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The basic principles of stroboscopic detection of nuclear resonant forward-scattered synchrotron
radiation are thoroughly discussed. It is explained how the experiment can be configured in such
a way that energy-resolved spectra with a straightforward interpretation are obtained. The theory
is supported by a set of experimental spectra on the single-line compound potassium ferrocyanide
trihydrate. Further, it is shown that a stroboscopic measurement is equivalent to an interferometer
experiment. Finally, a comparison of stroboscopic detection and other Mössbauer techniques is
given.
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I. INTRODUCTION

The study of hyperfine interactions is important for a
better understanding of the magnetic and electric prop-
erties in solids. Many techniques were developed for the
study of these interactions, of which Mössbauer spec-
troscopy is best known. In 1974 Ruby1 suggested to re-
place the conventional radioactive source by synchrotron
radiation. The synchrotron source has the advantage
that it provides linearly polarized, well-collimated and
intense radiation. Moreover, the energy of the beam is
tunable over a wide range. However, the replacement
of the radioactive source by the synchrotron source is
not straightforward due to the totally different time and
energy structure. The synchrotron source produces a pe-
riodic set of ultra short pulses (∼100 ps) with a broad
energy bandwidth (several orders of magnitude broader
than the width of the Mössbauer isomer). Therefore, only
a very small fraction of the incident beam interacts with
the nuclei. This explains why we had to wait a full decade
before delayed nuclear resonant scattered photons could
be observed.2 The first nuclear resonant scattering exper-
iment in the forward direction was reported in 1991.3 It
was shown that the hyperfine interaction parameters can
be extracted from the time evolution of the nuclear res-
onant scattered intensity. During the past decade, this
detection scheme has been further exploited and the nu-
clear forward scattering technique has become one of the
standard hyperfine interaction techniques.4 Alternative
detection schemes are the nuclear lighthouse effect5 and
the Synchrotron Mössbauer Source6. Recently, first ex-
perimental results with a new technique, stroboscopic
detection of nuclear resonant scattered synchrotron ra-
diation, have been published.7 This technique provides

energy-resolved spectra and, hence, combines the advan-
tages of conventional Mössbauer spectroscopy and syn-
chrotron radiation. Moreover, the time between two syn-
chrotron bunches is only limited by the time resolution
of the detector and the electronics. Therefore, the tech-
nique is suitable for the study of long-lived isomers, e.g.,
181Ta.

In this article we will further explore the strengths and
the limitations of the stroboscopic detection scheme with
the aid of new experimental data. Section II qualitatively
sketches the mechanism of stroboscopic detection. It is
intuitively shown how the restriction of the data acquisi-
tion to a periodic set of time windows gives rise to stro-
boscopic resonances. In section III the full mathematical
description of these stroboscopic resonances is given. It
is shown that the spectrum is built up of different or-
der stroboscopic spectra, each resembling a conventional
Mössbauer spectrum. Also a simulation of the spectrum
of α-iron with a randomly hyperfine field is discussed.
Sections IV and V contain the experimental details and
experimental spectra of single-line samples. With the
help of these spectra the influence of the frequency and
the symmetry of the time window is discussed. An im-
portant aspect of stroboscopic detection is the absence of
the radiative coupling8 at velocities corresponding to the
higher order stroboscopic resonances. Therefore, a stro-
boscopic measurement is equivalent to an interferometer
experiment. This is discussed in detail in section VI. Fi-
nally, a comparison of stroboscopic detection and other
Mössbauer techniques is given in section VII.
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FIG. 1: Experimental setup.

II. QUALITATIVE APPROACH

Stroboscopic measurements are performed in the het-
erodyne detection scheme,9,10 relying on the compari-
son of the unknown transition frequencies in the sample
under investigation with a variable reference frequency.
Therefore, a second single-line reference sample is in-
cluded in the conventional nuclear forward scattering ex-
perimental setup (Fig. 1). By mounting this sample
on a Mössbauer drive, the resonance frequency can be
varied by hundreds of units of the natural line width.
In the heterodyne scheme three scattering paths can be
distinguished: scattering in the sample under investiga-
tion, scattering in the reference sample and scattering in
both samples (the radiative coupling between both sam-
ples).8 Because of the large coherence length of the syn-
chrotron photon, these paths are coherent and, hence,
can interfere. The broadband character of the photon
allows the coherent excitation of the energy levels within
this bandwidth, resulting in quantum beats in the time
spectrum. It is instructive to consider two single-line
absorbers with resonance energies h̄ω1 and h̄ωr, respec-
tively. In this case, only one quantum beat will be ob-
served. At zero velocity its frequency equals |ωr−ω1|. By
varying the Doppler velocity of the reference sample, the
reference frequency, ωr, is modulated by the Doppler shift
∆ = ωr(v/c). Therefore, the quantum beat frequency
changes to |ωr +∆−ω1|. If the time-integrated intensity
is measured, the quantum beat will level out. Only if the
Doppler shift is such that the quantum-beat period is of
the order of or larger than the lifetime τ of the Mössbauer
isomer, a non-vanishing contribution of the quantum beat
remains after time integration. This condition is fulfilled
if ∆ ≈ ω1 −ωr. At the corresponding Doppler velocity a
resonance will be observed. Therefore, a time-integrated
spectrum as a function of the Doppler velocity of the ref-
erence sample is very similar to a Mössbauer spectrum
obtained with a radioactive source. However, full time
integration is only possible if the prompt non-scattered
radiation is reduced by extra devices, e.g., a polarizer
and analyzer.11

The way followed in this paper to eliminate the prompt
radiation is stroboscopic data acquisition. This means
that the data acquisition is restricted to a periodic set
of time windows. If the timing is tuned in such a way
that no data are recorded during the arrival time of the
prompt synchrotron pulses, all data result from photons

(a)

0 T 2T 3T 4T 5T 6T 7T 8T
0

1

t

∆ = 2ωΤ

de
te

ct
io

n 
pr

ob
ab

ili
ty

 d
en

si
ty

 (
a.

u.
)

S(
t)S(t)

0

1

∆ = ωΤ S(t)

(b)

0

100

200

300

400

500

600

700

800

900

nu
m

be
r 

of
 c

ou
nt

s

∆
−2ωΤ −ωΤ 0 ωΤ 2ωΤ

FIG. 2: Simulated spectra in the case of two identical thin
single-line samples (a) Simulated detection probability as a
function of the scattering time at different stroboscopic res-
onance conditions (∆ = nωT = n 2π/T , n = 1, 2). The
set of time windows (S(t)) is indicated by the solid line. (b)
Intensity accumulated in the set of time windows shown in
figure (a) as a function of the Doppler shift ∆.

that are delayed due to the nuclear interaction with the
samples. The use of time windows induces extra res-
onances at velocities for which the quantum beat fre-
quency equals a multiple of the time-window frequency
(|ωr + ∆ − ω1| = nωT , with n an integer describing the
stroboscopic order and ωT the time-window frequency).
This is illustrated in Fig. 2. This figure contains simu-
lated spectra for two identical thin single-line absorbers.
Note that in this case ω1 = ωr and, therefore, the res-
onance condition reduces to ∆ = nωT . Fig. 2(a) shows
the time evolution of the probability density to detect a
photon that was generated at time 0 and was delayed by
a time t due to scattering by the absorbers. The corre-
sponding Doppler shift is chosen so that the resonance
condition ∆ = ωT (n = 1) or ∆ = 2ωT (n = 2) is ful-
filled. The chosen set of time windows, which is indicated
by the solid line, selects a minimum in the intensity for
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n = 1 and a maximum for n = 2, respectively. Conse-
quently, a negative resonance appears at ∆ = ωT and a
positive resonance at ∆ = 2ωT in the stroboscopic spec-
trum as function of the Doppler shift (Fig. 2(b)). For
samples with hyperfine split energy levels, each strobo-
scopic resonance is replaced by a series of resonances,
each one resembling a Mössbauer spectrum with a con-
ventional source, as will be further explained in the next
section (Fig 4).

III. QUANTITATIVE APPROACH

The previous section demonstrates qualitatively the
origin of the stroboscopic resonances. However, in or-
der to develop a simulation and evaluation program, the
stroboscopic concept should be accompanied by a math-
ematical theory. This theory is described in this section.
In subsection A it will be shown that the total spectrum
can be decomposed in several components dn(∆) with a
weighting factor sn. The partial spectra dn(∆) only de-
pend on the properties of the samples while the factors
sn are fully determined by the set of time windows. Sub-
section B and C deal with these spectra dn(∆) and the
coefficients sn, respectively. Finally, in subsection D the
full spectrum is discussed in detail. It will be mathemati-
cally shown how the frequency of the set of time windows
influences the shift of the stroboscopic resonances, while
the symmetry of the set of time windows affects the shape
of the resonances.

A. Derivation of the general formula

A stroboscopic spectrum contains the number of pho-
tons that are detected in a certain set of time windows
as a function of the Doppler velocity of the reference ab-
sorber. We will express the intensity as a function of
the Doppler shift, ∆, of the reference frequency, which is
proportional to the Doppler velocity

∆ = ωr(v/c). (1)

Because there is no coherence between photons generated
by different electron bunches, the probability to detect a
photon as a function of time is the sum of the probabil-
ities corresponding to the different bunches. The contri-
bution of each bunch is equal if the set of time windows
stays unaffected after shifting over a bunch period. This
condition is fulfilled if the time-window frequency equals
a multiple of the bunch frequency (ωT = mωB, with ωT

the time-window frequency and ωB the bunch frequency).
Therefore, in the following we will restrict the calculation
to the contribution of one bunch.
The detection probability within the set of time win-

dows is given by

IS(∆) =
∫ +∞

0
dt S(t)D(t,∆) (2)

with D(t,∆) the probability density for detecting a pho-
ton with scattering time t and S(t) the time-window func-
tion. This time-window function equals 1 within the data
acquisition intervals and 0 elsewhere. S(t) is periodic
with a frequency ωT . Therefore, S(t) can be expanded
in a Fourier series and we obtain

IS(∆) =
∫ +∞

0
dt

+∞∑
n=−∞

sn exp(inωT t)D(t,∆)

=
+∞∑

n=−∞
sn

∫ +∞

0
dt D(t,∆) exp(inωT t)

with

sn =
1
T

∫ T

0
dt S(t) exp(−inωT t). (3)

If we define

dn(∆) =
∫ +∞

0
dt D(t,∆) exp(inωT t), (4)

IS(∆) can be written as

IS(∆) =
+∞∑

n=−∞
sndn(∆). (5)

Equation 5 shows that the spectrum is built up of dif-
ferent components dn(∆) with weighting factors sn. We
will now further derive the shape of the spectra, dn(∆),
and discuss how the weighting factors, sn, depend on the
chosen set of time windows.

B. The spectrum components dn(∆)

In order to discuss the spectrum components, dn(∆),
a more explicit formula should be derived. This can
be done by expressing the detection probability density
D(t,∆) in Eq. 4 in terms of the scattering amplitude
�A(t,∆)

D(t,∆) = | �A(t,∆)|2 = �A(t,∆) · �A(t,∆). (6)

Generally, the scattering amplitude �A is given by a com-
plex two-component vector taking into account the two
polarization components. The dot product used above is
defined as

�A1 · �A2 = A1,xA
∗
2,x +A1,yA

∗
2,y (7)

with A1,x, A2,x, A1,y, and A2,y the vector components in
the basis of linear polarization or

�A1 · �A2 = A1,+A
∗
2,+ +A1,−A∗

2,− (8)

with A1,+, A2,+, A1,−, and A2,− the vector components
in the basis of circular polarization. Using the Fourier
expansion of the amplitude �A(t,∆)

�A(t,∆) =
1
2π

∫ +∞

−∞
dω �A(ω,∆) exp(iωt)
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FIG. 3: The real and imaginary part of the forward scattering
factor f(ω − ω1) in the vicinity of the resonance energy for a
single-line absorber with effective thickness L = 1.

we obtain for dn(∆)

dn(∆) =
1
2π

∫ +∞

−∞
dω �A(ω,∆) · �A(ω + nωT ,∆). (9)

dn(∆) is the dot product of the scattering amplitude and
the amplitude shifted over −nωT , integrated over all fre-
quencies. This general formula is the basis of our simu-
lation and evaluation program.
From Eq. 9 it is clear that dn(∆) is fully determined

by the amplitude �A(ω,∆). In the stroboscopic detec-
tion scheme, �A(ω,∆) is the amplitude of a photon that
is scattered by two absorbers. Hence, it can be written
as a sum of three amplitudes: �As, describing nuclear res-
onant scattering in the sample under investigation, �Ar,
describing nuclear resonant scattering in the reference
sample and �As,r, describing the scattering by both sam-
ples (the radiative coupling between both samples).8 In
frequency domain, the scattering amplitude is propor-
tional to the amplitude �Ain of the incident photon and,
hence, �A(ω,∆) can be expressed as

�A(ω,∆) = �As + �Ar + �As,r

=
(
fs(ω − ωi) + fr(ω − ωr −∆)

+fs(ω − ωi)fr(ω − ωr −∆)
)
�Ain . (10)

Since the spectral bandwidth of the synchrotron radia-
tion is very large with respect to the widths involved in
the resonant scattering matrices, �Ain can be considered
as frequency-independent. Generally, the nuclear reso-
nant scattering matrix f is polarization dependent and
given by a 2 by 2 complex matrix.10 The matrix f can
be approximated by 0, except in the vicinity of the res-
onance frequencies ωi and ωr + ∆ for the sample under
investigation and the reference sample, respectively.

In the case of a single-line sample with resonance en-
ergy h̄ω1, the scattering matrix f can be replaced by a
scalar scattering factor8

f(ω − ω1) = exp(iL
γ/4

ω − ω1 − iγ/2
)− 1. (11)

Here, we introduced the effective thickness L =
σ0fLMnd, where σ0 is the maximum resonance cross sec-
tion, fLM the Lamb-Mössbauer factor, n the density of
resonant nuclei and d the sample thickness. γ is the in-
verse of the Mössbauer lifetime. The real and imaginary
parts of this amplitude for L = 1 are displayed in Fig. 3.
For thin samples (L � 1) Eq. 11 can be approximated
by

f(ω − ω1) = iL
γ/4

ω − ω1 − iγ/2
. (12)

Note that in the above description only nuclear reso-
nant scattering was considered. The electronic scattering
factor is frequency-independent and, hence, does not de-
pend on the Doppler shift, ∆, of the reference frequency.
Electronic scattering gives rise to an overall reduction
of the intensity only and, therefore, this factor can be
omitted without loss of generality and reintroduced when
appropriate.

Returning to Eq. 9, the spectrum components dn(∆) can now be decomposed in several terms by replacing the
scattering amplitude by Eq. 10

dn(∆) = αn(∆) + α∗
−n(∆) + βs,n + βr,n + ρn(∆). (13)

αn(∆) and α∗
−n(∆) are defined by

αn(∆) =
1
2π

∫ +∞

−∞
dω [fs(ω − ωi) �Ain] · [fr(ω − ωr −∆+ nωT ) �Ain] (14)

α∗
−n(∆) =

1
2π

∫ +∞

−∞
dω [fr(ω − ωr −∆) �Ain] · [fs(ω − ωi + nωT ) �Ain]. (15)

These terms describe the interference between scattering in the sample under investigation and scattering in the
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reference sample. Therefore, we will call these terms the pure interference terms. Note that αn(∆) only differs from 0
if ∆ ≈ Ωn,i with Ωn,i = ωi − ωr + nωT and, hence, it describes resonances that are shifted by nωT from the position
∆ = ωi −ωr. Remark also that only the overall shift of the resonances is determined by the set of time windows. The
relative position determined by the hyperfine interactions and the width of the resonances in αn(∆) is fully determined
by the characteristics of the samples. In order to determine the shape of the resonances, we will take the example of
two thin single-line absorbers. In this case, the scattering matrices fs,r can be replaced by scalar scattering factors
given in Eq. 12 resulting in

αn(∆) = LsLr
γ2

16
| �Ain|2 1

2π

∫ +∞

−∞
dω

1
(ω − ω1 − iγ/2)(ω − ωr −∆+ nωT + iγ/2)

= LsLr
γ2

16
| �Ain|2 γ + i(Ωn,1 −∆)

(Ωn,1 −∆)2 + γ2 , (16)

where Ωn,1 = ω1 − ωr + nωT defines the position of the resonances. From Eq. (16) it follows that the real part of
αn(∆) is lorentzian while the imaginary part is dispersive.
The terms βs,n and βr,n of Eq. 13 are given by

βs,n =
1
2π

∫ +∞

−∞
dω [fs(ω − ωi) �Ain] · [fs(ω − ωi + nωT ) �Ain] (17)

βr,n =
1
2π

∫ +∞

−∞
dω [fr(ω − ωr) �Ain] · [fr(ω − ωr + nωT ) �Ain]. (18)

These terms describe the scattering in the sample under investigation and the scattering in the reference sample,
respectively. These terms are independent of the Doppler shift, ∆, and, hence, contribute to the baseline.
ρn(∆) collects the terms in which the radiative coupling part of the amplitude (last term of Eq. 10) is involved and

is explicitly given by

ρn(∆) = ρs,n(∆) + ρ∗
s,−n(∆) + ρr,n(∆) + ρ∗

r,−n(∆) + ρs,r,n(∆) (19)

with

ρs,n(∆) =
1
2π

∫ +∞

−∞
dω [fs(ω − ωi) �Ain] · [fs(ω − ωi + nωT )fr(ω − ωr −∆+ nωT ) �Ain] (20)

ρr,n(∆) =
1
2π

∫ +∞

−∞
dω [fr(ω − ωr −∆) �Ain] · [fs(ω − ωi + nωT )fr(ω − ωr −∆+ nωT ) �Ain] (21)

ρs,r,n(∆) =
1
2π

∫ +∞

−∞
dω [fs(ω − ωi)fr(ω − ωr −∆) �Ain] · [fs(ω − ωi + nωT )fr(ω − ωr −∆+ nωT ) �Ain]. (22)

The larger the effective thickness of the samples, the
larger the contribution of these terms. Smirnov8 has
shown that the sign of the radiative coupling terms ρn(∆)
is opposite to the sign of the pure interference terms
αn(∆) + α∗

−n(∆). Hence, the radiative coupling gener-
ally decreases the signal-to-baseline ratio. This will be
extremely important for thick absorbers.
In the special case n = 0 we find that d0(∆) is the het-

erodyne spectrum9,10 or the spectrum we would have ob-
tained if there were overall time integration (S(t) = 1 for
all t). For n �= 0 an interesting case arises if nωT is larger
than the range of the transition frequencies. Because the
scattering matrix fs(ω − ωi) can be approximated by 0
outside this frequency range, either the scattering matrix
fs(ω−ωi) or the shifted scattering matrix fs(ω−ωi+nωT )
approximates 0 for all values of ω. The same holds for
the scattering matrix fr(ω−ωr −∆) and the shifted scat-

tering matrix fr(ω − ωr − ∆ + nωT ). Consequently, at
this condition the baseline terms βs,n and βr,n and the
radiative coupling term ρn(∆) vanish. Hence, only the
two pure interference terms remain

dn(∆) = αn(∆) + α∗
−n(∆). (23)

C. The weighting factors, sn, for a square time
window

According to Eq. 5 each spectrum component dn(∆)
is present in the final spectrum with a weighting factor
sn that only depends on the chosen set of time windows.
Note that the relation s−n = s∗

n holds because the set of
time windows is described by a real function S(t). There-
fore, in the calculation of sn we can restrict to n ≥ 0. For
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a function S′(t) symmetric around t = 0, with t = 0 de-
fined as the arrival time of the prompt synchrotron radi-
ation pulse, the imaginary part of the Fourier coefficients
s′

n vanishes (integration of an odd function), resulting in

s′
n =

1
T

∫
T

dt S′(t) cos(nωT t). (24)

If the function S′(t) is shifted along the time axis, an
additional phase factor is introduced. Therefore, the
Fourier coefficients of the shifted time-window function
S(t) symmetric around t0 �= 0 are given by

sn = exp(−inωT t0) s′
n. (25)

Note that for a time window that is symmetric around
t0 = T/2, the phase factor reduces to (−1)n resulting in
real sn. In the specific case of a square time window we
get

sn = exp(−inωT t0)
sin(nπF )

nπ
. (26)

with F the allowed fraction or the fraction of the time-
window period for which S(t) = 1. From Eq. 26 we learn
that |sn| is determined by the allowed fraction F while
the phase is related to the center of the time window, t0.

D. The total spectrum IS(∆).

The above subsections provide all the ingredients nec-
essary to discuss the total spectrum. In a first stage, the
description of the total spectrum will be restricted to ωT

larger than the range of the resonance frequencies in the
sample. In this case, the spectrum components dn(∆)
can be approximated by Eq. 23 for n �= 0. Hence, Eq. 5
can be simplified

IS(∆) = I0(∆) +
∑
n�=0

sn(αn(∆) + α∗
−n(∆)) (27)

with I0(∆) the zeroth-order spectrum given by

I0(∆) = s0d0(∆)
= s0(α0(∆) + α∗

0(∆) + βs,0 + βr,0 + ρ0(∆)).
(28)

Remember that d0(∆) describes the heterodyne spec-
trum or the spectrum we would obtain without time-
gating. Therefore, I0(∆) is the heterodyne spectrum
scaled with the real factor

s0 =
1
T

∫
T

dt S(t).

Note that, in contrary to the results of Tischler et al.,12
the width of the resonances in I0(∆) does not depend on
the selected set of time windows. This can intuitively be
understood by noticing that Tischler et al. selected only

one time window within one lifetime, while in strobo-
scopic detection a set of time windows is selected. Con-
sequently, both data corresponding to short scattering
times as data corresponding to long scattering times con-
tribute to the spectrum.
Expression 27 for IS(∆) can further be simplified using

the relation sn = s∗−n:

IS(∆) = I0(∆) +
∑
n�=0

[snαn(∆) + (s−nα−n(∆))∗]

= I0(∆) +
∑
n�=0

In
int(∆) (29)

with

In
int(∆) = 2	(snαn(∆)). (30)

The spectrum component In
int(∆) is fully determined by

the Fourier coefficient sn given by Eq. 3 and the pure
interference term αn(∆) given by Eq. 14. It describes
resonances at the positions ∆ = Ωn,i with Ωn,i = ωi −
ωr+nωT . This is the resonance condition of paragraph II,
generalized for samples with hyperfine split energy levels.
Therefore, we can identify In

int(∆) with the stroboscopic
resonances of order n. Subsequent stroboscopic order
resonances have a relative shift of Ωn+1,i − Ωn,i = ωT .
Therefore, by choosing the time-window frequency, ωT ,
larger than the resonance frequency range in the sample,
the different stroboscopic order resonances do not over-
lap. Hence, In

int(∆) is only superposed on the baseline
of the zeroth-order spectrum s0(βs,0 + βr,0). Note that
the relative position of the resonances within one stro-
boscopic order spectrum equals the relative position of
the resonance frequencies ωi. Hence, the interpretation
of In

int(∆) in terms of the hyperfine parameters is similar
as in a conventional Mössbauer spectrum. The shape of
the resonances is determined by the phase of the coef-
ficients sn, which only depends on the symmetry of the
set of time windows. Generally, sn is a complex number
and the resonances are a superposition of a lorentzian-
like (the real part of αn(∆)) and dispersion-like (the
imaginary part of αn(∆)) curves with a weighting fac-
tor 	(sn) and −
(sn), respectively. However, the time
window can be chosen symmetrically around t0 = T/2
so that sn is real, resulting in lorentzian-like resonances.
This is illustrated by the simulated spectrum for an α-
Fe foil with randomly oriented hyperfine field (L = 30)
and a stainless steel reference foil (L = 5) (Fig. 4). For
this simulation a set of time windows with a frequency
ωT = 352.2 × 106 Hz (which corresponds to a period
T = 2.84 ns) and an allowed fraction F = 0.5 (which cor-
responds to a time window from 0.71 ns till 2.13 ns) was
chosen. The different stroboscopic order spectra can be
nicely distinguished and the interpretation of the spectra
in terms of hyperfine parameters is similar to the inter-
pretation of a Mössbauer spectrum with a radioactive
source.
Until now, we restricted to ωT larger than the fre-

quency range in the sample, resulting in well-separated
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FIG. 4: Simulated spectrum for α-Fe (L = 30) with a ran-
domly oriented hyperfine field and a stainless steel reference
foil (L = 5). The chosen set of time windows has a period of
2.84 ns and lasts from 0.71 ns till 2.13 ns.

stroboscopic order spectra. However, in a real experi-
ment, the time-window frequency is limited by the time-
resolution of the detectors and the electronics and this
severe condition cannot always be fulfilled. If the time-
window frequency is smaller than the frequency range in
the sample, different stroboscopic order resonances will
overlap and the radiative coupling can no longer be ne-
glected for small n > 1. Nevertheless, our simulation
and evaluation program can still handle this case as it is
based on the general Eq. 9. In an earlier article7 we de-
scribed an experiment in which the different stroboscopic
order spectra slightly overlap. The spectra could still be
analyzed and the hyperfine parameters extracted.

IV. EXPERIMENTAL DETAILS

An experiment that demonstrates the feasibility of
the concept was performed at the Nuclear Resonant
Scattering beamline BL0913 at SPring-8. For both
samples we used potassium ferrocyanide trihydrate14
(K4Fe(CN)6.3H20) as single-line compound. Hence, the
resonance energies in both samples coincide (ω1 = ωr).
The resonance energy of the Mössbauer transition in 57Fe
is 14.4 keV, which corresponds to a resonance frequency
of ω1 = ωr = 14.4 keV/h̄ = 2.19 × 1019 Hz. A bunch
mode with a bunch interval TB = 23.6 ns or a bunch
frequency ωB = 2π/23.6 ns = 2.66 × 108 Hz was used.
The photons were detected by an Avalanche Photo Diode
(APD) detector with a diameter of 1 mm and a depletion
depth of 10 µm. This detector has an efficiency of about
1%. Figure 5 gives the time response of the detector and
electronics to the prompt pulse. Although the width at
FWHM is about 0.3 ns, the response function has a long
tail. In our experiment the bandwidth of the synchrotron
pulse was about 106 times larger than the bandwidth of
the nuclear resonances. Hence, in order to make sure
the detected photons were delayed, the response to the
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FIG. 5: Time response of the detector to the prompt pulse.
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FIG. 6: Scheme of the data acquisition.

prompt pulse should be reduced by a factor 106. This
explains why in the measurements described below we
put a veto window of about 5 ns centered around the
arrival time of the prompt pulse. In order to construct
off-line spectra for several sets of time windows, an event
by event data acquisition system was developed. For each
delayed photon, not only the Doppler velocity of the ref-
erence sample was registered but also the time delay with
respect to the previous prompt pulse. The digital time
signal was obtained by using a time-to-amplitude con-
vertor (TAC) followed by an analog-to-digital convertor
(ADC). The start of the TAC was given by the detec-
tion of the photon and the stop by a periodic signal (pe-
riod TB) that coincides with the detection of the prompt
pulse. A schematic overview of the electronics is given
in Fig. 6. In our experiment the data of photons with
a delay between 2.64 ns and 21.12 ns were stored in 47
time channels.
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FIG. 7: Spectra obtained with stroboscopic detection for two
single-line absorbers (K4Fe(CN)6.3H2O) for three sets of time
windows with different period T . All time windows are sym-
metric around T/2 and have an allowed fraction F = 0.35.
(a) T = 23.6 ns. (b) T = 11.8 ns. (c) T = 7.9 ns.

V. EXPERIMENTAL RESULTS AND
DISCUSSION

All experimental spectra that are discussed in this sec-
tion are constructed using the same data set. The only
difference is the selected set of time windows. There-
fore, the series of spectra that will be shown are ideal
to demonstrate the theory presented above and to dis-
cuss the influence of the time-window frequency and the
time-window symmetry on the stroboscopic spectra. In
a first example, a square time window with a frequency,
ωT , equal to the bunch frequency, ωB, was selected. The
time window was chosen symmetric around the center
between two bunches and the allowed fraction was fixed
to F = 0.35. The number of photons accumulated within
this time window as a function of the Doppler velocity
is shown in Fig. 7(a). We can clearly distinguish sev-
eral equally spaced resonances. Figure 8 shows the ex-
perimental time spectra for the fixed velocities, vn, cor-
responding to the position of the resonances. The time
window that was used to construct the velocity spectrum
is indicated by the solid line. It can be clearly seen that
the quantum-beat frequency is a multiple of the time-
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FIG. 8: Time spectra at the position of the stroboscopic res-
onances of order n of Fig. 7(a) (vn = n × 3.65 mm/s). The
solid line indicates the time window (S(t)) used to construct
the velocity spectrum in Fig. 7(a).

window frequency and, hence, the resonances in spectrum
7(a) can be identified as the stroboscopic resonances. Be-
cause both samples are made of the same compound, the
resonance condition is given by ∆ = nωT . From this re-
lation the position of the resonances can be calculated to
be vn = n(ωT /ωr)c = n × 3.65 mm/s and the velocity
scale can be calibrated. The sign of the resonances can
also be deduced by looking at the time spectra of Fig. 8.
For n = 1 the time window selects a minimum in the
intensity, which is in agreement with the negative res-
onance at 3.65 mm/s in velocity spectrum of Fig. 7(a).
For n = 2 a maximum is selected, resulting in a posi-
tive resonance at 7.3 mm/s. Similar deductions can be
made for the higher order resonances. A more quantita-
tive discussion is based on the calculation of the coeffi-
cients sn. This can be done analytically using Eq. 26 with
exp(−inωT t0) = (−1)n and F = 0.35 (table I). Because
the selected time windows are symmetric around T/2, sn

is real for all n. Hence, only lorentzian-like resonances
are found. Positive sn correspond to positive resonances,
negative sn to negative resonances. From the relation
s−n = s∗

n = sn it is clear that the stroboscopic reso-
nances of order n and −n must be identical. Note that
the signal-to-baseline ratio of the different resonances is
proportional to |sn| for n �= 0. For the central resonance
the signal-to-baseline ratio is reduced due to the radiative
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n sn

0 0.35
1 -0.284
2 0.129
3 0.017
4 -0.076
5 0.045

TABLE I: Coefficients sn for square time windows symmetric
around T/2 and with an allowed fraction F = 0.35.
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FIG. 9: Different sets of time windows (S(t)) with different
period T used for the spectra in Fig. 7. All time windows are
symmetric around T/2 and have an allowed fraction F = 0.35.
(a) T = 23.6 ns. (b) T = 11.8 ns. (c) T = 7.9 ns.

coupling between the samples.
In section III.C it was deduced that the shift of the

stroboscopic resonances is linear with the time-window
frequency, ωT . The higher the frequency or, equivalently,
the smaller the period of the set of time windows, the
larger the distance between two different stroboscopic or-
der resonances. The spectrum in Fig. 7(b) was obtained
by doubling the time-window frequency (ωT = 2ωB, see
Fig. 9(b)). As a consequence, the shift of the strobo-
scopic resonances with respect to the central resonance
has also doubled (v2n = 2n × 3.65 mm/s). In Fig. 7(c),
the spectrum for a set of time windows with three times
the bunch frequency (ωT = 3ωB, see Fig. 9(c)) is given.
For this set of time windows, the first-order stroboscopic
resonance is positioned at 3× 3.65 mm/s = 10.95 mm/s.
Remark that all three sets of time windows are chosen so
that they have the same symmetry and allowed fraction.
Therefore, the associated coefficients sn are equal. This
explains why the stroboscopic resonances of the same or-
der have the same shape and signal-to-baseline ratio.
Until now, the time windows were chosen symmetric

around t0 = T/2, resulting in lorentzian-like resonances.
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FIG. 10: Spectra obtained with stroboscopic detection for
two single-line absorbers (K4Fe(CN)6.3H2O) for five sets of
time windows with the same period T = 11.8 ns and allowed
fraction F = 1/12. The time windows are symmetric around
p T/8.

In section III.D we found that the shape of the reso-
nances is changed by adapting the phase of the coeffi-
cients sn. For symmetric time windows this phase is
determined by the center of the time window. For the
spectra in Fig. 10, five different time windows with a pe-
riod of 11.8 ns and an allowed fraction F = 1/12 were
shifted in time (Fig. 11). The center of the time win-
dow was fixed to p T/8 with p = 2, ..., 6. Hence, Eq. 26
reduces to

sn = exp(−inp
π

4
)
sin(nπF )

nπ
. (31)

The values of the real scaling factors sin(nπF )/(nπ) for
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FIG. 11: Set of time windows (S(t)) with a period T = 11.8 ns
used for the spectra in Fig. 10. All time windows have an
allowed fraction F = 1/12 and are symmetric around p T/8.

n sin(nπF )/(πF )
0 0.0833
1 0.0824
2 0.0796

TABLE II: sin(nπF )/(πF ) for F = 1/12.

F = 1/12 are tabulated in table II. The additional phase
phase factor is given by exp(−inpπ/4). For p = 2 s1 is
imaginary and, therefore, a dispersion-like resonance is
found at 7.3 mm/s in the first spectrum of Fig. 10. Be-
cause of the relation s−1 = s∗

1 = −s1, an identical reso-
nance reflected around the baseline is found at -7.3 mm/s.
For the same time window, s−2 = s2 is real and nega-
tive, resulting in identical negative lorentzian-like reso-
nances at −14.6 mm/s and 14.6 mm/s. By shifting the
set of time windows, the phase of the coefficients sn is
also shifted. This is illustrated in Fig. 12. Note that for
s2 the phase shifts two times faster as for s1. In Fig. 10
the shape of the resonances accordingly changes. In the
next section we will show that shifting the set of time
windows is equivalent to tilting the phase shifter in an
interferometer experiment.
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FIG. 12: Phase of the coefficients s1 and s2 for time windows
with the same allowed fraction and a different center p T/8.
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VI. STROBOSCOPY AS INTERFEROMETRY

From the previous sections it is clear that a stro-
boscopic detection experiment can be designed so that
nice energy-resolved spectra are obtained. Important
thereby is that the time-window frequency should be cho-
sen larger than the resonant frequency range in the sam-
ples. An interesting feature is the lack of radiative cou-
pling at the velocities corresponding to the higher order
stroboscopic resonances. Therefore, the stroboscopic de-
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process new amplitude

first path second path

transmission through /
reflection by the first
crystal

t1 �Ain r1 �Ain

transmission through
the phase shifter

t1eiφ �Ain

reflection by the second
crystal

t1r2eiφ �Ain r1r2 �Ain

transmission through
the sample

t1r2eiφ �As r1r2 �Ar

reflection by / transmis-
sion through the third
crystal (identical to the
first crystal)

t1r1r2eiφ �As + t1r1r2 �Ar

TABLE III: The amplitude for both paths in the interferom-
eter.

tection scheme can be an alternative for a time-integrated
measurement in a detection scheme with both samples
placed in the different paths of an LLL-type interferome-
ter15,16 (Fig. 13(a)). An LLL-type interferometer consist
of three blades of one crystal. At the first blade the

beam is split in two spatially separated paths. The sec-
ond blade reflects the beam so that both paths rejoin at
the position of the third blade. The typical construction
of the interferometer has two important consequences.
First, because both paths inside the interferometer are
separated in space there is no radiative coupling between
the samples placed inside the different paths. Second,
both scattering paths are coherent. Therefore, one delo-
calized photon has a probability amplitude to excite the
nuclei in both samples. If we assume a visibility of 100%,
the total scattering amplitude is the sum of the ampli-
tudes for both scattering paths (Fig. 13(b), table III)

�A(ω,∆) = t1r1r2(eiφ �As + �Ar)

= t1r1r2[eiφfs(ω − ωi) + fr(ω − ωr −∆)] �Ain.

(32)

with r1, t1 and r2 the reflection and transmission coef-
ficients of the crystals of the interferometer. The factor
eiφ is the phase factor induced by the phase shifter in
the path of the sample under investigation. The time-
integrated intensity can be calculated using the square
of the amplitude

I(∆) =
∫ +∞

−∞
dt | �A(t,∆)|2. (33)

Using Parseval’s theorem and replacing the amplitude by
Eq. 32 we find

I(∆) =
1
2π

∫ +∞

−∞
dω | �A(ω,∆)|2

∼ 1
2π

∫ +∞

−∞
dω

{
|fs(ω − ωi) �Ain|2 + |fr(ω − ωr) �Ain|2 + 2	

[
eiφ[fs(ω − ωi) �Ain] · [fr(ω − ωr −∆) �Ain]

]}

∼ βs,0 + βr,0 + 2	(eiφα0(∆)) (34)

The spectrum contains a baseline (∼ (βs,0 + βr,0)) with
superposed resonances described by

2	(eiφα0(∆)). (35)

Let us compare this formula with Eq. 30 which describes
the stroboscopic resonances of order n �= 0 for ωT larger
than the frequency range in the sample. For a time win-
dow symmetric around t0, sn can be replaced by Eq. 25.
Hence, in this case, equation 30 can be written as

In
int(∆) = s′

n 2	[exp(−inωT t0) αn(∆)] (36)

with s′
n a real scaling factor defined by Eq. 24. The sim-

ilarity between Eq. 35 and Eq. 36 is clear. Both equa-
tions describe resonances with an identical shape. The

only difference is the origin of the phase factor. In an
interferometer experiment, the phase factor exp(iφ) can
be changed by tilting the phase shifter, while in a stro-
boscopic measurement, the phase factor exp(−inωT t0)
can be adapted by shifting the time window. From this
equivalence it is clear that, similar as in an interferometer
experiment17 the phase information can be extracted.18
Although both detection schemes produce comparable
spectra, the corresponding experimental setup is com-
pletely different. Thereby, the simplicity of the hetero-
dyne setup presented in Fig. 1 can be advantageous.
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VII. COMPARISON BETWEEN
STROBOSCOPIC DETECTION AND OTHER

MÖSSBAUER TECHNIQUES

Radioactive Source Synchrotron Radiation

restricted to isotopes for
which a good source is avail-
able

can be tuned over a wide
energy range (up to ∼
100 keV)

narrow energy bandwidth broad energy bandwidth

radiation over 4π small beam size
low angular divergence
high intensity

unpolarized light polarized light

background due to non-
scattered photons

non-scattered photons can
be gated in time resulting in
a large signal-to-baseline ra-
tio

relatively cheap
experiment can be per-
formed in local laboratory

restricted beam time at
large scale facility

TABLE IV: Comparison of a radioactive source and the syn-
chrotron source in a Mössbauer experiment.

So far, the principles of stroboscopic detection of nu-
clear resonant forward-scattered synchrotron radiation
have been extensively discussed. In this section we fo-
cus on the strengths and weaknesses of the technique.
Stroboscopic detection of nuclear forward-scattered radi-
ation is a technique based on the Mössbauer effect that
uses the synchrotron as a source of radiation. The pro-
duction mechanisms of synchrotron radiation and the
radiation produced by a radioactive source are totally
different. Therefore, both sources have totally different
properties (table IV). In a radioactive source, almost
monochrome radiation is produced by gamma decay. As
a consequence, for each isotope another source is needed.
Synchrotron light, on the other hand, is produced by rela-
tivistic electrons bent by a magnet or a series of magnets,
e.g. an undulator. An undulator can be tuned to produce
radiation with an energy in a range from 1 ∼ 100 keV.
Hence, the synchrotron source can be used for resonant
scattering by a wide range of Mössbauer isotopes. A
second advantage of the synchrotron source is the high
intensity and the good collimation of the beam. This
is favorable for grazing incidence experiments19 and for
the study of small samples, e.g., a sample embedded in
a diamond anvil cell7,20. Moreover, in a nuclear reso-
nant scattering experiment with synchrotron radiation,
the non-scattered photons are prompt. Therefore, time

gates can be chosen such that the spectra contain only
data from photons that have interacted with the sam-
ples, resulting in a signal-to-baseline ratio that is gener-
ally larger than in a conventional Mössbauer spectrum.
Another important difference between both sources is the
polarization. The selection rules applied in the case of lin-
ear polarized synchrotron light gives rise to other allowed
transitions8 than in the case of the unpolarized light of
a radioactive source. Therefore, Mössbauer spectroscopy
with a radioactive source and nuclear resonant scattering
of synchrotron radiation are complementary techniques.
The most important restriction of the synchrotron source
is that the beam can only be provided by a large scale
facility. As a consequence, only a limited period of beam
time is available.
In table V different synchrotron Mössbauer techniques

are compared. A big advantage of stroboscopic detection
is that energy-resolved spectra can be produced without
the restriction that the sample under investigation has
to be mounted on a special device such as a Mössbauer
drive or a rotor. Therefore, samples embedded in, e.g., a
diamond anvil cell7 or mounted in a cryostat can easily
be studied. Another advantage of stroboscopic detec-
tion is that phase information can be obtained by shift-
ing the time window. The restrictions of the technique
are related to the time resolution of the detector and
the electronics. From the previous sections it is clear
that the stroboscopic spectra are easier to analyze if the
time-window frequency is of the order of the range of the
resonance frequencies in the sample. Up till now typ-
ical time-window frequencies that can be reached with
an Avalanche Photo Diode (APD) detector21 were lower
than 8× 108 Hz. In order to reach high frequencies, de-
tectors with a good time resolution are needed. Unfortu-
nately, such detectors are generally less efficient. For the
study of narrow band spectra, which are generally found
in the case of long-lived isomers, lower time-window fre-
quencies are convenient. Therefore, in this case, the re-
striction on the time resolution is not so severe. The
restriction on the bunch mode is also associated with the
detector resolution. The faster the time window can start
after the prompt pulse, the higher the time-window fre-
quency and, consequently, the bunch frequency can be.

VIII. CONCLUSION

In conclusion, we discussed the principles of stro-
boscopic detection of nuclear forward-scattered syn-
chrotron radiation and compared this technique with
other Mössbauer techniques. It was pointed out how a
stroboscopic experiment must be designed in order to
obtain nice energy-resolved spectra. We showed that
the total spectrum is a superposition of different strobo-
scopic order spectra. From the position of the resonances
within one stroboscopic order the hyperfine parameters
can be deduced, similar to conventional Mössbauer spec-
troscopy. The distance between the stroboscopic order
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spectra is linearly connected to the time-window fre-
quency. Therefore, in order to obtain spectra for which
different stroboscopic order spectra do not overlap, the
time-window frequency should be larger than the range of
resonance frequencies in the sample. If the latter condi-
tion on the time windows is technically infeasible, the in-
terpretation of the spectra becomes less straightforward.
However, these spectra can still be analyzed in terms of
hyperfine parameters. The shape of the resonances de-
pends on the symmetry of the time window. A time
window being symmetric around the center between two
bunches gives rise to lorentzian-like resonances. Shift-
ing the time window in time gives rise to dispersion-like
curves or resonances with a combination of a lorentzian-
like and dispersion-like shape. It was shown that shifting
the time window is equivalent to tilting a phase shifter in
an interferometer experiment. From the comparison be-
tween different Mössbauer techniques, it is clear that the
unique features of stroboscopic detection make this tech-
nique complementary to and in some cases advantageous
over other techniques.
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Time Differential nuclear
resonant forward scattering

Stroboscopic Detection Synchrotron Mössbauer
Source6

Nuclear Lighthouse Effect5

time differential spectra energy-resolved spectra energy resolved spectra angular spectra equivalent
with time differential spec-
tra (very good resolution)

sample under investigation
stands freely

sample under investigation
stands freely

sample under investigation
is mounted on a Mössbauer
drive

sample under investigation
is mounted on a rotor

phase information can be
obtained by including an in-
terferometer in the setup

phase information can be
obtained by shifting the
time window

no phase information no phase information

applicable on a wide range of
isotopes

applicable on a wide range of
isotopes

up till now only applicable
on 57Fe-samples

applicable on a wide range of
isotopes

ideal bunch interval is of the
order of the life time of the
isomer

ideal time-window frequency
is of the order of the reso-
nance frequency range in the
sample

favorable for long-lived iso-
mers (narrow bandwidth)

favorable for short-lived iso-
mers (because of the good
time resolution)

bunch interval must be in
the order of the life time of
the isomer

bunch interval must be long
enough in order to cut the
prompt pulse

no bunch mode require-
ments

no bunch mode require-
ments

TABLE V: Comparison between time-differential nuclear resonant forward scattering, stroboscopic detection of of nuclear
resonant forward-scattered radiation, the Synchrotron Mössbauer Source and the Nuclear Lighthouse Effect.


