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1 Abstract

A misalignment of the absorber with respect to the optical axis defined
by circular apertures may give rise to a deformation of the baseline of a
Mossbauer spectrum. An idealized situation with a point source and an
extended circular source and circular absorber is treated numerically. In
the special case of an aligned situation aperture effects still can disturb
the base line of the spectrum. Cosine smearing will be observed for all
cases with large apertures. The observation of a canted baseline which
could be restored by carefully readjusting source-Absorber-apertures to a
well defined optical axis initiated simulating such misaligned situations.
The program code developed according to the algebra outlined in the
following pages could not reproduce a canted baseline.



2 Misalignment

2.1 Absorber out of source-detector axis

The vector a to the center of the misaligned absorber in the coordinate
system fixed at z0 with unit vectors ex, ey, ez is (see Fig. 1)

a = H · ez + dyA · ey (1)

and the vectors cA(ϕ) of the limiting circle

cA = A/2 · (sinϕ ex + cosϕ ey) (2)

are the sum rA = a+cA(ϕ). The projection of the circle of the absorber
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Figure 1: Misaligned absorber of circular shape by a displacement d from the axis
(-·-·-). The circular aperture in front and behind the absorber are aligned. The solid
angles of idealized point sources S on the axis are shown at two positions. All photons
passing the second aperture are counted by the detector with equal probability. A is
the diameter of the absorber, w the width of the second aperture. The first aperture in
front shall not limit the solid angle. H and F are distances of the Absorber and second
aperture from the source position z0 at maximum velocity.

onto the surface of the second aperture at distance F from the position
of the source at pS = sez is needed. The vector kA from pS to the
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circle of the absorber is the difference kA = rA − pS. The projection is
obtained by the equation pS + τ · kA = cB where

cB = F · ez + cx · ex + cy · ey (3)

is a point on the surface and τ a length. Comparing the coefficients of
the 3 unit vectors

τ · A/2 sinϕ = cx

τ · (dyA + A/2 cosϕ) = cy

τ(H − s) = F − s

cx and cy is given by

cx = RB sinϕ (4)

cy = dy +RB cosϕ

RB(s) =
A

2
τ dy = dyAτ τ =

F − s

H − s

cB is again a circle with radius RB(s). The circle may not be inside of
the aperture at F (see Fig. 1).

2.2 Misaligned source

The vector a to the center of the aligned absorber in the coordinate
system fixed at z0 with unit vectors ex, ey, ez is (see Fig. 2)

a = H · ez (5)

and the vectors cA(ϕ) of the limiting circle

cA = A/2 · (sinϕ ex + cosϕ ey) (6)

are the sum rA = a+cA(ϕ). The projection of the circle of the absorber
onto the surface of the second aperture at distance F from the position
of the source at pS = sez + dySey is needed. The vector kA from pS to
the circle of the absorber is the difference kA = rA−pS. The projection
is obtained by the equation pS + τ · kA = cB where

cB = F · ez + cx · ex + cy · ey (7)

is a point on the surface and τ a length. Comparing the coefficients of
the 3 unit vectors

τ · A/2 sinϕ = cx

τ · (−dyS + A/2 cosϕ) = cy − d

τ(H − s) = F − s
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Figure 2: Misaligned absorber of circular shape by a displacement d from the axis
(-·-·-). The circular aperture in front and behind the absorber are aligned. The solid
angles of idealized point sources S on the axis are shown at two positions. All photons
passing the second aperture are counted by the detector with equal probability. A is
the diameter of the absorber, w the width of the second aperture. The first aperture in
front shall not limit the solid angle. H and F are distances of the Absorber and second
aperture from the source position z0 at maximum velocity.

cx and cy is given by

cx = RB sinϕ (8)

cy = dy +RB cosϕ (9)

RB(s) =
A

2
τ dy = dyS(1− τ) τ =

F − s

H − s
(10)

2.3 Absorber and point source out of axis

2.3.1 Absorber, source and axis are in plane

The vectors a/pS to the center of the misaligned absorber/source in the
coordinate system fixed at z0 with unit vectors ex, ey, ez are (see Fig. 1)

a = H · ez + dyA · ey
pS = s · ez + dyS · ey.
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The vectors rA of limiting circle of the absorber are the sum rA = a +
cA(ϕ) with cA(ϕ)

cA = A/2 · (sinϕ ex + cosϕ ey). (11)

The projection of the circle of the absorber onto the surface of the second
aperture at distance F from the position of the source at pS is needed.
The difference kA = rA − pS is the vector from pS to a point rA(ϕ) on
the circle of the absorber. The projection is obtained by the equation
pS + τ · kA = cB where

cB = F · ez + cx · ex + cy · ey (12)

is a point on the surface of the aperture and τ a length. Comparing the
coefficients of the 3 unit vectors

τ · A/2 sinϕ = cx

dyS + τ · (dyA − dyS + A/2 cosϕ) = cy

τ(H − s) = F − s

cx and cy is given by

cx = RB sinϕ (13)

cy = dy +RB cosϕ

RB(s) =
A

2
τ dy = dyS + (dyA − dyS)τ τ =

F − s

H − s

2.3.2 Source out of plane

The vector pS to the center of the misaligned source is extended to

pS = s · ez + dxS · ex + dyS · ey

The comparison of the coefficients of the 3 unit vectors now leads to

dxS + τ · (−dxS + A/2 sinϕ) = cx

dyS + τ · (dyA − dyS + A/2 cosϕ) = cy

τ(H − s) = F − s

with cx, cy and τ

cx = dx +RB sinϕ (14)
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cy = dy +RB cosϕ

RB(s) =
A

2
τ dx = dxS(1− τ) dy = dyS + (dA − dyS)τ

τ =
F − s

H − s

Replacing RB(s) = A
2
τ by R = rτ (r ≤ A/2) gives a general image of

the absorber point r, ϕ for any position (dxS, dyS) of the point source.

2.4 Integration over the aperture/detector

The intensity of the radiation from the source S on the surface of the
second aperture is proportional to the solid angle element dΩ with the

Figure 3: Source at position S, a diaphragm D (=A or B) is centered to an optical
axis. The solid angle dΩ belonging to the surface element at distance r and width δr
is equal to the surface 2rπδr · cosα devided by the surface 4πδ2 of the sphere of radius
δ (δ2 = r2 + d2

SD
).

distance δ from pS to a point on the surface. When integrating over
the surface element dD of the diaphragm the related solid angle dΩ is
smaller by the factor cosα (see Fig. 3).
The vector from the source position pS through a point r, ϕ of the
absorber ending at cB on the plane of the aperture has the direction
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K = cB − pS.

K = (F − s)ez + (dx − dxS +Rsinϕ)ex + (dy − dyS +Rcosϕ)ey

= (F − s)ez +Kxex +Kyey

Defining R = rτ (r ≤ A/2) and the vector k = (−dxS + rsinϕ, dA −
dyS + rcosϕ) the distance δ = K can be written as

δ2 = (F − s)2 +K2

x +K2

y

= (F − s)2

(

1 + g2τ 2
(

k

F

)2
)

The relations dx − dxS = −dxSτ and dy − dyS = (dA − dyS)τ from Eq.14
have been used. cosα = Kez/K is given by

cosα = (F − s)/
√
δ (15)

=
1

√

1 + g2τ 2
(

k
F

)2

(16)

cosα

δ2
=

g2

F 2

(

1 + g2τ 2
(

k

F

)2
)− 3

2

The abbreviation g = F/(F − s) is related to the geometry effect (g2,
see chapter 5). The integration over the area of the aperture of radius
RB gives the solid angle Ω which is proportional to the intensity.

Ω =

∫

rbdrBdϕ
1

(F − s)2

(

1 + g2τ 2
(

k(r, ϕ)

F

)2
)− 3

2

(17)

=

∫

τrdτrdϕ
1

(F − s)2

(

1 +

(

k(r, ϕ)

H − s

)2
)− 3

2

=
2π

(H − s)2

∫ A/2

0

rdr

(

1 +

(

k(r, ϕ)

H − s

)2
)− 3

2

The integration runs over those r, ϕ values of the absorber. The ratio
Ω(s)/Ω(s = 0) establishes the geometry effect.
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Intersection with the aperture
A point pB inside the aperture with radius B/2 is given by an equation
like Eq. 12:

pB = F · ez + px · ex + py · ey (18)

and px = rBsinψ, py = rBcosψ and rB ≤ B/2. The image of an absorber
point (rA, ϕ) is according to Eq.14

cB = F · ez + cx · ex + cy · ey (19)

cx = dxS(1− τ) + rAτ sinϕ

cy = dyS + (dA − dyS)τ + rAτ cosϕ

rA(s) ≤ A

2

At rA = 0 the center ci of the absorber image is obtained:

ci = F · ez + (dxS(1− τ)) · ex + (dyS + (dA − dyS)τ) · ey (20)

The difference ∆ = pB − ci

∆ = (rBsinψ−(dxS(1−τ)))·ex+(rBcosψ−(dyS+(dA−dyS)τ))·ey (21)

is the vector from the image of center of the absorber to the point pB

inside the aperture, so that the condition to be inside the image of the
absorber is |∆| ≤ A/2τ . For any point pB the vector K = pB − pS

defines the cosα and δ = K (see previous chapter 2.4).

K2 = (F − s)2 + (px − dxS)
2 + (py − dyS)

2

Kez
K

=

√

1 + g2
(px − dxS)2 + (py − dyS)2

F 2

−1

cosα

δ2
=

g2

F 2

(

1 + g2
(px − dxS)

2 + (py − dyS)
2

F 2

)−3/2

The other way round is the condition of an image point cB(rA, ϕ) inside
the aperture. In the plane of the aperture the image points are the
vectors ∆ = cB − Fez

∆ = (dxS(1−τ)+rAτ sinϕ) ·ex+(dyS+(dA−dyS)τ+rAτ cosϕ) ·ey (22)

such that |∆| ≤ B/2 defines the condition.
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Figure 4: Four situations for the image of the absorber on the plane containing the
aperture of diameter B. D is the shift of the center of the circular image of diameter
RB from the center of the aperture. At the top RB > B/2 and at the button the
opposite case RB < B/2.

The parameters of the general situation (dA,S 6= 0) of Eq. 19 are
dA, dS, A, B,H, F . All distances enter the equations in units of F.
τ = (F − s)/(H − s) may be expressed by g = F/(F − s) and H/F .

τ =

(

1− g

(

1− H

F

))−1

(23)

A,B,H,F shall be known from the experimental set up. The unknown
misalignments dA/F, dS/F will be fit parameters.
The integration runs over the intersection AI of the aperture with the
image of the absorber area such that

∫ ∫

RdRdϕ = AI . For situations
of relative sizes and positions of the aperture and absorber image are
shown in Fig. 4. The position of the image of the absorber on the plane
of the aperture is characterized by the lowest point of the circle cB in
(ϕ = 0) y-direction cy(+) = dyS+(dA−dyS+A/2)τ and the highest point
cy(−) = dyS + (dA − dyS − A/2)τ at (ϕ = π). The decision whether the
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integration runs only over a circular intersection (simple case) requires
the knowledge whether the image is inside the aperture or vice versa the
aperture inside the image. Since the answer depends on τ(s(v)) the min-
imum and maximum of the image of the absorber from all points of the
source has to be considered. In order to make such a decision to be valid
for all τ the maximum or minimum of τ has to be inserted dependent
on the sign of the pre-factor (dA − dyS + A/2) and of τmin, τmax > 0.
The lowest (at ϕ = 0) and highest (at ϕ = π) y-values (cy(+)max and
cy(−)max) are given by:

(dA − dyS + A/2) > 0 ⇒ cy(+) = dyS + (dA − dyS + A/2)τmax

(dA − dyS + A/2) < 0 ⇒ cy(+) = dyS + (dA − dyS + A/2)τmin

(dA − dyS − A/2) > 0 ⇒ cy(−) = dyS + (dA − dyS − A/2)τmin

(dA − dyS − A/2) < 0 ⇒ cy(−) = dyS + (dA − dyS − A/2)τmax

The highest (at ϕ = 0) and lowest (at ϕ = π) y-values (cy(+)min and
cy(−)min) are given by replacing τmax by τmin and vice versa:

(dA − dyS + A/2) > 0 ⇒ cy(+) = dyS + (dA − dyS + A/2)τmin

(dA − dyS + A/2) < 0 ⇒ cy(+) = dyS + (dA − dyS + A/2)τmax

(dA − dyS − A/2) > 0 ⇒ cy(−) = dyS + (dA − dyS − A/2)τmax

(dA − dyS − A/2) < 0 ⇒ cy(−) = dyS + (dA − dyS − A/2)τmin

τmax and τmin are reached for the points of return at zero velocity where
|s(v = 0)/F | = geo.

τmax =
1− geo

H/F − geo

τmin =
1 + geo

H/F + geo

The following relations are obvious:

cy(+)min >
1

2
B and cy(−)min < −1

2
B ⇒ AI := B (aperture)

cy(+)max <
1

2
B and cy(−)max > −1

2
B ⇒ AI := RB (full image)

If the intersection changes at some τ -value from full aperture to full ab-
sorber image then the intersection has to be calculated. In case of full
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alignment, however, the decision can be done at any τ -value without a
large decision tree. The following cases correspond to Fig 4.

cy(+) > 1

2
B and cy(−) > −1

2
B ⇒ AI : Fig 4 left

cy(+) < 1

2
B and cy(−) < −1

2
B ⇒ AI : Fig 4 right

If cy(+) < −1

2
B or cy(−) > 1

2
B the image of the absorber has no inter-

section with the aperture. That means there are velocity regions without
any count rate. In the case of complete alignment the conditions above
restrict to cy(+) = A/2τmax and cy(−) = −A/2τmax, such that the con-
ditions for complete overlap are simply met.

3 Numerical integration

3.1 Point source

Figure 5: The integration area is covered with small circles of radius ρ which define a
R,ϕ value at the center. The integration area of the large circle of radii 3ρ, (2

√
3+1)ρ,

(2
√
7+1)ρ, (2

√
13+1)ρ,... contain 7, 19, 37, 61,... small circles. If the integration runs

over the intersection of the aperture and the image the common small circle positions
are taken.

Eq. 19 and 15 depend on s(v) and have to be integrated over the aper-
ture in front of the detector for each channel of the spectrum. It is of
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course assumed that γ-quanta passing the aperture are detected with
the same probability. That means that the efficiency of the detector
is independent of the position inside the detector window, a property
which typically is not very well fulfilled.
There are several cases defined by the relative sizes of B,D, rB which
are treated separately:

RB < B/2 :The image of absorber is inside the aperture
alignment ( (D(dA, dS) = 0); integration 0 ≤ R ≤ RB

over image of the absorber by surface elements 2πRdR
misalignment (D(dA, dyS) > 0)

image RB is filled with small circles.
Intersection AI with aperture B/2.
mirror y,z-plane ⇒ mirror circles are counted twice

RB > B/2: The image of absorber larger than aperture,
aperture inside the image of the absorber

alignment ; integration 0 ≤ R ≤ B/2
over full aperture by surface elements 2πRdR

misalignment (D(dA, dyS) > 0)
aperture B/2 is filled with small circles.
Intersection AI with the image of the absorber RB

mirror y,z-plane ⇒ mirror circles are counted twice

The integration runs over two variables: R and ϕ which are the centers
of the small circles (see Fig. 5) belonging to the intersection AI decided
by the position of the center of the small circle. The circles related by
the mirror plane are counted twice. The general position of the source
dxS, dyS > 0 and an aligned absorber dA = 0 is equivalent by an appro-
priate rotation around the z-axis such that the mirror symmetry with
respect to the y,z-plane is preserved. The case that also dA > 0, dyS > 0
requires the integration over all image points inside the aperture (this
case is not implemented - dxS is not an input parameter).

3.2 Extended source

Two cases are considered, the fully aligned situation and the source dis-
placed by dyS, but absorber and aperture aligned. There are several cases
defined by the relative sizes of B,D, rB which are treated separately:
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RB < B/2: aperture larger than image of absorber for any point
(center of the circle) of the source RS = Dsource/2 < B/2

D = 0 aligned ; rotational symmetry ⇒ integration 0 ≤ R ≤ RB

by surface elements 2πRdR over the absorber image
from each point (R,ϕ = 0) to all circles of the source area.
mirror y,z-plane ⇒ mirror circles are counted twice

D > 0 misalignment: y,z-plane is a mirror plane
Source RS and absorber image RB are filled with circles.
The y,z-mirror plane is accounted for by counting mirror
circles of the absorber image twice (more effective than
counting circles inside the source)

RB < B/2: aperture larger than image of absorber
not for all points (center of the circle) of the source
mirror y,z-plane is preserved

D = 0 aligned ; integration 0 ≤ rS ≤ RS

by surface elements 2πrsdrs over the source
from each point (rS, ϕS = 0) to all circles
of the intersection AI of absorber image and aperture
mirror y,z-plane ⇒ mirror circles are counted twice

D > 0 misalignment: y,z-plane is a mirror plane
Source RS and absorber image RB are filled with circles.
Integration (summation) is restricted to AI for points of the
source with part of the absorber image outside B/2
The y,z-mirror plane is accounted for by counting mirror
circles of the absorber image twice (more effective than
counting circles inside the source)

RB > B/2 : image of absorber larger than aperture
D = 0 aligned ; rotational symmetry⇒ integration 0 ≤ R ≤ B/2

by surface elements 2πRdR over the aperture
from each point (R,ϕ = 0) to all circles of the source area.
mirror y,z-plane ⇒ mirror circles are counted twice

D > 0 misalignment
Source RS and aperture areas are filled with circles.
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Summation from each point of the aperture area (AI) to all
circles of the source area.
mirror circles of the aperture are counted twice

The integration runs over two variables for the image/aperture intersec-
tion: R and ϕ and the for the source rS and ϕS which in the case of
no rotational symmetry are the centers of the small circles (see Fig. 5).
The y,z-plane is a mirror plane which simplifies again the summation but
only for one of the surfaces: aperture or source. In order to minimize
the sum the symmetry of the surface with the larger number of circles
is used. The larger number is in the aperture plane for source diameters
Dsource < B = Daperture, RB.

4 Aligned source, absorber, aperture

The case of a well aligned situation (dA, dS = 0) simplifies since the
integral of Eq. 17 can be executed as k reduces to r:

Ω =
2π

(H − s)2

∫ A/2

0

rdr

(

1 +

(

r

H − s

)2
)− 3

2

(24)

= 2π











1− 1
√

1 +
(

A/2
H−s

)2











Two cases have to be considered depending on the size of the detector
defined by the second aperture of diameter B as shown in Fig. 4. B may
be larger than 2RB(s) for all positions (zS = z0+s) of the source S. Then
the integration over the aperture (RdRdϕ) is obtained by replacing H
by F and diameter A by diameter B. The radius of the decisive aperture
devided by its distance from the source at s=0 may be denoted by ǫ =
a/2/H or B/2/F . The relative position of the source −smax < s < smax

devided the distance H or F shall be δ = −s/H/δ = −s/F . Then the
ratio Ω/Ω0 is expressed as

Ω

Ω0

=

(

1− 1 + δ
√

(1 + δ)2 + ǫ2

)

/

(

1− 1
√

(1 + ǫ2

)

(25)

The geometry effect as realized in the Mossbauer programs is taken in
the limit ǫ = 0, such that the diameter of the apertur is not a parameter.
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In this case Eq.25 is undefined (0 devided by 0). For small ǫ the ratio is
expanded

Ω

Ω0

=
1

(1 + δ)2

(

1− 3

4

ǫ2

(1 + δ)2
+ ...

)

/

(

1− 3

4
ǫ2 + ...

)

(26)

The dependence of this ratio on s which in turn depends on the velocity of
the source is called the geometry effect. For constant acceleration mode
with acceleration b and maximum velocity vmax the relative position δ(v)
is given by

δ(v) = ±geo
(

(

v

vmax

)2

− 1

)

(27)

with the pre-factor geo = smax/H or = smax/F . Usually geo is fitted
to the baseline of the Mossbauer spectrum. Since smax is known from
the frequency and the fitted vmax (see 5.1) the value of geo is not a free
parameter. If its fitted value differs the geometry of the set up or dead
time effects are possible reasons.

5 Velocity scale

Starting at t = 0 and v = −vmax the acceleration b in the opposite
direction decreases the velocity to zero in a quarter of a period T/4.

v(t) = −vmax + bt (28)

Integration of v(t) gives

s(t) = −vmaxt+
1

2
bt2 s(t = 0) = 0

s(
T

4
) = −vmax

T

4
+

1

32
bT 2 s(

T

2
) = −vmax

T

2
+

1

8
bT 2

At t = T/4 the velocity is zero, so that vmax = bT/4. Inserting T into the
equations for s(t) the maximal deviation of smax = −1

2
v2max/b is obtained

(see Fig. 6).
The dependency of s on the velocity v is obtained inserting t from Eq. 28
into s(t).

s(v) = −vmax
v + vmax

b
+

1

2
b

(

v + vmax

b

)2

(29)

=
1

2b
(v2 − v2max)

15



T
t

T/2 T/2

v(t) s(t)

t
T

Figure 6: Time dependence of v(t) and s(t) in the range of a full period T for the con-
stant acceleration mode. The s(t) =

∫

v(t)dt within the two half periods are parabola
(here indicated by a segment of a circle).

s

F
= ± v2max

2bF

(

(

v

vmax

)2

− 1

)

geo =
v2max

2bF

=
smax

F
(30)

The constant geo is the maximal deviation from the zero position of the
source divided by the distance source detector (aperture). The ± sign is
introduced in order to cover both halves of the period.

5.1 Maximal deviation smax

The maximal deviation smax is a function of vmax and the period time
T . In case of constant accellaration −smax = s(t = 0, v = 0) is

s(t = 0) = −v
2

max

2b
(31)

The velocity v (see Fig.6) is −vmax at t = 0, v = 0 at t = T/4 or vmax at
t = T/2. With b = (v(t) + vmax)/t from eq.28 the maximal deviation at
v(t = T/4) = −smax becomes

smax =
vmax

8
· T (32)

For sinusoidal velocity mode with v(t) = Aωsin(ω · t) the maximal de-
viation at t=0 is given by (ω = 2π/T )

smax =
vmax

2π
· T (33)
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5.2 The folded spectrum

The two halfs of a spectrum have different sign of s, such that the simple
folding procedure leads to a sum proportional to σ

σ(v) =
1

(F + s)2
+

1

(F − s)2

=
2

F 2

(

1 + 3
( s

F

)2

+ 5
( s

F

)4

+ ...

)

Neglecting the fourth order term and inserting s(v) gives

σ(v) =
2

F 2



1 + 3
(smax

F

)2

(

(

v

vmax

)2

− 1

)2




Again neglecting the fourth order term of v/vmax the deviation from a
constant baseline is proportinal to a parabola

= 1− 6
(smax

F

)2
(

v

vmax

)2

Taking typical values like vmax = 1mm/s, a drive frequency of 10Hz and
a source-detector(/apertur) distance of 100mm the deviation at vmax

becomes

b = 4vmax/T = 400mm/s2; smax =
v2max

2b
= 1/8mm

6
(smax

F

)2

= 6

(

1

800

)2

= 0.93 · 10−5

If the baseline has 106 counts such that the 1σ-error bars are 103 the
deviation of 0.93 · 10−5 · 106 = 9.3 is neglegible. In case of a drive
frequency of 1Hz the deviation is larger by a factor of 102 and of the
same size as the error bars, so that the parabola is clearly visible.
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