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Chapter 1IntroductionNanotechnology is one of the research priorities of present-day industrial societies. The vastamount of emerging applications of possible miniaturization was predicted by Richard Feyn-mann already in 1959 in his famous lecture, "There's Plenty of Room at the Bottom". Inour days, the potential bene�ts of nanotechnology in information technology, advanced man-ufacturing, medicine and health, transportation, environment and energy industry, etc. areenormous.Giant Magnetoresistance (GMR) [1] is also based on nanotechnology, in particular on thinmagnetic �lms. GMR has made its way to applications [2] like magnetic sensors, spin valves,spin-tunneling junctions and the magnetic random access memory (MRAM). The underlyinge�ect, viz. the antiferromagnetic (AF) coupling of magnetic layers was discovered in 1986by Grünberg et al [3]. The trilayer consisted of ferromagnetic Fe layers sandwiched by Crspacers. Despite the fact that AF coupling was found in many multilayer (ML) systems, Fe/CrMLs certainly belong to the most investigated ones. This is partly due to the still not fullyunderstood coupling behaviour of this system.Another aspect of the AF-coupled MLs is their domain structure. In contrast to ferromag-netic �lms and structures in a strongly AF-coupled ML, the stray �eld of the domains is inlarge compensated thus other forces may in�uence the appearance of the domains. This is alsoobvious from the comparison of the patch-like AF domains to the characteristic ripple domainsof ferromagnetic thin �lms. Formation of patch domains is mainly governed by �uctuationsof the AF coupling resulting in a lateral distribution of the saturation �eld. The seeminglysmall e�ect of external �eld believed to prohibit the manipulation of the AF domains [4]. How-ever, one may wish to control the domain size, a parameter profoundly in�uencing the noiseof magnetoresistive devices.The phase diagram of AF-coupled MLs with di�erent phenomenological (mainly biquadratic)coupling terms and magnetic anisotropies still holds new phenomena in store to describe. Forexample, in a very recent article [5] J. Meersschaut et al. reported on experimental evidences1



CHAPTER 1. INTRODUCTION 2of the hard-axis spin-reorientation transition, a phenomenon also discussed in the present work(2.6). This transition may exist in AF-coupled Fe/Cr MLs with fourfold in-plane anisotropy.Not too many papers have been published so far on the morphology of AF domains, due tothe di�culties in direct visualization of these compensated objects. Therefore indirect methods,�rst of all those based on photon and neutron scattering, play an indispensable role in studyingdomains in AF-coupled multilayers. Scattering techniques often deliver valuable informationabout AF domains. For example, the �rst experimental evidence of the rapid growth of the AFdomains during the bulk spin �op transition was discovered by our group using SynchrotronMössbauer Re�ectometry (SMR) and Polarized Neutron Re�ectometry (PNR) [6].In the �rst part of this work an introduction is given to the phenomenological modelsof AF-coupled MLs. The e�ects of �nite stacking, anisotropies and di�erent coupling termsare discussed. Phase diagrams are calculated for MLs with fourfold anisotropy. After thetheoretical introduction, the Fe/Cr ML is presented. The structure and the magnetization ofthe sample are �tted with various experimental techniques. An extended bilinear-biquadratic(BB) model was developed to �t the magnetization loops. The main aim of the work was tocoherently describe the phase and domain transitions of the AF-coupled ML. For this purpose ashort introduction to the momentum space and the applied methods (SMR and PNR) is given.Two �rst-approximation theories for domain ripening are also presented. Direct evidence of thebulk spin �op transition is given and, in the �nal part of this thesis, the domain measurementsare discussed.AcknowledgementsIt is almost impossible to thank all people, who helped this work during the past seven years.The author would like �rst to thank Dénes Lajos Nagy for supervising the PhD work, forpointing out the problems to attack and for the critical review of the manuscript. The authoris also grateful to László Bottyán for the inspiring discussions during the PhD period. Thankgoes to the colleagues in the institute (László Deák, András Kocsonya, Ferenc Tanczikó andEdit Szilágyi) for measurements and academic discussion. The half-year-long stay at the IKSLeuven, Belgium under the supervision of Johan Meersschaut gave the opportunity to learnthin �lm growth and characterization techniques. The Fe/Cr sample investigated in this workwas also produced in Leuven. Important magnetic characterization was done by László Kiss(SQUID, MTA SZFKI) and by Johan Swerts (MOKE, IKS Leuven) on the above-mentionedsample. We are grateful for the immense help in the ESRF experiments for the members of theNuclear Resonance Group, in the �rst place to Rudolf Rü�er and Olaf Leupold. No neutronexperiments at JINR Dubna would have been possible without A. V. Petrenko's help. Thefriendly atmosphere in the Dubna neutron re�ectometry group and discussion with Yu. V.Nikitenko also contributed to the success of this work.This work was partly supported by the European Community under the Speci�c Tar-



CHAPTER 1. INTRODUCTION 3geted Research Project Contract No. NMP4-CT-2003-001516 (DYNASYNC). Support by theFlemish-Hungarian bilateral Project No. BIL98/20 and Projects No. T 029409 and T 047094of the Hungarian Scienti�c Research Fund (OTKA) are gratefully acknowledged. The author isthankful to ESRF and JINR for the allocated beam time. Support of the Hungarian Academyof Science trough the HAS-JINR Cooperation Fund for neutron measurements is appreciated.The �nancial help of the Hungarian Synchrotron Committee is also acknowledged.Finally the author would like to thank his lowing wife for her in�nite patience and wouldlike to dedicate this book, and his future spare time to her and her son.



Chapter 2Energy terms and phase diagrams
2.1 IntroductionThe building block of the described magnetic MLs (Fig. 2.1) is the layer, which is in�nite inthe x � y plane of the sample and a few monolayers thick in the perpendicular z direction.The phenomenological description of the coupled MLs involves `classical magnetic moments'associated to each magnetic building block. The investigated physical behavior of such a MLis mainly due to the so-called `spacer layers', which may cause an interlayer coupling betweenthe magnetic layers.PSfrag replacementsM=MsH=Hs #0#1xyz H
Figure 2.1: Sketch of a ML. The individual layers are a few atoms thick in the z direction, whilemacroscopic in the x� y plane. On the right the coordinate system of the two-sublattice model (seelater) is shown.The energy of such a model system per surface unit area is [7, 8]:%E = n�2Xi=0 Ji;i+1cMicMi+1 + n�2Xi=0 Bi;i+1 �cMicMi+1�2 + n�1Xi=0 Ai �cMi�� �0H n�1Xi=0 Midi (2.1)where the magnetic layers (total of n) are numbered starting with 0,Mi is the magnetizationof the given layer i (the spacer layers being taken into account only by the J coupling constant),cMi =Mi=Mi, di are the layer thicknesses, Ji;i+1 (Ji;i+1 > 0; 8 i) are the AF coupling constants,4



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 5Bi;i+1 (Bi;i+1 > 0; 8 i) are the biquadratic coupling constants, Ai are the in-plane anisotropyterms being function of the magnetization direction, H is the external �eld and �0 = 4� � 10�7Vs/Am is the permeability of free space. All magnetization vectors are assumed to lie in theplane of the sample (the x� y plane), thus the unit vector cMi can be written ascMi =  cos#isin#i! (2.2)where #i is the angle between the x-axis and the i-th layer magnetization vector.Equation (2.1) conforms to the SI units. From now on, we will use a slightly modi�ed-SIsystem in the sense that the quantity �0H will be called external �eld, will be denoted by H,but will be nevertheless measured in tesla. Furthermore, except when noted, all calculationswill be performed in the lab system1 and with the external �eld pointing along the x-axis(#H = 0). Finally we introduce ~Mi =Midi. With the above comments we can write:%E = n�2Xi=0 Ji;i+1 cos (#i+1 � #i) + n�2Xi=0 Bi;i+1 cos2 (#i+1 � #i)+n�1Xi=0 Ai �#i; #Si ; #S��H n�1Xi=0 ~Mi cos (#i � #H) : (2.3)Note that in the following for shorthand we omit the tilde from ~M , but still mean layer magne-tization times layer thickness.2 The above model function is a `single domain' approximation,in-plane domain formation and thus hysteresis of this kind is not described by the model.In a typical measurement the material parameters (coupling and anisotropy terms) are �xedand a derived quantity of %E is measured. Mostly the net magnetic moment Mnet is measuredas a function of the magnetic �eld H. To reproduce the hysteresis curves we minimize (2.3)for each H numerically, then calculate the simulated result of the measurement from theequilibrium values. In the following the discussion of the energy terms will be developedstarting from the simplest model.2.2 Pure antiferromagnetic couplingIn case of pure bilinear AF coupling with no additional anisotropy terms,3 the trilayer (ortwo magnetic layer) model and the in�nite layer model can be treated analytically. Due tosymmetry considerations (the bilinear term depends only on the angle di�erences), we may1This implies that the anisotropy term may depend on the orientation of the sample #S. #Si in (2.3) notesthe possible misalignment of a layer's anisotropy compared to #S.2Or equivalently layer magnetic moment per unit area.3In the trivial case of uncoupled layers with no anisotropy the magnetization will be always parallel to theapplied external �eld.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 6align the external �eld arbitrarily. For the ease of description we choose #H = 0Æ. Also weintroduce a scalar H �eld allowing for H < 0 values which is equivalent with #H = 180Æ in thevector picture.2.2.1 Two magnetic layersMagnetic �lms on both side of a non magnetic layer makes the simplest ML, the trilayer. Ourfocus is on compensated AF coupled MLs, thus we will set equal magnetic moments for thetwo layers (M0 = M1 = M):%E (H) = J cos (#1 � #0)�HM (cos#0 + cos#1) : (2.4)In (2.4) the coupling term depends only on angles between the layers, thus the net magneticmoment should be parallel with the external �eld. This condition implies that #0 = �#1. Wewill call the independent angle # = #0 in (2.4):%E (H) = J cos 2#� 2HM cos#: (2.5)To get the energy minimum of (2.5), the zero derivatives of angles with positive second deriva-tive should be found. Calculating the derivative will lead to:@%E@# = �2J sin 2#+ 2HM sin# = 0 ) (2.6)�4J sin# cos #+ 2HM sin# = 0) 8<:sin# = 0 ! # = 0Æ�4J cos# + 2HM = 0 ! cos# = HM2J (2.7)It is easy to verify that above the saturation �eld Hs = 2JM , the # = 0Æ solution will beenergetically favourable, while below saturation the net magnetic moment per unit area of thetrilayer depends linearly from the external �eld in the range �Hs � H � Hs:Mnet (H) = 2M cos# = HM2J : (2.8)In the saturation regions, Mnet = �2M .The energy of the system is parabolic in the unsaturated region and linear, when saturated(see Fig. 2.2): %E (H) = �J  1 + 12 �HMJ �2! , if jHj � Hs (2.9)%E (H) = J � 2 jHjM , if jHj > Hs (2.10)
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Figure 2.2: Energy per unit area (left side) and normalized net magnetic moment (right side) of anAF coupled model trilayer (J = 1=2 J=m2 and ~M = 1 A) as a function of reduced external �eld.Finally, it is worth noting that the number of independent parameters in the above modelis one. The direction of the layer magnetizations as well as the energy and the net magneticmoment depend only on h0 = HM=J . The modi�cation ofM and J rescales the magnetizationloop, but the independent parameter is the normalized external �eld h0.2.2.2 Two-sublattice modelThe trilayer was the smallest representation of the magnetic MLs, while a ML with in�nitenumber of layers is located on the opposite end of the spectrum. The usually used model of thein�nite stack is a �nite ML with periodic boundary conditions (i.e. the �rst layer is assumedto be identical with the last one). The simplest of those models is the two-sublattice model.Care should be taken when mapping the two-sublattice model to the trilayer as due to theperiodic boundary condition the coupling terms will double. We note the quantities of thetwo-sublattice model with 1, for example the saturation �eld will be H1s .2.2.3 Finite number of layersThe majority of MLs are neither trilayers nor in�nitely stacked but belong to the class ofMLs with `�nite stacking'. For this arbitrary magnetic layer number (2.3) can be minimizednumerically. The freedom of the `dangling' end layers due to their asymmetric coupling resultsin often neglected e�ects that we call `�nite stacking' e�ects. The consequences on the netmagnetization (Fig. 2.3) are minute, but may well be seen by depth-selective methods (Fig. 2.4)as the deviation from the bulk is strongest in the �rst few layers.4 A comprehensive theoretical4Anisotropy and biquadratic coupling may suppress �nite-stacking e�ects.
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Figure 2.5: Field dependence of an n = 100 layer AF-coupled ML. The dots are showing the directionof the layer moments, the rods and circles are guides to the eye. For better viewing layers n = 0� 3(on top), 10, 20, 30: : : and n = 98; 99 are marked by rods. The �eld value is normalized to the n =1two-sublayer saturation �eld. The external �eld was applied along the x-axis.
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a)b)Figure 2.6: The region where the central layers (i = n=2) are in the bulk position. Line type arepresents the regions where the angle di�erence of the central layer compared to the bulk value isless than 1Æ while in the b case the threshold is 10�4 rad ( 6 � 10�3 deg). Note that for a short regioneven n = 4 (bottom line) the central layers (i = 1; 2 in this case) are in bulk position. From theexperimental point of view (line type a) for n > 30 the central layer is always in the `bulk position'.proportional to 1� 1=n. This would give 75% and 83% for n = 4 and n = 6, respectively. Thedi�erence still exists for larger stacks. For example in the case of n = 20 numerical calculationyields 99.3%, while Parkin's formula gives 95%.As mentioned in the beginning of this subsection, the e�ects of �nite stacking are oftenneglected when evaluating measurements on MLs. To our knowledge the �rst direct experi-mental evidence for a non-homogenous canting angle due to �nite stacking was published in2002 by Lauter-Pasyuk et al. [13]. They utilized polarized neutron re�ectometry on AF cou-pled Fe/Cr MLs and took into account the specular and di�use scattering to estimate themagnetic con�guration (both plane-perpendicular and plane-parallel).2.2.4 Distribution of the parametersIn an ideal ML all layer magnetizations and couplings are equal to each other (8 iMi =M; Ji =J). When describing real MLs, di�erences can occur in the plane of the sample (x � y) andperpendicularly (along the z-axis). The plane-parallel variation in layer thickness8 gives riseto �uctuations in Ji = Ji (x; y) and Mi = Mi (x; y) a possible cause for domain formation (seelatter). Even if Ji does not depend on (x; y) due to the growth process the global parameters8Caused by roughness for example.
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9The AF coupling is `linear', thus even with the Ji and Mi distribution the saturation �eld is well de�ned.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 142.3 Additional coupling termsSoon after the discovery of AF coupling in Fe/Cr MLs a magnetic con�guration caused bybiquadratic coupling10 was found by M. Rühriget al. [17]. The possible cause and phenomeno-logical description of the canted coupling is still an open �eld of research. According toJ. C. Slonczewski [18], the origin of the biquadratic coupling is extrinsic, i.e. it is relatedto the actual parameters (thickness �uctuations of the spacer, step density etc.) of the ML. Incontrary, J. Barna± attributes the biquadratic coupling to intrinsic mechanisms [19, 20]. Themain di�erence between the two argumentation is that in the �rst case the AF coupling withthe thickness �uctuation produces the biquadratic coupling, while in the second case the bi-quadratic coupling is present for atomically �at interfaces too. The controversial origin [21]does not a�ect the `everyday' use of the bilinear biquadratic formalism for magnetization �t-ting. For the case of weak AF coupling other phenomenological models were also proposed(see latter).2.3.1 Biquadratic modelThe experimental observations of M. Rühriget al. [17] could be described by a biquadratic cou-pling, which aligns the neighbouring moments perpendicularly to each other. It can be observedbest, when the bilinear coupling is small or vanishing but it can a�ect the global magnetizationeven in the case of strong AF coupling. The microscopical origin of the biquadratic coupling isstill much debated. It is related to di�erent mechanisms in di�erent systems, at di�erent tem-peratures and di�erent spacer thicknesses (see for example [18�27] and references in [19, 25]).The energy per unit area of a trilayer with pure biquadratic coupling is:%E (#) = B cos2 2#� 2HM cos#; (2.11)Where # is the angle from the direction of the external �eld (the x-axis) and B > 0 is thebiquadratic coupling constant.11 The �rst derivative of the (2.11):@%E@# = �2B sin 4# + 2HM sin# = 0 (2.12)From this follows: �8B sin# cos # cos 2#+ 2HM sin# = 0: (2.13)There are two cases. Either sin# = 0! # = 0Æ or�4B cos # cos 2#+HM = 0! 2x3 � x� HM4B = 0: (2.14)10The coupling angle was found to be 90Æin remanence.11The two moments should align symmetrically to the external �eld to minimize the energy. The couplingdepends on angle di�erence that is the source of 2#, while both moments couple equally to the external �eld.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 15We used x = cos# for shorthand.Following the derivation of the bilinear case, here again should be an external �eld valueHs above which the # = 0 is the energy minimum, the forced parallel order. Let us examinethe second derivative at # = 0! @2%E@#2 = �8B + 2HM > 0 (2.15)Thus at all H > Hs # = 0 is stable were Hs = 4BM . Below saturation one could solve the thirddegree polynomial in cos#, but it is easier to use numerical minimization.12 The two-sublatticeor in�nite model can be derived from the trilayer by setting B0 = 2B similarly to the bilinearcase. For in�nite number of layers Hs = 8BM : (2.16)At zero external �eld (H = 0) the system prefers the 90Æalignment, which means # = 45Æ.The canted state in remanence causes a jump in the magnetization when the sign of theexternal �eld is changed. The further analysis of the pure biquadratic coupling could be donesimilarly to the bilinear case, but our interest is strongly AF coupled MLs13 with a possiblesmall biquadratic coupling, thus we skip this analysis.Bilinear and biquadratic couplingIn the following we will shortly analyze the result of a small biquadratic term added to thebilinear one. Due to symmetry considerations the #0 = �#1 case is taken.14 The energy perunit area to be minimized will be:%E = J cos 2#� B cos2 2#� 2HM cos#: (2.17)The derivative: @%E@# = �2J sin 2#� 2B sin 4# + 2HM sin# = 0: (2.18)It is easy to see that # = 0 is a solution of (2.18). The stability condition is:@2%E@#2 j#=0 = �2J cos 2#� 4B cos 4# +HM cos # = �2J � 4B +HM > 0: (2.19)Thus the saturation �led is equal to Hs = (2J + 4B) =M . The H(M) curve is again a solutionof a third-degree polynomial. In case of strong bilinear coupling (J > 2B) the behaviour ofthe trilayer is similar to that of the pure bilinear case, as we will demonstrate in the following.12In a more general case J is also present leading to di�cult � but still analytical � results.13Strong compared to the crystal anisotropies.14In case of crystal anisotropies, the symmetry can break-down, allowing for non symmetric `L-shaped'con�gurations.
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CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 17We will follow the argumentation of Demokritov et al. [29] to show that for the ML weinvestigated the pinholes could not play a major role. In our particular case the � 13 Åof Cr spacer corresponds to 9 ML of Cr. The interface roughness was found by low angleX-ray re�ection to be around 1 ML (see Table 5.2). For this roughness value according toDemokritov et al. [29] with a Gaussian �t no pinholes should be present (the probability ofpinhole forming is � 2 � 10�10. If we assume a symmetric roughness of 2 MLs, the pinholeformation probability will be � 2 �10�4. The formation mechanism of pinholes is, of course notso trivial thus we can give only approximations for the pinhole density based on magnetizationmeasurements. In conclusion, pinhole formation is possible, but in our particular case thepinhole density is very small.The e�ects of the surface roughness and pinhole formation on Fe/Cr MLs were investigated byion irradiation [29�33]. As a general conclusion the decrease of AF coupling with increasing dose wasfound. Small doses, however, enhanced the AF coupling [29]. Interestingly the bombardment hadalmost no e�ect on the X-ray re�ectivity curves of the MLs [30]. Also enhancement of the biquadraticcontribution was found in some cases [32].2.3.3 Proximity modelJ.C. Slonczewski proposed a simple heuristic model [18], which is in some sense a generalizationof the biquadratic model. The coupling energy term of the proximity magnetism model isEc = C+ f�#g2� + C� f�#� �g2� (2.22)where �# = #i�#i+1 the angle di�erence between neighbouring magnetic layers, C� (� 0) arethe coupling coe�cients and f'g� is the �normalized angle di�erence�, which means adding ofmultiples of 2� to ' while j'+ n � 2�j � � is satis�ed (n 2 Z). This new ' + n � 2� value isf'g�.The coupling coe�cients C+ and C� in eq. (2.22) are the ferromagnetic and AF couplingstrengths, respectively. In a general case, when both coe�cients coexist, the coupling favoursa non-collinear alignment. In the special case of C+ = C� we get back the perpendicularmagnetization alignment.The simple model of eq. (2.22) is based on the assumption that the AF spacer is polarized by theneighbouring ferromagnetic layers and only a small angle deviation occurs between consecutive atomicplanes in the AF spacer thus the description including the �rst (quadratic) energy term is adequate.The main advantage of the proximity model the prediction of an asymptotic saturation behaviouroften observed in Fe/Cr MLs.1515Models with biquadratic coupling predict a well-de�ned saturation �eld.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 182.3.4 Spin-Density Wave (SDW) modelThe role of the spin-density wave (SDW) within the Cr spacer of Fe/Cr tri- and MLs hasbeen the subject of controversy since the �rst discoveries of AF coupling and giant magne-toresistance. For a critical review see [25]. Recently, based on a self-consistent model takinginto account the SDW of Cr a theoretical model function was given by V. N. Men'shov andV. V. Tugushev [34, 35]. Ec / ��� cos �#2 + (1� �) sin �#2 � (2.23)where �# = #i�#i+1 is the angle di�erence of neighbouring magnetic layers, � is the fractionof the spacer fragments containing an odd number of Cr monolayers. The above result isvalid in the limit of low density of steps,16 while in the high density of steps and � = 1=2the previously introduced bilinear-biquadratic formalism is regained. The coupling describedby (2.23) is also called half angle coupling [37]. Equation 2.23 is valid only at H = 0, as theapplied external �eld can change the type of the SDWs [38], which was not investigated. Theother limiting parameters are the Cr layer thickness, which should be at least 30� 40 Å andthe temperature of the measurement, which should be higher than 300� 350 K [38].The SDW model in the low step density limit also gives non-collinear coupling in remanencewith a non-trivial angle depending on �.
2.3.5 ConclusionsAs could be seen from the previous part, the interpretation of magnetization measurementson Fe/Cr MLs is not a trivial task. The growing number of theoretical models show thedi�culties of the phenomena. We have to note, however that only the bilinear-biquadraticformalism with strong bilinear coupling gives a collinear AF alignment in zero external �eld,while in the general cases the other models would predict canted states for remanence. Thepreviously described models give a di�erent magnetization �eld history, which can be checkedfor comparison with experimental results.17 Finally we would like to note that other couplinge�ects are still possible, see for example the e�ect of the dipole coupling [39].1816Even for smooth interfaces further energy corrections may occur [36], which will not be treated in thiswork.17According to N. M. Kreines et al. [37] the proximity-magnetism model and the half-angle-coupling modeldescribe equally well a given set of Fe/Cr MLs. This is related to the fact that the energy functions of the twomodels are numerically very close to each other. We think that this could be true for special cases.18In [39] numerical calculations were made on two magnetic layers separated by a nonmagnetic spacer.Depending on the correlated roughness (corrugation) ferromagnetic or AF like coupling was obtained.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 192.4 Global versus local energy minimizationAnother aspect of our investigations is the `local' nature of energy minimization. The numericalmodels used in the literature are `single-domain' models, rendering one vector to each magneticlayer thus the e�ects of domain formation (for example hysteresis connected with domainwall motion) cannot be taken into account. By using the single domain energy function theequilibrium state of a coupled ML can be found. Changing the external �eld, the evolutionof the system along local minima can be traced. In some cases more than one stable statewith local energy minimum exists, in this case the global minimum is the one with the lowestenergy. As was noted by Dienyet al. [40, 41] the local and global minima are the borders,which envelope the real behaviour of the ML.The energy minimum of the purely AF coupled ML is unique, thus always global (seeSection 2.2). Not counting the geometrical degeneracy, there is only one con�guration for eachexternal �eld, which one can calculate analytically for trilayers, or numerically for MLs. Byintroducing crystal anisotropies to the system, the situation will change. In the following wewill take a short glimpse on the e�ects of anisotropies,19 mainly in the view of the local/globalminimum approximation. To have an even simpler picture for demonstration purposes, we areinvestigating a single magnetic layer.2.4.1 Uniaxial anisotropyMagnetic anisotropies in the case of ferromagnetic layers may have various forms dependingon the orientation of crystal planes and the epitaxy of growth. For demonstration, we take theuniaxial anisotropy, which can be described with the following energy function:%E = �U cos 2 �#� #S��HM cos# (2.24)The uniaxial anisotropy has one easy axis set by #S, while the perpendicular axis is the hardaxis (U > 0). To understand the above-described system better, let us take some special cases.Easy directionNow #S = 0 thus in this case: %E = �HM cos#� U cos 2# (2.25)19The anisotropies a�ect the behaviour of the coupled ML system. If the coupling is strong compared tothe anisotropies, we will still have a behaviour resembling the one described in the previous section. If theanisotropies are strong, then the magnetic moments are forced in the easy directions of the anisotropy, resultingin discontinuous jumps [8].



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 20The �rst derivative should be zero:d%Ed# = HM sin# + 4U sin# cos# = 0 (2.26)Case a): sin# = 0 ) # = 0Æ or 180Æ. First we examine # = 0Æ. Let us see if this is a stableminimum: d2%Ed#2 > 0) HM cos# + 4U cos 2# > 0 (2.27)and # = 0) HM + 4U > 0) H > �4UM (2.28)For # = 180Æ the same applies: �HM + 4U > 0) H < 4UM : (2.29)Case b): # 6= 0. HM + 4U cos # = 0 ) cos # = �HM4U (2.30)But is (2.30) a local minimum? Calculating the second di�erential of (2.27):HM cos# + 4U cos 2# = 4U �HM4U cos# + �cos2 #� sin2 #�� = (2.31)(substituting cos# from (2.30))= 4U �(� cos#) cos# + 2 cos2 #� 1� = 4U �cos2�1� : (2.32)Because cos2 < 1 for # 6= 0 and U > 0, case b) de�nes a maximum. In other words, in thecase of uniaxial anisotropy and easy direction magnetization the layer magnetization can beparallel or antiparallel to the external �eld, but not canted. In zero external �eld we havetwo equilibrium positions (0Æ and 180Æ), while in increasing external �eld the two minimaare shifted relative to each other. The parallel minimum gets deeper, while the antiparallelminimum shifts up in energy (by the �HM cos# term) to the border point de�ned by (2.29)and then ceases to be a minimum. In consequence, in the local-minimum approximation wewill have a hysteresis loop, while in the global-energy approximation there appears a jump atzero external �eld (Fig 2.11). The magnetization of a real system will be always between thosetwo extrema. For a thorough description of trilayers with di�erent anisotropies we refer to thework of Dieny et al., where the authors compared the local [40] and global [41] energy pathsfor AF coupled trilayers and MLs with cubic (fourfold) and uniaxial anisotropy.
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Figure 2.11: Magnetic layer with uniaxial anisotropy, easy direction. Global and local energy mini-mization. The arrows are representing the magnetic moment of the layer.Hard directionNow #S = 90Æ thus the energy will be: %E = U cos 2# �HM cos #. We can repeat the abovediscussion with �U instead of U (U > 0). Now in case a) H > 4U=M for # = 0Æ and # = 180Æis stable for H < �4U=M , while for the external �elds between case b is the stable minimumwith cos# = HM=4U , which is the global minimum. If we take the parallel component of themagnetization versus the external �eld then we have the `well-known' linear behaviour. Therole of the uniaxial anisotropy in the hard direction is similar to the bilinear coupling of atrilayer, as the energy function is similar. In conclusion, in hard direction we have only oneenergy minimum (no hysteresis) and a well-de�ned saturation magnetization value.45Æ alignmentFinally we investigate a third case, when #S = 45Æ. Substituting this value to (2.24):%E = �U sin 2#�HM cos# (2.33)d%Ed# = �2U cos# +HM sin# (2.34)Equation 2.34 can be solved for sin#, and the investigation of the minima/maxima can bedone as previously. The resulting local and global magnetization curves are shown on Fig 2.13.Here we would like to comment on the asymptotical nature of saturation. From (2.34) it iseasy to see that only for H ! 1 will be # = 0Æ because for # = 0Æ d%E=d# = 2U and not 0!
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Figure 2.12: Uniaxial anisotropy of a single layer in hard direction. The arrows are representing thecanting of the magnetic moment.The anisotropy term has no extremum at # = 0Æ but a maximal slope thus the place of theenergy minimum (parabolic + `slope' as a �rst approximation) will depend from the �eld H,resulting in asymptotic saturation.From the above short section we have learned the di�erence between local and global energyminimum traces. From the intermediate orientation (45Æ) we have concluded that the `normal'behaviour of the systems is the asymptotic saturation, and only exact alignment along specialdirections (maxima and minima of the anisotropy) gives well-de�ned saturation �eld values.The hysteresis in local minimum approximation is also typical for the anisotropy term, missingonly in special cases.2.4.2 Fourfold anisotropyIn this thesis we are focusing on MLs of fourfold anisotropy. We shortly summarize the an-alytical results for this case based on the calculations presented in the previous section. Theenergy function in this case:%E = �HM cos #� K8 cos 4 �#� #S� : (2.35)Easy directionThe fourfold anisotropy has four easy directions located along two perpendicular easy axes.In global energy minimum the easy magnetization is a `saturation-to-saturation' anhysteretic
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Figure 2.13: Uniaxial anisotropy of a single layer in the 45Æ direction.loop. In local energy minima, depending on the starting conditions, di�erent con�gurationsmay exist. In the traditional magnetization loop (positive saturation to negative saturation)the obtained hysteresis loop will be very similar to the uniaxial case. The magnetizationparallel to the external �eld in saturation will �ip only when the local minimum ceases to bea minimum. It is easy to show that the saturation �eld is equal to Hs = � (2K) =M .If we prepare the magnetization in remanence for example by rotating the sample, thendi�erent scenarios may occur. For example, by turning the sample by 180Æ we can get backthe `global' loop but more importantly, by turning 90Æ the magnetization starts from a per-pendicular axis.20 Now the magnetization will be dragged by the external �eld resulting incontinuous rotation towards the hard direction and a sudden jump to 0Æ, when the Zeemanterm competes with the anisotropy barrier. The jump will occur whenHM sin# + K2 sin 4# = 0 (2.36)HM cos#+ 2K cos 4# = 0 (2.37)Equation 2.36 sets the local extremum (or in�ection point), while (2.37) shows the end ofthe local minima. Substituting sin 4# = 4 cos 2# cos # sin# and assuming # 6= 0 we get thefollowing equation: cos 2# cos2 # = cos4#. Solving this equation graphically and taking intoaccount the position of the minima we get #crit = 65:9Æ and Hcrit = 0:544KM . In H=Hs unitsHcrit = 0:272. The resulting magnetization loop is displayed in Fig. 2.14.20This con�guration will get practical importance when we combine the anisotropy with the AF coupling, asthe AF coupling prefers the perpendicular-to-�eld axis in remanence.
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Figure 2.14: Theoretical magnetization loops of a single layer with fourfold anisotropy in the easy axis.Hard directionThe global-minimum loop in this case will start from an easy direction in remanence andsaturating at the hard axis parallel to the external �eld. The loop goes smoothly as the moment`climbs' the top of the anisotropy-energy barrier. The only jump will occur at remanence, whenthe spin �ips by 90Æ. If we take a local-minimum loop then a small hysteresis will occur inthe middle due to the fact that the moment cannot jump to the `towards-the-�eld' preferredminimum. The magnetization loops are presented in Fig. 2.15. The critical �eld and angle isthe same as for the easy 90Æ alignment as the same equations have to be solved.21Finally we would like to note that the fourfold anisotropy case is similar to the uniaxaial inthe sense that if we are not pointing exactly along an extremum of the crystalline anisotropy,then the magnetization will saturate asymptotically.2.5 Bulk-spin-�op transitionAs already noted, the measured magnetization of a real ML will be between the global and localenergy limit. The global energy minimum curve corresponds to the an-hysteretic magnetizationprocess involving no dissipative energy terms. In local minimum approximation, the systemcan only jump to a new minimum if the actual one cancels to be a minimum, no energy barriercrossing is permitted. The transition called `bulk spin �op' (BSF) is a typical example of theglobal vs. local behaviour of a real ML.21Equations (2.36) and (2.37) only the sign of K is changing (+K ! �K).
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Figure 2.15: Theoretical magnetization loops of a single layer with fourfold anisotropy along a hardaxis.In two-sublattice bulk antiferromagnets with uniaxial anisotropy two stable spin con�gu-rations exist. At low external �eld the anisotropy forces the spins into the easy axis (paralleland antiparallel alignment), while at high �elds the moments are perpendicular to the �eld,forming a <-like shape. In global energy minimization a �rst order transition (spin �op) oc-curs when the �eld is increased trough the critical �eld value Hsf predicted by Néel (see forexample page 388 in [42]).In case of fourfold crystalline anisotropy22 the parallel/antiparallel and perpendicular AFcon�gurations have the same energy in zero external �eld. Applying the �eld along an easyaxis, the perpendicular AF state has a lower energy, thus in global energy calculation theparallel/antiparallel state is unstable. In local energy calculation, however the latter state willbe an energy minimum for a while, setting an upper limit to the Hsf value. For AF-coupledMLs the BSF transition was observed by polarized neutrons by K. Temst et al. [43].The history of the spin-�op phase in thin �lms starts with the discovery of the Fe/Cr AFcoupling. In the famous paper of Grünberg et al. [3] the authors show that �..not only [...] themagnetization of the two Fe �lms is antiparallel but also that it is perpendicular to the smallexternal �eld. This is in complete analogy to the spin-�op phase of an antiferromagnet�. Theyused single crystal (epitaxial) Fe/Cr trilayer with fourfold in-plane anisotropy. Later Parkinet al. [12] showed on polycrystalline Fe/Cr MLs by polarized neutron re�ectometry that theinitially randomly oriented domains turn to arrangement of �90Æ from the applied �eld.In this work we will use the term `bulk spin �op' (BSF) to refer to the transition of magnetic22This is the case for Fe/Cr(100) as a result of the projection of the cubic anisotropy to the (100) plane.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 26moments (`spins') from one easy direction to the perpendicular one of the fourfold in-planeanisotropy. We will use the following energy density per surface area for the system:%E = n�2Xi=0 Ji;i+1 cos (#i+1 � #i) + n�2Xi=0 Bi;i+1 cos2 (#i+1 � #i)+n�1Xi=0 ~K1i cos2 (#i � #K) sin2 (#i � #K)�H n�1Xi=0 ~Mi cos (#i � #H) : (2.38)Where ~K1i = K1i di and ~Mi = Midi (di is the thickness of layer i). The notation of the anisotropygoes according to [44] (p. 130):Fa = K0 +K1 ��21�22 + �22�23 + �23�21�+ : : : (2.39)Where the �s are the direction cosines. In our notation K0 = 0 (a constant will not changethe behaviour of the system � it gives vanishing term in the derivatives). For the investigatedmodels magnetizations are in plane, thus only �21�22 is nonzero. We will use both notations(K1 = K1) whichever is more convenient. If not confusing then the tilde will be omitted from~K and ~M in the following. Note that the anisotropy term in (2.38) can be re-written usingcos2 # sin2 # = 14 sin2 2# = 18 (1� cos 4#) : (2.40)This transformation speeds up the computations, because no square computing is necessary.In this notation J > 0 for AF coupling, B > 0 for the biquadratic coupling. We use #K todescribe the angle of the easy axis and K1 > 0 for the anisotropy term.232.5.1 BSF in a real MLAs mentioned above, the BSF transition is nonexistent in the global energy picture. In a realsystem the layer parameters may vary; here we investigate shortly the possible e�ects.Numerical calculations show that the slight variation of the coupling constants will cause nodramatic e�ect. The magnetization curve will have a somewhat di�erent shape but due to thestill compensated AF stack, the perpendicular alignment is energetically still more favorable.In the case of net magnetic moment (caused by the variation of the layer thickness), the situ-ation is a bit di�erent. In the global-energy picture the net moment will force the system in theparallel/antiparallel alignment at arbitrarily low external �elds. Then, depending on the netmoment, a global spin �op would occur.24 This �op should be always observable, independent23From here on we stick to the bilinear-biquadratic formalism. In the experimental part we will return tothe question of model selection.24In the case of compensated ML the parallel/antiparallel alignment results in a constant energy curve, while



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 27of the �eld history, which was not the case in our measurements. In local-energy approxima-tion a slight variation in the layer magnetizations will not change the already discussed BSFscenario, as the perpendicular alignment is favored by the anisotropy energy barrier. In thefollowing we will return to the ideal compensated MLs.2.5.2 Two magnetic layersEquation (2.38) is valid for �nite number of layers. If we choose n = 2 then we describe atrilayer. To get the in�nite (two-sublattice) model J 0 = 2J should be set.First we calculate the critical �elds for the trilayer, then with the introduction of the newcoupling constant (J 0) the two-sublattice case. From now on all layers are equivalent, thusK1i = K1, Mi = M etc. Also we will examine the easy direction (#K = 0).The requirements of a minimum if two variables are present:0: f 0x0 (P0) = 0; f 0x1 (P0) = 0; (2.41a)1: f 00x0x0 (P0) > 0; (2.41b)2: det �D2� > 0: (2.41c)The derivatives:@%E@#0 = J sin (#1 � #0) +B sin 2 (#1 � #0) + 12K1 sin 4#0 +HM sin#0; (2.42)@%E@#1 = �J sin (#1 � #0)� B sin 2 (#1 � #0) + 12K1 sin 4#1 +HM sin#1: (2.43)The four second derivatives:@2%E@#20 = �J cos (#1 � #0)� 2B cos 2 (#1 � #0) + 2K1 cos (4#0) +HM cos#0; (2.44)@2%E@#21 = �J cos (#1 � #0)� 2B cos 2 (#1 � #0) + 2K1 cos (4#1) +HM cos#1; (2.45)@2%E@#0#1 = @2%E@#1#0 = J cos (#1 � #0) + 2B cos 2 (#1 � #0) : (2.46)In our case, we are interested in the [0;180] minimum25 i.e. #0 = 0; #1 = �=2:D2%E [0; 180] =  J � 2B + 2K1 +HM �J + 2B�J + 2B J � 2B + 2K1 �HM! (2.47)the perpendicular (<-shape) starts as a parabola looking downwards. In the case of net moment the energyof the parallel/antiparallel alignment is linear, thus there is a region where this latter alignment is the globalenergy minimum.25[a; b] := [#2n = aÆ; #2n+1 = bÆ]



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 28The determinant should be positive: 4K21 + 4K1 (J � 2B)�H2M2 > 0. ThusHtribsf = 2pK1 (K1 + J � 2B)M : (2.48)Condition (2.41b): %00E#0#0 > 0 is ful�lled at �eld Htribsf. Note that we are interested in stronglyAF-coupled systems, thus J > 2B. In this case J � 2B + 2K1 +HM > 0 if H > 0 (we startfrom zero external �eld and apply a positive �eld to get the spin �op).At saturation #0 = 0;#1 = 0. Now the second derivative matrix:D2%E [0; 0] =  �J � 2B + 2K1 +HM J + 2BJ + 2B �J � 2B + 2K1 +HM! (2.49)the determinant: (2K1 +HM) (2K1 +HM � 2J � 4B) > 0, thusHtris = 2J + 2B �K1M : (2.50)It is easy to verify that condition (2.41b) is also ful�lled at Htris .2.5.3 Finite number of layersThe trilayer model can be mapped to the two-sublattice model by introducing J 0 = 2J; B0 =2B: H1bsf = 2pK1 (K1 + 2J � 4B)M ; H1s = 22J + 4B �K1M (2.51)In a ML of �nite number of layers the saturation �eld will be close to the H1sat value, howeverthe spin-�op �eld will be the same as for the trilayer model as it will be shown below.First, let us examine the saturation �eld. Here the �rst and the last spins are only `half-coupled' relative to the inner ones, thus they are closing more easily. The computer simulationsshow that the di�erence from the in�nite model is decreasing rapidly with increasing numberof layers.The spin-�op �eld is the same as for the two-sublattice model and can be calculated ana-lytically. This can be shown identically to the proof of A. L. Dantas and A. S. Carrico [45]. Intheir article they used the second di�erential matrix (D2%E) to show their lemma.For two layers it is easy to see from the derivative matrixM2 =  a bb c! (2.52)that the instability occurs when ac = b2. The elements of the matrix are (in our case):



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 29a = J � 2B+2K1�HM , b = �J +2B, c = J � 2B+2K1+HM . They prove in their articlethat for any even number of layers n > 2 the instability will occur at an external magnetic�eld where ac = b2. To do this they quote the matrix for four layers:M4 = 0BBBB@a b 0 0b c� b b 00 b a� b b0 0 b c
1CCCCA : (2.53)Then by transforming the above matrix to an upper triangular form they show that the lastelement of the product is the smallest and it will vanish in a �eld where ac = b2. Thenthey show by mathematical induction that this is valid for the last element of the product fora matrix with two more layers. Thus the spin-�op always starts at the same external �eldvalue independently of the number of even layers. Also the values of the other terms werecalculated. The even-numbered terms (except the last one) converge to �b, while the odd-numbered ones all converge to a. Thus the lemma is valid only for a > 0 and b < 0. The actualdevelopment of the spin-�op is of course dependent on the number of layers. In their derivationthey used uniaxaial anisotropy and no biquadratic coupling. By changing the symmetry of theanisotropy only a constant changes in the derivatives in a given point and the introduction ofthe biquadratic coupling is equal of the change of the AF coupling. The only constraint is thatJ > 2B otherwise b < 0 will not hold. We are interested in strongly AF-coupled MLs, so wewill investigate the region of J > 2B. It is trivial that the a term is also positive at Hbsf,26which in our case equals to Htribsf = 2pK1 (K1 + J � 2B)M : (2.54)In conclusion, the critical �elds of the 2n �nite system (2n is the even number of magneticlayers) are: H2nbsf = 2pK1 (K1 + J � 2B)M ; (2.55)H2ns = 22J + 4B �K1M : (2.56)For K � J H2nbsf � 2pK1 (J � 2B)M : (2.57)

26At Hbsf ac = b2 and c > 0 thus a > 0.



CHAPTER 2. ENERGY TERMS AND PHASE DIAGRAMS 302.6 Hard axis spin reorientationIf we magnetize the AF coupled sample along the hard direction, a new reorientation transition(`�op') will occur [8]. The AF coupling prefers a perpendicular-to-�eld state near remanence,while the anisotropy forces the spins to easy axes �45Æ o� the external �eld. Depending on theK=J ratio the behaviour will follow more the AF or the anisotropy-driven case. The spin-�op�eld may depend on the type of minima we follow. In the global minimum picture it is alwayslower, than in the local minimum case, and in the former case the central AF state alwaysspans a symmetric �eld range and shows a symmetric hysteresis loop, while the latter couldproduce asymmetric range and hysteresis loop. The �nite stacking e�ects are also importantin this case.2.6.1 TrilayersWhen the system is a simple trilayer then we have only two moments (`spins') and thus theresulting phase diagram is also `easy' (Fig. 2.16). The limits of behaviour for an AF-coupled MLare set by the global and local minima paths. When performing a magnetization measurement,usually the loop is done by scanning the �eld from positive saturation to negative saturationand back. When calculating local minimum for such a loop, the middle AF type state mightbe not reached. The resulting phase diagram is show in Fig. 2.17. The di�erent regions canbe separated as follows:1. Small-anisotropy region (K=J < 0:1): The local and global minima paths coincide.This is the AF-coupling dominated region where the crystalline anisotropy turns continu-ously the spins to the 45Æ easy axis close to remanence. No anisotropy-induced hysteresisis present.2. Middle region (0:1 � K=J < 2): The anisotropy and coupling term are of the sameorder of magnitude. The maximal spin-�op �eld is located at H=Hs = 0:222, K=J =0:258. As the anisotropy increases, the spin-�op �eld decreases, both in local and globalpath. In the local minima case (Fig 2.17) the spin-�op reaches Hcrit. = 0 at K=J = 1:4,and decreases further. The asymmetry in the local magnetization loops is anisotropy-induced.3. High-anisotropy region (K=J � 2): Anisotropy dominates. In the local picture thetwo spins move uncoupled.27 In the region K=J > 2:5 parallel alignment of the spinsis possible after the �op, and the `<' phase can jump to '>' phase with no middle AFphase. The global minimum path shows the still existent but diminishing e�ect of theAF coupling. Detailed investigation of this part could help the understanding of weaklycoupled AF MLs.27The consequence of independent alignment is the constant spin-�op �eld of Hcrit = 0:272.
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Figure 2.16: Local and global phase diagram of AF-coupled (J) trilayer of fourfold anisotropy (K)magnetized along a hard axis. In remanence the two spins are antiparallel (AF alignment) along oneeasy axis (see the bottom arrows). As the �eld is increased (along the x-axis of the graph) the phasetransition to the < shape occurs (see top arrows). Taking the local energy path the layer opposite tothe external �eld �ops towards the �eld independently of the AF coupling at large K values, while onthe global energy path the diminishing e�ect of the coupling can be still seen.In conclusion, from the trilayer model (n = 2) we learned that, as expected, there is asmooth transition between the AF-coupling dominated and the anisotropy-ruled regions. Thespin-�op has a critical point at Rc � 0:1K=J . Below Rc the transition is continuous (rotationof the spins), above Rc a �rst order phase transition (spin �op) occurs. For the two-sublatticemodel28 we may conclude that the maximal spin-�op �eld will be at K=J � 0:5.2.6.2 MultilayersThe con�gurational freedom arising from the �nite stacking lowers the equilibrium energyby the introduction of new phases. Depending on the minimization used, di�erent loops arepossible. The detailed analysis of the `preliminary' phase diagram29 (Fig 2.18) yields thefollowing major ranges in the function of the external �eld:1. AF alignment along an easy axis, with small canting. Here the external �eld acts asperturbation, driving the system to a state with the net magnetization close to the perp.easy axis (and 45Æ from the external �eld). This is the region from zero �eld up to theglobal (b) line and in the local minimum scenario up to the �rst line of dots.28To get the parameters of the two-sublattice model, one should substitute J 0 = 2J .29Preliminary in the sense that we have tried to �nd the easiest measures for the description of the complexphase diagram. To analyze all �ops and phase transitions a more thorough study is needed. The situationbecomes even more di�cult with the addition of further coupling terms.
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Figure 2.17: Local and global phase diagram of AF coupled (J) trilayer with fourfold anisotropy (K)magnetized along a hard axis. The external �eld was `scanned' from positive to negative saturation.The AF coupling forces the phase transition from the `<' phase to the AF one near to remanence.The global path is symmetric while, due to the anisotropy barrier, the local loop gets asymmetric atK=J > 0:1. The anisotropy delays the �rst phase transition (local (a)), shifting it to the negativeregion, while the second phase shift (back to the `>' state, local (b)) has an anisotropy-set lower limit(see Fig. 2.16).2. `SSF' phase. In this region very similar phases [5] exist to the surface spin-�op (SSF)transition30 [46]. In the global minimum approximation the ML is separated to twoorthogonal regions by the four middle layers forming a `vertical domain wall'. This phaseis stable up to the �eld denoted by the global (a) line, where the ML switches to the nextphase (`<' phase). In the local energy path discrete jumps (marked by black dots) andcontinuous rotation can be seen. The last spin �ops are located in the region, where thein�nite two-sublattice system would have the transition (1 local) which is a property ofthe SSF transition.313. `<' phase. In this region the anisotropy acts as perturbation and the layers are form-ing the well known `<' phase (the external �eld is oriented along the x-axis). The totalmagnetization is parallel with the �eld and the spins are rotating smoothly up to satu-ration.30The SSF phase occurs when an AF coupled ML with �nite number of layers is magnetized along the easydirection of the uniaxial in-plane anisotropy.31The deeper analysis of the SSF-like phase was not amongst our goals thus it is possible that the phasediagram is not complete. We used the threshold of Æ� > 0:01 to �nd discrete jumps in the local graph, where� was the angle of the net magnetization (measured from the x-axis). For the distinction of global phases� > 0:01 and � > 0:45 limits were set for phase global (b) and global (a), respectively.
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Figure 2.18: Phase diagram of an n = 20ML. The magnetization was swept from zero �eld to saturationalong a hard axis. The local paths were started with a global minimum (AF state along easy directionin remanence). The low anisotropy region K=J � 1 is zoomed, while for the rest 1 < K=J � 10 onlythe local minima jumps and the in�nite two sublayer model results are shown. For description of thecurves see text.After the analysis of the phase diagram along the magnetization axis we investigate the di�erentanisotropy regions. Three parts can be distinguished:1. Small-anisotropy region (K=J < 0:1): The spins from the AF alignment along theeasy axis rotate to the canted AF phase (`<') symmetric to the external �eld. The SSFphase is absent.2. Intermediate-anisotropy region (0:1 � K=J < 2): The SSF region dominates thetransition. The global (a) line approaches the 1 global line showing the diminishinge�ect of �nite coupling as the anisotropy gets higher.3. High-anisotropy region (K=J � 2): The spins are moving `quasi independently',however, due to the �nite stacking, the topmost layer pointing `in the wrong direction'will �op earlier than the rest (which will �op together) producing the lower dotted line inthis region. The �nal jump occurs at the critical �eld of the in�nite two-sublayer model.Global minimization was not calculated for this region.Finally the magnetization loop from positive to negative saturation is simulated in localenergy approximation. Now the details of the spin-�op are not shown, only the two phase-border lines (Fig. 2.19). Starting from saturation the symmetric-to-�eld <-phase transforms
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Figure 2.19: Phase diagram envelope of an n = 20 ML. The magnetization was swept from positivesaturation to negative saturation along a hard axis. Up to K=J = 0:2 the two phases (X and =) havea �rst order transition, while above that point the =-state is not reached, only two small jumps arevisible in the magnetization curves (at the �eld denoted by dashed lines).to the =-state at very low anisotropy values, rotating to the anisotropy symmetric (easy axis)AF-state in remanence, then aligning in the �eld symmetric <-state. At higher anisotropyvalues (K=J � 0:1) the vertical domain wall state (X-state) emerges, splitting the spins in allfour easy directions. Above K=J = 0:2 the `pure AF' state is not reached anymore, as the�ops lead to a di�erent X-state. The remanent state (according to these simulations) dependson the K=J ratio. It can be the AF state (up to K=J � 0:15) or the X-state.In conclusion, the e�ects of �nite stacking were again underlined. The �niteness of the `spinchain', the missing coupling term leads to an interesting spin-�op phenomenon resembling theSSF transition. The local and global minimization algorithms suggest di�erent spin alignments,depending on �eld history, leading to di�erent remanent states. Only measurements on realsamples can show, which path is taken by the sample.32 The e�ect of higher order couplingterms have to be taken also into account for the particular sample.

32By careful sample preparation the starting con�guration can be �xed. In our case by saturating the samplein an easy direction and letting down the �eld, then turning the sample by 45Æ will set the global AF alignment.



Chapter 3Classical magnetization measurements
After the familiarization with di�erent models of AF coupled MLs we can proceed in thedescription of a real sample. First the global magnetic behaviour (full magnetization loops andbulk-spin-�op transition) will be presented. The sample under investigation is a strongly AFcoupled ML with structural composition of MgO(100)/�57Fe �26 Å� =Cr �13 Å��20. The 57Feisotope will be important for the Mössbauer studies. Details of structural characterization willfollow later in Chapter 5.
3.1 Sample descriptionThe AF-coupled Fe/Cr ML described in our work was grown in Leuven by RIBER MBE. Thedate of growth was 1999.06.17; the sample was grown by Johan Dekoster and Stephan De-groote. The identi�cation string of the sample was 990608. A cleaned and UHV-degassed(at 600 ÆC for 30 min.) MgO(100) substrate of 1� 1 cm2 was used. The pressure beforegrowth was 3 � 10�11 Torr, during growth 3 � 10�10 Torr. The deposition rates were 0:35 Å=sfor Cr and 0:1 Å=s for 57Fe, respectively. The sample was rotated during growth to achievebetter lateral homogeneity. The nominal substrate temperature was 450 K during growth.Neither bu�er nor capping layer was grown. The nominal thickness pro�le of the samplewas MgO/�57Fe �25 Å� =Cr �14 Å��20. The 57Fe source was a special small volume e�usioncell, while Cr was grown from an electron gun. The ML is epitaxial, as was con�rmed byin-situ RHEED measurements and ex-situ X-ray di�ractograms [47]. It follows the well-known [48] epitaxy of Fe(001)[100]||MgO(001)[110]. From Synchrotron Mössbauer Re�ectom-etry measurements [47] and the measurement techniques detailed in Chapter 5 the structureof �57Fe �26 Å� =Cr �13 Å��20 was deduced. 35
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Figure 3.1: The VSM curve of sample 990608 measured in hard direction. The horizontal dimensionsof the sample were A = 7:12 � 10:2 mm2. The net satuartion moment of the sample wasMnet � A =4:723 � 10�6 Am2.3.2 SQUID and VSM global cyclesThe topics of Fe/Cr MLs would not be so interesting if the coupling trough the Cr interlayerwould be understood in all details. In the following we will see how to �t a phenomenologicalmodel to the hysteresis measurements (Fig. 3.1). The methods used, vibrating-sample mag-netometry (VSM) and the superconducting quantum interference device (SQUID) are bothcapable of measuring the average magnetization of a sample versus the external �eld with highprecision.3.2.1 First �tsTo get a �rst view, the SQUID measurements1 were normalized and evaluated.2 From Fig. 3.2it is evident that the sample is strongly AF-coupled. The hysteresis is minute, the remanentmagnetization is less, than 1%. It can be also seen that the magnetization reaches saturationasymptotically which is not the feature of the bilinear-biquadratic model. The easy- and hard-direction-averaged3 loops were simultaneously �tted by a �nite layer model (Fig. 3.3) andwe gained the best �t at the following parameter values with notation according to (2.38):J = 1, B = 0:239, ~K = 0:059 and ~M = 8:363. Those numerical values are parameters of the1Earlier VSM measurements su�er from the `phase-slip' e�ect, see latter.2The SQUID measurements were taken by László Kiss (MTA SZFKI) in May 2002.3The up and down branches were averaged in order to get rid of the hysteresis.
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�0H [T]Figure 3.2: Normalized SQUID measurements on a small piece of sample 990608 (easy- and hard-direction magnetization loops). The measurements were taken from 0 T to 5 T and back to 0 T. Thelines are guide to the eye.minimizing algorithm. We compare all coupling and anisotropy terms to the AF coupling, thusJ = 1 by de�nition.4 Finally all parameters are scaled according to the measured saturationmagnetization of the sample (see Table 3.2 for example).Unfortunately the measured total magnetization of the sample depends on the exact geom-etry (producing di�erent results even for the same orientation). Furthermore, since the SQUIDmeasurements were also taken on a small piece of the sample for averaging on the whole samplethe VSM measurements were performed and evaluated. The magnetic moment of the sampleas obtained from the hard-direction VSM measurement was Mnet � A = 4:72 � 10�6 Am2 (seeFig. 3.1). The area of the sample is 7:12� 10:2 mm2. The total iron thickness (20 layers) isapproximately 51 nm (see Chapter 5.1.2). Thus the total iron volume is 3:78 � 10�12 m3. Fromthis the magnetization5 is M = 1:275 � 106 A=m . This is not far from the � 1:4 � 106 A=m mea-sured by Fullerton et al. [14], which is less than the bulk value (see Table 3.1). The number ofuncertainties (VSM calibration, phase shift,6 total Fe thickness, measurement along the hardaxis) all sum up in our case.4We could add the units here directly, but this could confuse the reader, as in fact we determine only theratios of the parameters (J= ~M , B= ~M , ~K= ~M) because we �t M=Ms curves51 emu=1 Gcm3, but this G is in �4�� units. See for example [49]. Note that Mbulk is magnetization (givesthe magnetic moment per unit volume). We `measure' magnetization in A=m (1 G corresponds to 103 A=m).6Due to the lock-in phase shift of the particular VSM set-up it was impossible to give the exact magneticmoment. The lock-in angle was drifting for small samples, thus the slopes of the saturated regions were unequal.It resulted in intersecting or open loops.
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Figure 3.3: Bilinear-biquadratic (BB) �t to the averaged SQUID data. The hard-direction curves areshifted by 0.1 units for clarity. The solid lines are the best �tting curves in the frame of the BB model.

constant literature value SI valueKbulk 4:75 � 105 erg/cm3 4:75 � 104 J/m3Mbulk 1717 emu/cm3 (in �4�G� units) 1:717� 106 A=mTable 3.1: Literature value [49] of the bulk magnetization density and anisotropy constant of Fe.



CHAPTER 3. CLASSICAL MAGNETIZATION MEASUREMENTS 39Alternative modelsAs the bilinear-biquadratic (BB) model did not give a good enough �t in the high-�eld re-gion, other coupling models were �tted. The proximity magnetism model for example did notgive a better �t, as it predicts an AF alignment in remanence only if C+ = 0. This con-straint does not give enough degrees of freedom7 to �t the magnetization curves appropriately.The other alternative coupling models are also giving a non-collinear coupling angle in rema-nence. In conclusion, none of the alternative models can describe the strongly AF-coupled MLwith AF alignment in remanence and asymptotic saturation, thus we should apply a di�erentphenomenological model to get a better �t for our sample.Results of the biquadratic �tAs one can see, the BB �t is better for low �eld values than for the saturation region. Themain shortcoming of the �t is the underestimation of the saturation �eld. It would give Hsatof approximately 0:7 T, while the measured Hsat is � 1:1 T.8 Nevertheless, accepting the BBmodel, we can approximate the values of the variables describing the ML. As noted above,we will accept M = 1:275 � 106 A=m for magnetization. From this the anisotropy density willbe K = 0:9 � 104 J=m2, which is only � 20% of the bulk value. J = 0:389 � 10�3 J=m2 andB = 0:929 � 10�4 J=m2.As we have seen from the above paragraph, there is no `simple' �t in the frame of literaturemodels of our sample. We de�ne a �t `simple' when all layer parameters are equal (Ji = J ,Mi = M , : : : 8i) and the �nite-stacking e�ects are included. No distributions of parametersand even no deviation of any kind are permitted.After the realization of the shortcomings of the simple model, a natural way would be toallow distributions, deviations of the parameters. In principle with high enough number ofparameters a good �t can be produced with almost any kind of model. Unfortunately enough,we have no direct measurements of the sublattice angles one by one for example,9 thus fromthe magnetization data we cannot select amongst the `sophisticated' models.3.2.2 Extended bilinear-biquadratic modelA di�erent approach to the extension of the model is the addition of new energy terms to theenergy. Based on the two-sublattice inversion (Appendix 9.1) we take the Fourier componentsof the energy function up to the 12th order.10 In the two-sublattice model the spins are7Only C� can be �tted.8It is not easy to give a well-de�ned saturation �eld value from the magnetization measurements alone dueto the asymptotical behaviour of the magnetization.9This could be achieved by enriching only a single layer with 57Fe.10The higher order Fourier terms give only very small contribution according to the two-sublattice inversion.



CHAPTER 3. CLASSICAL MAGNETIZATION MEASUREMENTS 40param. model sample~M =M � d 8.367 1:25 � 106 A=m � 2:6 nm~K = K � d 0.126 1:88 � 104 A=m � 2:6 nmJ 1.0 0:388 � 10�3 J=m2B 0.2556 0:876 � 10�4 J=m2J3 0.0435 0:169 � 10�4 J=m2J4 0.0482 0:187 � 10�4 J=m2J5 0.0201 0:781 � 10�5 J=m2J6 0.0244 0:948 � 10�5 J=m2Table 3.2: Parameters of the extended model. The column model shows the numerical values used inthe �tting program, while the last column shows the values recalculated for the given sample.symmetric to the external �eld, thus only the following energy terms are taken into account:%E (#) = 6Xm=1 Jmm cosm � Æ#� A44 cos 4#� hM cos#: (3.1)Here Æ# = #i+1�#i = 2# (in the two-sublattice model) and J1�J6 and A4 are the coupling andanisotropy Fourier harmonics, respectively.11 To compare with existing models the biquadraticand anisotropy terms were substituted:%E = J n�2Xi=0 cos (#i+1 � #i) +B n�2Xi=0 cos2 (#i+1 � #i) + K8 n�1Xi=0 1� cos 4 �#i � #S�+ 6Xm=3 Jmm n�2Xi=0 cosm (#i+1 � #i)�HM n�1Xi=0 cos#i: (3.2)Here #S is the orientation of an easy axis compared to the external �eld.Equation (3.2) is an extended version of the BB model. It allows for `simple' �tting ofthe magnetization curve with a few variables. Numerical �tting on an n = 20 layer modelby sequentially minimizing the parameters give a good agreement with the magnetizationmeasurements as shown in Fig. 3.4. The saturation region �tting is still not perfect, but muchbetter than with the simple BB model. The parameters of the model are summarized in Table3.2.The extended model shows a much better �t in the high-�eld range (H > 0:5 T) comparedto the BB model and it also yields a larger crystalline anisotropy, which is almost 40% of thebulk value. The saturation �elds are Hesat = 0:935 T and Hhsat = 0:995 T in easy and harddirections, respectively. Comparing the common terms M;J;B the values are approximately11Based on measurements we can exclude uniaxial anisotropy (A2 = 0). The higher anisotropy terms wereexcluded by �tting the magnetization curves. A better distinction between possible higher order anisotropyand coupling terms could be made only based on magnetization loops taken along more directions.
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Figure 3.4: Fit by the extended bilinear-biquadratic model of the averaged SQUID data. The hard-direction curves are shifted by 0.1 units for clarity. The lines are the �ts to the data.the same, which is no way a surprise, as the BB model is the subset of the extended Fourierseries.3.2.3 Model-independent parametersBefore we proceed with the elaboration of the magnetization curves, we take a short glance onthe model-independent parameters. Based on VSM measurements, we have an approximationon the total magnetization of the ML and the magnetization density (see page 37). We canalso approximate the anisotropy of the iron layers.12In the following we will show that the total anisotropy energy is proportional to thearea di�erence between the easy- and hard-direction magnetization loops. Supposing thatwe have only fourfold anisotropy, subtracting the area of the two magnetization loops13 weget �E = 0:425 � 10�2 T. The anisotropy constant is obtained from K = 4M�E, whereM is the magnetization (we use 1:25 � 106 A=m) and �E is the area di�erence. We getK = 2:125 � 104 J=m3, which is not very far from the value obtained in the frame of theextended model.To obtain the anisotropy from the magnetization loops one may proceed similarly to [44] (p. 131).12Normally one should measure the anisotropy of a single layer which was grown under similar condition asthe ML, but we do not possess such sample.13More precisely the M=Msat loops.



CHAPTER 3. CLASSICAL MAGNETIZATION MEASUREMENTS 42As the external �eld is coupled to the ML only via the magnetic moments we can write:HsZ0 M dH = � HsZ0 @%E@H dH = %E (0)� %E (Hs) : (3.3)More precisely, as a direct consequence of (3.2) for example, @%E=@H = �MPn�1i=0 cos#, which is inturn the measured VSM signal.Assuming global energy path behaviour, the sample in remanence is in the AF-phase. Whensaturated, the coupling energy term is the same for the easy and hard orientation, only the anisotropyenergy changes. From (3.2) it is easy to see that the di�erence is K=4 � n, where n is the number oflayers. As the magnetization is also a `bulk' parameter, we can rescale the equation to a single layer, oreven to the bulk density, arriving to �E = K=4. Here �E is the area di�erence of the magnetizationloops of a unit volume of the ML. If we measure M=Msat, then we must multiply the result by thebulk magnetization: (�E=M) �M = K=4.
3.2.4 Distribution of the parametersIn the previous paragraphs we showed that the sample could be relatively well described by a`simple' extended Fourier model. This is a phenomenological model. We could follow the otherway, by adding distributions of some parameters. However from the magnetization cyclesalone it is impossible to decide between a broad distribution � plane-parallel and/or plane-perpendicular � of some parameters and a di�erent model. We cannot decide on those issuesby a single sample. In Appendix 9.2 a brief introduction is given, how one can start to examinethe distribution case.Numerical investigations of the model (not detailed here) show that if a single parameter(for example the biquadratic coupling) has a distribution (a narrow Gaussian type for exam-ple), then the magnetization curve is almost the same as it would be for the average of thedistribution, di�ering only a tiny bit from it at the saturation region. This �nding prefers theFourier model against the distribution one.Finally we have to stress that really good description of a ML could be given only basedon the knowledge of the `building blocks' themselves. It does not only include the indepen-dent measurement of the anisotropy, bulk magnetization and other model parameters, but theinvestigation of smaller systems (single layers, trilayers etc.) of the same type. As was mea-sured by Parkin et al. [12] even a single Fe layer sandwiched between Cr layers can show anon-rectangular hysteresis loop.



CHAPTER 3. CLASSICAL MAGNETIZATION MEASUREMENTS 433.3 Bulk spin �opThe bulk spin �op (BSF) was �rst observed by MOKE14 on sample 990608 (see Fig. 3.5). Asmentioned in Sec. 2.5 BSF transition may occur in uniaxial atomic antiferromagnets or in an-tiferromagnets of fourfold crystalline symmetry. In the latter case the BSF is related to alocal energy minimum path, thus it is only observable in AF-coupled MLs. To observe theBSF a special magnetic sample preparation is needed. The `spins' should be turned paral-lel/antiparallel to the �eld. This can be achieved by increasing the �eld over the critical �eldof the BSF, then going to remanence and turning the external �eld by 90Æ compared to thelast seen �eld. This can be done most easily by turning the sample itself, the actual procedurethat was used at the MOKE measurements. First a `simple magnetization loop' was recordedin the �150 : 150 mT range (not shown), then the sample was turned by 90Æ, saturated in�0H = 0:95 T. The �eld was removed and the sample was turned back by 90Æ. A second loopwas taken, starting from zero �eld. As can be seen in the inset of Fig. 3.5 the magnetization�rst stayed parallel/antiparallel up to � 10 mT. Then it switched to the perpendicular align-ment. The BSF transition was over at � 16 mT. Further BSF scans were taken (not shown)after aligning the spins in (smaller-than-saturation) �elds of15 150 mT and 30 mT with exactlythe same BSF transition range and shape.After the MOKE justi�cation of the BSF, VSM measurements were also done. First theexperimental di�culties lead to no signi�cant result, thus the sample was cooled down in orderto enhance the BSF. The perpendicularly magnetized sample16 was turned by 90Æ, then cooledto 20 K and measured (Fig. 3.6). The spin �op occurred between 12 mT and 30 mT (but itwas not so well de�ned as for the MOKE case.17 Later the preparation of the magnetizationswas improved by the help of an external magnet. The sample rod was placed between the polesof the magnet, which magnetized the sample in the proper way. Now the room temperatureobservation of the BSF was possible, see Fig 3.7. The spin �op is now well-de�ned, and occurredat � 12 mT.In conclusion, we proved indirectly18 the existence of the BSF transition. The low-temperatureand room-temperature measurements led to similar results and showed an Hbsf � 12 mT. Inthe following we will compare these results with theoretical predictions.14Measurements were taken by Johan Swerts and László Bottyán in Leuven Aug. 2000.15By passing the BSF transition from below the spins will align to the perpendicular-to-�eld orientation.There is no need to saturate the sample.16In this stage the magnetization was done by the superconducting solenoids of the VSM machine.17This could be attributed to the improper magnetization procedure for example.18The VSM and MOKE measurements give an incoherent sum of all sublayer magnetizations. We cannotexclude other spin con�gurations leading to a similar result.
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Figure 3.5: BSF transition observed by MOKE (for details see text). The inset shows the zoomed BSFregion.
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�0H [mT]Figure 3.7: BSF transition observed by VSM at RT. The curves are guide to the eye. The spin �opbranch is printed in bold for clarity.3.3.1 Theoretical considerationsThe e�ects of the �nite stacking were discussed in Section 2.5. The only di�erence is nowthat the coupling is extended with further Fourier terms. As this is not changing the `global'behaviour, the BSF �eld and saturation �eld equations still hold. The new critical �elds willbe the following:19 Hbsf = 2pK (K + J � 2B + 3J3 � 4J4 + 5J5 � 6J6)M ; (3.4)Hs = 22 (J + 2B + 3J3 + 4J4 + 5J5 + 6J6)�KM : (3.5)Substituting the values obtained by the �ts this will result in Hbsf = 60:4 mT; Hseasy =0:965 T; Hshard = 1:025 T: Those results are in extremely good agreement with the numericalsimulation, verifying the algorithms used by the optimization code for this particular case.20The obtained Hbsf �eld however is much larger than the measured 12 mT. This is a strongindication that the spin �op occurs by intralayer domain wall movement and not coherentrotation of the lattice spins [47]. The domain wall movement can drive the spins trough thelocal energy barriers. The spin-�op �eld is not zero, thus the system moves between the globaland local minimum path, closer to the global side.19Modifying the calculations presented in 2.5.3 with the constraint that the additional coupling terms do notdestroy the general symmetric AF coupling behaviour.20The numerically achieved values: Hbsf = 60:28� 60:65 mT, Hseasy = 0:959 T, Hshard = 1:0196 T
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Figure 3.8: MOKE hysteresis loop in the hard direction. The �eld history was 0 ! 150 ! �150 !150 mT. The �rst loop (a) was taken after an easy direction loop, while the second one (b) was arepetition of (a). In the inset at the bottom left corner the result of the numerical simulation is shown.The jump on the net magnetization is 0.04 measured in units of M=Ms.3.4 Hard-axis spin reorientationThe easy-direction hysteresis loop of a strongly AF-coupled sample with fourfold anisotropyis a `smooth curve'. When the sample is saturated, all magnetic vectors point parallel tothe external �eld, and to an easy direction. When the �eld is lowered, the moments opensmoothly trough a <-phase. They pass the hard axes continuously, arriving to the easy-axisorientation in remanence. In a hard-direction scenario the moments are pointing parallel to ahard axis in saturation, while located along easy directions in remanence. The hysteresis loopin hard direction and the transition of the magnetizations from the hard to easy axes can besmooth or sharp depending on the model parameters (for detailed analysis see Sec. 2.6). In ourparticular case the magnetization curve showed a well-de�ned jump in the hard-axis MOKEmeasurements (Fig. 3.8). Numerical simulation with global energy minimization21 also pointedout a sharp phase transition (see Fig. 3.9).At increasing �elds the �rst smoothly rotating magnetizations jump when the systemchooses a state with di�erent symmetry. This phenomenon is also related to the �nite stack-ing `freedom' of the ML, as opposed to the two-sublayer model, the layer magnetizations canoccupy all four perpendicular easy directions by creation of a 'domain wall' (see the 26 mT21As already noted, the ML can move between the global and local minima. For the easy-direction BSFtransition we observed such behaviour close to the global minimum. In the case of hard axis reorientation thelocal minimum loop would lead to an asymmetric spin reorientation, not observed in the MOKE measurements.



CHAPTER 3. CLASSICAL MAGNETIZATION MEASUREMENTS 47state in Fig. 3.9). The rearrangement of magnetization could be seen by magnetization mea-surements. MOKE measurements on the sample did show the jump at � 32 mT, but it wasnot observable either on the VSM curves or in SQUID measurements. The SQUID loop wastaken with 10 mT=point in this region, thus it was too coarse to see such a jump. The stepwidth of the VSM measurement (0:88 mT=point) would allow the observation of such a jump,but it was not observed on the loops.The reasons of the missing jump in the global methods (VSM, SQUID) could stem frommany factors. First of all, the jump in the parallel magnetization is minute, 0.04 in units ofsaturation magnetization, see inset in Fig. 3.8. A small distribution in the parameters cansmear it out to the noise region. Secondly, VSM and SQUID sees the magnetization of thewhole sample, while at MOKE measurements only a tiny fraction of the sample is illuminatedwith the laser beam. Finally MOKE is `surface sensitive' in the sense that it enhances thesignal coming from the �rst layers and due to mixing of di�erent MOKE signals the jump iseven more pronounced thanks to the `negative' kink of the magnetization loop.The e�ect of sample misorientation was investigated. Up to �5Æ the `jump' is preservedin the MOKE measurements (not shown) with the same averaged �op �eld of 32 mT. Thenumerical simulations for the sample reproduce this feature, however showing a slight shift inthe critical �eld.Finally we note that Alievet al. found a similar e�ect on the hard-direction AC magneticsusceptibility data [50], which they attributed to the spin reorientation from easy to harddirection. Their sample �Fe �30 Å� =Cr �13:5 Å��10 was very similar to `990608', and numericsimulation of an n = 10 ML show an even more pronounced jump. In this case the transitionregion dominates the stack, leaving only � 2� 2 outer layers in the AF con�guration. In ourview the jump is not a consequence of an 'easy-hard' transition but an =�X one.3.5 ConclusionsAfter the introduction of the e�ects of �nite stacking in the previous part, we tried to mag-netically characterize our samples with `traditional' magnetometry. We used an extended phe-nomenological model, based on the bilinear-biquadratic formalism to �t the hysteresis loopsof sample `990608'. In this Chapter we also introduced two types of spin �op transitions forAF-coupled arti�cial MLs with fourfold anisotropy. The BSF transition and the hard-axis spin-reorientation (HASR) transition were numerically investigated with the parameters obtainedfrom the �t of the hysteresis loops. In the case of BSF we concluded that domain wall mo-tion, rather than coherent rotation plays major role in the transition.22 For HASR transitionthe numerical simulation with global minimization showed good agreement with the MOKEmeasurements.22We will see that even not domain wall motion, but domain wall annihilation occurs at the BSF transition.
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Figure 3.9: Numerical simulation by global energy minimization. The external �eld is parallel to thehard axis. Increasing the �eld from zero the �rst strictly AF alignment cants smoothly up to 25 mT,then a phase transition occurs, and from 26 mT the stack is divided to two subparts, each retainingthe AF alignment, but orthogonal to each other. The central layers act as a `domain wall' rotatingfrom one part to the other. When the �eld is further increased this X structure smoothly transformsto a < as the Zeeman energy compared to the anisotropy and exchange terms gets larger and larger.



Chapter 4Measurements in momentum spaceIn the previous chapters we dealt with `direct space' measuring methods. In the following wewill introduce techniques that are working in the momentum space. For the investigation ofAF coupled MLs it is often favorable to `dress up' the ML structure with the magnetic infor-mation. After the introduction to Synchrotron Mössbauer Re�ectometry (SMR) and PolarizedNeutron Re�ectometry (PNR) we brie�y review the momentum-space representation, and �-nally a short part is devoted to coherence issues, which may be important for magnetic domainmeasurements.4.1 SMRNuclear resonant scattering of synchrotron radiation (NRS of SR) [51], also referred to asSynchrotron Mössbauer re�ectometry (SMR) [52], is a powerful method for analyzing hyper�ne�elds and thus magnetization of thin �lms and MLs containing nuclear resonant isotopes. InSMR measurement the illuminated sample scatters the radiation coherently, which can makeevaluation of the measured curves a hard task. Without the knowledge of the underlyingstructure (layer thicknesses, hyper�ne �elds, etc.) it is not possible to get a reliable picture.For homogenous thin �lms the determination of the layer parameters may be easy. In thecase of Fe/Cr MLs, however, the number of parameters to be �tted (hyper�ne structure of theinterface regions, the structural roughness, etc.) may prohibit the correct evaluation.One could ask, what are the bene�ts of SMR in such a complex system compared to`classical' magnetization measurements (like MOKE or VSM)? The answer lies in the coherentnature of SMR. As it can distinguish di�erent regions in the reciprocal space, it may show directevidence of magnetic structures, separate magnetic correlations (domains) from structuralroughness.1 SMR is also good in mapping patch-domains of AF-coupled MLs.1In fact, the `coherence-related' statements are also true for polarized neutron scattering.49



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE 504.1.1 Introduction to SMR and PNRTotal external re�ection (TER) of x-rays [53, 54] and neutrons [55] from �at surfaces arephenomena dating back to the �rst half of the twentieth century. The real part of the index ofrefraction n of most materials for thermal neutrons and of all materials for non-resonant x-raysis by about 10�5 less than unity. At low enough angles of grazing incidence � < �c =p2 (1� n)the waves are totally re�ected. The intensity of the re�ected specular beam for � > �c rapidlydecreases with increasing wave vector transfer q = 2k sin � where k is the length of the wavevector of the incident radiation. In a strati�ed medium, re�ected and refracted beams appearat each interface. The interference of the re�ected beams leads to patterns of the re�ectivityvs. wave vector transfer spectrum R(q) that bear information on the depth pro�le of the indexof refraction n(z), the argument z being the coordinate perpendicular to the sample surface.R(q) can be calculated from n(z), e.g. using the method of characteristic matrices [56, p. 51].Therefore, in frames of a given model for the strati�ed system, n(z) can be reconstructed fromR(q) = jr(q)j2 where r(q) is the re�ectivity amplitude. This latter approach is the basic ideaof specular x-ray and neutron re�ectometry, two methods that can be used for mapping theelectron density and the isotopic/magnetic structure of thin �lms, respectively.The coherent forward scattering of a scalar wave of momentum much higher than that ofthe scatterers can be described [57] by the index of refraction close to unityn = 1 + 2�Nk2 f (4.1)where N is the density of scatterers and f is the scattering amplitude. The electron density fornon-resonant x-rays or nuclear and magnetic scattering length density for neutrons is impliedin the latter quantity [58].X-ray re�ectometry may optionally be performed with nuclear resonant photons. We shallcall this technique, henceforth, Mössbauer re�ectometry (MR). MR bene�ts from the fact that,close to the nuclear resonance, the photon scattering amplitude f is strongly energy-dependentand contains the matrix elements of the hyper�ne interactions. MR is therefore suitable tostudy the magnetic structure of thin �lms.A serious limitation of MR with conventional sources [59] is the small ( 10�5) solid angleinvolved. Due to its high collimation, synchrotron radiation (SR) is much better suited forre�ectometric experiments than radioactive sources. Synchrotron Mössbauer re�ectometry(SMR) is the application of grazing incidence nuclear resonant scattering of SR [60] to thin�lm and ML structure analysis.
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Figure 4.1: Schematic drawing of the measurement setup. The incoming beam k1 is scattered on thesample to k2. The scattering is described by angle 2� in the lab system. In sample coordinates withaxes x and z the scattering is described by angles �i and �f . In the �gure the angles are unrealisticallylarge for demonstration purposes (�i = 20Æ, �f = 10Æ). The �gure shows an o�-specular case (�i 6= �f ),thus q in not parallel to z.4.1.2 SMR measurementsThe sketch of the experimental arrangement of an SMR experiment is shown in Fig. 4.1. Thephotons from the high-resolution monochromator (not shown) hit the sample mounted on atwo-circle goniometer of adjustable height at an angle of grazing incidence �i. The re�ected(scattered) photons are detected by an avalanche photo diode (APD). The detector positionde�nes the scattering angle 2�. The angle �i is often referred to as !.An SMR measurement is performed in either time integral or time di�erential regime. Timeintegral SMR (TISMR) records the total number of delayed photons from t1 to t2 as a functionof �i and/or 2� (for details see below). Here t1 is a few nanoseconds determined by the bunchquality of the radiation source and by the dead time of the detector and the electronics, whilet2 is set to a value somewhat below the bunch repetition time of the storage ring. Timedi�erential (TD) SMR is a time response measurement performed at various �xed values of �iand 2�. Like in the forward scattering case [61], hyper�ne interaction results in quantum beatsof the time response. Finally we note that with TISMR spectra usually the `prompt' spectraare also taken. The prompt tag refers to the non-resonant x-ray scattering.In a � � 2� experiment the wave vector transfer q is perpendicular to the sample surface.For a periodic ML, in the �rst Born approximation (kinematic theory), Bragg maxima appearat q =q(2�=d)2 + q2c , where d is the structural or hyper�ne (magnetic) period length perpen-dicular to the �lm plane and qc is the critical wave vector transfer of the TER (typically about0:5 nm�1). Thus a � � 2� scan reveals the average plane-perpendicular structure of the ML.In-plane inhomogeneities reduce the specular re�ection. Lateral dimensions of inhomogeneitiessuch as structural and magnetic roughness, waviness, magnetic domains, etc., however, cannotbe further studied in a � � 2� experiment.
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Figure 4.2: Calculated TDSMR of a thin Fe foil magnetized in di�erent directions (B). In the rightcolumn the polarizations of the hyper�ne transitions are sketched (for details see text), after [61].In an !-scan experiment for small q values the perpendicular-to-plane component of thewave vector transfer is constant (qz = 2k�) while varying �i, the in-plane parallel-to-beamcomponent of the wave vector transfer is scanned: qx = 2k�(�i � �). The di�erent scan typeswill be detailed in Sec. 4.3. In order to have signi�cant intensity, the detector height is set toqz of a Bragg peak. In the �rst Born approximation, the width of the !-scan (i.e., qx scan) isinversely proportional to the longitudinal correlation length� = 2��qx (4.2)where �qx is the width of the qx scan (excluding the specular scattering). � is the correla-tion length of the quantity the perpendicular-to-plane periodicity of which the Bragg peak isdue to. Therefore, setting 2� in an !-scan experiment to an electronically forbidden pure nu-clear re�ection the lateral correlation length of inhomogeneities of the hyper�ne interaction(magnetic roughness, magnetic domains) can be determined.4.1.3 Magnetic informationDue to the full linear polarization, nuclear resonant scattering of SR is extremely sensitive tothe direction of the hyper�ne magnetic �eld [61, 64], see Fig. 4.2. The same holds true for
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Figure 4.3: �Calculated � � 2� scans of an AF-coupled �57Fe �20 Å� =Cr �26:2 Å��20 ML for three dif-ferent directions of the hyper�ne �eld B (the hyper�ne �eld of the other sublattice is not shown).The scattering plane is perpendicular to the electric �eld vector E of the SR. The arrows indicate theBragg re�ections of di�erent order.� [62]
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Figure 4.4: �Calculated time response curves of an AF-coupled �57Fe �20 Å� =Cr �26:2 Å��20 ML forthree di�erent directions of the hyper�ne �eld B (the hyper�ne �eld of one of the two sublattices isnot shown). The scattering plane is perpendicular to the electric �eld vector E of the SR. Integer andhalf-integer numbers indicate the order of the structural and hyper�ne (magnetic) Bragg re�ections,respectively.� [63]the grazing incidence geometry [51]. Both TISMR and TDSMR can be used to determinethe layer magnetization direction in thin �lms and MLs. Figs. 4.3 and 4.4 show calculated�� 2� scans and time response curves of an AF-coupled �57Fe �20 Å� =Cr �26:2 Å��20 ML (thescattering plane is perpendicular to the electric �eld vector of the SR). The magnetic structureof the ML is supposed to be collinear so that the directions of the hyper�ne �eld B alternateacross consecutive Cr layers. The total re�ection peak (`0th order Bragg re�ection') and thestructural Bragg peak (`1st order Bragg re�ection') show up in the time integral scans at thesame value of � as in the prompt scan. If B is (anti)parallel to the wave vector k of the SR,AF super-re�ections (`1/2th and 3/2th order Bragg re�ections') can be observed which aremissing if B is perpendicular to k. In fact, the photon scattering amplitude f only depends onthe angle of k and B and so no AF cell doubling for f is possible if k ? B. This is how timeintegral SMR can characterize the orientation of the AF ordered lattice magnetization. Theshape of the time response curves strongly depends on �. This is due to the fact that the phasesof the waves scattered at di�erent depth are shifted with respect to each other depending on�. The shape of the time response curves is most sensitive to the direction of B at the AF(half integer order) re�ections. The way to thin �lm magnetic structure analysis with SMRhas been opened by Toellner et al. who demonstrated the existence of pure nuclear re�ectionsin an Fe/Cr ML [65].



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE 55It is interesting to note that the quantum-beat patterns at the structural Bragg peak ofthe AF aligned ML, belonging to magnetization directions parallel to the beam or parallel tothe polarization of SR are identical (see Fig. 4.4). This independency of the orientation ofB can be easily understood in analogy with the forward direction case. For a single domainof ferromagnetic Fe �lm the the stick diagrams in the right column of Fig. 4.2 show thepolarization of the hyper�ne-split lines. For an AF-aligned ML, if the hyper�ne magnetic �eldis parallel to the beam for one sublattice, it is antiparallel for the other. Therefore left and rightcircular polarized transitions appear at the same energy for the one and the other sublattice,respectively. Consequently, all transitions can interfere with each other, which results in thesame quantum-beat pattern as if the hyper�ne �eld is parallel to the polarization of the SR.In this latter case all transition remain �-polarized for an AF-aligned ML so that no changeis expected as compared to case of a ferromagnet shown in the right-hand side of Fig. 4.2.The same magnetic con�guration and thus same TDSMR spectrum is obtained in the case ofML with parallel magnetization (in saturation for example) parallel to the polarization of theSR. For an AF aligned ML not only the quantum-beat patterns for in-plane magnetizationparallel and perpendicular to the beam but for any in-plane direction of the magnetization areidentical [63]. In transversal sample setup (when the direction of the applied external �eldH isperpendicular to k) even at intermediate �elds, when the ML is in the <-state, the spectra atstructural Bragg positions will be almost the same, as model calculations with EFFI revealed.4.2 PNRNeutron scattering is also sensible to the local magnetic �eld. Polarized neutron scattering(PNR) became a routine measurement technique for characterization of �lms and MLs [66�70].We de�ne the scattering geometry similarly to the SMR case (see Fig. 4.1). In the case ofour investigations even the de Broglie wavelength of the neutrons and the wavelength of thenuclear-resonant 
-rays were in the same range (�n � 1� 2 Å, while for 14:4 keV �
 = 0:86 Å).The PNR measurements described in this work were carried out in JINR, Dubna at the RE-MUR re�ectometer [71]. In that particular setup the polarized neutrons are guided by a smallmagnetic �eld from the polarizator till the detector. The spin state relative to quantizationaxis de�ned by the applied �eld can be changed by spin-�ippers. In the re�ectometry experi-ment the neutron beam is polarized by supermirrors. The initial spin-state is set by the �rstspin �ipper. The second �ipper is located after the sample. External magnetic �eld may beapplied to the sample. After the second �ipper the neutrons reach the analyzer, which is a fanshaped supermirror and lets trough the neutrons of one polarization to the detector. The re-�ectivity spectra are taken in four channels, two non-spin-�ip (++ and R��) and two spin-�ip(+� and �+). The signs refer to the initial and �nal spin-state. The above described spinanalysis allows to see the spins of di�erent orientations in one single measurement. Indeed, if



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE 56the scattering spins are parallel to the neutron spin, then it gives contrast in the non-spin-�ipre�ectivity (R++ and R��), while for perpendicular alignment spin-�ip scattering occurs (R+�and R�+) (see Fig. 4.5). Note that on the �gure the external �eld H is parallel to k, while atREMUR H ? k setup was used.4.3 Momentum-space representationThe aim of the Q�space measurements is to gain information on the lateral and plane-perpendicular structure of the ML. With elastic neutron and 
�photon scattering we areprobing the sample in the momentum or reciprocal space, hereafter called Q-space. In time-of-�ight (TOF) neutron measurements we are counting particles in the �� 2� coordinates, whilein SMR measurements we are measuring the so-called � � ! or � � 2� curves. Both of thosemeasurements can be mapped to qx � qz coordinates for comparison. In principle with scansalong the qz-axis the structural and magnetic depth pro�le, while with qx scans at constant qzthe lateral correlations of the ML can be investigated.4.3.1 Measurements is Q�spaceWe will describe the scattering in lab coordinate system �rst (see Fig. 4.1). In the lab systemthe incoming beam is �xed and the sample and the detector is moved. Let us denote k1 theincoming and k2 the de�ected wave vector. For elastic scattering jk1j = jk2j = k = 2�=�,where � is the wavelength of the radiation.2 If we de�ne the angle between k1 and k2 as 2�then the length of the scattering vector will be q = jqj = jk2 � k1j = 4�=� sin �. From theabove it is trivial that for �xed wavelength the length of the scattering vector q depends onlyon the scattering angle 2�. However, The orientation of q relative to the sample will dependon the angle of the sample. We have to keep this in mind when describing the scattering insample coordinate system.4.3.2 Sample coordinate systemIn general scattering geometry in sample coordinate system the impinging and re�ected beamscan be described by angles �i and �f measured from the sample surface (see Fig. 4.1). Theequation �i + �f = 2� connects this description with the lab system one. It is easy to see thatfor wave vector jkj = 2�=� the momentum transfer in sample coordinate system will be [67]:qx = 2�� (cos �f � cos �i) ; qz = 2�� (sin �f + sin �i) : (4.3)2Or the de Broglie wavelength of the neutron.
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PSfrag replacementsM=MsH=Hsqx= (2�=�) [mrad]qz= (2�=�) [mrad]� = const.! = const.�f = const.�i = const.Æ = const.� � 2�border� [mrad]! [mrad]Æ [mrad]�i [mrad]�f [mrad]Figure 4.5: �The orientation and magnitude of the sample magnetization M(z) relative to the applied�eld H determines the relative proportions of spin-�ip (SF) and non-spin-�ip (NSF) scattering. (a)M(z) in the plane of the surface, parallel to H produces no SF scattering, but creates di�erentspin-dependent refractive indices for neutrons polarized parallel and anti-parallel to H. (b) M(z)canted at an arbitrary angle in the surface plane produces both SF and NSF intensity. (c) M(z)components normal to the surface have no e�ect on neutron specular intensity. (d) The presence ofdomains complicates interpretation of SF and NSF intensities. O�-specular methods o�er a means ofcharacterizing these domains.� [69] Note that the �gure shows the experiment in `top view', while onFig. 4.1 we see the side view of the same setup.



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE 584.3.3 PNR and Q-spaceIn the case of TOF PNR we collect counts in a two dimensional grid of time (/ �) and dis-placement (/ 2�). The measurement is made at constant �i. To get the actual transformationrules, we have to substitute �f = 2� � �i to (4.3):qx = 2�� (cos (2� � �i)� cos �i) ; (4.4a)qz = 2�� (sin (2� � �i) + sin �i) : (4.4b)
Inverse transformation for TOF measurementsIn order to evaluate TOF measurements it is useful to calculate the inverse transformation of(4.4). The reason is obvious. To be able to integrate or to average data easily in Q�space,an equidistant grid is useful. To get this grid, the inverse transformation should be appliedto the Q�grid and data shall be averaged in the (�; �) system according to this grid. Then,the averaged data can be transformed back to the proper grid and data manipulation andrepresentation is easily done. It is not di�cult to show that the inverse transformation of (4.4)will be: Æ = �2 arctan qxqz ; (4.5a)� = 4�pq2z + q2x sin��i � arctan qxqz� = 4�pq2z + q2x sin��i + Æ2� : (4.5b)Here Æ = �f � �i i.e. the angle measured from the specular re�ection (�f = �i). When qx � qz,then (4.5) can be approximated as: Æ � �2qxqz ; (4.6a)� � 4�qz ��i + Æ2� : (4.6b)From (4.6b) we can get Æ (�) = qz�= (2�) � 2�i. For constant qz this is a straight line in the(�; Æ) space with the slope m = qz= (2�) : (4.7)The above-described equations can be used to determine the Q�scale of the measurement.If the position of the direct beam on the angular scale of the position sensitive detector (PDS)is known compared to the specular re�ection, then no more data are needed for the absolutecalibration of q (�i is known from 2�spec = 2�i and from (4.4b) qz = q can be also calculated).
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� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]� f[mrad]Figure 4.6: �i � �f scan in the Q-space. The q units are normalized to 2�=�. In the inset the originalgrid of constant �i and �f values is shown. The calculated range is similar to the one used for themeasurements of this work. The pattern `1' helps to see the orientation of the transformation. Thespecular line, i.e. the � � 2� scan (�i = �f ) is also shown.In the case of no direct beam information the q scale can be still �gured out. If we know qzfor a given Bragg re�ection, then again �i = qz�=4�. And �nally by �tting the slope (4.7)of a Bragg sheet3 yields the qz of the Bragg sheet, with no need of knowledge of the samplestructure. When qz is known, then for the specular (Æ = 0) channel �i = qz�=4�.�i � �f scanNeutron scans are also taken with monochromatic beam (see [72] for example). In this casethe wavelength is �xed and the sample and detector are rotated. The resulting mapping isshown in Fig. 4.6.4.3.4 SMR and Q-spaceIn the following we will show the di�erent scan modes, which can be used in x-ray re�ectometryexperiments. In fact, due to the known (�i; �f ) ! (qx; qz) transformation (4.3) for any anglepairs we may get the mapping in the Q-space. Nevertheless, it seems reasonable to plot thetransformation for the di�erent scan modes separately.We note that the SMR measurements were taken with horizontal sample arrangement,i.e. the sample re�ected the horizontal beam in the vertical plane. Lacking appropriate 1D3After weighting to the direct beam pro�le and subtracting the background.



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE 60avalanche photodiode (APD) arrays, in contrast to the � already two dimensional � neutronmeasurements, so far at all SMR experiments have been performed by scanning along a 1Dcurve in the Q-space.In the following we will outline the scan modes and will discuss thepossible curves in case of systematic errors (detector o�set, sample zero angle o�set and `open'slits).� � 2� scansThe most `traditional' scan type is the � � 2� scan. In this case �i = �, �f = � and we scan4angle �. It is easy to see that in this case (4.3) becomes:qx = 0; qz = 4�� sin � � 4�� �: (4.8)The approximation sin � � � is valid in our case, because � is typically not exceeding 1Æ. The� � 2� scan is specular (qx = 0), probing the vertical structure of the ML. The � � 2� scan isconventionally done with wide detector slits [73] (integral measurement mode). In this case we`cut' the reciprocal space normal to the surface. If the detector slit is narrowed, then only thereal specular range is included.O�-specular or ! scansIn the ! scan the position of the source and detector is �xed thus �i + �f = 2� =const. It isbest to introduce ! by ! = (�i + �f ) =2 thus �i = � + !, �f = � � !. This is equivalent to therocking by ! from the specular �i = �f = � position. The equations now are:qx = 2�� (cos (� � !)� cos (� + !)) = 4�� sin � sin! � 4�� �!; (4.9a)qz = 2�� (sin (� � !) + sin (� + !)) = 4�� sin � cos! � 4�� �: (4.9b)In general case the ! scans are spheres with radius (4�=�) sin � but in our special small anglelimit, the scan will be a perpendicular line to qz (Fig. 4.7). Thus we probe the di�use (o�-specular) scattering of the sample. In other words, we are mapping the lateral structures. The! scans are always taken with narrow slits. We emphasize again: to move along the � axis inthe lab system, one should rotate the sample by � while the detector should be moved by 2�.For movement along the ! axis, the detector should stay in-place, while the sample should berotated around the � axis (rocking curve).Note that in an SMR ! scan the actual value of ! is measured from the beam position.Thus in a `real scan' the scanned coordinates in the lab system are: ! and 2� which canbe transformed to sample coordinates in the following way: �i = ! and �f = 2� � !. This4Then name originates form the fact that in a �xed-beam setup the detector should be moved 2� when thesample is rotated by �.
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Figure 4.7: ! � 2� scan family in symmetric sample coordinates. In this case �i = � + !, �f = � � !.The inset with the pattern `1' shows the original coordinates ful�lling the conditions �i � 0, �f � 0.di�erence has consequences for an ! scan with a 1D detector array as it can be seen in Fig. 4.8.The constant ! curves are no straight lines anymore.Longitudinal o�-specular or o�set � � 2� scanThe o�set � � 2� scan (or longitudinal o�-specular scan) also provides information about theo�-specular range. This is a � � 2� scan with slightly misaligned sample or detector. Themisalignment should be big enough not to include the specular (qx = 0) ridge [74]. First,we investigate the sample misalignment. Let us denote the misalignment angle with Æ, thus�i = � + Æ, �f = � � Æ. It is easy to see that this regime is similar to the ! scan except thatnow Æ is �xed and � is scanned. The � � 2� scan is a special case of this type of scan (Æ = 0).For Æ 6= 0 the scanned curve is a line, starting from the (0; 0) point. The slope of the line is1=Æ. The �� 2�, ! and o�set � � 2� scans belong to one branch, called !� 2�, describing thesystem in the reciprocal space according to the mapping presented in Fig. 4.7.In the second case, the detector has a �xed o�set of Æ i.e., in sample coordinates: �i = �,�f = � + Æ. In this caseqx = 2�� (cos (� + Æ)� cos �) ; qz = 2�� (sin (� + Æ) + sin �) : (4.10)When taking the � � 2� scan in integral mode (wide detector slits) it is equivalent tointegrating in the momentum space in the �Æ range. As can be seen from Fig. 4.9, the
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Figure 4.8: The normalized plot of the !�scan in lab coordinates (�i = !, �f = 2��!). The inset withthe pattern `1' shows the original coordinates ful�lling the conditions �i � 0, �f � 0. The specularline (� � 2�) is shown for comparison with the symmetric sample coordinate system (see Fig. 4.7).integration region is not perpendicular to qz.The above-described scans may be used to evaluate the plane-perpendicular correlation ofthe lateral roughness. For uncorrelated roughness the di�use scattering occurs in the wholeQ-space, while for correlated roughness it is concentrated along Bragg-sheets [74]. One methodto investigate the di�use scattering is the o�set � � 2� scan while a constant qz line can bescanned by ! scans. By scanning di�erent regions of the Q-space information on the corre-lated roughness (structural or magnetic) can be deduced after correcting the measurements forgeometrical factors. The details will be presented at the sample evaluation.Detector scanThe detector scan regime has been rarely used by us. It becomes important with the intro-duction of the 1D detector array. This is in fact similar to the longitudinal o�-specular scan,but in this case the detector is moved, thus � is �xed and Æ is the variable. Fig. 4.9 shows thetwo latter scan types.4.3.5 The qy componentUp to now we looked only at scattering in the qx � qz plane. However, of- specular scatteringmay occur in the qy direction as well [68]. To treat the whole Q�space we will rewrite (4.3) to
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Figure 4.9: The Q�space plot of the longitudinal scans. �i = �, �f = �+ Æ. The inset with the pattern`1' shows the original coordinates ful�lling the conditions �i � 0, �f � 0. When taking � � 2� scanswith slit width �, then we integrate from �f = ��� to �+�. This symmetric range will be convertedto an asymmetric one in qx � qz coordinates.contain the qy component: qx = 2�� (cos �f cos'� cos �i) ; (4.11a)qy = 2�� cos �f sin'; (4.11b)qz = 2�� (sin �f + sin �i) : (4.11c)The new angle ' is the azimuthal angle of k2 or the angle o� the re�ection plane [68]. Itfollows from (4.11c) that qz is not a�ected by '. In the case of synchrotron measurements thedetector is not position sensitive and the horizontal slit is in the order of millimetres, thus weintegrate a huge region in qy. Let us write the angles in symmetrical sample coordinates:qx = 2�� (cos (� � !) cos'� cos (� + !)) � 4�� �!; (4.12a)qy = 2�� cos (� � !) sin' � 2�� ': (4.12b)The above approximations are valid in the range of ' used at synchrotron measurements. Forexample: a 4 mm wide slit placed at � 75 cm corresponds to �0:15Æ (2:7 mrad). In qx and qzscans we use the vertical component of q, while for qy scans the horizontal component counts.This is the reason of the missing � proportionality factor. In other words, 2�! = ': Because �



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE 64is in the range of 0.5Æ, to scan the same range in qy as in qx a much smaller ' angle (resolution)should be applied. Or otherwise, we integrate to the full qy range in our measurements. Tosee the possible feasibility of a 2D detector, let us calculate the necessary resolution for a qyscan at the AF Bragg position (0.4Æ) of sample 990608. We know that a vertical slit5 heightof 0:1 mm (! 66 �rad) gave satisfactory resolution in qx. For the same resolution we need90 nrad! 1:36 �m horizontal slit setting in this case.We can draw the conclusion that we integrate to qy in all !�scans. Also, if we would notapproximate but evaluate (4.12) as it is, then we would see that for a constant � and ! if wescan ', then we are moving along a circular path in the qx � qy plane. But this would berelevant only for higher qy values, where the scattering is already negligible.The integration in reciprocal space from zero to high values means an integration in directspace from in�nity down to a critical length. Because qy scales as qz only scattering fromlateral inhomogeneities smaller than a few Å are not included. The domains we investigate arewell seen in qy scans, thus they are much larger than the lower integration limit. In conclusion,due to broad horizontal slit setting the qy component is integrated and we measure domaindistribution along one dimension.4.4 Coherence lengthWhen mapping the sample in reciprocal space, we make use of the coherent nature of thescattering. Each impinging neutron and photon `sees' the whole6 vertical structure in z, re-sulting in Bragg peaks and Kiessig fringes7. We will discuss in the following the concepts ofthe di�erent coherence lengths.4.4.1 Geometrical considerationsThe geometrical uncertainties are the main source of loss of transverse coherence length. Wecan de�ne two transverse lengths. One is the `horizontal' coherence length, related to the beamcollimation parallel to the sample surface, while the `vertical' coherence length is related to thebeam collimation parallel to the plane of the specular scattering (and almost perpendicularto the sample surface). When mapping lateral structures of the ML we assumed that theneutrons and photons are scattered coherently. The coherence length will set the upper limitof domains that can be measured. For the case of neutrons � 100 �m was reported [69], butthe instrumental resolution sets an even lower limit of 10� 30 �m [75, 76].5We call a slit vertical, if it cuts the beam vertically. The SMR measurements were taken with vertical planeof re�ection.6For resonant photons the penetration depth can be smaller, than the layer thickness, but still enoughrepetition is `seen' for the appearance of Bragg peaks.7The neutron and photon sources are incoherent. The average resonant photon yield at ESRF is still muchless than 1 photon=bunch.



CHAPTER 4. MEASUREMENTS IN MOMENTUM SPACE 65For photons the lateral coherence length can be estimated from simple geometrical consid-erations. The transverse coherence length will beLtr = �2� Ss (4.13)Where � is the wavelength of the incident radiation, S is sample-detector distance and s isthe detector slit width. When we take grazing angle re�ection, then lateral structures smallerthan the projection of Ltr can be resolved. In other words:Llat = Ltr� : (4.14)Here � is the incident angle.For the SMR measurements Ltr = 51 nm and Llat � 10 �m for a typical ! scan at the �rstAF Bragg peak (� = 0:4Æ). The instrumental resolution has an upper limit of � 5 �m beingthe primary limiting factor.In conclusion, for both PNR and SMR measurements the instrumental resolution sets thelimit of lateral resolution in practice.



Chapter 5SMR and PNR measurementsOne of the main points of this work is the thorough magnetic characterization of a stronglyAF coupled Fe/Cr ML. Information on both plane-parallel and plane-perpendicular magneticstructures is obtained. To achieve this goal, coherent scattering methods are utilized. Tobe able to feed the coherent models with structural information, description by independent`traditional' structural and magnetization measurements of the ML is needed. Some of themagnetization results were already discussed in Chapter 3. Before we present the SMR mea-surements, we should describe the sample in accordance with the precision needed for thecoherent methods.5.1 Thickness calibrationProper thickness calibration is of utmost importance for the evaluation of re�ectivity data.Our goal is to describe the Fe/Cr sample 990608, nominally MgO/�57Fe �25 Å� =Cr �14 Å��20(see 3.1).5.1.1 RBS and PIXE measurementsIn the literature mainly x-ray re�ectivity is used to calibrate sample thicknesses. The high-anglex-ray re�ectivity measurements are sensitive to the interatomic distances, while the low-anglemeasurements are sensitive to the total �lm and the bilayer thicknesses. In our case the indi-vidual layer thicknesses cannot be resolved due to the low contrast of Fe and Cr in the givenenergy range, thus we used applied nuclear physics methods to get the individual thickness ofthe layers. From combined evaluation of Rutherford backscattering (RBS) and low angle x-raymeasurements the values �57Fe �26 Å� =Cr �13 Å��20 were concluded [6]. The sample was mea-sured with particle induced x-ray emission (PIXE) spectrometry [77]. According to the PIXEmeasurements made on the side of the sample the total thickness was 526:7� 44:5 Å Fe and66



CHAPTER 5. SMR AND PNR MEASUREMENTS 67246:2� 19:5 Å Cr, respectively. The homogeneity of the sample was checked by measuring two1 mm radius spot in the middle of both ends of the sample.1 The thickness of the sample washomogenous according to the PIXE measurements (�3%). Assuming no plane-perpendicularthickness distribution of Fe and Cr, a �57Fe �26:3 Å� =Cr �12:3 Å��20 was deduced.2Both RBS and PIXE are sensitive to the plane-perpendicular projection of the atomicdensity, thus to get a thickness value one has to assume a density, which can di�er in MBE-grown MLs from the bulk value. Low-angle x-ray measurements could be more precise indetermining individual layer thicknesses if the contrast were better and the `bulk' parameters(electron density, absorption, layer roughness) were known from independent measurements.3The main bene�t of the application of nuclear methods was to exclude the `inverse' system(with thick Cr and thin Fe layers), which gave a better �t to some of the resonant x-ray data.The �nally obtained structure can be used as a base for �ne-tuning the thickness and relatedparameters in the resonant x-ray re�ectivity curves.5.1.2 Measured thickness valuesThe bilayer thickness can be determined from the position of the higher-order Bragg peaks(both structural and magnetic) in SMR and PNR measurements. By this method d1 =38:1� 0:4 Å and d2 = 38:5� 0:15 Å bilayer thickness was found from SMR measurementstaken at ESRF and SPring-8, respectively. From PNR scans d = 39:3� 2:3 Å was achieved.From the �tting of the prompt x-ray re�ectivity of the SPring-8 measurements d = 38:2 Å wasfound with layer division of �57Fe �25:2 Å� =Cr �13 Å��20. From all the above-described resultswe will use MgO/�57Fe �26 Å� =Cr �13 Å��20 [47]. Calculating with the bulk Fe and Cr latticeconstants of 2:87 Å and 2:88 Å and taking into account the orientation of the ML the bilayerstructure consists of 9 monolayers of Cr and almost 18 monolayers (17.75) of Fe.5.2 Non-resonant x-ray measurements5.2.1 High angle x-ray re�ectometryThe high-angle x-ray re�ectometry scan (not shown) of sample 990608 is similar to the onereported by Fullerton et al. for similar systems [14]. The only di�erence is the appearanceof two small peaks indicating possible oxidization. The extra peaks cannot correspond to aFe/Cr(211) plane; due to the position of the supposed peak and they vanish in the o�-specular4��2� scans. A splitting of the Fe/Cr(200) peak could be seen, but this could be related to the1The line connecting the spots was parallel to the longer edge of the sample piece of 10� 7 mm.2RBS measurements were done by Edit Szilágyi. PIXE measurements were performed by András Kocsonya.3This approach was used by R. Schad [48], but it is not too widely used.4O�-specular by 0.3Æ.



CHAPTER 5. SMR AND PNR MEASUREMENTS 68not proper alignment of the sample and the detector. On the o�-specular scans the multilayerpeaks are more pronounced.The presence of oxides could result from the fact that neither bu�er nor capping layerswere used, giving place to possible bottom and top oxidization.5.2.2 Low angle x-ray re�ectometryIn the case of low angle specular and rocking curves we are luckier, because all the SMR mea-surements automatically generate a non-resonant counterpart. Due to the excellent control ofthe experimental parameters like wavelength, slit size, angle (except the zero-position uncer-tainty which we will discuss later) and the high brilliance, fast and reproducible measurementsare possible.Lateral inhomogeneities of the layer parametersComparing the di�erent measuring methods (see Section 5.1) we conclude that the overallthickness �uctuations of the sample do not exceed 3%. This is a small value, but can be stillseen by the re�ectometric methods. On the other hand, from x-ray re�ectivity measurementstaken with very small slits (h = 25 �m) the perfect local homogeneity of the ML is seen intwo orthogonal directions along the middle of the sample (Fig. 5.1).5 This is not surprising,as the sample was rotated during growth. All SMR measurements were taken in the middleof the sample, while for neutron scans the whole sample width was used. Finally we note thatcomparison with older scans shows that the structure of the sample (at least as seen by thex-rays at low angle) did not change during the years.Evaluation of low-angle prompt x-ray measurementsBefore we can add the `nuclear information' to the multilayer it is of immense importance tocorrectly �t the structural part. For this reason we take measurements taken at SPring-8,6because the sample alignment was here the best.7From re�ectivity simulations carried out with the IMD software [78] it turned out that thetop layers' roughness and thickness are essential parameters to the non-resonant �t. Theydetermine the details of the whole curve. The intensity ratios of the Bragg peaks are alsostrongly roughness-dependent. We used literature roughness values reported by Schad et al.on similar Fe/Cr systems [48] as starting parameter set. The relevant data are summarized inTable 5.1. With these starting roughness values and the help of IMD a good �t was achieved.The �nal parameters are reported in Table 5.2. Finite instrumental resolution could be applied5In fact the di�erence between the two scans is so small that they look like a single line.6http://www.spring8.jp/ENGLISH/facility/bl/PublicBeamline/BL09XU/index.html7At the ESRF measurements the sample was placed in a huge Dewar �ask, and the whole Dewar �ask wasrotated, while in SPring-8 a small precision goniometer was used.
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Figure 5.1: X-ray re�ectivity (� = 0:86022 Å) curves of 990608 taken at SPring-8 BL09XU in Oc-tober 2002. The two easy axes measurement are perpendicular to each other. The detector slitsize was 25 �m � 1:5 mm (vertical�horizontal). The beam divergence is 0:0023 mrad � 0:23 mrad(vertical�horizontal). The scattering plane is vertical. The two scans are corrected for �0 misalign-ment and sample size.



CHAPTER 5. SMR AND PNR MEASUREMENTS 70to smear out the deep minima by convolution, but EFFI has no such parameter, thus it wasnot applied.Low-angle x-ray re�ectometry is a powerful tool to see certain parameters of the sample.From IMD simulations and the good reproducibility of the spectra it is obvious that the MLstructure is laterally homogenous and vertically periodic (the possible random error of theindividual Fe and Cr thicknesses is < 1 Å). But re�ectometry gives an `integral' view ofthe sample. The oxide for example plays a major role in the exact shape of the re�ectivitycurve. Also there is no �best� �t, but many possible candidates due to the enormous number ofparameters (layer thicknesses, re�ectivity values, roughness, possible top and bottom oxidation,etc.). Parameter cross correlations inevitably exist. As a consequence, the more parametersare known in advance from independent measurements, the better chance we have to obtainnot only a good-looking, but also a physically realistic model and �t. Fortunately, essentialdata on similar MLs can be found in the literature [48].In conclusion, sample 990608 is laterally homogenous and the layer thicknesses are alsoconstant along the plane-perpendicular direction. According to expectations, the top Cr layeris partly oxidized. The interfaces are relatively sharp with average roughness � 1 monolayer.No bottom layer oxidization was found.Finally we note that that a) the ESRF spectra signi�cantly di�er from the SPring-8 spectra8and b) that in the range of total re�ection � �rst structural Bragg peak according to EFFIthe roughness is not important even with the resonant � � 2� curves.�substrate 3:4 Å�Cr 3 Å�Fe 3 Å�oxide 6 ÅOxide thickness 15 ÅTable 5.1: Thickness and roughness values reported by Schad et al. [48] for a Fe/Cr multilayer grownon MgO.
5.3 SMR measurementsUp to now we discussed non-resonant x-ray re�ectometry results. By analysis of the delayedre�ectivity curves we now focus on the `magnetic dress-up' of the structure. As those measure-ments depend on a huge number of parameters, �rst we try to deduce some basic informationby comparing the measurements to each other. Then we will discuss the problems arising dueto the integral mode �� 2� scans. Finally notes on possible model calculations and �ts will bepresented.8This is due to instrumental uncertainty as the slits were not well controlled in the �rst series of the ESRFspectra (in October 1999), while very accurately recorded at SPring-8.



CHAPTER 5. SMR AND PNR MEASUREMENTS 71
layer 1-n [1e-6] k [1e-6] thickness [Å] � [Å]oxide1 2.373 0.122 6.36 3.41oxide2 4.257 0.122 10.48 5.21Cr1 6.735 0.243 7.97 3.44Fe1 7.428 0.339 25.2 0yCr 6.735 0.243 13 1.0 / 1.23Fe 7.428 0.339 25.2 1.46MgO 3.566 0.012 1 1.24Table 5.2: Thickness and roughness values gained by �tting the SPring-8 low angle prompt measure-ment (� = 0:860220 Å). The assumed structure was: MgO/[Fe/Cr]19/Fe1/Cr1/oxide2/oxide1. The �values correspond to the top interfaces (for example �oxide 1 is the vacuum/oxide 1 interface). The two� values in the Cr row are the Fe1/Cr and Fe/Cr roughness values, respectively. For further details,see text. (y The model was not sensitive to this roughness parameter.)
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CHAPTER 5. SMR AND PNR MEASUREMENTS 72SMR scans are taken in the time-di�erential (TD) and-time integral (TI) modes Time-di�erential mode may be better in evaluating the detailed hyper�ne parameters, while TISMRhelps to get a fast overview of the `landscape' (see Fig 5.3 for example). For AF coupledMLs both method may show the alignment of the layer magnetizations. The majority of SMRmeasurements, discussed in this work, was done in TI mode, thus we will restrict ourselves tothe evaluation of the TISMR measurements.The resonant ��2� scans were taken in `integral' slit mode (slits wide open), thus not onlythe specular ridge, but a neighbouring region was integrated9. The scan history of Fig. 5.3is the following: The sample was saturated, then let to remanence ex situ before the �rstmeasurement. Then it was inserted to the cryostat with layer magnetizations perpendicular tok. This resulted in � � 2� scan (not shown) with no AF Bragg peak. The �eld was increasedin transversal geometry, thus the sample passed the BSF transition. The emerging AF peakwas detected in the following scans (Fig. 5.3), starting with 50 mT and reaching the maximal�eld of 2 T. Finally the external �eld was released, producing the spectra of 0 T. The AFpeak is visible up to 875 mT. We used the integral-slit mode because the low resonant countrate. In almost all ESRF measurement session transversal-�eld setup was used. In this setupthe external �eld is set perpendicular to the wave vector of the x-rays.

9The region was even non-symmetric in q-space, as one can see at the detector scan graph Fig. 4.9.



CHAPTER 5. SMR AND PNR MEASUREMENTS 73

0 0.5 1 1.5 2 2.5 3

2000

875

750

625

500

250

100

50

0

PSfrag replacementsM=MsH=Hsqx= (2�=�) [mrad]qz= (2�=�) [mrad]� = const.! = const.�f = const.�i = const.Æ = const.� � 2�border� [mrad]! [mrad]Æ [mrad]�i [mrad]�f [mrad] qz [nm�1]

log(counts)
[arb.units] � 0Hext[mT

]

Figure 5.3: TISMR spectra of the Fe/Cr multilayer along easy direction in increasing external �eld.The scans were taken after the BSF transition (for details see text). In the background the promptre�ectivity is shown for comparison.



Chapter 6Direct evidence of Bulk Spin FlopAfter the introduction to reciprocal space and momentum transfer measurement methods wereturn to the BSF thread. As emphasized earlier, only indirect evidence of the BSF transitionwas presented in this work. By using coherent methods the reciprocal space can be mappedand scattering of di�erent origin distinguished. In our particular case we are able to detect thescattering arising due to magnetic cell doubling, unambiguously showing the BSF transition[6, 47, 79].If a ML with in-plane fourfold crystalline anisotropy is saturated along an easy axis andthen the �eld is reduced to remanence, the layer magnetizations will align perpendicularly tothe given easy axis. An increasing �eld along the orthogonal easy axis1 causes the so-calledbulk-spin-�op (BSF) transition [47].The indirect evidence (MOKE and VSM) was described in Section 3.3. The �rst directevidence in the case of sample 990608 came from SMR measurements at BW4 in HASY-LAB (Hamburg) [47]. Due to the low resonant count rate only the presence of the BSF wascon�rmed, the details of the transition were clari�ed in a subsequent measurement at ESRFID18 [79].6.1 BSF and magnetization orientationIn Fig. 6.2 the BSF transition can be followed in a spectacular way.2 In the starting situationthe layer magnetizations of the AF coupled multilayer are parallel/antiparallel to the external�eld direction3 and perpendicular to k. This results in no AF re�ection. With increasingexternal �eld the AF intensities (peaks marked with 1/2 and 3/2) increase. The �rst AF peak1This can be achieved by either rotating the external �eld, or equivalently by rotating the sample in rema-nence, the latter being the easier in the synchrotron case.2The ESRF measurements were done in October 1999 (SI-508).3This was achieved by saturating the sample in 2 T, releasing the �eld and turning the sample by 90Æ.74
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Figure 6.1: The increase of the AF peaks during BSF. The areas of the �rst and second AF peak (AF1and AF2, respectively) are divided by the �rst Bragg peak (BR). The AF peaks are the same as peaks1/2 and 3/2 on Fig 6.2.divided by the �rst Bragg peak on Fig. 6.1 clearly shows the BSF transition region between10� 20 mT. The transition is probably even sharper extending in the range of 12� 16 mT.The uncertainty is caused by the statistical �uctuations and the change in the measurementgeometry which causes the change of the footprint angle4 leading to systematic errors in the AFpeak intensity. The 3/2 peak, which is not a�ected by the footprint correction and backgroundcounts from the total-re�ection peak starts to appear at 12 mT and has a cusp at 16 mT. The�rst scan (0 mT) was originally taken in 600 points, 0:5 point=s while all the others are takenin 300 points thus two channels were averaged for the �rst scan. The scans at 2.5, 5, 20, 25 and37:5 mT are not shown (they do not contain new information � no change in the ratios). Thescans are normalized to the structural Bragg peak. The �-misalignments are also normalizedto each other. Note that at 12 mT 3 scans were taken (12a�c). A re�ll occurred between 12aand 12b. Scans from 12b�18 mT were taken with double time (1 s=channel).In conclusion, direct evidence of the BSF transition was shown and sharp BSF range of12� 16 mT was deduced [63]. Later in the domain description part we will show PNR evidenceof the BSF transition and the domain coarsening related to the BSF will be discussed.

4The angle at which the sample blocks the incoming radiation totally.
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Figure 6.2: BSF as seen on the resonant � � 2� scans. Curves are shifted for clarity. On the insetsthe in-plane geometrical relation of the layer magnetizations (bold arrows), the external �eld and thek�vector of the photons is shown. The scans are normlized to the structural Bragg peak.



Chapter 7Antiferromagnetic domainsMagnetic thin �lms and ferromagnetically coupled layers often show ripple domains perpen-dicular to the external �eld in order to minimize the stray �eld energy [4, 17]. In contrast,strongly AF-coupled magnetically compensated MLs like to form `patch-like' domains. Thedirect visualization of those domains is di�cult due to the vertical compensation of the magne-tization in the ML stack.1 Indirect methods (for example resistance noise, magnetoresistance)and reciprocal space measurements (unpolarized and polarized neutron re�ectometry) showedcontradictory results on domain evolution [6]. The domain-size distribution in AF-coupledMLs is important, as the domain-size dependent resistance noise may be as large as to limitGMR-sensor applications [80]. Our group was the �rst to show that by appropriate mag-netization history the domains can be enlarged by at least one order of magnitude (domaincoarsening) [6].In remanence, a magnetic ML is in multidomain state. In a strongly AF-coupled ML themagnetic domain structure of the individual ferromagnetic (FM) layers is strictly correlatedthrough the ML stack from substrate to surface. This results in zero net magnetization mag-netic super-structure domains in a periodic ML of an even number of equally thick FM layers.We will use the term `AF domains' for those patch domains. The vertical correlation allowsfor a two-dimensional representation, e.g. according to the domains of the topmost magneticlayer.We found a complex domain history in Fe/Cr MLs. The �rst e�ect, viz. domain ripeningcan be best described by tracking the domain evolution from saturation to remanence. Insaturation the sample is single domain: all magnetizations are parallel with the external �eld.When the �eld is lowered, the forced ferromagnetic state starts to break up into multidomainstate. The angle of magnetization between neighboring domains, i.e. the domain-wall angleis small in high �elds, and the domain wall energy is also minute. On decreasing the �eld toremanence, the domain-wall angle grows to 180Æ. The increasing angle results in increasing1To our knowledge, the only MOKE microscopy observation on Fe/Cr was made on thick trilayers [17].77



CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 78domain-wall energy, which is in turn can be lowered by increasing the average size of thedomains and, thereby, decreasing the domain-wall energy per unit area, a process that we shallcall, hencefort, domain ripening. Domain ripening is realized by domain-wall motion, which isa dissipative process, thus the once enlarged domains will not shrink back on increase of theexternal �eld again.The ripened domains may grow further by passing the BSF transition. At the BSF tran-sition the perpendicularly applied �eld ignites a domain coarsening. As here no domain wallmotion, but annihilation plays the main role, the resulting domains can be in the range of thesample. The once coarsened domains will again not shrink back on consecutive BSF transi-tions. It seems, that the domain size (ripened or coarsened) does not play role in the �eldrange of the BSF transition. We have MOKE evidence on this point as the BSF was repeatedwith relatively low `aligning �elds', showing the same loop each time (see Sec. 3.3).Before detailing the experimental results we present theories of domain ripening and MonteCarlo simulations on `unsaturation' domain formation and domain coarsening.7.1 Domain ripeningIn the following we will present two, admittedly simpli�ed, models of the ripening process.Nevertheless these models will describe the main features of domain ripening and will allowestimating the size of the ripened domains.7.1.1 Theory 1In the �rst theory we will calculate the average domain size of a single magnetic layer incontinuum approximation. All magnetization vectors are assumed to lie in plane. The totalenergy of a round AF domain will be calculated [81].Energy termsIn the �rst model only one layer is taken into account. The AF-coupled ML is considered byneglecting the stray �eld energy, which can be done as in the AF-coupled stack no energy gainis associated with the creation of domains. In this case, domains are formed as a consequenceof laterally random unsaturation.First we calculate the bulk ferromagnetic coupling within the Fe layers. As a �rst approxi-mation, we take a straight domain wall, with a linear wall pro�le. Let � (x) denote the in-planeangle of the magnetization at the position x and let l be the domain width with the local mag-netization varying as � (x) = f�=2; if x < 0, �=2 � �x=l, if 0 � x � l and ��=2 if x > lg.In this case the exchange energy will be: Ex = R A (�0)2 dV (see [4, pp. 112, 217]). A slab of



CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 79width w, total height tFe and wall width l has the energy of2 Ex = AtFew�2=l: Here A is theexchange constant of bulk iron.For the same type of wall the anisotropy energy can be also easily calculated, in our caseEK being equal to3 (see for example [4, p. 113]): EK = R K sin2 � cos2 � dV . Integrating withrespect to the given volume we will have4 EK = tFewKl=8: The total energy is the sum of thetwo previous terms: Ew = Ex + EK = tFew�A�2l + Kl8 � : (7.1)In case of equilibrium dE=dl should vanish. From this we get:5l = 2�r2AK : (7.2)Substituting l in the energy function we �nally have:Ew = �tFewpAK=2: (7.3)If we bend the domain wall to get a round domain of diameter � � l then all the aboveargumentation stays valid with the substitution w = ��. Thus the energy of a domain ofdiameter � is Ew = �2tFe�pAK=2: (7.4)In case of applied external �eld the directions of the momenta will change less. The previousarguments could be repeated with a new � (x) function: � (x) = �0; if x < 0, = �0 � 2�0x=l,if 0 � x � l and = ��0 if x > l. In this case the exchange energy will be: Ex = 4AtFew�20=l.The anisotropy energy is:6 EK = tFewKl (4�0 � sin 4�0)=32�0. Thus the total energy equalsto: Ew = tFew�4A�20l + Kl (4�0 � sin 4�0)32�0 � : (7.5)From dE=dl = 0 we get: l =s 128A�30K (4�0 � sin 4�0) (7.6)
2� (x) = �=2� �x=l! � (x)0 = ��=l; Ae = A R tFe0 dz R w0 dy R l0 (�=l)2 dx = AtFew ��2=l2�� l3EKc = Kc1 �m21m22 +m21m23 +m22m23�+Kc2m21m22m23, where mi-s are the angle cosines (or the magnetiza-tion components along the cubic axes). In our coordinate system m1 = sin# cos�; m2 = sin# sin�, m3 = cos#and # = �=2. We are neglecting the second term (Kc2 = 0).4Again, the integrand depends only on x. The result was crosschecked by Mathematica.5This result is p8 times the wall width, one can obtain by variational calculus. See [4, pp. 215-219] forexample.6To see the relationship with the previous case: 4�0�sin 4�032�0 = 18 �1� sin 4�04�0 �.



CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 80Substituting l to the energy term, the �nal equation isEw = tFewrAK�0 (4�0 � sin 4�0)2 : (7.7)And for a round domain of diameter �Ew = �tFe�rAK�0 (4�0 � sin 4�0)2 : (7.8)Now we have to calculate the energy loss due to magnetization reversal. This is the so-called hysteresis loss, which is related to coercivity. When the local layer-magnetization �ipsonce back and forth the energy loss due to coercivity will be equal to the area of the `virtual'H �M graph. In �rst approximation, this is Ec = 4�0HcMV where �0Hc is the coercive �eld,M is the bulk Fe magnetization and V is the volume involved. For a round domain expandingits diameter from � to � + Æ� where Æ� � � we will have7ÆEc = 2��tFe�0HcMÆ�: (7.9)In the case of �0 < �=2 the magnetization reversal loss is less. Only the perpendicular-to-�eld component has to �ip, which is proportional to sin�0. Thus the �nal form of ÆEc:ÆEc = 2��tFe�0HcM sin (�0) Æ�: (7.10)The hysteresis loss is a dissipative, always acting against the domain wall movement, itactually resembles friction. When coming from saturation, the domain size is small, governedby the primary domain formation rules (see later). Close to saturation, the domain-wall energyis small then by lowering the external �eld it grows. The system would like to get rid of theextra excess energy. In this simple model the domains will grow to make less domain wallsand, thereby, reducing the domain-wall density. They can do so only as long as the energy`drive' is bigger than the dissipative term. If a round domain of diameter � expands to � + Æ�,where Æ� � � then the energy gain is:ÆEw = �tFerAK�0 (4�0 � sin 4�0)2 Æ�: (7.11)Taking ÆEw = ÆEc we have for �:� = pAK�0 (4�0 � sin 4�0)2p2�0HcM sin�0 : (7.12)7We took only half of the total hysteresis loss curve because, during ripening the moments should turn onlyonce.
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Figure 7.1: The angle dependence of � in `Theory 1' in units of �max. The angle is measured from theexternal �eld, zero meaning saturation.As expected, this equation does not depend on tFe, because only bulk parameters were used,and due to the symmetry of the problem, this is a two-dimensional case. In the limiting case(�0 = �=2) we will have: �max = �pAK2p2�0HcM : (7.13)We can plot the domain evolution as the function of �=�max (Fig. 7.1).The coercive �eldHc is only known with a large error. Indeed, due to the fully compensated,AF-coupled nature of the investigated ML,Hc cannot be deduced from conventional magnetiza-tion measurements. In the following we shall use the rough estimate 0:2 mT < �0Hc < 3 mT.Substituting the parameters A = 2:1 � 10�11 J=m K = 4:7 � 104 J=m3, M = 1:7 � 106 A=mfrom [81], we have 220 nm < �max < 3:45 �m.This model is lacking a basic parameter, namely the interlayer AF coupling. This modelnot only does not depend on J , but in the limiting case of K = 0 breaks down (the energybecomes zero and wall width in�nite). A second shortcoming of this model is the exclusionof the Zeeman energy, which would lower the domain wall energy in external �elds and wouldmake the domains slightly bigger but would not change �max. This will also be corrected inthe next model.7.1.2 Theory 2The rede�ned model takes into account the interlayer coupling and assumes a symmetric wallstructure which runs perpendicular to the ML stack (see Fig.7.2). In the �rst approximation
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PSfrag replacementsM=MsH=Hsqx= (2�=�) [mrad]qz= (2�=�) [mrad]� = const.! = const.�f = const.�i = const.Æ = const.� � 2�border� [mrad]! [mrad]Æ [mrad]�i [mrad]�f [mrad]layer 1layer 2Figure 7.2: The sketch of a symmetric wall in strongly AF-coupled ML according to `Theory 2'. Thetwo layers are aligned symmetrically relative to the applied (in this case horizontal) external �eld.The arrows are representing the in-plane angle � of the layer magnetizations.we will neglect the magnetocrystalline anisotropy. In this case the two energy terms are theFM intralayer coupling and the uniaxial-type8 AF interlayer coupling. We will again integratewith respect to the whole stack, but neglect �nite-stacking e�ects. The energy terms areEx = A R (�0)2 dV and EJ = J R cos 2� dAt where dAt means integration with respect to allFe interfaces. In our case this would mean EJ = nJ R cos 2� dA where dA is the area of thedomain wall. Let us denote the thickness of a single Fe layer with t1, thus tFe = nt1 where nis the number of the Fe layers. For this model we will calculate everything for a single layerwith two coupled surfaces.The energy, which has to be minimized for a domain wall along the x-axis9 becomes inremanence: Ew = Ex + EJ = At1w 1Z�1 �� (x)0�2 dx + 2Jw 1Z�1 cos2 � (x) dx (7.14)This can be directly substituted to the energy density of eq. (3.105) in [4] with the constantsA = A and 2J=t1 = K and, integrating the result, the wall energy [4, p. 217] will be:Ew = 4wp2At1J (7.15)In the case of external �eld (including the Zeeman term in a two-sublattice model), withdomains having angles �0 and ��0 a more generalized formula will apply. In this case we canuse the formula (3.111) from [4]. In the original formula the generalized energy density termis G (�)�G1 = Ku1 (cos �� cos�0)2 which we should integrate to get the wall energy in onedimension: 
w = 2pA R �0��0pG (�)�G1 d� yielding:
w = 2pAKu1 �0Z��0 cos�� cos�0 d� = 4pAKu1 (sin�0 � �0 cos �0) : (7.16)In our case integrating 
w with respect to the other two dimensions and substituting the8cos 2� = 2 cos2 �� 1. And we can neglect constant terms in the energy expression.9� (�1) = �=2; � (1) = ��=2
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Figure 7.3: The angle dependence of � in `Model 2' in units of �max. The angle is measured from theexternal �eld, zero belonging to saturation.constants and calculating for a domain with diameter � we have:Ew = 4��p2At1J (sin�0 � �0 cos�0) : (7.17)The hysteresis loss will be the same as for (7.10). Making the two variations equal we get:� = 2r2AJt1 1� �0tan �0�0HcM : (7.18)We will get the maximal domain size at �0 = �=2. Substituting the literature values therange of �max is now 1:6 �m < �max < 24 �m.We can include anisotropy in this second model. We will calculate only �max (H = 0 T).The equation we will start from is again taken from [4] (3.128): Ew = Ku1 (cos2 �+ � cos4 �).Where � = Ku1=Ku2In our case the integrand of the energy term10 (fourfold anisotropy and uniaxial type cou-pling) is: ew = 2Jt1 cos2 �+K cos2 sin2 � = �2Jt1 +K� cos2 ��K cos4 �: (7.19)To get the wall density we should substitute the values Ku1 = 2J=t1 + K, Ku2 = �K and10cos2 � sin2 � = cos2 �� cos4 �



CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 84� = � K2J=t1+K , thus � < 0. In this case the wall energy density:
w = 2pAKu1�1 + 1 + �p�� arctanhp��� : (7.20)If we integrate for one layer (thickness and width) and write our variables:Ew = 2wt1pA (2J=t1 +K) 1 + 2J=t1pK (2J=t1 +K)! arctanhp��: (7.21)Taking the actual values of J , t and K � will be small. In this range tanhx � x, thusEw = 2wt1pA (2J=t1 +K)�2� K2J=t1 +K� : (7.22)With K = 0 equation 7.15 will be a special case of (7.22). For a round domain (w = ��) theenergy of the wall will beEw = 2��t1pA (2J=t1 +K) 2� 12JKt1 + 1! : (7.23)The hysteresis loss (7.11) at zero �eld is ÆEc = 2��t1�0HcMÆ�. From this the wall widthat zero �eld is: �max = pA (2J=t1 +K)�2� 12JKt1+1��0HcM (7.24)Substituting all numerical parameters, we will result in a maximal domain diameter in theinterval of 1:6� 24:1 �m. Note that practically no di�erence can be seen compared to theK = 0 case, which will be evident if we make further approximations for the small anisotropyterm (� = t1K=2J � 1). Ew = 2��p2t1AJ (1 + �)�2� 11� + 1� (7.25)2� 11� + 1 = 1 + 11 + �; (7.26)11 + � � 1� �; p1 + � � 1 + 12�; (7.27)p1 + ��1 + 11 + �� � �1 + 12�� (2� �) = 2� 12�2; (7.28)Ew � �� �4� �2�p2t1AJ (7.29)In conclusion, the leading �perturbative term� vanishes, thus the anisotropy energy accountsonly for � 0:86h lowering of the wall energy, which can be safely neglected.



CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 85`Theory 2' is also a `�rst-guess' model'. A better domain-ripening model could only bemade by the use of micromagnetic calculations. Note that both models predict a continuousdomain ripening.7.1.3 AF-domain formationIn the previous part we treated the ripening of the already existing AF domains. But how arethose AF domains formed initially? In the following Monte Carlo simulation we will try togive a phenomenological answer to this question [82].Let us assume a lateral distribution of the saturation �eld (caused for example by Fe and Crlayer roughness). This inevitably leads to independent AF domain nucleation centers. Whenthe external �eld is lowered from saturation, the strongest-coupled parts will form AF domains�rst. They can do this in two di�erent ways. The top layer may start rotating to the right or tothe left (clockwise or counter-clockwise). The two types of domains will grow until the wholesample is unsaturated. In our model we associate the domain formation with the correlationlength of the saturation �eld. We assume the absolute thickness variations of Cr and Fe to beequivalent. Due to the strong oscillatory thickness dependence of the coupling in the Fe/Crsystem [83], the actual correlation length of the AF coupling and, consequently that of theunsaturation domains is much smaller than the correlation length of the Cr spacer thickness.Pixel representationDue to the vertically correlated domains, the strongly-coupled AF stack can be modeled as atwo-dimensional grid of pixels. Each pixel represents the direction of the magnetization of thetopmost layer in a given pixel area. The mesh size of the grid should be taken smaller than theactual domain size. In our model, each pixel possesses a macroscopic classical magnetization,saturation �eld and anisotropy energy. The domains are formed on this grid by �rst-neighborrules explained later. Domains are represented as contiguous sets of pixels of the same color.Saturation �eld distributionThe unsaturation or primary domain formation is governed by the distribution of the saturation�eld. The higher the saturation �eld of a given pixel is the sooner will the pixel unsaturate.First we create a grid of uncorrelated random numbers U (r) of Gaussian distribution accordingto [9] (p. 288), where r = (x; y) is the position vector. The saturation �eld distribution isgenerated by smoothing the grid by an empirical width ! according toD (r) = Xjr�r0j<! 1� (r� r0)2!2 !U (r0) (7.30)



CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 86Periodic boundary conditions are used. Decreasing the external magnetic �eld Hext fromsaturation, the ML gradually unsaturates. When Hext matches the saturation �eld value Hs ofa given pixel, the pixel unsaturates. The pixel will choose its sense of rotation according to so-called �ipping rules. When Hext < min (Hs), the whole ML is completely unsaturated. We canrepresent the domains according to their top layer's magnetization: white=left, black=right,gray=still saturated.Flipping rulesThe set of �rst-neighbor rules governs the decision of each pixel. In our model, all eight �rstneighbors have equal weights. To avoid creating domain walls, the pixel to decide chooses thesense of rotation of the majority11 or chooses at random if no decision can be made using theprevious rule. The �ipping rules involve only �rst neighbors, allowing for a fast realization ofthe above algorithm. The grid is scanned for saturated pixels. When found, it is checked ifall still-saturated neighbors possess a lower Hs value than the one found. If yes, the pixel isallowed to choose its sense of rotation according to the above �ipping rules. If not, the nextpixel is chosen. The scan of the grid is repeated as long as all saturated pixels �ip to either leftor right (black or white). Finally, the temporal evolution of the domains is reproduced and amovie of the domain formation is constructed from the �nal state (Fig 7.4).The above-described Monte Carlo simulation was tested with MOKE microscopy data fromFe/Cr trilayers [82,84] with good agreement (see Fig. 7.5. In the description of the unsaturationdomain formation the crystalline anisotropy term can be neglected, thus the primary domainsize does not depend on the in-plane sample orientation. When we are in the low-�eld region(after the ripening) the orientation does count as will be seen in the following.7.1.4 Domain ripening in easy directionIn the easy-direction unsaturation scenario the moments rotate smoothly to the AF-remanentstate from the FM alignment in saturation. The �ipping rules do not contain the domainwall energy explicitly, thus from this model no ripening is expected. A more sophisticatedmicromagnetic simulation (explicitly including domain walls) should give a better Monte Carlodescription.The ripening of the domains is connected with the coercivity of the Fe �lms, as discussedin the previous models (7.1.1 and 7.1.2). As the �eld decreases, the domain-wall angle and,consequently, the domain-wall energy per unit are increases. Therefore also the domains in-crease in order to decrease the domain-wall density and, thereby, to minimize the domain-wallenergy. This spontaneous growth of the domains is limited by the domain-wall pinning (coer-civity) and the gain in domain-wall energy is not enough to increase the average domain size11Neighbor pixels still in saturation have no in�uence
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Figure 7.5: �The autocorrelation function of the Kerr microscopic image (Fig. 4b in [17] as com-pared with the autocorrelation of the simulated image in Fig. 7.4b with ! = 10 and pixel size of146 � 146 nm2.� [84]beyond a certain limit. The domains are bound to their original sense of rotation as long asthe magnetic �eld remains parallel to the original axis of magnetization, since in higher �eldsthe Zeeman energy, in lower �elds the magneto-crystalline anisotropy stabilizes the domainorientation.7.1.5 Domain ripening in hard directionIn the hard-axis scenario there is a second `critical point', viz. the hard-axis reorientationtransition (see Section 2.6). Now the system is in a frustrated state between di�erent energyminimum paths. The role of domain walls will be enhanced. In a simple model unsaturationalong a hard axis result in nearly 180Æ domain walls when approaching a critical �eld Hprt [85].At this �eld, the sublayer magnetizations are directed along the hard axis and perpendicularto the �eld, a con�guration that becomes energetically unfavorable on further reducing the�eld.12 In remanence the magnetizations will lie parallel to the easy axes. See Fig. 7.6 for theevolution of domain ripening in hard direction.Assuming that the domains do not change shape but rotate, the domain image remains thesame down to Hprt as it was in complete unsaturation, only the angles of the layer magneti-zations change. At the spin-partition �eld Hprt (r) the pixel magnetizations start partitioning,i.e., rotating clockwise or anticlockwise. The AF domains gradually develop into four di�erentorientations along the easy axes in remanence resulting in �45Æ relative rotation from the Hprtstate. The domain nucleation of this partition spin-�op is now governed by the e�ective corre-lation length of the spin-�op �eld, which is much broader than that of the saturation �eld. A12This is an oversimpli�ed picture as we know that for �nite number of layers complex reorientation transitionoccurs, but the main idea, i.e. the frustration of the magnetizations (domains) is still valid.
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CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 90pixel can choose its new direction if all pixels with higher spin-�op �eld have already decided.A left-directed pixel (e.g., top layer pointing left) can now choose between up-left and down-leftdirections. The rules are similar to the unsaturation rules, but here the energy penalty of aneighbor pixel is proportional to the square of the relative angle of the neighbors.13. The pixelto decide will choose the direction with the least total energy penalty. Consequently, the re-manent domain structure following a hard axis unsaturation remembers the primary domainstructure. The four types of domains are not randomly distributed, but in groups of two in or-der to avoid 180Æ domain walls. Indeed, if a left-directed pixel has chosen to rotate left-up, aneighboring right-directed domain will de�nitely rotate right-up rather than right-down sincethe domain-wall angle in this case will be only 90Æ.7.1.6 Domain coarsening on BSFAt the BSF transition the magnetic moments are switched by �90Æ by the external �eld. Thisabrupt change in layer magnetization gives the chance to change the domain structure. InFe/Cr MLs, we found a coarsening of the domains on BSF transition [6].The mechanism of the BSF-induced coarsening basically di�ers from that of the unsatu-ration domain formation and ripening. Indeed, when an increasing magnetic �eld is appliedin the magnetization-parallel direction, the anisotropy energy preserves the primary domainstructure only for H < Hbsf. At Hbsf, the system becomes energetically unstable and thelayer magnetizations �ip to the �eld-perpendicular direction. There is again a freedom in thesense of rotation and, similar to Hs, also Hbsf obeys a distribution. However, at H � Hbsf thesystem is close to an energy maximum and behaves like an explosive material: it may jumpto an energy minimum by 90Æ or �90Æ rotation of the magnetization. Once the �rst regionwith the lowest value of Hbsf `decides' between a 90Æ or �90Æ �op, it will `ignite' the neighborregions, which will choose the same direction of magnetization to avoid creating new domainwalls. In contrast to primary domain formation, secondary domains at the BSF transition maygrow without any long-range domain-wall motion, and this growth is, therefore, not limitedby coercivity. BSF-induced domain coarsening is an explosion-like 90Æ �op of the magnetiza-tion annihilating primary 180Æ walls. Consequently, the secondary patch domain size mightbecome comparable with the sample size.In the BSF Monte Carlo simulations [82] we used similar spin-�ip rules, which ensurethe unnecessary creation of excess domain walls. A pixel can choose now its new directionif all pixels with lower spin-�op �eld have already decided. The rules are now the same asthose during unsaturation, but the pixels may now �ip from the left/right into the up/downorientation. In a simple model of the domain-wall energy, the energy penalty is proportionalto the sum of the square of the relative angle of the neighbors. It can be shown that with these13We assume, that in �rst approximation the domain wall energy is proportional to the square of the angleof the wall



CHAPTER 7. ANTIFERROMAGNETIC DOMAINS 91conditions, the secondary domain formation is independent of the primary structure and onlydepends on the lateral distribution of the spin-�op �eld. The BSF domain coarsening is shownin Fig. 7.4.7.1.7 Domain stability and processIf in the ML isolated round domains would exist, they could be annihilated below a critical size.For a ML with patch-domains, a chessboard-like structure is more realistic. The wall-energycalculations can be repeated in this case, and will lead to the same critical size but with stabledomains. [81]We presented two theories, where AF-domain grows continously with decreasing external�eld. We also noted, that if a domain is coarsened, then it will stay like that unless the sampleis (super)saturated. We also know, that the primary domain formation results in a givencorrelation width of the `saturation domains'. From the above it follows, that domain ripeningwill start only, when the theoretical size of the ripened domains reaches the actual primarydomain size.



Chapter 8Domain experiments on the Fe/Cr sample
8.1 IntroductionIn the �rst part of the experiments, we investigated the specular spectra, which corresponded tothe qx = 0 specular ridge in the momentum space, showing the plane-perpendicular correlationsof the sample. In the last part of the thesis we will deal with lateral structures (in our casemainly domains) of the AF-coupled MLs from experimental point of view. Mangetic domainsstrictly AF-correlated trough the ML stack give rise to di�use scattering at Bragg positions(Bragg sheets) as will be detailed later. They can be mapped in qz = const. scans, whichcorrespond to ! scans in SMR. Domain ripening observed in the easy and hard directions ofthe fourfold in-plane anisotropy is discussed as well as domain coarsening at the bulk-spin-�optransition.The physical quantity that we would like to obtain from the o�-specular SMR and PNRmeasurements is the lateral autocorrelation function of the AF domains. In the �rst Bornapproximation, neglecting magnetic interface roughness, we obtain the Fourier transform ofthe domain autocorrelation in the reciprocal space [86].Magnetic domains in AF-coupled MLs have been investigated by PNR since a long time[67, 68, 87]. SMR can yield the same information for nuclear resonant isotopes (in our case57Fe). Recently, X-ray Magnetic Scattering has been also utilized to study Fe/Cr MLs [88,89].The evolution of di�erent techniques leads to a growing competition of measurement methods.We will focus only on PNR and SMR, which were used in our experiments.As already mentioned, coherent scattering techniques give direct information on the mag-netic structure. Scattering contributions of structural and magnetic origin separate in recip-rocal space for well-chosen conditions. For AF-coupled MLs, this manifest in the appearanceof pure magnetic scattering peaks. Those peaks are the result of the unit cell doubling by thealternating AF magnetic ordering of the ML, giving rise to `half order', structurally forbidden92



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 93peaks. Those AF Bragg peaks are of pure magnetic origin.In this work the majority of our statements is based on SMR scans. The fast developmentin user environment and beam collimation at ESRF resulted in an increase of an order ofmagnitude in resonant yield, thus the last taken scans are the most reliable ones.1 In the futurethe environment will evolve further by the introduction of on-line sample-height monitor andadjuster. The parameters we measure are the peak heights (from �� 2� scans) and the di�useshoulder parameters (from ! scans).In spite of the di�erent probing depth the PNR results basically matched well with SMRdata. In the TOF PNR measurements the sample position is constant thus minimizing thesystematic errors stemming from sample `sliding', but the neutron yield is low, leading to longmeasurement times and, consequently, to a low number of data sets measured as a function ofthe external magnetic �eld. In the following we will discuss the results from the SMR point ofview, inserting PNR measurements, where available.8.1.1 Domain ripening and coarsening as seen by SMR and PNRIn saturation all sublayer magnetizations are parallel to the external �eld. This forced ferro-magnetic alignment ceases with decreasing �eld, giving rise to domain growth. The evolutionof the domains in the high-�eld region is governed by random processes, due to the mirrorsymmetry of the magnetic con�guration. The net magnetic moment of the AF stack does notdepend on the symmetry of the domains (top layer left or right) and the magnetic �eld linesare shortcut by the AF structure, thus the stray �eld plays no role. We attribute the patch likedomain formation [17] to the distribution of the saturation �eld and the simple rule of domainwall energy minimization (see Chapter 7).Both the SMR and PNR measurements con�rmed the existence of the strictly correlatedAF domains. The domain ripening occurred in a narrow �eld range of (0:2� 0:1 T) in botheasy and hard direction loops. We found that domain ripening is an irreversible process, in thesense that the domain size does not change on increasing or reverted �elds. This meets ourexpectations as the ripening involves long-range domain wall movement, thus it is inevitablya dissipative process.To obtain again the small (`virgin') domain state, the sample has to be saturated, in orderto erase all `domain memory'. Our experiments revealed that `simple' magnetic saturationwas not enough, but a �eld higher than the apparent saturation must be applied to retain theprimary domain state. We call this e�ect `supersaturation' e�ect. The supersaturation �eldwas found in a narrow �eld range between 1:25� 1:3 T, independently of the orientation of thesample (easy or hard direction). The saturation �eld was less than 1:05 T even for the harddirection loop.1For the sample 990608 the measurements with best statistics and most detailed �eld dependence werecarried out in February and December 2003 at the ESRF ID18 beamline.



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 94The supersaturation e�ect was investigated in full hysteresis loop to exclude the minor-loope�ect.2 We found that completing the loop by saturation of �1:1 T did not change the domaindistribution.Traditional hysteresis loops are taken along one direction. For AF-coupled MLs with four-fold in-plane anisotropy also a trickier magnetization history is possible. Doing a half-hysteresisloop (up to saturation, then back to remanence) and applying a perpendicular �eld (in practiceby rotating the sample by 90Æ), the bulk-spin-�op (BSF) transition (see Section 2.5) occurs,inducing a domain coarsening (see Section 7.1.6). The majority of the resulting domains werelarger than the experimental resolution.The supersaturation e�ect was also investigated at low temperature. Starting with coars-ened domains the sample was cooled to 15 K in zero �eld. At this temperature the saturation�eld was Hs = 1:55 T (indicated by the disappearance of the AF Bragg peak), but the su-persaturation �eld was larger than 2:5 T. Lacking su�cient beamtime, it was only possibleto establish that the supersaturation �eld at 15 K was less than 4:07 T. Indeed, having ap-plied this latter �eld, the lateral correlation function determined from !�scan in remanencewas equivalent to that of the `virgin' domains.8.1.2 SMR measurements and sample correlationsThe SMR measurements map the sample in reciprocal space. The � � 2� scans are re�ectingthe plane-perpendicular structure and correlations, for example the layer thickness and averageroughness parameters. The ! scans are basically constant-qz scans, mapping the o�-specular(or di�use) scattering. The origin of di�use scattering can be structural or magnetic lateralinhomogeneities.Rough interfacesRough and di�used interfaces lead to the decrease of specular X-ray scattering and appearanceof o�-specular or di�use scattering [90�92]. If the applied method is magnetization-sensitivethen the magnetic roughness also contributes to the di�use scattering [86,93]. The distributionof the o�-specular scattering in the Q�space depends on the plane-perpendicular correlationof the roughness. For uncorrelated roughness, the o�-specular scattering is basically the sumof the scattering of the individual layer roughnesses [94], giving rise to di�use scattering inthe whole reciprocal space, while for perfect spatial replication of the interfaces (correlated or`conformal' roughness [95]) the o�-specular scattering will occur at the so-called Bragg sheets(Fig. 8.1), summing up the amplitudes, resulting in an intensity higher by a factor proportionalto the number of layers [94]. Thus o�-specular (! and longitudinal o�-specular) scans reveal2In SMR and PNR measurements normally the hysteresis loops were minor loops. The �eld was cycledfrom saturation to remanence and then back to saturation. H. Zabel suggested that the supersaturation is anartefact of the uncompleted (full saturation) cycle.



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 95PSfrag replacementsM=MsH=Hsqx= (2�=�) [mrad]qz= (2�=�) [mrad]� = const.! = const.�f = const.�i = const.Æ = const.� � 2�border� [mrad]! [mrad]Æ [mrad]�i [mrad]�f [mrad]Figure 8.1: Sketch of correlated and uncorrelated interfacial roughness and intensity distribution fromthe roughness in the reciprocal lattice (after [96]).the degree of plane-perpendicular correlation and the lateral correlations of the interfaces.From specular scans only the average roughness and magnetization pro�le can be deduced.Magnetic scatteringNot only structural roughness breaks the lateral symmetry of the interfaces. Magnetic rough-ness, as already discussed, also contributes to the o�-specular scattering. Magnetic domainformation is also modulating the magnetization-dependent scattering. In general, both mag-netic interface roughness and domains give contribution to the o�-specular wings [86]. If,however, the interface is uncorrelated, we shall see only the domain information.8.1.3 SMR scans, slit settings and systematic errorsBefore describing the measurement results in detail, we have to discuss the sources of systematicerrors. This is important as in our case systematic errors often prohibit the quantitativeanalysis of the data.In SMR scans we mapped the momentum space with ��2�, ! and o�-specular longitudinalscans (see Section 4.3.4). The ��2� and o�-specular scans were measured in integral mode with`broad' detector slits, while the ! scans were taken with `narrow' slits. In the February 2003shift at ESRF ID18 the `broad' slit corresponded to 3 mm vertical aperture, which is equivalentto an acceptance angle of3 �2� = 2 mrad, while the `narrow' slit setting was 0:2 mm, which3From the sample-detector distance (which was calibrated to be 74:48 cm): 1Æ=26:0 mm on the z-stage.



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 96gives �2� = 0:13 mrad. From a previous session4 it is known that the sample's specularre�ection width is � 0:087 mrad at the �rst AF peak. When measuring with slit setting largerthan this value, we do see line broadening due to the inadequate instrumental resolution.The majority of the � � 2� scans were taken with broad slits. The horizontal slits werewide enough to integrate along qy for all scans (see Section 4.3.5). The prompt and resonant� � 2� scans show a part of the di�use (o�-specular) scattering due to the integral modemeasurements.The longitudinal o�-specular scans were also taken in integral mode (broad detector slits)and they contained the specular re�ection, too. Consequently, they were not appropriate fordeducing the `pure' di�use scattering, however, we learned from them that sometimes the so-called specular ��2� measurements were in fact o�-specular ones. The reason is the uncertaintyin the angle !, as the sample stage could move a bit between and during measurements causingsmall shifts of sample's position and angle. We call this latter e�ect the �0 uncertainty. The�0 uncertainity results in systematic errors as it may change the peak ratios. When measuringslightly o�-specular then, due to the broad o� specular AF wings, the AF peak does notchange much while the narrow specular peaks are lowered biasing strongly the peak ratios,as shown in Fig 8.2. The �0 and sample stage height instability also resulted in systematicerrors concerning o�-specular scans. By measuring at wrong qz positions the !�scans couldbe �o�-peak�, resulting in slightly modi�ed di�use scattering pro�le.Peak ratios in � � 2� scansAs mentioned above, the � � 2� scans were done with relatively wide slits. The inclusion ofthe part of the di�use scattering means that the height of the AF Bragg peak depends notonly on the specularly re�ected radiation but the distribution of the o�-specular scattering canalso have a dramatic e�ect (Fig. 8.3). The large di�erence is not so surprising if we take alook at the ! scan at the �rst AF peak (Fig. 8.4). The partial integration of the wide delayedo�-specular wing compared to the narrow structural one causes the huge di�erence. We willuse this `integral e�ect' later to study the domain history.A resonant photon counter would help to normalize the specular and o�-specular scattering5relative to the number of incident resonant photons per second. The possible energy shiftscaused by the displacement of the monochromator crystals and the drift of the sample induceda systematic uncertainty in the absolute resonant yield. Without the possibility of external4The ! scans with highest resolution were taken at session SI-735 (August 2001). The FWHM of the promptpeak did not change much when a detector slit of 0:04 mm (�2� = 0:026 mrad) or 0:1 mm (�2� = 0:066 mrad)was used. However, the FWHM doubled when the aperture was increased to 0:4 mm. The FWHM with thenarrowest slit setting (0:04 mm) of the prompt !�scan was 0:087 mrad (0.005Æ) at the AF peak (! = 0:39Æ).The delayed FWHM was 0:12 mrad (0.007Æ) for the same slit setting.5In case of the neutron measurements the normalization is easier as the incoming �ux is monitored. In PNRTOF measurements the sample and the detector are not moving, which makes the measurement geometricallymore reliable than in case of an SMR scan.
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� [Æ]Figure 8.2: The �0 uncertainty e�ect. At the �rst measurement (prompt c, delayed d) the intensityat the �rst Bragg peak was too low, thus the experiment was repeated after �0 correction (prompt a,delayed b). The intensity of the AF peaks did not change much, while the narrow structural peaksincreased enormously. The prompt measurements are plotted on logarithmic scale (left axis) while thedelayed curves are shown on linear scale (right axis). Note the �10 magni�cation from 1.2Æ on thedelayed data. The scans were taken at ESRF (2003 December). Sample 990608 was measured alongan easy axis in transversal setup. The preceding �eld history was 4 T ! : : : ! 0 T ! 0:3 T. Themeasurements were taken in 0:3 T.



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 98

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8
 0

 500

 1000

 1500

 2000

 2500

 3000

p
ro

m
p

t 
in

t 
[a

.u
.]

d
e
la

y
e
d

 i
n

t 
[a

.u
.]

x10

a

b

c

d

PSfragreplacementsM=MsH=Hs
qx =(2�=�)[mrad]

qz =(2�=�)[mrad]�=const.!=const.�f =const.�i =const.Æ=const.��2�border�[mrad]![mrad]Æ[mrad]�i [mrad]�f [mrad]

� [Æ]Figure 8.3: E�ect of the integral mode scan. The prompt of the � � 2� scan with narrow slit (a) wasnormalized to the prompt of the wide slit scan (c). The normalization was made by a signal obtainedwith a detector after an Al plate to avoid detector saturation (not shown in the �gure). The delayedcurves show the enhancement of the magnetic Bragg peaks in the case of broad detector slits (d)compared with the narrow slit setting (b). The narrow slit was 200 �m, while the broad slit was 2 mmwide. For scale axes see the comments in Fig. 8.2. The scans were taken at ESRF (2003 December).Sample 990608 was measured along an easy axis in transversal setup. The preceding �eld history was4 T! : : :! 0 T. The measurements were taken in remanence.
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CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 99normalization, the measured curves had to be normalized intrinsically.The `data mining' included integration of all resonant peak areas (total re�ection, structuraland AF Bragg peaks) in the SMR scans and the tabulation of peak heights. For analysis mainlythe peak areas were used because in some cases the peaks were broad with two maxima. Theconclusions did not change essentially depending on the height or area selection. In somecases an alternative approach of linear combination of spectra was used. This gave againqualitatively the same result.Gathering magnetic data by comparison of peaks is possible only if the information is`localized' to given regions. The existence of AF peaks is the direct consequence of the magnetic`unit cell' doubling. On the other hand the magnetic structure itself in�uences the scatteringin general. For our particular measurement setup we have seen no change of the scatteringwith the changes of the magnetization angles at the �rst structural Bragg peak. This is aconsequence of the particular geometrical setup (see Sec. 4.1.3).The appearance of AF peaks in TISMR spectra and the absence of magnetic sensitivity atthe structural peak has consequences on the o�-specular re�ectivity, too. It implies that theconsecutive magnetic layers are strictly AF correlated through the ML [6]. If it were not thecase then, as it was observed for weakly coupled Co/Cu MLs by Borchers et al. [97] the AFpeak would disappear.In the following we will use the area of the Bragg peak to normalize the spectra based onthe previous theoretical and following practical considerations, assuming that it contains onlystructural information but not magnetic:1. The resonant !�scans taken at the structural Bragg peak in low (7 mT) and high (1 T)external �eld showed identical peaks, while the !�scan at the �rst AF peak had noo�-specular scattering (see Fig. 8.5) at high �elds.62. The !�scan at the structural Bragg peak was the same for the prompt and delayed pho-tons (except for the norm. factor) independently of the sample condition (temperature,external �eld). See Fig. 8.6.Finally we note, that by analysis of ��2� scans taken with broad and narrow slit, magneticscattering was found only at the AF peaks.7 This means, that in principle the total-re�ectionpeak could also be used for normalizing the peaks. In practice it is not a good idea, becauseof the systematically changing footprint correction.6In 1 T we measured at the possible `AF position', as no AF peak was present.7Normalizing to the prompt yield, the broad-slit and narrow-slit curves were compared for a whole loop (ineasy direction of SI-962.)
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Figure 8.7: Peak integral ratios of the second AF peak divided by the second structural peak. Theintegrated regions in degrees: AF2 [0:9� 1:1], BR2 [1:2 � 1:45].8.2 Domain ripeningDomain ripening is the process, when the average domain size grows from its `native' (just belowsaturation) state to the zero-�eld equilibrium size (see Chapter 7). We performed SMR andPNR measurements to study the details of the change of the domain size distribution. Similarmeasurements were previously done by PNR on AF-coupled systems (see for example [72, 76]and further references in [67]) but the present SMR study is the �rst thorough and systematicinvestigation of the domain evolution process.8.2.1 Easy directionThe SMR mapping of domain transformation in easy direction was one of the �rst of ouro�-specular synchrotron measurements (ESRF, SI-735, August 2001). The feasibility of o�-specular scanning was demonstrated in earlier shifts (SI-508, July 2000; SI-618, December2000) but at that time the brilliance of the beam did not allow for systematic investigationwith acceptable count rate. The easy-axis loop was repeated in December 2003 with muchbetter statistics (session SI-962). Here both � � 2� and !�scans were taken. Starting fromwell above saturation (Hmax. = 4:065 T) the �eld was lowered to 1:2 T and then Q�spacemapping was done. Reducing the external �eld step by step, the domain history was scanned.From the ��2� scans with wide slits [81] we see an irreversible domain ripening8 (Fig. 8.7).8In the SI-962 session � � 2� scans up to the third structural Bragg peak were taken. In principle all three



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 102The AF peak rises sharply below H = 0:2 T and when the �eld is increased again, the peakratio stays well above the �eld-decrease branch.From the !�scans the domain ripening can be investigated in details. The intensity of thedi�use scattering is proportional to the `roughness', while the form of the function correlateswith the in-plane magnetic structure. We will not analyse quantitatively the intensity of theo�-specular scans as yet, no proper theory of the di�use SMR is available and the geometricaluncertainties give too much error on the absolute yield.The intensity of the o�-specular scattering depends on the magnetic `contrast', which con-tains not only the autocorrelation function of the in-plane magnetization, but also the angledi�erence between the neighbouring domains. At high external �elds the angle di�erence andthus the magnetic di�use scattering at the AF peak is small. To be able to compare the auto-correlation functions, we normalized the o�-specular parts to the shoulder next to the specularpeak.In Fig. 8.8 the !�scans in decreasing �eld (after supersaturation) are collected down to0:2 T. From earlier measurements9 we already expected the ripening to occur in a small�eld range starting at 0:2 T, thus we took larger steps in the upper magnetization region.The normalized !�scans are identical, showing no change in the shape of the o�-specularscattering. The curve at 0:2 T shows a small ripening, but we attribute it to systematic errors(integral of the o�-specular peak is anomalously low, the previously taken � � 2� scans withbroad and narrow slit are the same, indicative of a badly aligned sample).As expected from earlier easy- and hard-axis SMR measurements, the ripening is completedat H = 0:125 T (Fig. 8.9) and further decreasing the �eld does not change the shape of the o�-specular scattering. The ripening is an irreversible process, as we discussed earlier and here theexperimental evidence is shown. When the �eld was increased (Fig. 8.10) only the amplitudeof the o�-specular scattering decreased, but the shape of the scattering remained unchanged.Also scanning the �eld below saturation (for example 0 T! 0:3 T! �0:1 T! 0 T) did notchange the form of the o�-specular scattering.PNR measurementsThe PNR experiments con�rmed the existence of domain ripening. Due to the short availablemeasurement time the spin analyzer was not used. This was possible because the samplealignment was such10 that only spin-�ip scattering was present in the AF Bragg sheet. Thiswas con�rmed by short-time, low-statistics measurements with spin analysis at 0, 0.15, 0.3 andstructural/AF peak ratios should give the same information. We found that due to geometrical e�ects, theusage of higher order pairs gave less instrumental errors (at lower angles the �0 and sample height uncertaintyplays a bigger role). On the other hand, at too high angles the resonant count rate is not high enough forreliable comparison. For this sample the second Bragg and AF peak were the best choice.9ESRF shift SI-735, August 2001.10The layer magnetizations were perpendicular to the spin on the impinging neutron beam.
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SupersaturationWhen the sample is in saturation (H � Hs) then the AF peak vanishes, thus no direct informa-tion can be obtained from it.14 In order to detect the domain transformation around saturationthe �eld was lowered prior to measurement to 0:5 T (to be above the critical �eld for domainripening) where AF scattering is already measurable. The maximal �eld to be investigated wasincreased in small steps from measurement to measurement. This way, the supersaturation`memory e�ect' was mapped. According to the measurements, in hard direction the domainsare transformed back to the `virgin' (small domain) state in a narrow �eld range between 1.20and 1:25 T (Fig 8.19). This is the same �eld range, where the easy direction supersaturationwas observed.14The di�use scattering, still present, is proportional to the prompt ! scan (see for example Fig. 8.17), givingonly structural information.
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CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 1128.3 Domain history at low temperatureThe supersaturation e�ect was also demonstrated at low temperature, in easy direction (SI-962, December 2003). After two consecutive spin-�op transitions at room temperature, thesample was cooled to 15 K. By looping the external �eld step by step to higher and highervalues and measuring � � 2� scans in-�eld, and !�scans in zero �eld the saturation �eld wasscanned and the supersaturation investigated.Due to the spin-�op, in remanence the sample was in the `large domain' state [6]. Byincreasing the external �eld the AF moments were forced to rotate towards a ferromagneticalignment. The saturation �eld was � 1:5 T (Fig. 8.20). To be sure to include all o�-specularscattering, the vertical detector slits were wide open15 (�3 cm). After reaching saturation,� � 2� and ! scans were taken in Hext = 0 T. The shape of the ! scan suggests that at thistemperature the sample did not go trough the ripening process even in remanence. Increasingthe �eld loop up to 2:5 T no di�erences were detectable on the ! scans (Fig. 8.21). The �eldof 4 T was high enough to return the sample to the `small-domain' state. Indeed, from the !scan (Fig. 8.21) it seems that the sample returned to the `virgin' state.To obtain domain properties from integral (wide-slit) � � 2� scans the peak ratios shouldbe evaluated. As already discussed, integration of peak areas and linear-combination �tting ofspectra are both yielding similar result. Here we will use the linea-combination �tting method.In saturation, the AF peak disappears while it is maximal in remanence. By de�ning theAF/BR ratio to be 0 in the forced FM alignment (Hext = 1:7 T) and 1 in the AF alignment(Hext = 0 T) and �tting the � � 2� scans in between with a linear combination of the twoextreme scans a good AF/BR ratio plot was obtained (Fig. 8.20). One can achieve an evenbetter result, if only the higher-angle part of the scans is used. The cause for this may bethe changing misalignment of the sample, which in�uences the spectra trough the geometricale�ects16. The peak ratios could be also biased by not scanning exactly along the specularridge. Those systematic errors are getting smaller at higher angles.17 On Fig. 8.20 curve (a)shows the results obtained by �tting the spectra starting from the �rst structural peak (BR1),while in case of (b) the �tting was done on the �rst AF peak (AF1) to the �rst structural peak(BR1) range. From the reduced �2 it is also evident that the model of linear combination isbetter for case (a). Note that in this case the intensity of the �rst AF peak can di�er from themeasured value.15This slit setting is probably wider, than the whole active area of the detector.16This is the reason why the total-re�ection peak has never been included in the �t.17The unexpected decrease at 0:4 T is also connected to sample alignment and it is missing in the higher-angle�t.
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Figure 8.21: Low-temperature (15 K) supersaturation in easy direction. All curves are normalizedto 10 s=ch prompt counts. No notable di�erence can be seen up to 2:5 T. Lacking beamtime, thesupersaturation region was not searched further, thus only 2:5 T < Hsup. sat. < 4:065 T could beestablished.



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 1148.3.1 DiscussionThe PNR and SMR measurements revealed us the details of the domain ripening in easyand hard direction. Domain ripening is not a continuous process but it is occurring in thenarrow decreasing �eld range of 0:2� 0:125 T after supersaturation. Ripening is irreversible,the domains do not change on increasing the �eld up to supersaturation. The supersaturationregion is again a narrow �eld region of 1:25� 1:3 T. Ripening and supersaturation occur in thesame way for easy and hard direction loops (same �eld ranges, same !�scans), thus it seemsthat anisotropy plays no role in those phenomena. At 15 K the supersaturation is even morepronounced and no ripening occurs. Finally, the non-continuity of ripening is not an artefactof the SMR scans, as PNR scans con�rm our �ndings.Domain sizeNow we would like to answer the following question: How big are the AF domains? We usedreciprocal-space measurement methods, thus the results have to be interpreted according tosuitable models. For the evaluation of PNR and SMR measurements we will use �rst Bornapproximation,18 in which the domain size is the Fourier transform of the correlation lengthmeasured in the reciprocal space. As a �rst guess, we use exponential autocorrelation functionin real space [86], leading to Lorentzian line-shape in reciprocal space. Also due to the slitsetting we integrate with respect to qy, reducing the problem to one dimension. For theautocorrelation function C(x) = e�jxj=� (8.1)where � is the `average domain size' along the x-axis the function to be �tted will bef(qx) = A1 + (qx�)2 : (8.2)A is the intensity normalization factor. We start with �tting the PNR results. In Fig 8.13 thesmall and large domain state was �tted. The virgin domain size was � = 0:272� 0:009 �m(measured in 0:3 T) and the ripened domain state had � = 1:23� 0:01 �m (0 T), respectively.The ripening factor is 4.5. As we have seen exponential-like ! scans in the SMR measurements,the di�use scattering peaks of the ripened domains were also �tted with an exponential (cor-responding to Lorentzian autocorrelation function in direct space). The resulting correlation18To obtain the average domain size and domain autocorrelation functions an o�-specular �t would benecessary with properly selected model parameters (average roughness, correlation length, etc.). The startingparameters should be fed to the �tting algorithm, the results corrected with possible geometric e�ects and�nally convolved with the instrumental resolution function. This is the way how Savage et al. proceededin the case of prompt x-ray rocking curves [74]. The theory of o�-specular Mössbauer re�ectometry is beingdeveloped and will be available soon [98]. In the case of magnetic information not only domain structure, butalso the magnetic roughness (originating from the structural roughness) may modify the results [86]. In thissection a `�rst-glance' description of the SMR and PNR ! scans is given.
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Field [T] Fit type � [�m]0.25 Lorentzian (a) 0:66� 0:04Exponential (b) 0:64� 0:04Gaussian (c) 0:66� 0:010 Lorentzian (a) 1:64� 0:03Exponential (b) 1:35� 0:01Table 8.1: Easy direction � �ts with di�erent autocorrelation trial functions of the SMR !�scans(SI-962, December 2003).



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 117in di�erent ways. The geometrical changes are not big but they are magni�ed due to thegrazing-incidence setup. The resonant rocking curves are sometimes also asymmetric. Theo�-specular parts of the !�scans20 could be described phenomenologically by sum of Gaussianand exponential functions. We do not detail the numerical results, as with no proper modelthe interpretation of the data is very di�cult.21 We would like only to summarize some generaltrends. On Figures 8.22 and 8.23 the domain state before and after ripening can be seen withdi�erent trial �tting functions (8.3).When unsaturating the sample along a hard direction from supersaturation the ! scan canbe described by a Gaussian function. The shape of the autocorrelation function changes withthe ripening process to exponential in the range of 0:2� 0:125 T. The exponential nature stayswhen the �eld is increased from remanence. The correlation length seems to grow in increasing�eld (in the range of 0:5� 0:8 T) but we attribute this e�ect to the changing domain anglesand not to the ripening of the domains.22 In the easy-direction SMR ! scans no such e�ectwas seen. The obtained � values are in good agreement with the easy direction SMR scans.The ripening factor for SMR measurements is 2 (or 2.5 depending on the function), whichis smaller than the 4.5 factor obtained from PNR measurements. We attribute this di�erenceto the di�erences in methods, i.e. in our opinion the small virgin domains are simply too smallto be resolved by SMR. The o�-specular scattering amplitude is limited by geometrical e�ectsand in our case this envelope is reached, which can be also noted from the shape change of thescattering. The same di�culties were not present on the PNR scan, where the cross sectionof the scattering is much smaller, and thus the penetration depth exceeds the sample volumeeven in grazing incidence setup.In conclusion, we observed domain ripening in both easy and hard directions. The ripeningprocess develops in the same way, independently of the orientation of the sample. This fact,and the direction independence of the supersaturation �eld suggests that domain ripening isnot connected with crystalline anisotropy. The ripening occurs in a well-de�ned �eld range,enlarging the average domain size by roughly a factor of 5. The resulting large domains arein the order of �m. Both PNR and SMR measurements of the ripened domains can be �ttedbest by exponentials, indicating a Lorentzian autocorrelation function of the domains. This isin contradiction with the exponential shape, generally assumed in the literature [86].
20Excluding the �0:015Æ region of the specular peak.21The !�scans were evaluated but �nally we decided not to include the detailed evaluation in this work forthe previously mentioned reasons.22The same `extra' ripening could been deduced from PNR measurements, where in the easy direction thelowering peaks in increasing �eld showed an increasing autocorrelation length.



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 1188.4 BSF and domain coarseningFinally, after the domain ripening, we describe the domain coarsening connected to the BSFtransition [6, 47, 79]. As discussed in Sections 3.3 and 6 when a sample with fourfold in-planecrystalline anisotropy is saturated along an easy direction and then the �eld is reduced toremanence, the layer magnetizations will be perpendicular to the direction of the vanishing�eld. The BSF is induced by the application of a perpendicular in-plane magnetic �eld. TheBSF results in the coarsening of the AF domains [6].During BSF, the magnetizations turn by �90Æ. In the case of SMR measurements twoperpendicular set-ups are necessary to see the di�erent domains. Conversely, with PNR mea-surement a single scan is enough, because here the orthogonal domains separate to the spin-�ipand non spin-�ip channels, respectively.In the following we cite parts from the work of our group [6]. The domain coarsening can bemonitored by polarized neutron di�use scattering, without rotating the sample. Prior to thePNR experiment the sample was ex-situ saturated in 2:1 T, i.e., well above Hs and even thesupersaturation �eld. The sample layer magnetizations were parallel/antiparallel in zero �eldto the incident neutron polarization. PNR maps taken in increasing external �eld are shown inFig. 8.24. Left and right columns in Fig.8.24 represent non-spin-�ip and spin-�ip re�ectivities(here R�� and R�+), corresponding to magnetization components parallel/antiparallel andperpendicular to the neutron spin, respectively. In a �eld below HSF (Fig. 8.24A) the AFre�ection appears only in the non-spin-�ip channels and consists of a broad di�use sheet. Incontrast, in Fig. 8.24C, in a �eld above the transition, the AF re�ection is only observed in thespin-�ip channels. While the non-spin-�ip channels consist only of o�-specular di�use sheets,the spin-�ip channels show mainly specular scattering.23 Midway the transition (Fig. 8.24B),the AF re�ection shows up in both channels, in full accordance with the SMR results, detailedbelow.In the SMR experiment (SI-618, December 2000), the sample was �rst saturated along theFe[100] easy direction in 4:07 T, a �eld well above Hs and Hsup. sat.. In Fig. 8.25, ! scansare shown as a function of the longitudinal in-plane component qx of the scattering vector [6].When the �eld was released, the layer magnetizations lay in the perpendicular Fe[010] easydirection, parallel or antiparallel to k, the photon wave vector (inset of Fig. 8.25B). While asharp specular re�ection was observed in the prompt re�ectivity (Fig. 8.25A), only a broaddi�use shoulder appeared in the (delayed) SMR ! scan (Fig. 8.25B). On rotating the sampleby 90Æ, the magnetizations turned perpendicular to k, and the AF re�ections disappeared sincefor k-perpendicular hyper�ne �eld no AF re�ections are expected in time-integral �� 2� SMRscans [62]. The intensity of the AF re�ections recovered, when a �eld of 12 to 16 mT wasapplied along the Fe[010] direction perpendicular to the photon wave vector k and the ML23The intensity of the PNR curves did not allow us to quantitatively describe the evolution of the domainstructure.



CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 119PSfrag replacementsM=MsH=Hsqx= (2�=�) [mrad]qz= (2�=�) [mrad]� = const.! = const.�f = const.�i = const.Æ = const.� � 2�border� [mrad]! [mrad]Æ [mrad]�i [mrad]�f [mrad]Intensity [arb. units]qx [�m�1]Figure 8.24: �Normalized neutron re�ectivity maps. Polarized neutron intensity scattered specularlyand o�-specularly by a MgO(001)/�57Fe �26 Å� =Cr �13 Å��20 multilayer in a magnetic �eld of A) 7 mT,B) 14.2 mT and C) 35 mT in R�� (left side) and in R�+ (right side) channels as a function of thescattering vector components qx and qz.� [6]passed the BSF [47]. Fig. 8.25C shows two ! scans of considerably di�erent width, taken intwo mutually perpendicular orientations of the sample relative to k following an exposure ofthe ML to 13 mT, half way in the BSF transition. At this point, the �ipped regions of theML (left inset of Fig. 8.25C) mainly give rise to a narrow specular peak, whereas the not-yet-�ipped regions (right inset of Fig. 8.25C) stay to show a broad di�use shoulder in the delayedintensity. By exposing the sample to 35 mT, the BSF transition is completely passed (inset ofFig. 8.25D) and the ! scan is dominated by a specular peak (Fig. 8.25D). No further changein the shape of the ! scan could be induced by any �eld cycle including repeated generation ofBSF transitions, until the system was fully saturated. However, exposing the sample to 4:07 T�eld again, the ! scans became identical with that shown in Fig.8.25B, i.e., the specular peakdisappeared from the SMR ! scan.8.4.1 Experimental resultsThe interpretation of the coarsened domain state is not an easy task. As it can be seen fromFig 8.25D, the scattering from the large (coarsened) domains is almost specular, but there isstill a small magnetic shoulder. This shoulder is better seen24 in Fig. 8.21.In Fig. 8.26 the domain coarsening during the BSF transition is shown. The �rst interestingpoint is that even before the BSF transition we do see o�-specular scattering (left side, 0 T),24The scans in Fig. 8.21 were collected at low temperature (15 K). The coarsened state is the same, as wasseen in the earlier shift, but the statistics is much better here.
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CHAPTER 8. DOMAIN EXPERIMENTS ON THE FE/CR SAMPLE 121when no AF magnetic scattering is present. Secondly, during the spin �op the shape of the o�-specular scattering narrows (right side) as the ripened domains are turning perpendicular, butwe see no change in the line shape on the left side (where the domains should give contributionafter the �op). The latter observation suggests that the coarsened domains are larger, than theresolution of our experiment. From the �rst statement it follows that not only AF domains, butalso correlated magnetic interface roughness can contribute to the o�-specular scattering at theAF position.25 The experiment with the best statistics was SI-962 (2003 December). We wereable to �t the o�-specular spectra of Fig. 8.21 with the sum of two exponentials. The � valuesobtained are: �1 = 1:5� 0:3 �m, �2 = 14� 0:9 �m. The contribution of subspectra was 11%and 89% for �1 and �2, respectively. �2 gives a lower size estimation of the coarsened domains,while the interpretation of the part with �1 is not so straightforward. As was noted before,if they originated fully from AF-domain scattering, then we would not see this contributionbefore the spin �op (at 7 mT) and we would see an increasing shoulder with increasing �eldat the spin-�op region (Fig 8.26 left side). It is not easy to say if such increase wwas observed,as the statistics was low in those measurements. On the other hand the good agreementof �1 with the coarsened domains suggest that this contribution originates from AF domain`islands', which retain their ripened state. A �nal decisive statement could be given only basedon measurements with better statistics, and perhaps at a higher-order AF peak.The supersaturation e�ect was �rst investigated after the domain coarsening. In Fig. 8.27the qz and qx scans are seen during the �rst test of supersaturation. At that time the e�ectsof ripening were not known, thus all spectra were taken in remanence. The qz scans showa widening of the AF peak, while the qx scans show the reappearance of small domain aftersaturation in 1:3 T. As now we know, those domains are already ripened domains.Latter measurements with much better statistics did con�rm the details of the supersat-uration. Here we only would like to note that the already coarsened domains also does not`shrink' back prior to supersaturation.8.4.2 DiscussionWe found domain coarsening related to the BSF transition. The resulting domains were larger,than our instrumental resolution. The coarsened domains are thus at least by an order ofmagnitude larger, than the ripened ones, or in other words the `coarsening factor' is greaterthan 10. If we take a look at the mechanism of the coarsening, then even domains, comparablewith the size of the sample cannot be excluded [6].In contrast to domain ripening, which involves domain wall movement, and thus limited bycoercivity [6], at the spin �op the domain walls can annihilate by the �90 degree rotation ofthe magnetizations, thus coarsening is not limited by coercivity. Furthermore at the BSF the25In saturation this contribution is the same as the prompt scattering (Fig 8.5), while in zero �eld extrashoulders can be seen.
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Figure 8.26: The BSF transition in momentum space portrayed by SMR (SI-618, December 2000z).The AF state is perpendicular to k in the left scans, while parallel/antiparallel in the right scans. Asthe BSF occurs, the moments turn perpendicular, decreasing the original AF scattering, and givingrise to the perpendicular one. All measurements were carried out in zero �eld. The labels show thelast seen highest �eld value. The open symbols show the prompt curves in the o�-specular scans,while the closed ones are the resonant ones. (z All measurements were taken at SI-618, except for the0 T ! scan, marked with y. This scan was taken in shift SI-735, August 2001. We included it, as noscan with such conditions was taken in SI-618.)
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Figure 8.27: Easy direction supersaturation measured after domain coarsening (SI-618, December2000). The scans were measured in zero external �eld. Change in the o�-specular scattering at1:3 T can be seen. The !�scans are the same as in Fig. 8.14.system is in energy maximum, thus the domain growth is explosion like. If one part decided,the neighbors will follow to avoid the creation of new domain walls.In conclusion, we found two processes related do domain wall energy, viz. domain ripeningand coarsening. Both processes are irreversible in the sense that the sample has to be super-saturated to recover the `virgin' domain state. From the comparison of easy and hard directionhysteresis loops we concluded that domain ripening is not connected with the anisotropy ofthe sample.For detailed evaluation of the process micromagnetic simulations will be necessary,which are beyond the scope of this work.



Chapter 9Appendix
9.1 Inversion of the magnetization curveWe show, that with certain limitations, energy curves can be calculated from the magnetiza-tion loops (`inverse problem'). The reversed approach is trivial and it is practiced by all �ttingroutines: take the energy function, then minimize the energy at each external �eld value andcalculate the magnetization loop. To solve the inverse problem, one have to make some as-sumptions. For a �rst approach we take a trilayer, with con�gurations symmetrical to theexternal �eld only. In this case the angle between the two layers describes the trilayer unam-biguously. For convenience, we de�ne this angle as 2#. In this case the energy of the trilayerwill be %E (#;H) = %0E (#)�HM cos#: (9.1)When displaying the magnetization measurements as reduced1 magnetization loop m(H),we `measure' the angle2 m(H) = cos#. The inversion is straightforward: # = arccosm (H).In each point of the magnetization cycle the system is in equilibrium, @%E=@# = 0. If weassume that the coupling, anisotropy and other terms do not depend on the external magnetic�eld, then from (9.1): @%0E@# = �HM sin#: (9.2)We only have to substitute # to get the derivative function:@%0E@# = �HM sin (arccosm (H)) = �HMp1�m2 (H): (9.3)By plotting �HMp1�m2 versus # = arccosm (not shown) we obtain the derivative curve.Note that the integration is done most easily numerically as the base points are not equally1We plot the data in units of saturation moment.2This is exact result for the trilayer case and a good approximation for MLs with �nite stacking.124
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Figure 9.1: Inversion of the SQUID magnetization curves of sample 990608 (Fig. 3.2) to energy versusangle in the two-sublayer model. The easy and hard direction loops are shifted for clarity. The linesare �ts by the two-sublayer bilinear-biquadratic model with fourfold crystal anisotropy.distributed. %0E (#) = #Z0 @%0E@#0 d#0: (9.4)We neglected the integration constant as it does not count in the minimum calculations. Theabsolute value of the energy density is proportional to M . The above derivation is also validfor `in�nite stacked' MLs in the two-sublattice approximation. As an example, the SQUIDmeasurements of sample 990608 are transformed. The �ts in Fig. 9.1 are according to thebilinear-biquadratic formalism with fourfold anisotropy. In this model the �eld-independentenergy density per unit area3 is:%0E = J cos 2#+ B2 cos 4#� K8 tFe cos 4#: (9.5)An appropriate �tting function for the above equation is: f(#) = a0+a1�cos 2#+a2�cos 4#.From the �ts the easy and hard direction parameters (ae1, ae2, ah1 , ah2) may be obtained. As onlythe �rst term of the right-hand side of equation (9.5) is a function of cos 2#, we map it to a1.Also we found that ae1 � ah2 , as it should be. From the combination of the a2 terms one mayget the biquadratic and anisotropy terms too: ah2 � ae2 = K=4; ah2 + ae2 = B=d. As shown inin Fig. 9.1 the �t is worse at the low-angle region, which is the closest to saturation part ofthe magnetization cycle. By applying new �tting functions, the energy curves could be �ttedbetter.3�K: easy direction, +K: hard direction.
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