurements confirmed the existence of the strictly correlated AF domains. The
domain ripening occurred in a narrow field range of (0.2 — 0.1 T) in both easy and hard direction loops. We
found that domain ripening is an irreversible process, in the sense that the domain size does not change on
increasing or reverted fields. This meets our expectations as the ripening involves long-range domain wall
movement, thus it is inevitably a dissipative process.

To obtain again the small (‘virgin’) domain state, the sample has to be saturated, in order to erase all
‘domain memory’. Our experiments revealed that ‘simple’ magnetic saturation was not enough, but a field
higher than the apparent saturation must be applied to retain the primary domain state. We call this effect
‘supersaturation’ effect. The supersaturation field was found in a narrow field range between 1.25 — 1.3 T,
independently of the orientation of the sample (easy or hard direction). The saturation field was less than
1.05 T even for the hard direction loop.

The supersaturation effect was investigated in full hysteresis loop to exclude the minor-loop effect.? We
found that completing the loop by saturation of —1.1 T did not change the domain distribution.

Traditional hysteresis loops are taken along one direction. For AF-coupled MLs with fourfold in-plane
anisotropy also a trickier magnetization history is possible. Doing a half-hysteresis loop (up to saturation,
then back to remanence) and applying a perpendicular field (in practice by rotating the sample by 90°), the
bulk-spin-flop (BSF) transition (see Section 2.5) occurs, inducing a domain coarsening (see Section 7.1.6). The
majority of the resulting domains were larger than the experimental resolution.

The supersaturation effect was also investigated at low temperature. Starting with coarsened domains the
sample was cooled to 15 K in zero field. At this temperature the saturation field was Hy = 1.55 T (indicated by
the disappearance of the AF Bragg peak), but the supersaturation field was larger than 2.5 T. Lacking sufficient
beamtime, it was only possible to establish that the supersaturation field at 15 K was less than 4.07 T. Indeed,
having applied this latter field, the lateral correlation function determined from w—scan in remanence was
equivalent to that of the ‘virgin’ domains.

8.1.2 SMR measurements and sample correlations

The SMR measurements map the sample in reciprocal space. The 6 — 20 scans are reflecting the plane-
perpendicular structure and correlations, for example the layer thickness and average roughness parameters.
The w scans are basically constant-g, scans, mapping the off-specular (or diffuse) scattering. The origin of
diffuse scattering can be structural or magnetic lateral inhomogeneities.

Rough interfaces

Rough and diffused interfaces lead to the decrease of specular X-ray scattering and appearance of off-specular
or diffuse scattering [90-92]. If the applied method is magnetization-sensitive then the magnetic roughness also
contributes to the diffuse scattering [86,93]. The distribution of the off-specular scattering in the QQ—space de-
pends on the plane-perpendicular correlation of the roughness. For uncorrelated roughness, the off-specular
scattering is basically the sum of the scattering of the individual layer roughnesses [94], giving rise to diffuse
scattering in the whole reciprocal space, while for perfect spatial replication of the interfaces (correlated or ‘con-
formal’ roughness [95]) the off-specular scattering will occur at the so-called Bragg sheets (Fig. 8.1), summing
up the amplitudes, resulting in an intensity higher by a factor proportional to the number of layers [94]. Thus
off-specular (w and longitudinal off-specular) scans reveal the degree of plane-perpendicular correlation and the
lateral correlations of the interfaces. From specular scans only the average roughness and magnetization profile
can be deduced.

Magnetic scattering

Not only structural roughness breaks the lateral symmetry of the interfaces. Magnetic roughness, as already
discussed, also contributes to the off-specular scattering. Magnetic domain formation is also modulating the

2In SMR and PNR measurements normally the hysteresis loops were minor loops. The field was cycled from saturation to
remanence and then back to saturation. H. Zabel suggested that the supersaturation is an artefact of the uncompleted (full
saturation) cycle.
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Figure 8.1: Sketch of correlated and uncorrelated interfacial roughness and intensity distribution from the roughness in
the reciprocal lattice (after [96]).

magnetization-dependent scattering. In general, both magnetic interface roughness and domains give contri-
bution to the off-specular wings [86]. If, however, the interface is uncorrelated, we shall see only the domain
information.

8.1.3 SMR scans, slit settings and systematic errors

Before describing the measurement results in detail, we have to discuss the sources of systematic errors. This
is important as in our case systematic errors often prohibit the quantitative analysis of the data.

In SMR scans we mapped the momentum space with 6 — 26, w and off-specular longitudinal scans (see
Section 4.3.4). The 6 — 26 and off-specular scans were measured in integral mode with ‘broad’ detector slits,
while the w scans were taken with ‘narrow’ slits. In the February 2003 shift at ESRF ID18 the ‘broad’ slit
corresponded to 3 mm vertical aperture, which is equivalent to an acceptance angle of?> A20 = 2 mrad, while
the ‘narrow’ slit setting was 0.2 mm, which gives A20 = 0.13 mrad. From a previous session? it is known that
the sample’s specular reflection width is &~ 0.087 mrad at the first AF peak. When measuring with slit setting
larger than this value, we do see line broadening due to the inadequate instrumental resolution.

The majority of the 8 — 20 scans were taken with broad slits. The horizontal slits were wide enough to
integrate along ¢, for all scans (see Section 4.3.5). The prompt and resonant § — 26 scans show a part of the
diffuse (off-specular) scattering due to the integral mode measurements.

The longitudinal off-specular scans were also taken in integral mode (broad detector slits) and they contained
the specular reflection, too. Consequently, they were not appropriate for deducing the ‘pure’ diffuse scattering,
however, we learned from them that sometimes the so-called specular # — 20 measurements were in fact off-
specular ones. The reason is the uncertainty in the angle w, as the sample stage could move a bit between
and during measurements causing small shifts of sample’s position and angle. We call this latter effect the 6y
uncertainty. The 6y uncertainity results in systematic errors as it may change the peak ratios. When measuring
slightly off-specular then, due to the broad off specular AF wings, the AF peak does not change much while
the narrow specular peaks are lowered biasing strongly the peak ratios, as shown in Fig 8.2. The 6y and sample
stage height instability also resulted in systematic errors concerning off-specular scans. By measuring at wrong
q. positions the w—scans could be “off-peak”, resulting in slightly modified diffuse scattering profile.

3From the sample-detector distance (which was calibrated to be 74.48 cm): 1°=26.0 mm on the z-stage.

4The w scans with highest resolution were taken at session ST-735 (August 2001). The FWHM of the prompt peak did not
change much when a detector slit of 0.04 mm (A260 = 0.026 mrad) or 0.1 mm (A20 = 0.066 mrad) was used. However, the FWHM
doubled when the aperture was increased to 0.4 mm. The FWHM with the narrowest slit setting (0.04 mm) of the prompt w—scan
was 0.087 mrad (0.005°) at the AF peak (w = 0.39°). The delayed FWHM was 0.12 mrad (0.007°) for the same slit setting.
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Figure 8.2: The 0y uncertainty effect. At the first measurement (prompt ¢, delayed d) the intensity at the first Bragg
peak was too low, thus the experiment was repeated after 6y correction (prompt a, delayed b). The intensity of the
AF peaks did not change much, while the narrow structural peaks increased enormously. The prompt measurements
are plotted on logarithmic scale (left axis) while the delayed curves are shown on linear scale (right axis). Note the
x10 magnification from 1.2° on the delayed data. The scans were taken at ESRF (2003 December). Sample 990608
was measured along an easy axis in transversal setup. The preceding field history was 4 T — ... - 0T — 0.3 T. The
measurements were taken in 0.3 T.

Peak ratios in 0 — 20 scans

As mentioned above, the 8 —26 scans were done with relatively wide slits. The inclusion of the part of the diffuse
scattering means that the height of the AF Bragg peak depends not only on the specularly reflected radiation
but the distribution of the off-specular scattering can also have a dramatic effect (Fig. 8.3). The large difference
is not so surprising if we take a look at the w scan at the first AF peak (Fig. 8.4). The partial integration of
the wide delayed off-specular wing compared to the narrow structural one causes the huge difference. We will
use this ‘integral effect’ later to study the domain history.

A resonant photon counter would help to normalize the specular and off-specular scattering® relative to
the number of incident resonant photons per second. The possible energy shifts caused by the displacement
of the monochromator crystals and the drift of the sample induced a systematic uncertainty in the absolute
resonant yield. Without the possibility of external normalization, the measured curves had to be normalized
intrinsically.

The ‘data mining’ included integration of all resonant peak areas (total reflection, structural and AF Bragg
peaks) in the SMR scans and the tabulation of peak heights. For analysis mainly the peak areas were used
because in some cases the peaks were broad with two maxima. The conclusions did not change essentially
depending on the height or area selection. In some cases an alternative approach of linear combination of
spectra was used. This gave again qualitatively the same result.

Gathering magnetic data by comparison of peaks is possible only if the information is ‘localized’ to given
regions. The existence of AF peaks is the direct consequence of the magnetic ‘unit cell’ doubling. On the other
hand the magnetic structure itself influences the scattering in general. For our particular measurement setup
we have seen no change of the scattering with the changes of the magnetization angles at the first structural
Bragg peak. This is a consequence of the particular geometrical setup (see Sec. 4.1.3).

The appearance of AF peaks in TISMR spectra and the absence of magnetic sensitivity at the structural

5In case of the neutron measurements the normalization is easier as the incoming flux is monitored. In PNR TOF measurements
the sample and the detector are not moving, which makes the measurement geometrically more reliable than in case of an SMR
scan.



CHAPTER 8 DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 74

T T T T T T T T T
Le+07 § 3000
1e+06 | 2500
3 E
E 2000 &
E le+05 3 *é
= el
g 1500
o —_—
= <]
F le+04 ¢ S
i 1000
1e+03
] 500
1e+02 b0

Figure 8.3: Effect of the integral mode scan. The prompt of the § — 20 scan with narrow slit (a) was normalized to the
prompt of the wide slit scan (¢). The normalization was made by a signal obtained with a detector after an Al plate to
avoid detector saturation (not shown in the figure). The delayed curves show the enhancement of the magnetic Bragg
peaks in the case of broad detector slits (d) compared with the narrow slit setting (b). The narrow slit was 200 pm,
while the broad slit was 2 mm wide. For scale axes see the comments in Fig. 8.2. The scans were taken at ESRF
(2003 December). Sample 990608 was measured along an easy axis in transversal setup. The preceding field history was
4T — ... — 0T. The measurements were taken in remanence.
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Figure 8.4: w scan on the first AF Bragg peak (§ = 0.38°) in zero external field, easy direction.
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Figure 8.5: The first AF and first structural Bragg peaks in easy direction. The AF resonant off-specular intensity
changes with field while the Bragg peak is ‘constant’ and coincides with the prompt off-specular scan. The scans were
taken at ESRF, session SI-508b (July 2002). The intensity was scaled to the specular channel.

peak has consequences on the off-specular reflectivity, too. It implies that the consecutive magnetic layers are
strictly AF correlated through the ML [6]. If it were not the case then, as it was observed for weakly coupled
Co/Cu MLs by Borchers et al. [97] the AF peak would disappear.

In the following we will use the area of the Bragg peak to normalize the spectra based on the previous
theoretical and following practical considerations, assuming that it contains only structural information but
not magnetic:

1. The resonant w—scans taken at the structural Bragg peak in low (7 mT) and high (1 T) external field
showed identical peaks, while the w—scan at the first AF peak had no off-specular scattering (see Fig. 8.5)
at high fields.®

2. The w—scan at the structural Bragg peak was the same for the prompt and delayed photons (except for
the norm. factor) independently of the sample condition (temperature, external field). See Fig. 8.6.

Finally we note, that by analysis of 8 — 260 scans taken with broad and narrow slit, magnetic scattering
was found only at the AF peaks.” This means, that in principle the total-reflection peak could also be used
for normalizing the peaks. In practice it is not a good idea, because of the systematically changing footprint
correction.

8.2 Domain ripening

Domain ripening is the process, when the average domain size grows from its ‘native’ (just below saturation)
state to the zero-field equilibrium size (see Chapter 7). We performed SMR and PNR measurements to study
the details of the change of the domain size distribution. Similar measurements were previously done by PNR
on AF-coupled systems (see for example [72,76] and further references in [67]) but the present SMR study is
the first thorough and systematic investigation of the domain evolution process.

SIn 1 T we measured at the possible ‘AF position’, as no AF peak was present.
"Normalizing to the prompt yield, the broad-slit and narrow-slit curves were compared for a whole loop (in easy direction of
SI1-962.)



CHAPTER 8 DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 76

1le+07 —
15K, H=1.6T, prompt ———
delayed ©
le+06 [ e e e % - RT, H=0T, prompt ———
] delayed e
f RT, H=0.45T, prompt
— le+05 e delayed g
=
=
=
k=
1e+04 [ .
le+03 [ .
le#O2 b
-10 -5 0 5 10

¢z |1/ pm]

Figure 8.6: w scans at the first structural Bragg peak at different parameters. The prompt (lines) and delayed (points)
data are scaled to a common curve. The scans were taken at ESRF, session SI-962 (December 2003).

8.2.1 Easy direction

The SMR mapping of domain transformation in easy direction was one of the first of our off-specular synchrotron
measurements (ESRF, SI-735, August 2001). The feasibility of off-specular scanning was demonstrated in earlier
shifts (SI-508, July 2000; SI-618, December 2000) but at that time the brilliance of the beam did not allow for
systematic investigation with acceptable count rate. The easy-axis loop was repeated in December 2003 with
much better statistics (session SI-962). Here both 6 — 20 and w—scans were taken. Starting from well above
saturation (Hmax. = 4.065 T) the field was lowered to 1.2 T and then Q—space mapping was done. Reducing
the external field step by step, the domain history was scanned.

From the § — 26 scans with wide slits [81] we see an irreversible domain ripening® (Fig. 8.7). The AF
peak rises sharply below H = 0.2 T and when the field is increased again, the peak ratio stays well above the
field-decrease branch.

From the w—scans the domain ripening can be investigated in details. The intensity of the diffuse scattering
is proportional to the ‘roughness’, while the form of the function correlates with the in-plane magnetic structure.
We will not analyse quantitatively the intensity of the off-specular scans as yet, no proper theory of the diffuse
SMR is available and the geometrical uncertainties give too much error on the absolute yield.

The intensity of the off-specular scattering depends on the magnetic ‘contrast’, which contains not only the
autocorrelation function of the in-plane magnetization, but also the angle difference between the neighbouring
domains. At high external fields the angle difference and thus the magnetic diffuse scattering at the AF peak
is small. To be able to compare the autocorrelation functions, we normalized the off-specular parts to the
shoulder next to the specular peak.

In Fig. 8.8 the w—scans in decreasing field (after supersaturation) are collected down to 0.2 T. From earlier
measurements® we already expected the ripening to occur in a small field range starting at 0.2 T, thus we took
larger steps in the upper magnetization region. The normalized w—scans are identical, showing no change in
the shape of the off-specular scattering. The curve at 0.2 T shows a small ripening, but we attribute it to
systematic errors (integral of the off-specular peak is anomalously low, the previously taken 6 — 26 scans with

8In the S1-962 session 6 — 20 scans up to the third structural Bragg peak were taken. In principle all three structural/AF
peak ratios should give the same information. We found that due to geometrical effects, the usage of higher order pairs gave less
instrumental errors (at lower angles the 69 and sample height uncertainty plays a bigger role). On the other hand, at too high
angles the resonant count rate is not high enough for reliable comparison. For this sample the second Bragg and AF peak were
the best choice.

9ESRF shift SI-735, August 2001.
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Figure 8.7: Peak integral ratios of the second AF peak divided by the second structural peak. The integrated regions in
degrees: AF; [0.9 — 1.1], BRy [1.2 — 1.45].

broad and narrow slit are the same, indicative of a badly aligned sample).

As expected from earlier easy- and hard-axis SMR measurements, the ripening is completed at H = 0.125 T
(Fig. 8.9) and further decreasing the field does not change the shape of the off-specular scattering. The ripening
is an irreversible process, as we discussed earlier and here the experimental evidence is shown. When the
field was increased (Fig. 8.10) only the amplitude of the off-specular scattering decreased, but the shape of
the scattering remained unchanged. Also scanning the field below saturation (for example 0 T — 0.3 T —
—0.1 T — 0T) did not change the form of the off-specular scattering.

PNR measurements

The PNR experiments confirmed the existence of domain ripening. Due to the short available measurement time
the spin analyzer was not used. This was possible because the sample alignment was such!® that only spin-flip
scattering was present in the AF Bragg sheet. This was confirmed by short-time, low-statistics measurements
with spin analysis at 0, 0.15, 0.3 and 0.45 T and was expected from previous BSF experiment [6]. In Fig. 8.11
the results with active spin flipper (the negative channel) are seen. They do not differ from the results obtained
in the positive channel (flipper inactive).

For comparison with SMR 6 — 20 and w measurements, the two-dimensional neutron measurements were
integrated along the ¢, and ¢, axes, respectively. In the specular scans (g, integrated) (Fig. 8.12) we see that
the AF peak grows with decreasing field to the maximal value in remanence. The largest jump is between
0.3 T and 0.15 T. If comparing the branches of decreasing field to those of increasing field, then we see that
the peak is higher at increasing field. Reducing the field a second time to 9 mT gives identical scattering to
the first maximum. The above behaviour is consistent with the domain ripening shown by the SMR. From the
off-specular figure (Fig 8.13) the domain distribution can be mapped. We show the primary domains at 0.3 T
and the domain state after ripening (9 mT). The domain fits will be described later.

Supersaturation

Ripening is an irreversible process. We call irreversibility the fact that in increasing external field the once
ripened domains are not shrinking back. The only way to get back the primary domains is to supersaturate
the sample. The supersaturation effect was investigated by SMR. The first evidence of supersaturation was

10T he layer magnetizations were perpendicular to the spin on the impinging neutron beam.
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Figure 8.8: w scans on the first AF peak in decreasing field after supersaturation. The measurements were normalized
to the off-specular shoulder at the specular peak.
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Figure 8.9: w scans on the first AF peak in decreasing field. The measurements were normalized to the off-specular
shoulder at the specular peak. We used the H = 0.25 T as first value, because the H = 0.2 T scan was taken with badly
aligned sample.
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Figure 8.10: w scans on the first AF peak in increasing field. The measurements were normalized to the off-specular
shoulder at the specular peak.

gathered after the BSF transition (Fig. 8.14). At that time the ripening effect was unknown, thus the spectra
were taken in remanence. A sharp change between 1.25 T and 1.3 T is obvious from the w—scans.

In the following we will show that the domains are also not changing shape in the case of continuation
of the magnetization loop, thus the supersaturation effect is not a ‘minor loop’ effect.!’ After decreasing the
external field from supersaturation (actually from 4 T) to zero, the irreversibility of the domain shape was first
shown in positive direction (up to 1.1 T), then at —1.1 T. The actual w scans were taken at 0.5 T and —0.5 T,
respectively. As can be seen in Fig. 8.15, the domain shape did not change. By decreasing the field to —1.2 T
(curve e in Fig. 8.15), we reach the supersaturation region. This field is a bit lower, compared to previous
results, but still higher than the sample’s saturation field in easy direction.

8.2.2 Hard direction

In hard-axis setup the domain ‘engineering’ again stared from the supersaturated state. In this state all Fe
moments are aligned parallel to the external field. Mapping the peak ratios in the 6 — 20 scans helped to find
the domain-ripening region. On Fig. 8.16 the linear combination of the maximal and minimal AF peak spectra
is shown. This gives qualitatively the same result as the peak ratio, but takes into account more data points.'?
The saturated spectra by definition will mean ¢ = 0, while we found the maximal peak at increasing field of
H = 0.18 T, defining it as ¢ = 1. All other spectra are fitted as the linear combination of the previous two
extrema. The linear combination method has the advantage of showing no ‘residual shoulder’ at saturation.'?

We again see a sharp increase starting from 0.2 T and reaching maximal peak value at decreasing field of
0.125 T. In remanence the AF peak is smaller, because the magnetizations are aligned along the easy axes,
which are located at £45° relative to the fields direction. When the field is increased, the domains are staying
in the ripened state, resulting in maximal peak intensity at ~ 0.18 T. The saturation is around 1.1 T. The
constant decreasing/increasing branch ratio in the field range of 0.2 — 1.0 T strongly suggests that the primary
domains do not change shape down to 0.2 T. In accordance, investigation of the w scans shows no change in

' Magnetization loops are traditionally taken from positive saturation to negative saturation and back. In the majority of SMR
and PNR measurements we took the loop from supersaturation to remanence and back. As the domain ripening is connected with
domain wall movement, which is a friction-like process, no domain breaking should occur when the magnitude of the external field
is increasing, independently of its direction.

121n the SI-847 experiment (Feb. 2003) the scanning range stopped at the second AF peak, thus the AF2/BRa ratio could not
be calculated.

13No field-dependent PNR measurements were made in hard-direction setup.
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Figure 8.11: Polarized neutron measurements at the first AF peak with no spin analysis. Negative channel (first spin
flipper active). After supersaturation the field was released to A: 0.6 T, B: 0.45 T, C: 0.3 T, D: 0.15 T and E: 9 mT.
Increasing the field, F: 0.3 T, G: 0.6 T, and again to remanence: H: 9 mT. The ‘grey’ axis is logarithmic. The
measurements were done on the reflectometer REMUR at IBR-2, Dubna in January, 2003.
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Figure 8.12: PNR measurement at the first AF peak integrated along ¢,. The integration region was [-6:1.2] 1/pm.
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Figure 8.13: PNR measurement at the first AF peak integrated along ¢.. The integration region was [7.5:9] nm

G [1/pm]

—1

. The

solid lines are Lorentzian fits with £ = 0.272 £ 0.009 pm (0.3 T) and £ = 1.23 4+ 0.01 um (0 T), respectively. The dashed
line is an exponential fit with £ = 0.989 £ 0.013 pm. For definition of £ see 8.3.
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Figure 8.14: Easy direction supersaturation measured after domain coarsening (SI-618, December 2000). The w—scans
were measured in zero external field. Change in the off-specular scattering at 1.3 T can be seen.
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Figure 8.15: Easy-direction domain-ripening cycle. The sample was first supersaturated in 4 T, then the field was released
to zero, then Heyxy = 1.1 T was applied, afterwards reduced to Hext = 0.5 T where the first w—scan was measured (a).
To check the direction-independence of the domain ripening, a negative field of Hext = —1.1 T was applied, and the
w—scan measured at Hexy = —0.5 T (b). The previous two scans show the same domain properties as that, measured
on the sample in Hexy = 0.6 T increasing field from remanence (¢). To compare the ripened domains with the small-
domain state, the w—scan prior to ripening at Hext = 0.45 T (d) (coming from supersaturation) is compared with the
continuation of (b) by applying Hexy = —1.2 T, then measuring at Hext = —0.5 T (e).
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Figure 8.16: Linear combination of hard direction § — 20 scans. After supersaturation in 4 T, the field was decreased to
0 T then increased to 1.35 T. The decr/incr curve show the decreasing ¢ values divided by the increasing ¢ values. The
points above 1.1 T are not shown.

line shape down to 0.2 T. As shown in Fig. 8.17 in saturation we see no difference in the prompt and delayed
diffuse scattering around the specular part. When the field is lowered, only the intensity of the magnetic diffuse
scattering changes, but not the line shape. We attribute this change to the changing domain angle.

Lowering the external field further in hard direction the domain ripening can be observed between 0.2 T
and 0.125 T (see Fig. 8.18). The ripened domains do not change when the field is lowered further to remanence
from 0.1 T. At increasing fields the shape is not changing, just the diffuse intensity is getting lower.

Supersaturation

When the sample is in saturation (H > Hg) then the AF peak vanishes, thus no direct information can be
obtained from it.!* In order to detect the domain transformation around saturation the field was lowered
prior to measurement to 0.5 T (to be above the critical field for domain ripening) where AF scattering is
already measurable. The maximal field to be investigated was increased in small steps from measurement to
measurement. This way, the supersaturation ‘memory effect’ was mapped. According to the measurements, in
hard direction the domains are transformed back to the ‘virgin’ (small domain) state in a narrow field range
between 1.20 and 1.25 T (Fig 8.19). This is the same field range, where the easy direction supersaturation was
observed.

8.3 Domain history at low temperature

The supersaturation effect was also demonstrated at low temperature, in easy direction (SI-962, December
2003). After two consecutive spin-flop transitions at room temperature, the sample was cooled to 15 K. By
looping the external field step by step to higher and higher values and measuring 6 — 26 scans in-field, and
w—scans in zero field the saturation field was scanned and the supersaturation investigated.

Due to the spin-flop, in remanence the sample was in the ‘large domain’ state [6]. By increasing the
external field the AF moments were forced to rotate towards a ferromagnetic alignment. The saturation field
was ~ 1.5 T (Fig. 8.20). To be sure to include all off-specular scattering, the vertical detector slits were wide

MThe diffuse scattering, still present, is proportional to the prompt w scan (see for example Fig. 8.17), giving only structural
information.
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Figure 8.17: Hard-direction w scans in decreasing field after supersaturation. The measurements were normalized to the
off-specular shoulder at the specular peak. Above saturation the diffuse resonant scattering coincides with the prompt
(labelled pmt), except for the Yoneda peaks.
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Figure 8.19: Detection of supersaturation in hard direction. The scans were measured in 0.5 T. The field value in
brackets is the last field seen before the measurement.

open'® (£3 ecm). After reaching saturation, § — 20 and w scans were taken in Hey = 0 T. The shape of the w
scan suggests that at this temperature the sample did not go through the ripening process even in remanence.
Increasing the field loop up to 2.5 T no differences were detectable on the w scans (Fig. 8.21). The field of 4 T
was high enough to return the sample to the ‘small-domain’ state. Indeed, from the w scan (Fig. 8.21) it seems
that the sample returned to the ‘virgin’ state.

To obtain domain properties from integral (wide-slit) 8 — 26 scans the peak ratios should be evaluated. As
already discussed, integration of peak areas and linear-combination fitting of spectra are both yielding similar
result. Here we will use the linear-combination fitting method. In saturation, the AF peak disappears while it
is maximal in remanence. By defining the AF/BR ratio to be 0 in the forced FM alignment (Hex, = 1.7 T) and
1 in the AF alignment (Hex = 0 T) and fitting the § — 26 scans in between with a linear combination of the
two extreme scans a good AF/BR ratio plot was obtained (Fig. 8.20). One can achieve an even better result,
if only the higher-angle part of the scans is used. The cause for this may be the changing misalignment of the
sample, which influences the spectra through the geometrical effects'®. The peak ratios could be also biased by
not scanning exactly along the specular ridge. Those systematic errors are getting smaller at higher angles.!”
On Fig. 8.20 curve (a) shows the results obtained by fitting the spectra starting from the first structural peak
(BR4), while in case of (b) the fitting was done on the first AF peak (AF;) to the first structural peak (BR;)
range. From the reduced y? it is also evident that the model of linear combination is better for case (a). Note
that in this case the intensity of the first AF peak can differ from the measured value.

8.3.1 Discussion

The PNR and SMR measurements revealed us the details of the domain ripening in easy and hard direc-
tion. Domain ripening is not a continuous process but it is occurring in the narrow decreasing field range of
0.2 — 0.125 T after supersaturation. Ripening is irreversible, the domains do not change on increasing the field
up to supersaturation. The supersaturation region is again a narrow field region of 1.25 — 1.3 T. Ripening and
supersaturation occur in the same way for easy and hard direction loops (same field ranges, same w—scans),
thus it seems that anisotropy plays no role in those phenomena. At 15 K the supersaturation is even more pro-
nounced and no ripening occurs. Finally, the non-continuity of ripening is not an artefact of the SMR scans,

L5 This slit setting is probably wider, than the whole active area of the detector.
16This is the reason why the total-reflection peak has never been included in the fit.
"The unexpected decrease at 0.4 T is also connected to sample alignment and it is missing in the higher-angle fit.
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Figure 8.20: The AF /structural peak ratio of the low temperature (15 K) easy direction 6 — 20 scans after domain
ripening in increasing external field. In case (a) the fit was done in the [BR::BRs| range ([0.6° : 2.1°]), while (b) was
fitted only for [AF1:BR;]| range ([0.3° : 0.9°]). The reduced x? is also shown as x2 and xZ, respectively. For detailed
analysis see text.
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Figure 8.21: Low-temperature (15 K) supersaturation in easy direction. All curves are normalized to 10 s/ch prompt
counts. No notable difference can be seen up to 2.5 T. Lacking beamtime, the supersaturation region was not searched
further, thus only 2.5 T < Hgup. sat. < 4.065 T could be established.
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Field [T] Fit type ¢ [um]

0.25 Lorentzian (a) 0.66 £+ 0.04
Exponential (b) 0.64 £0.04
Gaussian (c) 0.66 +0.01

0 Lorentzian (a) 1.64 £0.03
Exponential (b) 1.35+0.01

Table 8.1: Easy direction £ fits with different autocorrelation trial functions of the SMR w—scans (SI-962, December
2003).

as PNR scans confirm our findings.

Domain size

Now we would like to answer the following question: How big are the AF domains? We used reciprocal-
space measurement methods, thus the results have to be interpreted according to suitable models. For the
evaluation of PNR and SMR measurements we will use first Born approximation,'® in which the domain size
is the Fourier transform of the correlation length measured in the reciprocal space. As a first guess, we use
exponential autocorrelation function in real space [86], leading to Lorentzian line-shape in reciprocal space.
Also due to the slit setting we integrate with respect to g, reducing the problem to one dimension. For the
autocorrelation function

Clz) = e~ 121/¢ (8.1)
where ¢ is the ‘average domain size’ along the z-axis the function to be fitted will be

B A
1+ (%5)2'

A is the intensity normalization factor. We start with fitting the PNR results. In Fig 8.13 the small and
large domain state was fitted. The virgin domain size was £ = 0.272 4 0.009 um (measured in 0.3 T) and the
ripened domain state had £ = 1.23 +0.01 um (0 T), respectively. The ripening factor is 4.5. As we have seen
exponential-like w scans in the SMR, measurements, the diffuse scattering peaks of the ripened domains were
also fitted with an exponential (corresponding to Lorentzian autocorrelation function in direct space). The
resulting correlation length was £ = 0.989 + 0.013 pm, which is in the same range as for the Lorentzian fit.

For the SMR scans we got different qualitative results. Even the function fitting best can be different. We
used three trial functions:

fla) (8.2)

A
b) Ae~la=tl (8.3b)
c) Ae~3(a:6)° (8.3¢)

For the small domain state there is no real good fit.!? The best is the Gaussian fit (function ¢). Interestingly
the obtained ¢ values are almost identical independently of the model function used. The fitting results are
summarized in Table 8.1.

The domain coarsening was also investigated in the hard direction by SMR. In the SI-847 shift (February
2003) the coarsening was thoroughly mapped. We have seen again the manifestation of the 6 instability leading
to systematic errors, which make the proper data interpretation quite difficult. From the non-reproducibility
and asymmetry of the shoulders of the prompt w scans one can conclude that systematic errors can alter

18To obtain the average domain size and domain autocorrelation functions an off-specular fit would be necessary with properly
selected model parameters (average roughness, correlation length, etc.). The starting parameters should be fed to the fitting
algorithm, the results corrected with possible geometric effects and finally convolved with the instrumental resolution function.
This is the way how Savage et al. proceeded in the case of prompt x-ray rocking curves [74]. The theory of off-specular Mssbauer
reflectometry is being developed and will be available soon [98]. In the case of magnetic information not only domain structure, but
also the magnetic roughness (originating from the structural roughness) may modify the results [86]. In this section a ‘first-glance’
description of the SMR and PNR w scans is given.

97The specular peak was excluded (0.5 um~!) from the fit.
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Figure 8.22: Off-specular scan showing the primary domain state. The lines are fits with the trial functions defined in
the text. The best fitting function is ¢, the Gaussian. The scans were taken at ESRF shift SI-962 (December 2003).
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Figure 8.23: Off-specular scan showing the ripened domain state. The lines are fits with the trial functions defined in
the text. Now the exponential function b gave the best result. The scans were taken at ESRF shift SI-962 (December

2003).
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the measurements in different ways. The geometrical changes are not big but they are magnified due to the
grazing-incidence setup. The resonant rocking curves are sometimes also asymmetric. The off-specular parts
of the w—scans? could be described phenomenologically by sum of Gaussian and exponential functions. We
do not detail the numerical results, as with no proper model the interpretation of the data is very difficult.?!
We would like only to summarize some general trends. On Figures 8.22 and 8.23 the domain state before and
after ripening can be seen with different trial fitting functions (8.3).

When unsaturating the sample along a hard direction from supersaturation the w scan can be described by a
Gaussian function. The shape of the autocorrelation function changes with the ripening process to exponential
in the range of 0.2 — 0.125 T. The exponential nature stays when the field is increased from remanence. The
correlation length seems to grow in increasing field (in the range of 0.5 — 0.8 T) but we attribute this effect to
the changing domain angles and not to the ripening of the domains.?? In the easy-direction SMR w scans no
such effect was seen. The obtained £ values are in good agreement with the easy direction SMR scans.

The ripening factor for SMR measurements is 2 (or 2.5 depending on the function), which is smaller than
the 4.5 factor obtained from PNR measurements. We attribute this difference to the differences in methods,
i.e. in our opinion the small virgin domains are simply too small to be resolved by SMR. The off-specular
scattering amplitude is limited by geometrical effects and in our case this envelope is reached, which can be
also noted from the shape change of the scattering. The same difficulties were not present on the PNR scan,
where the cross section of the scattering is much smaller, and thus the penetration depth exceeds the sample
volume even in grazing incidence setup.

In conclusion, we observed domain ripening in both easy and hard directions. The ripening process develops
in the same way, independently of the orientation of the sample. This fact, and the direction independence
of the supersaturation field suggests that domain ripening is not connected with crystalline anisotropy. The
ripening occurs in a well-defined field range, enlarging the average domain size by roughly a factor of 5. The
resulting large domains are in the order of pm. Both PNR and SMR measurements of the ripened domains
can be fitted best by exponentials, indicating a Lorentzian autocorrelation function of the domains. This is in
contradiction with the exponential shape, generally assumed in the literature [86].

20Excluding the 40.015° region of the specular peak.

2I'The w—scans were evaluated but finally we decided not to include the detailed evaluation in this work for the previously
mentioned reasons.

22The same ‘extra’ ripening could been deduced from PNR measurements, where in the easy direction the lowering peaks in
increasing field showed an increasing autocorrelation length.
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8.4 BSF and domain coarsening

Finally, after the domain ripening, we describe the domain coarsening connected to the BSF transition [6,47,79].
As discussed in Sections 3.3 and 6 when a sample with fourfold in-plane crystalline anisotropy is saturated along
an easy direction and then the field is reduced to remanence, the layer magnetizations will be perpendicular to
the direction of the vanishing field. The BSF is induced by the application of a perpendicular in-plane magnetic
field. The BSF results in the coarsening of the AF domains [6].

During BSF, the magnetizations turn by £90°. In the case of SMR measurements two perpendicular set-ups
are necessary to see the different domains. Conversely, with PNR measurement a single scan is enough, because
here the orthogonal domains separate to the spin-flip and non spin-flip channels, respectively.

In the following we cite parts from the work of our group [6]. The domain coarsening can be monitored
by polarized neutron diffuse scattering, without rotating the sample. Prior to the PNR experiment the sample
was ex-situ saturated in 2.1 T, i.e., well above Hg and even the supersaturation field. The sample layer
magnetizations were parallel/antiparallel in zero field to the incident neutron polarization. PNR maps taken in
increasing external field are shown in Fig. 8.24. Left and right columns in Fig.8.24 represent non-spin-flip and
spin-flip reflectivities (here R~~ and R~7T), corresponding to magnetization components parallel/antiparallel
and perpendicular to the neutron spin, respectively. In a field below Hgp (Fig. 8.24A) the AF reflection appears
only in the non-spin-flip channels and consists of a broad diffuse sheet. In contrast, in Fig. 8.24C, in a field above
the transition, the AF reflection is only observed in the spin-flip channels. While the non-spin-flip channels
consist only of off-specular diffuse sheets, the spin-flip channels show mainly specular scattering.?> Midway the
transition (Fig. 8.24B), the AF reflection shows up in both channels, in full accordance with the SMR results,
detailed below.

In the SMR experiment (SI-618, December 2000), the sample was first saturated along the Fe[100] easy di-
rection in 4.07 T, a field well above Hy and Hgyp. sar.. In Fig. 8.25, w scans are shown as a function of the
longitudinal in-plane component ¢, of the scattering vector [6]. When the field was released, the layer magne-
tizations lay in the perpendicular Fe[010] easy direction, parallel or antiparallel to k, the photon wave vector
(inset of Fig. 8.25B). While a sharp specular reflection was observed in the prompt reflectivity (Fig. 8.25A), only
a broad diffuse shoulder appeared in the (delayed) SMR w scan (Fig. 8.25B). On rotating the sample by 90°,
the magnetizations turned perpendicular to k, and the AF reflections disappeared since for k-perpendicular
hyperfine field no AF reflections are expected in time-integral § — 20 SMR scans [62]. The intensity of the
AF reflections recovered, when a field of 12 to 16 mT was applied along the Fe[010] direction perpendicular
to the photon wave vector k and the ML passed the BSF [47]. Fig. 8.25C shows two w scans of consider-
ably different width, taken in two mutually perpendicular orientations of the sample relative to k following
an exposure of the ML to 13 mT, half way in the BSF transition. At this point, the flipped regions of the
ML (left inset of Fig. 8.25C) mainly give rise to a narrow specular peak, whereas the not-yet-flipped regions
(right inset of Fig. 8.25C) stay to show a broad diffuse shoulder in the delayed intensity. By exposing the sam-
ple to 35 mT, the BSF transition is completely passed (inset of Fig. 8.25D) and the w scan is dominated by
a specular peak (Fig. 8.25D). No further change in the shape of the w scan could be induced by any field cy-
cle including repeated generation of BSF transitions, until the system was fully saturated. However, exposing
the sample to 4.07 T field again, the w scans became identical with that shown in Fig.8.25B, i.e., the specular
peak disappeared from the SMR w scan.

8.4.1 Experimental results

The interpretation of the coarsened domain state is not an easy task. As it can be seen from Fig 8.25D, the
scattering from the large (coarsened) domains is almost specular, but there is still a small magnetic shoulder.
This shoulder is better seen?® in Fig. 8.21.

In Fig. 8.26 the domain coarsening during the BSF transition is shown. The first interesting point is
that even before the BSF transition we do see off-specular scattering (left side, 0 T), when no AF magnetic
scattering is present. Secondly, during the spin flop the shape of the off-specular scattering narrows (right
side) as the ripened domains are turning perpendicular, but we see no change in the line shape on the left side
(where the domains should give contribution after the flop). The latter observation suggests that the coarsened
domains are larger, than the resolution of our experiment. From the first statement it follows that not only AF
domains, but also correlated magnetic interface roughness can contribute to the off-specular scattering at the

23The intensity of the PNR curves did not allow us to quantitatively describe the evolution of the domain structure.
24The scans in Fig. 8.21 were collected at low temperature (15 K). The coarsened state is the same, as was seen in the earlier
shift, but the statistics is much better here.
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Figure 8.24: “Normalized neutron reflectivity maps. Polarized neutron intensity scattered specularly and off-specularly
by a MgO(001)/[*"Fe (26 A) /Cr (13 A)],, multilayer in a magnetic field of A) 7 mT, B) 142 mT and C) 35 mT in
R~ (left side) and in R~ (right side) channels as a function of the scattering vector components ¢, and ¢..” [6]

AF position.?® The experiment with the best statistics was SI-962 (2003 December). We were able to fit the
off-specular spectra of Fig. 8.21 with the sum of two exponentials. The £ values obtained are: £ = 1.5 £ 0.3 pn,
&2 =144 0.9 um. The contribution of subspectra was 11% and 89% for &; and &, respectively. &, gives a lower
size estimation of the coarsened domains, while the interpretation of the part with &; is not so straightforward.
As was noted before, if they originated fully from AF-domain scattering, then we would not see this contribution
before the spin flop (at 7 mT) and we would see an increasing shoulder with increasing field at the spin-flop
region (Fig 8.26 left side). It is not easy to say if such increase was observed, as the statistics was low in those
measurements. On the other hand the good agreement of £ with the coarsened domains suggest that this
contribution originates from AF domain ‘islands’, which retain their ripened state. A final decisive statement
could be given only based on measurements with better statistics, and perhaps at a higher-order AF peak.

The supersaturation effect was first investigated after the domain coarsening. In Fig. 8.27 the ¢, and g,
scans are seen during the first test of supersaturation. At that time the effects of ripening were not known,
thus all spectra were taken in remanence. The ¢, scans show a widening of the AF peak, while the ¢, scans
show the reappearance of small domain after saturation in 1.3 T. As now we know, those domains are already
ripened domains.

Following measurements with much better statistics did confirm the details of the supersaturation. Here we
only would like to note that the already coarsened domains also does not, ‘shrink’ back prior to supersaturation.

8.4.2 Discussion

We found domain coarsening related to the BSF transition. The resulting domains were larger, than our
instrumental resolution. The coarsened domains are thus at least by an order of magnitude larger, than the
ripened ones, or in other words the ‘coarsening factor’ is greater than 10. If we take a look at the mechanism
of the coarsening, then even domains, comparable with the size of the sample cannot be excluded [6].

In contrast to domain ripening, which involves domain wall movement, and thus limited by coercivity [6], at
the spin flop the domain walls can annihilate by the 90 degree rotation of the magnetizations, thus coarsening
is not limited by coercivity. Furthermore at the BSF the system is in energy maximum, thus the domain growth
is explosion like. If one part decided, the neighbors will follow to avoid the creation of new domain walls.

In conclusion, we found two processes related do domain wall energy, viz. domain ripening and coarsening.
Both processes are irreversible in the sense that the sample has to be supersaturated to recover the ‘virgin’
domain state. From the comparison of easy and hard direction hysteresis loops we concluded that domain

25In saturation this contribution is the same as the prompt scattering (Fig 8.5), while in zero field extra shoulders can be seen.
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Figure 8.25: “Off-specular prompt X-ray and SMR w-scans. Reflected intensity vs. scattering vector component g
of a MgO(OOl)/[‘WFe (26 A) /Cr (13 A)]20 multilayer at the AF Bragg-reflection measured in zero external magnetic
field: A) prompt reflectivity, not being dependent on magnetic field prehistory, B-D) delayed reflectivity, B) following
saturation in 4.07 T, C) following exposure to 13 mT parallel to the magnetizations (open circles: non-flipped domains,
full circles: flipped domains), D) following exposure to a field of 35 mT. Inset A is a schematic side view of the chemical
and magnetic structure of the sample in the vicinity of a domain wall. Insets B-D are schematic top views of the
orientation of the crystallographic axes and of the top-layer magnetizations (short and long arrows represent small and
large domains, respectively) relative to the photon wave vector k.” [6]
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Figure 8.26: The BSF transition in momentum space portrayed by SMR (SI-618, December 2000%). The AF state is
perpendicular to k in the left scans, while parallel /antiparallel in the right scans. As the BSF occurs, the moments turn
perpendicular, decreasing the original AF scattering, and giving rise to the perpendicular one. All measurements were
carried out in zero field. The labels show the last seen highest field value. The open symbols show the prompt curves
in the off-specular scans, while the closed ones are the resonant ones. (* All measurements were taken at SI-618, except
for the 0 T w scan, marked with {. This scan was taken in shift SI-735, August 2001. We included it, as no scan with
such conditions was taken in SI-618.)
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Figure 8.27: Easy direction supersaturation measured after domain coarsening (SI-618, December 2000). The scans were
measured in zero external field. Change in the off-specular scattering at 1.3 T can be seen. The w—scans are the same
as in Fig. 8.14.

ripening is not connected with the anisotropy of the sample.For detailed evaluation of the process micromagnetic
simulations will be necessary, which are beyond the scope of this work.



Chapter 9

Appendix

9.1 Inversion of the magnetization curve

We show, that with certain limitations, energy curves can be calculated from the magnetization loops (‘inverse
problem’). The reversed approach is trivial and it is practiced by all fitting routines: take the energy function,
then minimize the energy at each external field value and calculate the magnetization loop. To solve the inverse
problem, one have to make some assumptions. For a first approach we take a trilayer, with configurations
symmetrical to the external field only. In this case the angle between the two layers describes the trilayer
unambiguously. For convenience, we define this angle as 2¢. In this case the energy of the trilayer will be

op (9, H) = 0% (9) — HM cos 9. (9.1)

When displaying the magnetization measurements as reduced! magnetization loop m(H), we ‘measure’ the
angle? m(H) = cosd. The inversion is straightforward: ¢ = arccosm (H).
In each point of the magnetization cycle the system is in equilibrium, dog /09 = 0. If we assume that the
coupling, anisotropy and other terms do not depend on the external magnetic field, then from (9.1):
9%
= —HMsind. 9.2
59 (9.2)

We only have to substitute 9 to get the derivative function:

(0]
‘%E — —HMsin (arccosm (H)) = —HM~/T — m? (H). (9.3)

By plotting —HM+/1 —m? versus ¥ = arccosm (not shown) we obtain the derivative curve. Note that the
integration is done most easily numerically as the base points are not equally distributed.

9
90°
o (9) = / S (9.4)
0
We neglected the integration constant as it does not count in the minimum calculations. The absolute value
of the energy density is proportional to M. The above derivation is also valid for ‘infinite stacked” MLs in the
two-sublattice approximation. As an example, the SQUID measurements of sample 990608 are transformed.
The fits in Fig. 9.1 are according to the bilinear-biquadratic formalism with fourfold anisotropy. In this model
the field-independent energy density per unit area® is:

B K
0% = Jcos 20 + - cos 49 F gtpe cos 4. (9.5)

We plot the data in units of saturation moment.
2This is exact result for the trilayer case and a good approximation for MLs with finite stacking.
3_K: easy direction, +K: hard direction.
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Figure 9.1: Inversion of the SQUID magnetization curves of sample 990608 (Fig. 3.2) to energy versus angle in the
two-sublayer model. The easy and hard direction loops are shifted for clarity. The lines are fits by the two-sublayer
bilinear-biquadratic model with fourfold crystal anisotropy.

An appropriate fitting function for the above equation is: f() = ag + a1 * cos 2 4+ az * cos 4. From the
fits the easy and hard direction parameters (a, a$, a?, a%) may be obtained. As only the first term of the
right-hand side of equation (9.5) is a function of cos2d, we map it to a;. Also we found that a§ ~ af, as
it should be. From the combination of the ay terms one may get the biquadratic and anisotropy terms too:
ah —a§ = K/4, ak + a5 = B/d. As shown in in Fig. 9.1 the fit is worse at the low-angle region, which is
the closest to saturation part of the magnetization cycle. By applying new fitting functions, the energy curves
could be fitted better.

9.2 Distribution inversion

If a ML has only broadly distributed bilinear AF coupling then it is possible to deduce the distribution of
saturation field wg,g (H) from the magnetization loop by the following formula:

weas (H) = —HM" (H). (9.6)

Interpolating the measured magnetization data by analytical functions the distribution w will be also smoother.
To check the process of inversion one can integrate w. The easy-direction VSM loop of sample 990608 was
fitted as an example. In our particular case the fitting function was composed of two parts:

fi(x) = ag tanh(boz) + a1 tanh(byz) + ag tanh(bex) + a3 tanh(bsx),

fa(z) = hsin(nz) exp(—nqz?).

The constants were fitted with gnuplot? first fitting with f; then the remaining error was minimized by intro-
ducing f» and fitting it. The derivatives and second derivatives were calculated by maple® and introduced into
gnuplot to produce the distribution plot (Fig. 9.2). We used octave® to integrate the result. The resulting dis-
tribution is shown in Fig. 9.2. Note that the above calculation works strictly in the case when only bilinear

AF coupling is present. If other coupling terms, anisotropies are also present then the transformation will lead
wrong result.

4http://www.gnuplot.info/
Shttp://www.maplesoft.com/products/maple/
Shttp://www.octave.org/
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