Mössbauer Spektroszkópia

Homa Gábor, Markó Gergely

Mérés dátuma: 2008. 10. 15., 2008. 10. 22., 2008. 11. 05.

Leadás dátuma: 2008. 11. 23.

Figure 1: Rezonancia-abszorpció és szórás

1 Elméleti összefoglaló

1.1 Bevezetés

A visszalökődés nélküli magrezonancia-fluoreszcencia a lágy gammasugárzások tartományában az egyik legérzékenyebb anyagszerkezet-kutatási módszer. Segítségével 10⁻¹⁴-10⁻¹⁵ pontossággal tudunk relatív energia mérést megvalósítani, így kísérleti úton a természetes vonalszélesség alakját is kimérhetjük. Mivel a mag energianívóit környezeti hatások perturbálják (ez a magállapotok hiperfinom szerkezete), ezeket a hatásokat - ha közvetett módon is, de - észlelhetjük. Ilyenek pl. az elektromos és mágneses tér (külső és belső eredője az atommag helyén), az elektronhéjak jellegzetessége (tehát a kémiai kötések és ezek térbeli felépítése), hőmérséklet, gravitációs tér, stb. Ha egy atom E_2 energiaszintről egy alacsonyabb E_1 energiájú szintre kerül, akkor $E_e = E_2 - E_1$ energia szabadul fel, melynek egyik része az ezáltal felszabaduló foton energiája, másik része, pedig az impulzusmegmaradás miatt az atom E_{ν} visszalökődési energiája. Egy hasonló atom gerjesztéséhez viszont nem elég az előbb említett E_e energia, hanem $E_e + R$ energia szükséges, ahol $R = \frac{E_e^2}{2Mc^2}$, M az atom nyugalmi tömege és c a fénysebesség. Ha a vizsgált objektum τ ideig gerjesztett állapotban van, akkor a nívóenergia félértékszélessége $\Gamma = \frac{\hbar}{\tau}$, ahol \hbar a Planck-állndó. A rezonancia akkor érezhető jól, ha

$$2R < \tau. \tag{1}$$

Az optikai spektroszkópiában, ahol az atom visszalökődése csak kismértékű ($\Gamma \approx 10^{-6} eV, R \approx 10^{-7} (10^{-8}) eV$) ez mindig megmutatkozik. A természetes vonalszélességet általában csak elkenődve észlelhetjük, a vonalak általában annál szélesebbek, melynek egyik oka pl. a Doppler-kiszélesedés, melyet a továbbiakban Δ -val jelölünk és magyarázata az, hogy az atomok hőmozgásból származó v sebessége eloszlik a különféle ϑ irányokba, mely $\delta E = E \frac{v}{c} \cos \vartheta$ energiaváltozást von maga után. Kristályos anyagokra a Doppler kiszélesedés

$$\Delta = E\left(\frac{2kT_{eff}}{Mc^2}\right)^{\frac{1}{2}},\tag{2}$$

Figure 2: Emittált energia és abszorpciós energiaszükséglet természetes vonalszélesség és kiszélesedés esetén (az arányok erősen torzítottak)

$$T_{eff} = f(\frac{T}{\theta}). \tag{3}$$

IttTaz abszolút hőmérséklet, θ pedig a kristály Debye-hőmérséklete. Δ jellemző értéktartománya $10^{-2}-10^{-3}eV.$

1.1.1 A Mössbauer-effektus

Magfizikában sokáig nem tudták a rezonancia-fluoreszcencia jelenségét kimutatni, mert R jóval nagyobb az atomi nívóknál. Azonban később kiderült, hogy az atomok mozgatásából eredendő Doppler-effektus segítségünkre lehet mégpedig úgy, hogy megfelelő sebesség elérésekor a foton abszorpció erősen megnövekszik. Mössbauer 1958-ban az ¹⁹⁸*Ir* izotóp 129*keV*—es vonalát vizsgálva azt tapasztalta, ellentmondásban a várttal, hogy a hőmérséklet csökkentésével a rezonancia-abszorpció mértéke megnövekedett. Az észlelt jelenség oka az ún. Mössbauer-effektus, melynek lényege az, hogy a kristályban kötött magok csökkenő hőmérséklettel növekvő hányada képes természetes vonalszélességű és visszalökődésmentes abszorpcióra és emisszióra. Így létrejöhet a már említett rezonancia-fluoreszcencia.

1.2 A Mössbauer-spektrum alaptulajdonságai

A spektrum felvétele úgy történik, hogy a forrás az abszorbenshez képest mozog és a sebesség változtatásával érjük el az energiaskála végigpásztázását. Ezáltal a forrás és az abszorbens két vonalának eredőjét fogjuk megkapni, melynél, ha nagyon vékony fóliával

Figure 3: A mérés leegyszerűsített elvi vázlata, valamint aforrás sebessége az idő függvényében

dolgozunk, akkor a félértékszélesség kb. 2 Γ lesz. Ebből is láthatjuk, hogy az eredő vonal nem Gauss típusú lesz(melynek félérték szélessége $\sqrt{2}$ lenne), hanem ún.Lorentz-görbe adódik.

1.2.1 A spektrum szerkezete

A Mössbauer-spektrumok felvételénél rendkívül nagy pontosságú relatív energiamérést végzünk. Ezért a spektrumban az energianívók egészen kis változásait is észrevehetjük. Így pl. felhasadást okoz a mag mágneses momentumának a mágneses térrel, a kvadrupólus momentumának az inhomogén elektromos térrel való kölcsönhatása. Eltolódást okoz a mag Coulomb-kölcsönhatása az elektronfelhőjével, az eltérő gravitációs tér és hőmérséklet, stb. Ha csak egy vonalat mértünk ki, akkor is alaposan meg kell vizsgálni a vonal alakját, mert lehetséges, hogy több igen közeli vagy egybeeső vonal eredőjét kapjuk. A spektrum szerkezetével a későbbiekben, a mérés közbeni észrevételeinkből adódóan még részletesen foglalkozunk .

2 Mérés technikai háttere és mérési összeálítás

2.1 Mérési összeállítás és mérőberendezés

A Mössbauer-spektrum felvételekor a forrás mozog az abszorbenshez képest, így a Dopplereffektus segítségével letapogatjuk annak vonalrendszerét. A kisugárzott foton energiájának megváltozása v sebességgel mozgatott sugárforrás esetén a következőképpen alakul:

$$\Delta E = E_{\gamma} \frac{v}{c} \tag{4}$$

Folytonos sebességváltozás mellett detektált intenzitásváltozást regisztrálva kaphatjuk meg a spektrumot. A forrást célszerű állandó gyorsulás mellett mozgatnunk, a gyor-

Figure 4: Mérési összeállítás

sulás előjelét félperiódusonként változtatva. Ekkor minden periódus alatt a sebesség nullától egy előre meghatározott pozitív és negatív maximális értékig változik. A pillanatnyi sebességekhez tartozó beütéseket külön kívánjuk gyűjteni, és ezt a beütésszámot ábrázolva megkaphatjuk, a spektrumot. Az adatgyűjtést egy sokcsatornás analizátor végzi. A detektorból származó impulzusok először amplitúdó, majd idő szerint szelektálódtak, ami után amplitúdó szerint elválasztjuk a Mössbauer-átmenethez tartozó jeleket, ezzel kiküszöböljük a rezonancia-abszorpciót nem okozó fotonok detektálásából adódó jel/zaj arány elromlását. Ezután az idő szerinti osztályozást az analizátor-kártya végzi. Ez röviden fogalmazva úgy történik, hogy egy számláló egy perióduson belül egyenlő időközönként a tároló berendezés egymás után következő csatornáit kapuzza. Az idő és a sebesség között lineáris a kapcsolat, így az idő szerinti osztályozás egyben sebesség szerinti is és egy perióduson belül egy adott időponthoz két időpont is tartozik. Ebből következően a spektrum a maximális vagy minimális sebességű időpontra nézve közel szimmetrikus. Hogy miért csak majdnem szimmetrikus, annak okát a későbbiekben még elemezni fogjuk.

Fontos megemlíteni egy pár speciális tulajdonságát a mi berendezésünknek. Itt szeretnénk beszélni a spektrum imént említett szimetrikusságtól való eltérésétől és a mérőprogramról. A mérőprogramunknak két alapvető adatgyűjtő módja van. Az egyikben minden beérkező impulzust amplitudóanalizál, azaz meghatározza az energiáját. Ekkor a képernyő x-tengelyén a csatornaszám tényleges energiakalibrációval társítható az adott fotonenergiákhoz. Ebben a módban állítjuk be a "kaput", melynek feladata, hogy a teljes spektrumból csak a minket érdeklő energiatartományból engedjen be fotonokat

Figure 5: A teljes spektrum, valamint annak kapuzott változata

(valójában nyilván csak a fotonokból gyártott elektromos impulzusokra hat). Ezzel megközelítőleg konstans energiájú impulzusokat regisztrál csak a gép. A teljes spektrumot, valamint annak kapuzott változatát a 6. ábra mutatja.

A másik mód, külön Mössbauer spektrumok készítésére szolgál. Ebben a módban a program csak azt figyeli, hogy a kapun belülre érkezett-e foton, vagy sem. Tehát nem méri meg pontosan az energiáját, csak megvizsgálja, hogy adott energiahatárokon belül van-e. Még ez is igénybe vesz egy kicsi időt, ezért a jel, amellyel azt konstatálja a mérőberendezés, hogy az adott impulzust regisztrálni kell későb érne oda, mint maga az impulzus. Ezért pontosan ennyi idővel az impulzust késleltetjük, így egyszerre érkeznek meg. Vagis itt csak a azt állapítjuk meg az elektronikával, hogy van-e számunkra érdekes foton, vagy nincs, az adott pillanatban. Éppen ezért a mérőberendezés a csatornaszámot az idővel arányosan lépteti, vagyis adott sebességgel változtatja, hogy a beütéseket melyik csatornába regisztrálja. Mivel a mi fotonjaink a doppler-effektuson keresztül, az időben lineárisan változó sebesség miatt időben lineárisan változó energiával rendelkeznek, ezért az adott fotonok mindig a megfelelő csatornába kerülnek. Itt szeretném megjegyezni, hogy a spektrumok mindig kétszer annyi csúcsot tartalmaznak eredetileg, mint amennyi ténylegesen van, mert a berendezés a forrás mozgásának egyik, illetve másik irányba való mozgását nem írja egymásra magától. Ez adja a fent említett aszimmetrikusságot is. Hiszen az egyik irányba való mozgatáskor egyre távolabb kerül a forrás a detektrotól, így az kisebb térszögben látja, vagyis kevesebb lesz a beütések száma. Ez egy kis hullámot eredményez az alapvonalban. De emellett tekinthetjük szimmetrikusnak a spektrumot. Éppen ezért a kiértékeléskor, hogy a statisztikus hibákat csökkentsük egymásra hajtjuk a spektrum két oldalát, így növelve az egy-egy csatornára eső beütésszámot. Az összehajtás előtt a spektrumot érdemes körbevágni, mert aszéleken fizikai effektusok és a program regisztrációs képességei miatt is furcsa dolgok történhetnek. Itt fontos még megjegyezni, hogy egy adott méréssorozatban (vagis azonos beállítások

mellett) mindig ugyanott kell összehajtani a spektrumokat.

3 Mérési feladatok megoldása és a mérés kiértékelése

Mérés során mindig egy adott méréshez tartozóan az aktuális feladathoz kapcsolódó kérdéseket kellett megválaszolnunk.

3.1 Az első kérdés megválaszolása

Első feladatunk spektrumvonalak várható relatív intenzitásának meghatározása volt vékony abszorbens és a mágneses domének teljesen véletlen irány szerinti eloszlása esetében vas mintánál. A megoldás első lépése az volt, hogy megkerestük a spektrumvonalak intenzitásához tartozó 3j szimbólum négyzetét és a megfelelő $F_m^l(\vartheta)$ gömbfüggvényt. Felhasználva a jegyzet 3j-adatait a ⁵⁷Fe hat vonalának $I_{1,6} : I_{2,5} : I_{3,4}$ relatív intenzitásaira $3(1 + \cos^2(\vartheta)) : 4(\sin^2(\vartheta)) : 1(1 + \cos^2(\vartheta))$ adódik. Ha az egyes mágneses domének azonos valószínűséggel állnak az egységgömb bármely (ϑ, φ) irányában, akkor az egységgömbre kell átlagolni a gömbi koordinátarendszerben. Itt nem árt megjegyezni, hogy ez nem úgy történik, mint ahogy mi ezt ott és akkor elképzeltük. Azt tudtuk, hogy r-re és φ -re nem kell integrálni de ϑ szerint próbálkoztunk integrálni nem gondolva bele, hogy a gömbi koordinátarendszerben felírt derékszögű térfogatelem $dV = r^2 dr d\varphi d(\cos(\vartheta))$.Tehát ebből adódóan a helyes számolás, mint ahogy arra a mérésvezetőnk rámutatott:

$$3\int_{0}^{\pi} (1+\cos^{2}(\vartheta))d(\cos(\theta)) : 4\int_{0}^{\pi} (1-\cos^{2}(\vartheta))d(\cos(\theta)) : \int_{0}^{\pi} (1+\cos^{2}(\vartheta))d(\cos(\theta)) = 3:2:1$$
(5)

3.2 A második kérdés megválaszolása

A második kérdés az volt, hogy ha egy vékony fóliát saját síkjában telítésig mágnesezünk, majd Mössbauer-spektrumot veszünk fel a minta síkjára merőlegesen, akkor milyen intenzitásarányokat várunk az egyes spektrumvonalak között. Mint azt az előbb láthattuk, ezt egy adott szögnél megkaphatjuk a következő módon:

$$3(1 + \cos^2(\vartheta)) : 4(\sin^2(\vartheta)) : 1(1 + \cos^2(\vartheta))|_{\vartheta = \frac{\pi}{2}} = 3 : 4 : 1$$
(6)

3.2.1 Harmadik mérési feladat kiértékelése

Tehát a fenti intenzitásarányokat várjuk. A spektrum a 7. ábrán látható, az illesztés után kapott adatok pedig a következő táblázatban:

Figure 6: A harmadik feladathoz tartozó spektrum: az egysugaras merőleges spektrum

Baseline	33177.64000 ± 26.38626
Intensity	$15082.61000 \pm 683.36710$
Isomer shift	$246.96310 {\pm} 0.27764$
Reciproc calibration factor	$22.81534 {\pm} 0.05842$
Common width	$16.97381 {\pm} 0.87689$

Sajnos meg kell, hogy állapítsuk, hogy az illesztés nem túl tökéletes, tekintve, hogy $\chi^2 = 3514.63$. Ez elsősorban annak köszönhető, hogy már az ábrán is észrevehetően az intenzitásarányok nem teljesítik az elméleti jóslatot. Ez elsősorban azért van, mert a felmágnesezés nem tökéletes, hiszen nem kapcsoltunk rá nagyon nagy teret, valamint véges hőmérsékleten mindig fellépnek fluktuációk. A másik ok valószínűleg a mágnesezés síkja és a nyaláb által bezárt szögben keresendő, hiszen az sem valószínű, hogy tökéletesen merőleges lett volna.

3.3 A harmadik kérdés megválaszolása

A harmadik kérdés arra irányul, hogy hány fokkal kell az előző kérdésben szereplő mintát az optikai tengelyre és a minta mágnesezettségére merőleges tengely körül elforgatni ahhoz, hogy olyan intenzitásviszonyokat kapjunk, mint a nem mágnesezett minta esetén. Ezt el is nevezzük "mágikus szög"-nek, és a következőképpen kaphatjuk meg, megoldjuk az alább látható egyenlőséget.

$$3(1 + \cos^2(\vartheta)) : 4(\sin^2(\vartheta)) : 1(1 + \cos^2(\vartheta))|_{\vartheta_{magic}} = 3 : 2 : 1$$
(7)

Figure 7: A negyedik feladathoz tartozó spektrum: a mágikus szög

Ennek megoldásai: $cos(\vartheta_{magic})_1 = \frac{1}{\sqrt{3}}$ és $cos(\vartheta_{magic})_2 = -\frac{1}{\sqrt{3}}$ Ezekből a megfelelő mágikus szögek: $(\vartheta_{magic})_1 \approx 57.736^\circ$ és $(\vartheta_{magic})_2 \approx 305.264^\circ$. Vagyis látható, hogy az adott tengely körüli forgatás irányításának előjele lehet pozitív, illetve negatív is, mindkét irányban szimmetria okok miatt ugyanakkora szöggel kell elfordítani a mintát előzetes várakozásainknak megfelelően.

3.3.1A negyedik mérési feladat kiértékelése

Tehát 57.736 foknál várjuk a megfelelő intenzitásarányokat (3:2:1). A 8. ábra tartalmazza a spektrumot, és a következő táblázat az illesztés adatait:

Baseline	$29063.30000{\pm}28.28550$
Intensity	$20051.45000 \pm 931.26210$
Isomer shift	247.02470 ± 0.21554
Reciproc calibration factor	$23.36198 {\pm} 0.04004$
Common width	$13.17984 {\pm} 0.70300$

Sajnos az illesztés pontossága itt sem túl jó (χ^2 = 5203.76), ahol megint csak a szög beállítást és a felmágnesezettség tökéletlenségét okolhatjuk.

3.4 A negyedik kérdés megválaszolása

A negyedik kérdés a következőképpen szólt: miért azonos az $\alpha - Fe$ spektrumában az 1. és a 2. vonal távolsága a 2. és a 3. vonal távolságával és miért szimmetrikus a spektrum? Ahhoz, hogy ezt a kérdést meg tudjuk válaszolni, gondoljuk át a 2.1. fejezetben leírtakat! Tudjuk, hogy a kisugárzott foton energiájának megváltozása $\Delta E = E_{\gamma} \frac{v}{c}$, valamint azt is tudjuk hogy a mágneses felhasadás közbeni mágneses-tér energia módosító hatása:

$$\Delta E = g \cdot \mu \cdot H \cdot m_I,\tag{8}$$

ahol g a giromágneses együttható, μ a magmagneton, H a mágneses térerősség a mag helyén és m_I az impulzus momentum H irányú vetülete. A vas esetében mint tudjuk kétszer három vonal jelenik meg a mágneses tér miatt. Említettük azt is, hogy a sebesség

$$v_{(t)} = v_0 + at \tag{9}$$

lineáris függvénye az időnek. Mivel a sugárforrásban levő anyagok Doppler-energiája arányos a sebességgel, írhatjuk, hogy

$$\Delta E \sim v \sim t \sim csatorna. \tag{10}$$

A spektrumvonalak pedig balról jobbra haladva az m = -1, 0, +1, -1, 0, +1 mágneses kvantumszámváltozásoknak felelnek meg. Ezekből jól látszik, hogy kérdéses távolságok egyenlőek az említettek miatt. Már csak a spektrum szimmetriáját kell megmagyaráznunk, aminek elvégzése közben szintén visszanyúlunk a fentebb említett 2.1. fejezethez. Láttuk, hogy az idő szerinti sebességfüggvény tulajdonságai olyanok, hogy egy perióduson belül egy adott sebességhez két időpont is tartozik, ezért a spektrumvonalak a maximális vagy a minimális sebességhez tartozó időpontra tükrözve szimmetrikusan megduplázódnak

3.5 Az ötödik kérdés megválaszolása

A következő kérdés a jegyzet 5.18. ábráján látható spektrum magyarázata volt. Ehhez azonban figyelembe kell vennünk az egyes spektrumvonalak lineáris polarizációját. Ebben az esetben arról van szó, hogy a forrás valamennyi vonalával letapogatjuk az abszorbens valamennyi vonalát, figyelembe véve hogy a spektrumvonalak lineáris polarizációi a mágneses térrel sorrendben:párhuzamos, merőleges, párhuzamos, párhuzamos, merőleges, párhuzamos. Azt is tudjuk, hogy csak az azonos polarizációjú vonalak látják egymást. Felhasználhatjuk a 4. feladat eredményét, az 1. és 2. vonal távolságát nevezzük *a*-nak, és a 3. és 4. vonal távolságát pedig *b*-nek. Innentől kezdve táblázatba foglalhatjuk a megjelenő spektrumvonalakat az eltolás függvényében. Ha összeszámláljuk a megengedett vonalak számát és pozícióját, az teljesen megegyezik a jegyzetben található spektrummal. A spektrum legerősebb vonalát v = 0-nál láthatjuk, hiszen akkor a forrás minden vonala az abszorbens összes vonalával egybe esik.

Eltolás	Megvalósuló vonalak	
0	$1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 3, 4 \rightarrow 4, 5 \rightarrow 5, 6 \rightarrow 6$	
a	$1 \rightarrow 2, 5 \rightarrow 6, 4 \rightarrow 5, 2 \rightarrow 3$	
b	$3 \rightarrow 4$	
a+b	$3 \rightarrow 5, 2 \rightarrow 4$	
2a	$1 \rightarrow 3, 4 \rightarrow 6$	
2a+b	$1 \to 4, 2 \to 5, 3 \to 6$	
3a	Geometriailag sincs vonal	
3a+b	$1 \rightarrow 5, 2 \rightarrow 6$	
4a	Geometriailag sincs vonal	
4a+b	$1 \rightarrow 6$	

Table 1: Megengedett spektrumvonalak az eltolás függvényében a polarizálatlan vas spektrumánál polarizálatlan forrással mérve

3.6 A hatodik kérdés megválaszolása

Ebben a feladatban az előző spektrum módosulását kellett megvizsgálni abban az esetben, mikor mind a forrást, mind az abszorbenst az optikai tengelyre merőlegesen, de egymással párhuzamosan mágnesezzük. Ebben az esetben a 3.1.-es táblázat a 2. tábla néven szereplők szerint módosul.

Ami még megváltozik az előző spektrumhoz képest azok a vonalak intenzitásarányai, hiszen az előbb egyrészt nem is ezt a spektrumot toltuk el önmagához képest, másrészt itt már a mérési elrendezéshez illeszkedő polarizációt is figyelembe kell vennünk. A táblázatból jól látható mely vonalak maradnak meg az 5. feladathoz tartozó spektrumból.

3.7 A hetedik kérdés megválaszolása

Az 5. feladatban szereplő spektrum módosulását kell végül megvizsgálnunk abban az esetben, mikor mind a forrást, mind az abszorbenst az optikai tengelyre és egymásra is merőlegesen telítésig mágnesezzük.

Ide is vonatkoznak a hatodik feladatban leírtak, tehát a 3. táblázat tartalmazza a megmaradó spektrumvonalakat és az intenzitásarányok is módosulnak az ötödik feladathoz tartozó spektrumhoz képest.

3.7.1 Az ötödik és hatodik mérési feladat kiértékelése

Ezt a két mérési feladatot egyben végeztük, vagyis tulajdonképpen összesen négy szögnél mértünk (a forrás és az abszorbens mágnesezettsége által bezárt szögről van szó), 0° , 45° , 60° , 90° . A négy spektrumot a 9. ábra tartalmazza.

Az igazság az, hogy kristály tisztán látszik, legalábbis a 90°-osnál, hogy a szögek nem azok amiket gondoltunk. Viszont a párhuzamos és merőleges intenzitások arányai a bezárt szög kotangensével egyeznek meg, amiből visszaszámolhatjuk a szögeket. Ezek

Eltolás	Megvalósuló vonalak	Várt intenzitás
0	$1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 3, 4 \rightarrow 4, 5 \rightarrow 5, 6 \rightarrow 6$	0.40625
a	Nincs megvalósuló vonal	-
b	$3 \rightarrow 4$	0.0078125
a+b	Nincs megvalósuló vonal	-
2a	$1 \rightarrow 3, 4 \rightarrow 6$	0.046875
2a+b	$1 \to 4, 2 \to 5, 3 \to 6$	0.171875
3a	Geometriailag sincs vonal	-
3a+b	Nincs megvalósuló vonal	-
4a	Geometriailag sincs vonal	-
4a+b	$1 \rightarrow 6$	0.0703125

Table 2: Megengedett spektrumvonalak az eltolás függvényében a hatodik feladatban leírt feltételek mellett

Eltolás	Megvalósuló vonalak	Várt intenzitás
0	Nincs megvalósuló vonal	-
a	$1 \to 2, 5 \to 6, 4 \to 5, 2 \to 3$	0.25
b	Nincs megvalósuló vonal	-
a+b	$3 \rightarrow 5, 2 \rightarrow 4$	0.0625
2a	Nincs megvalósuló vonal	-
2a+b	Nincs megvalósuló vonal	-
3a	Geometriailag sincs vonal	-
3a+b	$1 \rightarrow 5, 2 \rightarrow$	0.1875
4a	Geometriailag sincs vonal	-
4a+b	Nincs megvalósuló vonal	_

Table 3: Megengedett spektrumvonalak az eltolás függvényében a hetedik feladat feltételei szerint

Figure 8: A különböző szögekhez tartozó spektrumok, bal felülről jobbra le: $0^\circ,\,45^\circ,\,60^\circ,\,90^\circ$

alapján: $\vartheta_0 = 26.2^{\circ}$, $\vartheta_{45} = 47.9^{\circ}$, $\vartheta_{60} = 57.1$ és végül $\vartheta_{90} = 65.3^{\circ}$. Azt látjuk, hogy a 0 és 90 foknál várttól körülbelül 25 fokkal eltér a tényleges eredmény. Ezt valószínűleg a mágnesezettség fluktuációi okozzák, amit azért nem veszünk észre ugyanennyire a két középső szögértéknél (ezeknél gyakorlatilag azt mondhatjuk, hogy a várt eredményt kaptuk), mert itt hasonló arányban szerepel mindkét polarizáció, illetve a kotangens függvény is lassabban változik. A nagy fluktuációk is érthetőek, hiszen a Curie-törvény értelmében a maximális (nulla hőmérsékleti) mágnesezettség mindössze 80%-át éri el ezen a hőmérsékleten a vas, figyelembe véve, hogy a Curie-pontja 1043 °K-nél található.