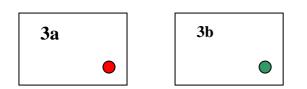
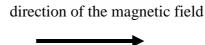
Experimental plan (SI-1794)


(02.12-07.12 2010.)


Timing (plan):

00-04		00-04	Gy. Vankó
04-08	L. Deák	04-08	
08-12		08-12	L. Bottyán
12-16	R. Rüffer	12-16	
16-20		16-20	D.L. Nagy
20-24	G. Kertész	20-24	Gy. Vankó

Samples:

- 1. 57 Fe foil, 2.9 μ m (5.8 mg): visible (by optical microscopy) ripples of widths of 50-100 /um and an average distance of about 150 /um
- 2. 57 Fe foil, 3.8 μ m (3.8 mg): ripples and porous
- 3. ⁵⁷Fe foil, $6 \mu m$ (6 mg): no ripples by optical microscopy

- 4. 57 Fe foil, 6.9 µm (6.9 mg): ripples
- 5. 57 Fe foil, 23 µm (23 mg): gentle ripples
- 6. 57 Fe foil, slivers –(5.5 mg)
- 7. ⁵⁷Fe foil, $2x1.5 \mu m$ (9.2 mg): very gentle ripples
- **7.a** 57 Fe foil, **1.6 \mum** (3.5 mg): very gentle ripples
- **7.b** ⁵⁷Fe foil, **1.7** μ m (3.7 mg): very gentle ripples
- 8. 57 Fe foil, 5.9 μ m (18.4 mg)
- 01103. ⁵⁷Fe thin layer of 150A (10x20 mm)

01104 ⁵⁷Fe thin layer of 150A (15x10 mm) visible better quality of surface, MOKE was performed A1 and A2: 200 nm ⁵⁷Fe on mica (D0204, 155nm of thickness) (SI1255, 2005. October) B1: (020607) MgO(001)/⁵⁷Fe(20 nm) (14 mm × 10 mm) (SI1255, 2005. October)

Experimental pupose:

- 1. sample classification: finding the mostly homogeneous 1mm x 1mm part of sample 3a, 3b, 7a and 7b?
- 2. Main: to demonstrate reciprocity violation in the suggested experimental geometry by NRFS of SR, using analyzer

- 3. Stroboscopic experiment for demonstrating reciprocity violation on a single foil (using analyzer)
- 4. repetition of some part of the experiment SI1255. Determination of the direction of the hyperfine field by NRFS of SR

The order of importance of task 3 and 4 depends on the experimental feasibility of the stroboscopic experiment. If the effect could be found, task 3 would have high importance.

Tasks:

Notations: angular positions		$A^{\text{reciprocal}} = A' (\theta = 90^\circ, \varphi = 135^\circ)$
	B (θ=135°, φ=0°)	$B^{\text{reciprocal}} = B' (\theta = 45^\circ, \varphi = 180^\circ)$
	C (θ=90°, φ=0°)	$C^{\text{reciprocal}} = C' (\theta = 90^\circ, \phi = 180^\circ)$
	$D(\theta=90^{\circ}, \phi=90^{\circ})$	$D^{\text{reciprocal}} = D'(\theta = 90^\circ, \phi = 90^\circ)$

- 1. sample characterization by focused beam or micro beam. Cut sample 3 to two peaces -3a and 3b
 - 1.1. selection of the most homogeneous 1mmx1mm part of the sample 3a and 3b
 - 1.2. NRFS experiments with focused beam in the previously selected homogeneous parts, with a resolution of 0.1 mm (at least)
 - 1.2.1. rotating the relative orientation of the magnets to the sample by 90 degree of rotation
 - 1.3. NRFS without analyzer. Sample 3a in position A
 - 1.4. NRFS without analyzer. Sample 3b in position B
 - 1.5. NRFS on sample 3a, 3b, without analyzer
 - 1.6. NRFS with analyzer. Only sample 3a, in position A
 - 1.7. NRFS with analyzer. Only sample 3b, in position B
 - 1.8. NRFS on sample 3a, 3b together, with analyzer
 - 1.9. Reciprocal situation, 180° rotation around the vertical axes. A->A'(90° , 135°)
 - B->B'(45° , 180°), and the change the order of 3a,3b to 3b,3a.
- 1.10. NRFS without analyzer. Sample 3a in position A'
- 1.11. NRFS without analyzer. Sample 3b in position B'
- 1.12. NRFS on sample 3b, 3a, without analyzer
- 1.13. NRFS with analyzer. Only sample 3a in position A'
- 1.14. NRFS with analyzer. Only sample 3b in position B'
- 1.15. NRFS on sample 3b, 3a together, with analyzer
- 1.16. changing back to the original positions: 180 degree of rotation around the vertical axis A'->A(90°, 45°)
 - B'->B(135°, 0°), and the change the order of 3b,3a back to 3a,3b.
- 1.17. rotation by 45° of the 3a sample, around the horizontal axis A -> C
- 1.18. repetition of 1.3 to 1.15, by the way $A \rightarrow C$
- 1.19. repetition of 1.3 to 1.15, by the way $A \rightarrow D$
- 2. Stroboscopic detection setup.
 - 2.1. Repeating the experiments 1.8 and 1.15
 - 2.2. experiment with one sample only: direct position B
- 2.3. reciprocal position B'
- 3. Feri's experiment