
Contents

1 Introduction 1

2 Emission 1

3 Constant concentration 4

4 Concentration profile 5

5 Theory function of an absorption spectrum 5

6 Concentration profile in a source 6

1 Introduction

The 57Co in α-iron is a source with considerable selfabsorption by the

natural abundance of 57Fe of 0.0214. A thickness of 1µ of iron foil gives

an effective thickness of

1µ·7.8748g/cm3 · σ0·6.022 ·1023/atomic weight·abundance·f-factor=

0.465·f-factor. W. Sturhahn and A. Chumakov measured the f-factor

of polycrystalline iron foils [1] in the temperature range of 4.2K up to

400K. The f-factor at RT is f=0.8 such that the effective thickness of

1µ iron becomes teff = 0.372 If the diffusion depth is large enough

emission lines will be absorbed dependent on their polarization and

intensity. The stronger and less polarized lines lose the most. In case

of a magnetized iron foil parallel and the γ-direction orthonormal to

the surface the emission lines 2,5 of the sextet are mainly concerned.

Disregarding selfabsorption the surface of the source seems to be ori-

ented at an angle less than θ = 90o with respect to the γ-direction.

Calculating the source function with an angle less than θ = 90o, the po-

larization of the emission lines is also changed, so that measurements

with polarized absorbers cannot be accurately simulated.

2 Emission

The source spectrum is the sum of Lorentzians multiplied by the 2x2

density matrices ri:
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The total intensity, sum over all Lorentzians, is normalized to 1. Γ is

the natural linewidth. Since the Lorentz function is real and the density

matrix ri of a transition is hermitian, the diagonal elements of ρr(E) are

real numbers.

The sum can be taken a double sum over inequivalent sites j with

weights wj and transitions Ej
i .
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The radiation travels through a material of refraction index n(E):

n = 1− σf(k)

2k

∑

j

Nj

∑

i

Rj
i ·

Γ/2

E − Ej
i − iΓ/2

(3)

with the unit 2x2 matrix 1, the cross section σ, the Lamb-Mossbauer

factor f in direction k, the density Nj of nuclei of type j. The density

matrix at position z (travelling from 0 to z) is given by

ρ(E, z) = einkzρr(E)e−in†kz (4)

The electronic absorption exp(−µez) shall be included later. In the fol-

lowing the double sum is is written aa a sum over i only for simplicity.

Several simplifications for the selfabsorption of a 57Co in α-iron are in-

troduced. First of all the f-factor is taken to be isotropic. The profile

of the distribution of the 57Co diffused into the α-iron foil is simplified

to a) an δ-function, b) uniform distribution, and a distribution given by

some function C(z), i.e a diifusion profile (see section 4). The integra-

tions will be approximated by summations over up to 128 integration

points.
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The case a) is already described by eq. 4 where z is the depth d. In-

serting the refraction index of α-iron which is assumed to be homoge-

neously magnetized, such that the Ri = ri and the Ei are the same, eq.3

is rewritten as

ρ(E, z) = e−
i

2
tz(A(E)+h(E))ρr(E)e

i

2
tz(A†(E)+h†(E)) (5)
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Since the unit matrix commutes with all matrices −ih(E) + ih†(E) =
D(E) can be taken out
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D(E), a real 2x2 unit matrix,
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The product td is the effective thickness of the absorber of thickness d.

td = σ0f(k)Nd (8)

N = 6.022 · 1023/atomic weight · density · abundance
t = 0.465µ−1 · f(k)

The density matrix of the source radiation in case a) with all 57Co at

a depth of z=d in α-iron changes from ρr(E) to ρ(E, d). The Lamb-

Mossbauer factor f for the source function ρr(E) appears to be reduced

by th efact that the resonanz part f of radiation is absorpt more strongly

than the non-resonat part (1-f) with is only attenuated by electronic

absorption exp(-µe · z) (absorption coeffizient µe). Ir shall denote the

fraction of resonant and Inr of non-resonant γ’s
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Ir = e−µe·d
∫ ∞

−∞
Tr(ρ(E, d))dE (9)

Inr = e−µe·d

then the effective Lamb-Mossbauer factor is the ratio

feff =
f · Ir

f · Ir + (1− f) · Inr
(10)

3 Constant concentration

The concentration 57Co is taken constant fom the surface to a depth d.

Each layer at z is an independent source.

The integral over z from the surface z=0 to the depth z=d is replace by

a sum with weights/concentrations c and thickness δ.

δ = d/N c = 1/N (11)
N
∑

j=1

c = 1

ρ from Eq. 6 multiplied by the attenuation factor of electronic absorp-

tion

ρ(E, z) = e−µe·de−
1

2
tzD(E)e−

i

2
tzA(E)ρr(E)e

i

2
tzA†(E) (12)

is sumed over N layers of thichness δ.

ρ(E) =
N
∑

k=1

c · ρ(E, k · δ) (13)

The attennuation factors are

Ir =

∫ ∞

−∞
Tr(ρ(E))dE (14)

Inr =
N
∑

k=1

ce−µe·kδ
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4 Concentration profile

The preparation of the source by diffusion of the Co atoms deposited

on the surface leads to an diffusion profile with decreasing concentra-

tion. The solution for the situation of a fixed number of atoms N/area

deposited at the surface, which diffuse into the bulk for some time t

can be found in the lecture about Fick’s law

http://www.eng.utah.edu/ lzang/images/lecture-4.pdf The solution

for the 1-dimensional problem is given by

c(z, t) =
1√
πDt

exp

(

− z2

4Dt

)

(15)

1 =

∫ ∞

0
c(x, t)dx

The length 2
√
Dt is called the diffusion length (dependent on time t),

which will be a fit parameter. It is no problem to insert the function

c(z = kδ) instead of a constant c in Eq. 13 for ρ(E) and in Eq. 14 for the

attenuation coefficients.

5 Theory function of an absorption spectrum

If n(E(v)) is the index of refraction of a moving absorber and dA the

thickness of the absorber the convolution integral

I(v) =

∫ ∞

−∞
Tr (ρ(E, v, dA)) dE (16)

with

ρ(E, v, dA) = ein(E,v)kdAρ(E)e−in(E,v)†kdA (17)

I(v) concerns the fraction fCM of reonant γ’s. At v = ±∞ only the

fraction I(±∞) = Ir of fCM comes out of the source. The total counts

of the baseline Cbase are therefore the sum

Cbase = CB + IrfCM + Inr(1− f)CM (18)

At velocity v the number of counts are

C = CB + I(v)fCM + Inr(1− f)CM (19)

= CB + IrfCM + Inr(1− f)CM − IrfCM + I(v)fCM

= Cbase − fCMIr(1− I(v)/Ir)
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Factoring out Cbase

C = Cbase

(

1− (1− I(v)/Ir)
fCMIr

CB + IrfCM + Inr(1− f)CM

)

(20)

For an infinite thin source (Ir = Inr = 1) the usual equation

C = Cbase (1− (1− I(v))f(1− bf)) (21)

bf =
CB

CM + CB

is obtained. The following equality should hold if the theory is correct:

feff =
Irf

Irf + Inr(1− f)
(22)

f(1− bf) = feff(1− b)

where f is the true f factor, bf the fitted background fraction and b the

measured one. Inserting b the expected value for bf can be calculated

with feff .

6 Concentration profile in a source

The selfabsorption in a source is caused by the same distribution of

absorbing and the emitting nulei. The number of absorbing nuclei at

depth d = kδ is then given by the sum

c(d) =
k
∑

n=1

c(n) (23)

An array intc(k) with intc(N) = 1 is used in the program code.
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