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Chapter 8

Introduction to Nuclear
Holography

In the history of mankind, humans have always felt the urge to record their
perceptions and to describe the world around them either in written text
or in a visual presentation such as a drawing, a painting or a photo.

However, in all conventional recording techniques, such as photography, a
flat picture of a three-dimensional scene is recorded. All information on the
third dimension (depth) is lost. What is recorded on a photographic plate
is merely the intensity distribution in the original scene. As a result, all
information on the relative phases of the light waves from different points
or, in other words, information about the relative optical paths to different
parts of the object, is lost.

The unique characteristic of holography is the idea of recording the com-
plete wave field, i.e., both the amplitude and the phase of the light waves
scattered by the object. Since all recording media respond only to the
intensity, it is necessary to convert the phase information into variations
of intensity. This is done by using coherent illumination, as shown in fig-
ure 8.1, and adding a reference plane or spherical wave to the wave scattered
by the object.

What is recorded on the photographic plate is the interference pattern due
to the two waves. The intensity at any point in this pattern depends on the
phase as well as the amplitude of the original object wave. Accordingly, the
processed photographic plate, which is called a hologram, contains infor-
mation on both the amplitude and the phase of the object wave. However,
since the hologram bears no resemblance to the object, this information is
in a coded form.
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Figure 8.1: Recording a hologram. The photographic plate
records the interference pattern produced by the light waves scat-
tered from the object and a reference wave reflected to it by the
mirror [90].

The reason for the success of holography is that the object wave can be
regenerated from the hologram merely by illuminating it once again with
the reference wave as shown in figure 8.2. To an observer, this reconstructed
wave is indistinguishable from the original object wave; he sees a three-
dimensional image which exhibits all the normal effects of perspective and
depth of focus which the object would exhibit, if it were still there.

hologram

mirror

Figure 8.2: Reconstruction of the image. The hologram, after
processing, is illuminated with the reference wave from the laser.
Light diffracted by the hologram appears to come from the original
object [90].
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8.1 From Optical to Nuclear Holography

Holography was invented by Gabor in 1947 [91]. He presented a new princi-
ple to record in one diagram both the amplitude and the phase of a wavefield
scattered by an object, and to reconstruct from this diagram the unknown
object wavefield. This new idea was mainly applied to the optical domain.
The recording and reconstruction were done using visible light. The real
breakthrough came in the early 1960s with the advent of the laser which
provided a powerful source of highly coherent light. Around the same time,
the development of new techniques increased the image quality consider-
ably [92, 93, 94, 95, 96, 97]. These advances set off an explosive growth
in holography. However, nearly all applications remained in the domain of
visible light. This limited the three-dimensional imaging to macroscopic
objects of the orders of ym.

The increasing interest in microscopic objects (sizes of atoms or even smaller)
stimulated the search for radiation sources of shorter wavelengths which
could be used for holography with atomic resolution. In 1986 Szoke launched
the idea of internal source holography [98]. He suggested that the in-
dividual atoms present in the sample could be used as sources of radi-
ation. This idea was realized experimentally for the first time in 1990
using electrons as hologram-forming waves [99]. In the theoretical works
of Refs. [100, 101] Barton, followed by Saldin, came to the conclusion that
electron diffraction patterns could be reinterpreted as electron holograms.
This opened a wide range of applications of electron holography. See, e.g.,
Refs. [102, 103, 104, 105, 106, 107, 108]. However, electron holography has
the disadvantage that only surface layers can be viewed. To see into the
bulk one needs deeply penetrating X-rays.

A theoretical comparison between electron and X-ray holography is pre-
sented in Ref. [109]. Both techniques yield three-dimensional information
with atomic resolution. Due to the small cross-section for Thomson scat-
tering, the holographic oscillations will be much weaker for X-ray than for
electron scattering. This is confirmed in Ref. [110] where the possibility
to use X-rays for holography with atomic resolution is analyzed. A holo-
graphic effect of 0.1 — 0.3% is predicted. This value is much lower than for
the case of electron holography where holographic oscillations in the range
of 30 — 50% of the reference wave are recorded. On the other hand, X-rays
penetrate deep inside solids so that the three-dimensional information is
not restricted to the surface.

The first internal source X-ray holograms were obtained in 1996 [111, 112,
113]. Two versions of X-ray holography were performed. In Ref. [111] di-
rect X-ray fluorescence holography is reported. The sample is excited by
an external X-ray beam. The excited atoms are the sources of the holo-
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gram. When they deexcite, the emitted radiation can either go directly to
a far-field detector (this is the holographic reference wave). Or, it can first
be scattered on neighboring atoms before reaching the detector (the object
wave). See figure 8.3 (left) for an illustration. The interference between
both paths creates an intensity pattern as a function of the emission direc-
tion. In order to obtain atomic resolution, high Z elements should be used
for which the K, radiation has a sufficiently short wavelength.

direct holography time-reversed holography
o O o O
o o O \\\\\\ (¥
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resonant atoms resonant atoms

Figure 8.3: Two schemes for internal source holography.

In the second version, presented in Ref [113], a time-reversed picture is
used. See figure 8.3 (right). Here, the positions of the source and the
detector are interchanged. Radiation coming from an external source can
reach a certain atom (detector) in the sample directly (reference wave) or
indirectly, after it has been scattered by neighboring atoms (object wave).
Again both fields interfere. If the total fluorescence of the detector atom is
recorded as a function of the direction of the incident beam with respect to
the sample, a holographic intensity pattern is obtained. This experiment is
termed reversed X-ray fluorescence holography. It has the advantage that
multiple-energy measurements are possible with strong tunable synchrotron
sources. Multiple-energy holography has advantages for the reconstruction
process, since the problems arising from twin images and self-interference
effects can be overcome [114].

In X-ray holography, the radiation is scattered on electrons to form the
holographic intensity pattern which contains information on the three-
dimensional ordering of the atoms in the sample. One can also perform
holography with y-rays that are resonantly scattered by nuclei in the sam-
ple. This allows to obtain three-dimensional information on the nuclear
environment. Again, two types of «y-ray holography can be distinguished:
the direct one and the reversed one.
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~-ray holography using nuclear resonant scattering was for the first time
successfully applied by Korecki [115] in the reversed version. In this ex-
periment, an external *”Co ~y-ray source is used to excite nuclei in a thin
epitaxial 57Fe film. The radiation from the source can be absorbed di-
rectly by a detector nucleus, or after it has been resonantly scattered on
neighboring nuclei. Both paths interfere, yielding fluctuations in the total
number of conversion electrons emitted by the detector nucleus in the de-
excitation process. The nuclear hologram is obtained by detecting the total
conversion electron yield as a function of the incidence angle of the y-rays.
Holographic oscillations of 2% were measured and a spatial resolution in
the reconstructed image of 0.7 — 3.1 A was reached.

In the other version, the direct y-ray holography, the radioactive source
atoms are located inside the sample itself. When a v-ray is emitted, it can
reach a far-field detector directly, or it can first be resonantly scattered on
neighboring nuclei before reaching the detector. The interference between
both paths creates a holographic intensity pattern as a function of the y-ray
direction.

The two versions of nuclear holography can be referred to as nuclear ab-
sorption holography and nuclear emission holography. Both use the concept
of internal sources, but the latter in the direct version, the former in the
reversed version.

In this part of the thesis, nuclear emission holography will be further inves-
tigated. First of all, a quantum mechanical theory is presented to describe
the formation of a nuclear hologram. The results of the theory are further
explored by means of simulations, which show the feasibility of a nuclear
emission holography experiment. In chapter 11, a possible experiment is
considered. Two candidate samples are discussed and an estimation for the
data acquisition time is given. Finally, it is explained how to reconstruct
from the hologram the real-space three-dimensional image of the nuclear
environment. In a concluding chapter, the possible applications of nuclear
emission holography are mentioned and the advantages and disadvantages
compared to nuclear absorption holography are discussed.
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Chapter 9

Quantum Mechanical
Theory of the Formation
of a Nuclear Emission
Hologram

In the present chapter, the quantum mechanical theory describing the for-
mation of a nuclear emission hologram is developed. The general method
used to describe the interaction of photons and nuclei is taken from Heitler
[116] and Harris [117]. It involves quantum mechanical calculations in fre-
quency domain to obtain a set of coupled equations. These can be solved for
the problem of an internal «-ray source in the single-scattering approxima-
tion which is valid for small ensembles of resonant nuclei. The calculations
yield a transparent formula for the radiated intensity as a function of the
emission direction.

The theory presented here has been described in Ref. [118]. An outline of
the theory will be given in this chapter. The complete calculations can be
found in appendix B.
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9.1 General Formalism

Consider the quantum mechanical system consisting of nuclei, photons and
conversion electrons. The Hamiltonian of this system can be divided into
two parts:

H=Hy+V

Hy is the unperturbed part which describes the evolution of the nuclear
states, the free radiation field and the conversion electrons, in absence of
any coupling. The perturbing part V' describes the interaction of the three
subsystems and is responsible for transitions between nuclear levels.

The eigenstates of the total Hamiltonian can be expressed as:

[9(t) > =" a(t) e ™ |(0) >

l

where | ¢;(0) > is an eigenstate of Hy belonging to the energy fuw;.

Solving the Schrodinger equation

ih%:(Ho+V)|¢(t)>

leads to a set of coupled differential equations

=D ay(t) €T < (0) | V | g (0) > (9.1)

q

A solution to this system is wanted that satisfies the condition that at
t = 0 the system is in a well defined state, say n, and all other probability
amplitudes are zero: a;(0) = 0 and a,(+0) = 1, where ¢t = +0 means that
t approaches zero from the positive side. Although a physically meaningful
solution only involves positive times (¢ > 0), for analytical reasons the
solution will be extended to the negative time axis.

We choose the a;’s such that a;(t) = a,(t) = 0 for ¢ < 0. It then follows
that a, has a discontinuity that can be dealt with. In Ref. [116], it is shown
that adding an extra term to the right-hand side of expression (9.1) takes
care of the initial condition and the discontinuity.
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dal

=57 a(t) €Dt < (0) | V | 9g(0) > + ifi 01 8(2) (9:2)
q

where d;, is the Kronecker delta and §(t) the Dirac delta function.

For the further calculation, it is advantageous to express these equations
in the frequency domain. Therefore, the following Fourier transforms are
introduced [116]:

1 Foo ,
al(t) = o . dw Al(w) ilwr—w)t
i6() = ——= [ dw et
2w J_ o

Applying these transformations to the coupled differential equations (9.2)
leads to the set

(w wl Al Z A V;q + 0 (9.3)

Vi is the matrix element inducing a transition from the ¢** unperturbed
state to the I*" unperturbed state: Vi, =< ¢1(0) | V | ¢4(0) >

To obtain an equation for A;(w), one would have to divide by (w — wy).
This division will not be unique and it can be shown that if the q;’s are
to fulfill the initial conditions, the result of the division by (w — w;) must
be a factor lim, g 1/(w — w; + i€). This has only a mathematical meaning
when integrals are involved, which eventually will be the case. In fact the
replacement of (w —w;) by (w —w; + i€) where € is an infinitesimal, positive
number, defines the path of integration, guaranteeing causality [116]. Of
course, the device ie will always disappear from the physical answer, as will
become clear later.

Thus, Eq. (9.3) can be rewritten as:

(w—wy +i€) A(w) = Z Ag(w) V;Lq + din (9.4)

q

The big advantage of applying the above Fourier transformation is the
transition from a set of coupled differential equations to a set of linearly
coupled algebraic equations, which are much easier to solve.
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9.2 Fundamental Equations

The general formalism, introduced in the previous section, will now be
applied to the problem of nuclear emission holography.

Consider a lattice of resonant nuclei, some of which are in the excited state
(the source nuclei) and all the others are in the ground state (the scattering
nuclei). The density of the source nuclei is assumed to be very low, so that
the lattice can be divided into independent subsystems containing just one
source nucleus surrounded by many scattering nuclei. In the following,
the holographic image from one such a subsystem will be calculated. The
image of the global lattice is obtained by summing the contributions of all
independent subsystems.

As initial condition, suppose all scattering nuclei in the lattice are in the
ground state and only one source nucleus, positioned at 7 = 0, is excited.
No photons or conversion electrons are present at ¢ = 0. To keep the
analysis as simple as possible, only one excited state with energy fiwy will
be considered.

The following probability amplitudes are defined:

A(w) : the source nucleus is excited,
all scattering nuclei are in their ground state,
there are no photons
and no conversion electrons present

B, (w) :  the m'” scattering nucleus at 7, is in its excited state,
all other nuclei are in their ground state,
there are no photons
and no conversion electrons present

Ci(w) : all nuclei are in the ground state,
a photon of wave vector k is present,
there are no conversion electrons
Dj(w) : all nuclei are in the ground state,
there are no photons,
a conversion electron with momentum p; produced by the
source nucleus, is present
D,, 5(w) : all nuclei are in the ground state,

there are no photons,
a conversion electron with momentum p;, produced by the
m*" scattering nucleus, is present
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The coupled equations relating these amplitudes are the following;:
9 Aw) = Y EC %5 p
(W —wo +1i€) A(w) = Z % p(w) + Z % s(w) +1 (9.5)
P I
(@ =wo+i€) Buw) = 3 =F P Crw)
E
b YT D, ) (96)
7
) VE* E* -
(w=wp+ie) Clw) = - Aw)+ > — e T Buw)  (9.7)
(w—wp+ie) Dp(w) = T A(w) (9.8)
, Vi —ip-Fom /R
(w —wy+i€) Dy s(w) = 5 € B, (w) (9.9)

Here V;; and VI;* are the matrix elements describing absorption and emission

of a photon with wave vector E, respectively. Analogously, the matrix
elements Vy and Vpi“, describe absorption or emission of a conversion electron

with momentum p.

The structure of these equations can be understood as follows:

e Eq. (9.5) expresses the amplitude for finding the source nucleus in an
excited state (left-hand side). This state can be obtained by absorp-
tion of a photon by the source nucleus (first term on the right-hand
side), by absorption of a conversion electron coming from the source
(second term on the right-hand side), or by the initial excitation at
t = 0 (the constant term 1).

A similar interpretation holds for Eq. (9.6). The m!" scattering nu-
cleus can be excited by absorption of a photon (first term on the
right-hand side) or by absorption of its own conversion electron (sec-
ond term). The phase factors e and e#"/% are introduced in
order to specify the location where the absorption process occurred.

Eq. (9.7) gives the amplitude for having a photon with wave vector
k present. This photon can be emitted by the source nucleus (first
term on the right-hand side) or by the other nuclei (second term).

The phase factor ¢~ ik+im again accounts for the position where the
emission took place.
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e Eq. (9.8) states that a conversion electron from the source can only
originate by emission of the electron by the source nucleus.

e Similarly, in Eq. (9.9), a conversion electron from the m*" scattering
nucleus can only be present after the emission of the electron by the
m* scattering nucleus.

It should be emphasized at this stage that the treatment of the electron
conversion processes is only necessary to produce a width (and also a shift
that will be incorporated into wg) due to electron conversion. This can be
verified from the detailed calculation given in appendix B.

By combining Eqgs. (9.5) - (9.9), the fundamental equations describing the
system can be shown to be (see appendix B.1):

(W—wo+i o) Aw) 1+ZZ B w~—|—zeBm(w) (9.10)

2h

2 .
r |V~| eik-m
— —) B, = 2 k A
(w—wo+1 2h) (w) : i rp— (w)

|V~ ik (Fm —7pnt)
+ > Z pp— B (w)  (9.11)

’;ém E

V

(w—wp +i€) Czw) = )+ Y E e B(w) (9.12)

= |?r§

where I is the total linewidth of the excited state, given by the sum of the
conversion electron width y¢ and the radiative width ~vyg.

Egs. (9.10)-(9.12) describe the interaction of electromagnetic radiation with
a nuclear system. The positions of all resonant nuclei occur in the expres-
sions via the factors e*#7m

This set of linearly coupled equations has been solved exactly in the case of
radiation coming from a radioactive source, scattered in the forward direc-
tion [63, 119] and in the case of nuclear forward scattering of synchrotron
radiation [15]. For nuclear emission holography, an analytical solution can
only be obtained when certain assumptions are made.
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9.3 Approximate Solution

The set of fundamental equations (9.10)-(9.12) can be solved analytically in
the single-scattering approximation, in which the following two hypotheses
are assumed:

1. The probability of reexcitation of the source nucleus by radiation
coming from the surrounding nuclei is negligible. Therefore, this
process will be excluded. This is justified for interatomic distances >
1 A, which is always the case.

2. Only single scattering by the scattering nuclei is considered. This is
an excellent approximation for thin samples.

The sums over m and k on the right-hand side of Eq. (9.10) describe absorp-
tion by the source nucleus of radiation coming from the scattering nuclei.
According to hypothesis (1), this process will be neglected. Therefore,

1

Aw)= ——
W) = = Fryan

(9.13)

This is nothing but the familiar Lorentzian frequency spectrum, centered
about wo with a full width at half maximum of I'/A.

The last series on the right-hand side of Eq. (9.11) describes the excita-
tion of the scattering nucleus at position 7, due to radiation coming from
the other scattering nuclei. These processes are neglected according to
hypothesis (2). Thus,

|2 ik Tom

T _ Vi
(W—WOH%) Bn(w)=)_ W o wtie Aw) (9.14)

-

Using Eqgs. (9.12), (9.13) and (9.14), an expression for Cj(w) can be cal-
culated. For the details of the calculation, the reader is referred to ap-
pendix B.2. The result is:

Vi 1 1
h w—wo+il/2h w—wp + i€

Vi ar 1 1 ) el it
h 2h (w—wo+il'/2h)” w—wp+ie “—~ wry/c
(9.15)
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Fourier transforming this expression back to time domain, one obtains
(cf. appendix B.3)

with
Vi 1 . )
go) — _k 1— i(wp—wo+il'/2Rh)t 1
“k ®) h wp—wo+il'/2h [ et ] (9.16)
vV . WeTm /C
Wy = -5 i Y ik EET
k 2h% (wi — wo +4['/2R)? - woTm/c

X {1 +i(wp — wo + 1L /2R)(t — T /) eiwimwotil'/2R)(E=rm /)

_ gilwg—woil /2) (b7 /) } (9.17)

The probability of having a photon with wave vector k present at time t,
is given by

L) = [e®)]

2 2
W[+ O + 2 Relef (@) (1)

_ 00 11 01
= IO(0) + I (1) + 12 (1)

If one considers the probability that a photon has been emitted in the
direction k for long times (¢t — oo), the previous expression should be
evaluated in the limit ¢ — oo

Iz(o0) = lim |c,;(t)|2

t—o0
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This yields the following formula

2

V~| 1
I(oo) = V&
k(oo) h2 (WE—Wo)Q'F(F/?h)Q

120(oc0)
|V*| Tr 1 iR (Fm—Tmt) o= iwg(Tm—Tmr) [
" 4n*  [(wg —wo)? + (T/20)%]2 z Z Worm/c WoTm! ¢
1,11(00)

e—iw,;rm/c

|V| YR 1 1 k-7
73 (wE — w0)2 + (F/2h)2 Wp —wo — ir/2h ; ¢ on‘m/C }

191 (c0)

The above equation can be divided into three parts:

o The first term, Igo(oo), is the probability to have a photon with wave

vector I;, due to the presence of the source nucleus alone. This term
contains no information on the positions of the surrounding nuclei.
It just gives the frequency distribution of the radiation emitted by
the source.

e The second term, I I%l(oo), is the probability to have a photon with

wave vector E, due to the presence of the scattering nuclei having
scattered the photon produced by the source nucleus. This term
depends on the positions 7, of all nuclei with respect to the source.

o The last term on the right-hand side, I2!(c0), is an interference term
between the amplitude due to the source nucleus and all amplitudes
due to the scattering nuclei.

It is clear thag the counting rate depends on the direction of detection via
the factors e?*™  and also on the energy hwy of the detected radiation.
However, the detector, positioned in a certain direction, does not register

a single energy. Thus, one has to integrate the intensity over all energy
values. When doing so, the intensity will depend solely on the direction,
represented by the unit vector k = k/ | k |.
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The recorded intensity becomes (see appendix B.4):

I(k) = I°°(k) + I°' (k) + I''(k)

with
2
N L
k) = 7|V(;‘%)C| (9.18)
- Viw 2L7 sin l—k-fmwrmc
oy = - Vel L (F(’h)l T 2 I o }CO /el (9.19)
. 1|V (wo)|® L

~

cos [((1 —k-Fp)rm—(1— k- Frmt) rm/) wo/c]

; Wo rm/c wo ! [ €

(9.20)

The length L appearing in these equations comes from the conversion of a
sum over all energies into an integral.

Measuring the intensity as a function of the emission direction will give
a nuclear emission hologram. Holographic oscillations, given by I°!(k) +
I''(k), are superposed on a constant background, due to I%(k). They
contain all information on the positions of the scattering nuclei with respect
to the source nucleus.

Remark

In the calculations above, electronic absorption has been neglected. This
is justified because typical electronic absorption lengths for ~-rays are in
the order of pm, while the dimensions of the nuclear ensembles that will be
considered for nuclear emission holography will be in the range of several
nm.



Chapter 10
Holographic Image

A nuclear emission hologram is obtained when the intensity of y-rays emit-
ted by internal sources is recorded as a function of the emission direction.
The resulting intensity pattern is composed of a constant background due
to the radiation coming directly from the source, and holographic oscilla-
tions. These oscillations can be separated from the hologram by defining
a contrast function. Using the results obtained in the previous chapter,
an explicit expression for the contrast function is derived for the case of a
single-line sample. The properties of the contrast function are explored by
means of simulations. They show a holographic effect of the order of a few
percent.

The hologram contains information on all resonant nuclei in the sample.
However, in applications of nuclear holography the interest goes to the
direct environment of the source nucleus. Nuclei situated far away will give
a high-frequency contribution to the contrast function. In section 10.3 it
will be shown that this contribution can be eliminated from the hologram
by applying a Fourier filtering procedure.

Finally, the validity of the single-scattering approximation in nuclear emis-
sion holography is discussed.
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10.1 Contrast Function

The hologram is created by interference of a known reference wave with an

~

unknown object wave. From the resulting intensity pattern I(k) a normal-

ized hologram function F(k) can be calculated by removing the reference
wave and normalizing the expression. With the notations of the previous

chapter, one has

< I(k) — I°(k)
O="@

(10.1)

This function merely contains the holographic oscillations and, therefore,
will be called the contrast function.

For a small number of scattering nuclei, I'! (k) is much smaller than I°* (k)
so that the second term in Eq. (10.1) can be neglected. This, however,
is only justified for small structures with a limited amount of resonant
nuclei. As can be seen from Eq. (9.20), if the number of scattering nuclei
increases, I'!(k) becomes comparable to or even larger than I°(k); this
because of the additional summation ) ,. In that case 11(k) can no
longer be neglected and the full expression for the contrast function should
be used.

In the following, only small samples will be considered for which the con-

trast function can be approximated by

701 (];)
_700(]%)

F(k) ~

Using Egs. (9.18) and (9.19) from chapter 9, an explicit expression for the
contrast function in nuclear emission holography is derived in the single-
scattering approximation and assuming no hyperfine interactions:

) sin |(1—k - #m) worm/c
F(k):-%’* 3 [ T ° ] (10.2)
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10.1.1 Properties of the Contrast Function

The contrast function F(IAc) depends on the direction k with respect to the

positions 7, of the scattering nuclei. Knowledge of F(k) thus will give
information on the positions of these nuclei with respect to the source.

Each resonant nucleus gives a contribution to the contrast function. From
Eq. (10.2), it follows that the further away the scattering nucleus is located,

the smaller the amplitude of the oscillations and the higher the oscillation
frequency are. These two features are illustrated in figure 10.1
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Figure 10.1: Simulation of the contrast function for two °“Fe nu-
clei: the scattering nucleus (gray) is positioned at 2 different dis-
tances from the source nucleus (black). Left: geometry. Right:
contrast function for 2 inter-nuclear distances.

In the case of only one scattering nucleus, the intensity pattern of the
emitted radiation will be axially symmetric about the direction source-
scatterer. The contrast function can therefore be characterized by only one
parameter 6 (see figure 10.1). In general, however, the contrast function
will depend on the two spherical angular coordinates 6 and .

As can be seen from figure 10.1, each component of the contrast function
oscillates with changing frequency, resulting in a series of nonequidistant
maxima and minima. For the simple case of only one scattering nucleus,
located at 2.9 A from the source, the angular distance between a maximum
and its adjacent minimum is about 8° for radiation emitted in the vicinity
of 90°. For smaller or larger angles, this angular distance increases. For
example, a maximum occurs around 37° and its adjacent minimum around
20°.

The contrast, defined as the difference between the maximum and the min-
imum of the normalized intensity, will be determined by the configuration.
For a 5"Fe ensemble containing only one scattering nucleus positioned at
2.9 A from the source, the contrast is approximately 1%. This value in-
creases if the distance source-scatterer decreases, or, if the number of res-
onant nuclei surrounding the source increases.
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Figure 10.2: Simulation of the contrast function for an ensem-
ble of 5"Fe nuclei: the scattering nuclei (gray) are positioned at
‘/75 x 2.9 A from the source nucleus (black) at the corners of a
square (left) or at the corners of a regular hexagon (right). Top:

geometry. Bottom: contrast function.

In figure 10.2 the normalized holographic image is shown for two different
configurations. In the first simulation, the source is surrounded by four
scattering nuclei on the corners of a square. In the second simulation, six
scattering nuclei are located on the corners of a regular hexagon. The
distance source-scatterer is fixed to \/75 x 2.9 A.

The contrast functions look very different. They exhibit the symmetry of
the nuclear ensemble. In the first case a four-fold symmetry can be recog-
nized in the holographic image, while for the hexagon, a six-fold symmetry
is clearly observed.

Figure 10.3 shows similar simulations, for three-dimensional structures. On
the left, the contrast function for a cubic unit cell with 8 scattering nuclei
is shown. On the right, the contrast function is displayed for 12 scattering
nuclei on the corners of a simple hexagonal structure (see configuration on

top of figure 10.3). The source nucleus is positioned in the center of the

cell, at @ % 2.9 A from all scattering nuclei. Again, cubic or hexagonal

symmetry is recognized.



10.1 Contrast Function 133

cube hexagonal

135.0 o I 0.0296 135.0 I 0.0180
112.5 1 I 0.0140 1125 1 I 0.0055
< g0 L0014 &
O : 0 900 £ 0.0070
67.5 A F-0.0169 67.5 1 F-0.0194
45,0 - r-0.0324 45,0 . : . . r-0.0319
450 675 900 1125 135.0 450 675 900 1125 1350

o) o¢)

Figure 10.3: Simulation of the contrast function for an ensem-

ble of 5"Fe nuclei: the scattering nuclei (gray) are positioned at

\/T?: x 2.9 A from the source nucleus (black). Left: the resonant

nuclei form a cubic cell with dimension 2.9 A. Right: the reso-
nant nuclei form a simple hexagonal cell, given by the parameters
2.9 A (longitudinal distance along the c-axis) and v/2x 2.9 A (lat-
eral distance perpendicular to the c-axis). Top: geometry. Bot-
tom: contrast function.

The previous simulations show that the normalized holographic image is
characteristic for a particular configuration. It contains all information
on the position of the resonant nuclei with respect to the source. From
the intensity pattern, the three-dimensional real space image can be recon-
structed according to certain techniques. This will be explained in chap-
ter 11.
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10.2 Simulations for a Bcc Lattice of °"Fe

In the following a bcc lattice of 57Fe will be considered. The source is a
57Fe nucleus in its first excited state, located at a substitutional lattice site.
The other sites are occupied by resonant >”Fe nuclei in the ground state.

Figure 10.4 shows the simulated contrast function for a bec lattice of 7 Fe.
The source nucleus is located at the origin of the coordinate system. The
intensity is shown as a function of the spherical angular coordinates § and
o as they were defined in figure 10.3 (top, left). The contrast function is
displayed, taking into account only scattering nuclei within a certain radius
around the source. Due to the cubic symmetry of the bce lattice, the in-
tensity pattern corresponding to 45° < 6, < 135° is repeated periodically
in all directions. Therefore, only this part of the hologram is displayed.
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Figure 10.4: Simulations of the contrast function for a bcc lattice
of ®"Fe. Left: only contributions from scattering nuclei within
2 ap (64 nearest neighbors) are taken into account. Right: contri-
butions from scattering nuclei within 10 ag (8392 neighbors) are
taken into account.

In the first simulation (on the left) resonant nuclei within a radius of two
times the lattice constant (ao = 2.866 A) are considered. This means only
contributions of the 64 nearest neighbors of the source are taken into ac-
count. This gives a very clear normalized hologram.

If the radius of scattering nuclei is increased to 10 ag, the contrast function
looks like the picture on the right. This intensity pattern is much more
detailed, exhibiting faster oscillations due to contributions of nuclei situ-
ated further away. Each far-away nucleus individually gives only a very
small contribution to the contrast function (the amplitude is substantially
decreased). But the large number of them makes that the total signal from
nuclei far-away is large. The fast oscillations will mask the information
on the direct environment of the source. It will be explained how these
high-frequency contributions can be filtered out of the holographic image.
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10.3 Low-pass Filtering

A low-pass filter should suppress the high-frequency contributions to the
signal, while leaving the low-frequency contributions unchanged.

The Fourier transformed signal should be multiplied with a function being
one for low-frequency values and zero for high-frequency values. Two filter
functions will be considered:

The step function:

s(z) = 1 if —zg<z<x

= 0 else

and the Gaussian:

—z? /223

g(z) = e

The main difference between both filter functions is that the first one elim-
inates the high frequencies completely, whereas the Gaussian only reduces
their contribution. The component with frequency zy is reduced by the
Gaussian filter to 61%, the 2 x 2o component is reduced to 14%, etc. At
first sight, this argument would lead to a choice in favor of the step function.
But, as will be shown below, the Gaussian has some important advantages
over the step function that make it the most appropriate filter function for
a nuclear emission hologram.

When applying the low-pass filter to the signal itself, the hologram should
be convoluted with the inverse Fourier transformations of the filter func-
tions.

For the step function this yields:

(k) = sin(zoky)

kg
The inverse Fourier transformation of a Gaussian is again a Gaussian:

2 /5 2
6_k2/20

Ghe) = e

with o =1/x0 (10.3)

Figure 10.5 shows both functions in Fourier and in real space. The Gaussian
as a function of k; approaches zero much faster than the transformed step
function. This has two consequences:
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Figure 10.5: Two low-pass filters: The step function (left) and
the Gaussian function (right). The functions are shown in Fourier
and in real space.

o First of all, the Gaussian filter will introduce less border effects. If the
holographic signal is not recorded over the full sphere, the filtering
will give inaccurate results at the borders. The filtered signal at a
particular point in the hologram is calculated by means of the signal
values in the neighborhood of this point. When the holographic signal
is not recorded over the complete sphere, it will be extended with
noughts. As a result, the values of the filtered signal will be incorrect
at the borders of the hologram. This problem is not encountered
when a full holographic period is recorded. E.g., in case of a 5"Fe
bee lattice, if the contrast functions is known for 45° < 6 < 135°
and 45° < ¢ < 135°, the signal can be repeated periodically and the
filtering will give correct results for all points in the hologram.

e Secondly, as mentioned before, the oscillation frequencies are not con-
stant. They are the lowest near § = 0° and get larger as 6 approaches
the value of 90°. This, of course, will have its repercussions on the
filtering. For the signal coming from nuclei far-away from the source,
there will be a region where the oscillations are much slower and thus
are not correctly filtered. The faster the filter function goes to zero,
the less sensitive it is to variations in oscillation frequency. Again,
the Gaussian filter has the best performance.
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10.3.1 Filtering Procedure

The holographic signal can be filtered by convoluting the contrast function
F(ky,ky) with a two-dimensional Gaussian function. The filtered image
H(k! k!) is obtained by:

z Ny

+oc +oo
H(KL,K) = / dk, / dhey F (kg ky) Glkq — k.) G(ky — K1)

where G is the Gaussian function given by Eq. (10.3).
In Ref. [120] it has been explained how this formula should be adapted when

the contrast function is parameterized by the spherical angular coordinates
0 and ¢. The result is:

27 ™
H(Bo,p0) = % /0 ) /0 d6 sin® F(0,¢) e~ /20 (10.4)

with 8 defined by
cos@' = cosfy cosf +sinfy sinf cos(p — o)

The normalization factor N is given by

27 ™
N:/ dy / df sin e 0° /20
0 0

For small values of o (¢ < 0.140), N ~ 2702 and e ?"/20" n glcost'~1)/o”
So that Eq. (10.4) becomes

27 T
/ 0 / df sinf F(6,p) e o0/7
0 0

2mo2

X e (sin @ sin @ cos(p—po) —1)/0?

The width o determines the frequencies that will be maintained in the
filtered signal and to what extent the high frequencies are reduced. The
optimal width can be obtained by comparing the filtered hologram with
the intensity pattern obtained from the close environment of the source.
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10.3.2 Applying Low-pass Filtering to Simulations

For the bec lattice of 57Fe nuclei, the low-pass filter has been applied to the
contrast function obtained for resonant nuclei within a radius of 10 a¢ from
the source (see figure 10.7, top right). The filtered hologram is compared to
the contrast function for resonant nuclei within a radius of 2 ag (figure 10.7,
top left). Figure 10.6 shows the mean quadratic deviation for several values
of 0. A minimum is observed for o = 3.3°.
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Figure 10.6: Mean quadratic deviation between the filtered image
from figure 10.7 (top right) and the (unfiltered) image from fig-
ure 10.7 (top left) as a function of the Gaussian width ¢. In order
to avoid inaccuracies due to border effects, the mean quadratic
deviation is calculated for 60° < § < 120° and 64° < ¢ < 115°.

In the lower half of figure 10.7 the normalized holographic images after
filtering with a two-dimensional Gaussian (o = 3.3°) are displayed. When
the filter is applied to the image of the large environment of the source
(radius = 10 ap), the fast oscillations disappear and a nice picture is ob-
tained that looks very much like figure 10.7 (top left) for only the 64 nearest
neighbors of the source. Applying the same filter to the image for the close
environment of the source (radius = 2 ap) has only very little effect. The
intensity scale is slightly shifted and the amplitude of the holographic os-
cillations has been reduced. Where the effect before filtering was ~ 10.5%,
after filtering it is decreased to ~ 5.5%.

A close look to the filtered images and the unfiltered one for the small
ensemble reveals some directions that are incorrectly processed (e.g., § =
@ = 72°). These points correspond to directions with a higher density
of resonant nuclei. In the direction of a scattering nucleus the oscillation
frequency as a function of k is at its minimum. As a consequence, the
filtering procedure will not work properly in this direction. When there are
many far-away nuclei in a certain direction, the filtering errors add and a
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large deviation from the simulation for the close environment is observed.
This fact may also be responsible for the change of the intensity scale.

The simulations below show that the image from the close environment of
the source is hidden in the holographic intensity pattern obtained from a
larger ensemble of scattering nuclei. By applying an appropriate low-pass
Gaussian filter it is possible to extract the underlying information of the
local surrounding of the source.

normalized holographic image before filtering:
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Figure 10.7: Simulations of the contrast function for a bcc lattice
of 57Fe. Left: only contributions from scattering nuclei within a
radius of 2 ag from the source nucleus are taken into account.
Right: contributions from scattering nuclei within a radius of
10 ao. Below, the same holographic images are shown after fil-
tering with a two-dimensional Gaussian (o = 3.3°).
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10.4 Discussion

An expression for the contrast function in the case of a single-line sam-
ple has been derived. In this expression, the self-interference term arising
from interferences between two object waves has been neglected. This is
justified for small ensembles of scattering nuclei (10® — 10* resonant nu-
clei). However, the approximation is no longer valid for nearly perfect
single crystals where long-range coherence effects become important. In
that case, the single-scattering approximation, used in the previous chap-
ter to describe nuclear emission holography, does no longer hold and should
be replaced by the dynamical theory for emission of Méssbauer vy-rays from
crystals [121, 122].

A consequence of the long-range translational periodicity in single crys-
tals is the appearance of Kossel lines [123]. Kossel lines are formed if a
source of short wavelength radiation (= 1 A) is located inside a crystal
on a crystallographic site. They are analogous to the well known Bragg
peaks in traditional crystallography, except that in the Bragg case there
is an external source and in the Kossel case there is an internal source.
Directions satisfying Bragg’s law lie on so-called Kossel cones with their
axes perpendicular to the diffraction planes and with opening half-angles
equal to 90° — fp, O being the Bragg angle. Intersections of the Kossel
cones with the hologram give a set of light and dark lines which distort the
holographic image significantly [124]. Since the Kossel line pattern origi-
nates from the long-range periodicity and, hence, involves nuclei that are
at large distances from the source, it can be eliminated by a low-pass filter
which suppresses the contributions of distant nuclei.

The ~-radiation emitted by the source nucleus will not only scatter on
neighboring nuclei, but also on the surrounding atoms. The Thomson scat-
tering on electrons will give rise to another holographic intensity pattern.
In case of enriched samples, the Thomson hologram will be much weaker
than the nuclear hologram as can be seen from the simulations in Ref. [125].
The total cross-section for Thomson scattering [46] and for nuclear resonant
scattering [13] are given, respectively, by

OThomson — ? e
_ 27w yg 2je+1
Onuclear = k_z ? 2jg 1

re = 2.817 - 107!% cm is the classical electron radius, Z is the atomic
number, j, and j. are the spins of the nuclear ground and excited states
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and k = 27/ ) is the wavenumber of the radiation. For a 5"Fe atom, Z = 26
and A\ = 0.86 A for the 14.413 keV transition. This yields the following
values:

OThomson = 1.73 x 1072 cm? /atom

Onuclear = 2-56 x 107 '8 cm? /resonant nucleus

When the concentration of resonant nuclei is low, the Thomson scattering
will be relatively important compared to nuclear resonant scattering and
both processes should be taken into account. However, if enriched sam-
ples are used, the contribution of Thomson scattering to the holographic
intensity pattern will be negligible as compared to the nuclear scattering
because of the large difference in scattering cross-section.
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Chapter 11

Nuclear Emission
Holography

In this chapter, a possible experiment for nuclear emission holography is
considered. The most crucial part is the sample preparation. One needs
a good crystalline sample that is highly enriched in a Mossbauer isotope
and in which the radioactive source nuclei can be introduced. In practice,
there will be many source nuclei in the sample. In order to obtain a single
hologram the following conditions have to be satisfied:

1. the environment of every source nucleus has to be the same, and
oriented in the same way

2. the size of the sample has to be much smaller than the sample-detector
distance

3. radiation emitted by different source nuclei has to be incoherent

Under these conditions, separate but identical holograms are simply added.
If condition (1) is not satisfied, both the hologram and its subsequent recon-
struction represent averages over all source nuclei and their near neighbors.
In the case of internal y-ray emitters, the third requirement is always ful-
filled. The deexcitation of a source nucleus is a stochastical process which
is uncorrelated with a similar event at another source nucleus. As a re-
sult, the radiation emitted by different sources is incoherent and cannot
interfere.
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The most appropriate Mdssbauer isotope for nuclear emission holography
(and for nuclear resonant scattering in general) is ®’Fe. The 14.413 keV
transition from the first excited state to the ground state provides radiation
with sufficiently short wavelength (A = 0.86 A) to allow holography with
atomic resolution. Moreover, highly enriched crystalline samples can be
prepared by molecular beam epitaxy. There is also a parent isotope, 57 Co,
which can be used to generate the source radiation. The 57Co nuclei can be
introduced into the sample either during growth by co-deposition, or after
growth by thermal diffusion or ion implantation.

The formulae in the previous chapters describing nuclear emission hologra-
phy have been derived for a single transition energy, which implies no hy-
perfine splitting of the nuclear levels. This has two important consequences.
If the source nucleus is not subjected to hyperfine interactions, the emitted
radiation pattern is isotropic. Moreover, no polarization effects should be
taken into account, so that the resonance condition between source and
scattering nuclei is easily satisfied.

In this chapter, two possible samples for nuclear emission holography are
proposed. The first one is a single-line sample containing 57 Fe, which would
benefit from the two properties mentioned above. The second is a thin layer
of a-5"Fe, which, although it is hyperfine split, has the advantage that it
can easily be made into a «y-ray source for nuclear emission holography.

Assuming the 57 Co ions are introduced into the sample by ion-implantation,
an estimation for the data collection time is made. It turns out that a
nuclear emission hologram can be obtained in a reasonable time.

Finally, in the last section, the reconstruction procedure to obtain a three-
dimensional real-space image of the nuclear environment is explained and
discussed.
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11.1 Sample Preparation

As a possible sample for nuclear emission holography, a metastable monosili-
cide can be considered. By co-deposition at room temperature a cubic
FeSi phase can be grown epitaxially on a Si(1 1 1) substrate. A detailed
study [126] has shown that these films exhibit an excellent crystalline qual-
ity up to a thickness of 1000 A. The FeSi has a CsCl structure with a lat-
tice parameter (ag = 2.77 A). Due to the cubic symmetry around the 57Fe
probe atoms, a single-line spectrum in conversion electron Mossbauer spec-
troscopy (CEMS) is observed. However, this single-line structure breaks
up when the sample is heated above 300°C [126]. As a function of the
annealing temperature a gradual transition from the cubic FeSi phase to a
polycrystalline e-FeSi phase occurs. This can be deduced from figure 11.1.

counts

anneal

-20-15 -10 -05 00 05 1.0 15 20

velocity (mm/s)

Figure 11.1: In-situ Cems spectra at room temperature of a
650 A FeSi[CsCl] film on Si(1 1 1) after growth and after annealing
at 300°C and at 400°C [126].
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The °7Co source nuclei can be introduced into the FeSi film by ion implan-
tation. For nuclear emission holography one needs thin samples in order to
minimize the influence of long-range coherence effects. Therefore, low im-
plantation energies are preferred which yield a smaller implantation range.
Figure 11.2 displays the implantation profile for °”Co implanted into FeSi
at 40 keV, simulated with the TRIM program [127]. The average implanta-
tion depth is 205 A and the average straggling is 92 A. A 400 A FeSi[CsC]]
layer will stop approximately 97% of all ®”Co ions and can be considered
as a sample for nuclear emission holography.
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Figure 11.2: TRIM simulation for the implantation profile of ®”Co
in a FeSi layer at 40 keV.

When the source nuclei are implanted into the sample, care should be taken
to minimize damage to the crystalline structure. This is a crucial point for
holography experiments. Most damage can be restored by annealing the
sample after implantation. However, as mentioned before, annealing above
300°C will cause an irreversible phase transition from the cubic FeSi[CsCl]
to e-FeSi which is polycrystalline. As a consequence, annealing of the sam-
ple is limited to 300°C.

On the other hand, implantation may cause a local heating of the crystal
near the end position of the ®”Co ions. This might also induce the phase
transition. Too little is known about Co implantation into FeSi[CsCl] to
predict the result. A more profound study needs to be done on this topic.

Another candidate sample for nuclear emission holography is a thin epi-
taxial ®"Fe layer which can be annealed after 3"Co implantation. Such
a layer has a bcc structure and the implanted Co ions will preferentially
occupy substitutional lattice positions. The maximum allowed implanta-
tion dose in order not to damage the crystalline structure of the target is
approximately 5 x 10'® ions/cm?. Due to contamination of the mass M
= 57 by Fe, only a fraction (= 25%) of this number will be >”Co ions.
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(For a 1 cm? sample this dose corresponds to a 10 uCi source.) A small

drawback is the hyperfine splitting in a-Fe. This will cause the emitted
radiation pattern to be anisotropic and, more relevant for the application
in nuclear holography, the holographic effect will be a factor of two smaller.
This can be understood as follows. The ground state of 5"Fe is split into
two sublevels. Initially, the source nucleus is in an excited state and will
deexcite by a magnetic dipole transition to one of the two ground states.
See figure 11.3. The emitted radiation can be resonantly absorbed and
reemitted only by >"Fe nuclei that are in the same ground state. >"Fe nu-
clei that are in the other ground state do not fulfill the resonance condition
and cannot resonantly scatter the photon produced by the source. Since at
room temperature equal population of both ground states can be assumed,
the effective number of resonant nuclei is 50% of the total number of 57 Fe
nuclei. The effect scales with the number of resonant nuclei and thus will
also be reduced by ~ 50%.

source nucleus scattering nuclei

__ A

\ 4

“Fe *Fe Fe

Figure 11.3: Scheme for resonant scattering of radiation produced
by a source nucleus, in the presence of hyperfine interactions.
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11.2 Recording of Hologram

The radioactive ®”Co ions implanted into the sample will decay via elec-
tron capture to ®”Fe. The subsequent decay scheme is shown in figure 11.4.
89.3% of all ®"Co decays will go via the 14.413 keV level of *"Fe. How-
ever, due to the high internal conversion coefficient (o = 8.19) only 10.9%
of this fraction will emit a y-quantum. The emitted electrons can be ab-
sorbed by a thin Al foil in front of the detector. In the radiative decay of
the excited 5“Fe nucleus, not only 14.413 keV quanta are created, but also
136.475 keV and 122.062 keV gamma-rays. These do not participate in the
resonant scattering process and will not contribute to the holographic sig-
nal. However, one should avoid their detection, because they will increase
the background in the hologram.

The best way to record the hologram would be to use a position sensitive
and energy selective detector. An alternative could be an energy selective
detector which is placed sequentially at different positions on the hemi-
sphere, but this solution requires very long data collection times. Another
alternative is a position sensitive detector with low efficiency at high ener-
gies.
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Figure 11.4: Decay scheme of ®”Co. The numbers at the left
indicate the energies in keV of the 5"Fe nuclear levels relative to
the ground state. The other numbers refer to the branching ratios
for the different decay processes. Data are taken from [128].
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11.2.1 Data Acquisition Time

For a specific ®7Co implantation dose D, the number of 14.413 keV quanta
emitted after time ¢ into the opening angle A x A/ sin @ is given by

N@) =b %R D (1 - e_t/") %

where b = 89.3% is the branching ratio for the 14.413 keV transition,
vr/T = 10.9% is the percentage of radiative decay for this transition and
T = 384 days, is the radioactive lifetime of 57Co. To obtain the number of
detections in A@ x Af/sin 6, one should multiply the above expression by
7, the efficiency of the detector at 14.413 keV.

Since the minimum number of counts per pixel scales with the inverse of
the effect squared, the minimum data acquisition time is determined by the
expression

2
! X p (1 - e_t/T) (86)° (11.1)

where € is the effect (signal-to-background ratio) one wants to measure
within an accuracy of a.

Eq. (11.1) can be refined in the case where some a priori knowledge about
the crystalline structure is available. The crystal symmetry will be reflected
in the holographic intensity pattern. If an s-fold symmetry is known be-
forehand, the hologram can be symmetry-averaged so that the minimum
counts per pixel will be scaled by s. E.g., in case of a bcc lattice, the holo-
graphic image has an 8-fold symmetry. For such cases the minimum data
acquisition time is given by the equation

1 1 — 7_R o —tmin/T (A0)2
- =nb D (1 e ) - (11.2)
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In expression (11.3), an energy selective detector has been assumed so that
the contribution to the detected signal of gamma quanta with an energy
different from 14.413 keV is zero.

From the simulations in chapter 10 for a bee lattice of ®7Fe it follows that
the holographic effect is € ~ 6% and the required resolution in the order of
Af = 1°.

Consider now the case of a bee 57Fe sample in which 5 x 10'? 57Co ions
are implanted. Without any a-priori knowledge about the crystalline sym-
metry after implantation, the minimum data acquisition time for nuclear
emission holography can be estimated. For a position sensitive, energy se-
lective detector which only registers 14.413 keV quanta, the required data
acquisition time will be relatively short. E.g., with a detector efficiency at
14.413 keV of 15%, a nuclear emission hologram with an accuracy of 10%
is obtained after six days.

However, if the detector also registers higher energies, then Eq. (11.3)
should be replaced by

== 1= (st 3 0 (), 0 427

The summation runs over all detected energies. The detector efficiency for
each energy is given by n;. b; and (yg/T'); are the branching ratio and
the probability for radiative decay of the corresponding nuclear transition.
The signal-to-background ratio €’ will be decreased due to the detection of
higher energies. An explicit expression for €’ is given by

i_ e nbyR/T
> mi bi (vr/T)i

€

For the samples under consideration, the contribution of higher energies
to the detected signal will mainly be due to the 122.062 keV transition
in ®"Fe. The minimum data acquisition time increases rapidly when the
detector efficiency at this energy increases.
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11.3 Reconstruction

The next step after having recorded the nuclear emission hologram, is to
reconstruct the three-dimensional real-space image of the nuclear environ-
ment of the source. Therefore, one should illuminate the normalized holo-
gram F(k) with the conjugate of the reference wave, which is a converging
spherical wave. Such a process may not be practical, but one can com-
pute the image intensity numerically following the procedure explained in
Refs. [100, 101]. In a region within a few interatomic spacings of the origin,
the image wave field may be determined from the integral:

U(r) = //dak F(k) e~iFoT (11.4)

with ko = kwo /c. The surface integral runs over the available angular range
of the hologram. It yields the image amplitude at the position 7(z,y, 2).
The image intensity is then given by |U(7)|”.

Inserting Eq. (10.2) for F(k) into Eq. (11.4) and expanding the sine as
exponentials yields:

_’Y_R l ZU-)OT‘"‘L/C // ) _z'l-‘;o.(,,'.‘m_"_,’:’)
v = r 2 ; {wgrm/c Sdakoe

,zwo Tm/cC 7 )
—_ —tRo* — P+ 7
“woTm/c

The exponential factors e~ ko (Em+7) will oscillate as & explores the holo-
gram and for most values of 7 the integral will give a very small image
amplitude. But, when ¥ ~ %7, the exponents are near one and a large
contribution to the image is obtained. Since 7, corresponds to the posi-
tion of a resonant nucleus, the reconstructed image will show high intensity
spots near nuclear positions. Apart from the real image one will also get
twin images, well known in holography [91]: for every 7, the reconstructed
image will show a twin nucleus at —7,,.

The appearance of the twin images can be very troublesome in y-ray holo-
graphy. It will not only yield a reconstructed image intensity at positions
—7, which do not necessarily correspond to positions of scattering nuclei,
the overlap of real and twin images can also cause the reconstructed image
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intensity to be enhanced or suppressed. For certain combinations of kr,,
the image of the scattering nuclei may even vanish completely, so that
certain scattering nuclei cannot be viewed at all [109].

Several techniques have been proposed to remove the twin images. In
Ref. [114] a solution is provided by recording several holograms at differ-
ent energies. By properly combining the complex wave fields reconstructed
from the holograms at several wave numbers, the contribution from twin
images can be greatly reduced and the image resolution can be substan-
tially improved [103]. However, this multiple-energy reconstruction algo-
rithm cannot be applied to nuclear holography because here the energy of
the y-ray is determined by the nuclear transition and cannot be varied over
a wide range.

An alternative approach for nuclear absorption holography with v-radiation
is described in Ref. [125]. It exploits the fact that the nuclear scatter-
ing phase depends strongly on the energy deviation from exact resonance.
By recording holograms at two energies that are symmetrically detuned
from resonance and by performing a properly phased summation of the
reconstructed images, cancellation of real and twin images can be avoided.
Again, this solution is not applicable to nuclear emission holography be-
cause the energy of the emitted radiation cannot be (de)tuned.

Other reconstruction techniques, involving scattering amplitude and phase-
compensation schemes, have also shown to improve the image quality [129,
130], but require knowledge of the scattering amplitude.

Returning now to Eq. (11.4), it can be written in terms of k, and k,, the
coordinates determining the unit vector k:

' m 7. i 2 2
Ulz,y,2) = [ dk, dk, F(k) e"i*V1-F-Fwo/e
1 /1—k2 Y

« e—iTkawo/c o—iykywo/c (11.5)

This formula looks very much like a Fourier integral. However, there is a
subtle difference because a two-dimensional hologram is transformed into a
three-dimensional space image. The third dimension is obtained by multi-
plying the normalized holographic image with an appropriate phase factor
before performing the two-dimensional Fourier transform.

In this reconstruction procedure, the two-dimensional phased Fourier trans-
form is applied to the normalized holographic intensity F'(k). This function
is calculated from the nuclear emission hologram by subtracting the inten-

sity of the reference wave I°(k) and normalizing to it. The reference wave
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intensity can be derived from the experimental data using the appropri-
ate criteria. For example, in the case of nuclear emission holography on
a single-line sample, the reference wave emitted by the source nucleus is
isotropic and, hence, I°°(k) will be constant. This constant can be ap-
proximated by the mean holographic intensity. If the reference wave is not
emitted isotropically, I°°(k) should be determined in a different way. See,
e.g., Refs. [106, 125]. If, on the other hand, 1% (k) cannot be determined
experimentally, one can transform the total measured intensity I(k). In-
cluding the reference wave only gives an additional intensity contribution
near the origin of the reconstruction [99].
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Chapter 12

Conclusions

The concept of nuclear emission holography has been explored. In this
method, radioactive nuclei are located inside the lattice. By recording the
emitted radiation as a function of the direction, three-dimensional informa-
tion on the local environment of these nuclei can be obtained. The minimal
resolution in the reconstructed image is determined by the wavelength of
the y-rays, but also by the source size and the detector resolution.

In this work, a quantum mechanical theory to describe nuclear emission
holography has been derived in the single-scattering approximation. The
result is a very transparent formula for the contrast function. By means
of simulations for a bcc lattice of 57Fe, the feasibility of nuclear emission
holography has been shown. A holographic effect in the order of a few
percent is expected, which would correspond to a data collection time of a
few days if a position sensitive and energy selective detector is used. The
aim is to obtain three-dimensional information on the local environment
of the source nuclei. However, as has been shown, all resonant nuclei in
the sample will contribute to the signal. By applying an appropriate low-
pass filter on the measured holographic intensity pattern, a limited volume
around the source nucleus can be chosen.

In a nuclear emission holography experiment, the most crucial step will be
the sample preparation. First of all, one needs an enriched crystalline sam-
ple. Secondly, the radioactive source nuclei should be introduced into the
sample in sufficient amount and without damaging the crystalline structure.
Moreover, in order to obtain a nice hologram, the source nuclei should oc-
cupy well-defined positions with only a small number of inequivalent sites.
Otherwise, the structure in the hologram will disappear because of the
superposition of many different intensity patterns.
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Nuclear holography, both in the direct and in the reversed version, is only
sensitive to the positions of the resonant nuclei. It has the possibility
to separate the Mossbauer nuclei in the three-dimensional reconstructed
image. This can be a real advantage over other structural characterization
techniques when one is only interested in this subset of nuclei.

The main advantage of nuclear emission holography compared to X-ray
scattering techniques is that smaller structures can be studied. This is a
consequence of the fact that the cross-section for nuclear resonant scatter-
ing is many orders of magnitude larger than the cross-section for X-ray
diffraction or X-ray scattering on electrons. Similarly, nuclear emission
holography has the same advantage over nuclear absorption holography
(the reversed version of nuclear holography with internal sources) because
the latter technique requires not only nuclear resonant scattering, but also
absorption of the y-ray. Again, thicker samples are required in order to
get enough absorption. On the other hand, nuclear absorption holography
has the advantage over nuclear emission holography that it can be tuned to
a particular Mossbauer transition because the -ray source is located out-
side the sample and can be Doppler modulated. As a result, it is possible
to select a defined set of hyperfine interaction parameters and to visualize
not only the crystallographic structure of the resonant nuclei, but also the
magnetic structure.

Typical examples of nuclear emission holography can be the study of low-
dimensional structures, such as small clusters, very thin epitaxial layers or
nuclei at an interface, where the interest goes primarily to the positions of
the resonant nuclei.



