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Abstract

Synchrotron Mössbauer Reflectometry (SMR), the grazing-incidence nuclear resonant scattering

of synchrotron radiation, can be applied to perform depth-selective phase analysis and to deter-

mine the isotopic and magnetic structure of thin films and multilayers. Off-specular SMR provides

information on the lateral structure of multilayers. A theoretical description of off-specular SMR

based on the Distorted-Wave Born Approximation is presented. Off-specular SMR and polar-

ized neutron reflectivity curves of an antiferromagnetic
[

57Fe/%Cr
]

multilayer are calculated and

compared. Experimental ’2θ − ω’ SMR scans are compared with the theory.

PACS numbers: PACS: 42.25-p, 61.10.Kw, 61.12.Ha, 75.25.+z
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I. INTRODUCTION

Grazing-incidence reflection of x-rays1,2 and neutrons1,2,3,4,5 from flat surfaces (x-ray and

neutron reflectometry, as well as grazing-incidence soft x-ray resonant magnetic scattering6,7)

have been widely used to investigate the chemical, isotopic and magnetic structure of thin

films and multilayers (ML).8,9,10 The sensitivity of nuclear resonant scattering (NRS) of

synchrotron radiation to hyperfine interactions renders possible a special kind of x-ray re-

flectometry, a method that we shall call henceforth Synchrotron Mössbauer Reflectometry

(SMR).11,14 SMR combines the sensitivity of Mössbauer spectroscopy to hyperfine interac-

tions with the depth information yielded by reflectometry. Like other NRS experiments,

SMR contains the hyperfine interaction information in the quantum beats of the time re-

sponse that follows the excitation of the system by the synchrotron radiation pulse. Time-

differential (TD) SMR is a grazing-incidence time-domain NRS experiment performed at

one or at a series of different grazing angles. In a time-integral (TI) SMR experiment all

delayed (i.e., nuclear resonantly scattered) photons are counted as a function of the grazing

angle. This method is very similar to polarized neutron reflectometry (PNR) and yields

integral hyperfine depth profile and superstructure information. Specular SMR has by now

become an established technique.12,13,14,15

The specularly reflected radiation from a stratified system is insensitive to the lateral

structure; it depends solely on the lateral averages of the material parameters1 for the co-

herence volume. In particular, using monochromatic radiation of infinite coherence length,

the magnetic contrast (AF Bragg peak) of an antiferromagnetic (AF) multilayer with com-

pensated domains would be missing from the specular reflectivity. However, this is not the

case, since the coherent averaging has to be performed for the finite coherence volume of

the radiation determined by the experimental setup and such contributions are to be added

incoherently.18 For studying lateral inhomogeneities, such as structural roughness, mag-

netic domains, etc., diffuse scattering, i.e. off-specular reflectometry is used. Off-specular

non-polarized10 and polarized neutron reflectometry,3,9 soft-x-ray resonant magnetic diffuse

scattering8 and, recently, off-specular SMR have been used to estimate the domain-size

distribution and to follow domain transformations in AF-coupled magnetic MLs.16

The theory of the off-specular neutron reflectometry based on the Distorted-Wave Born

Approximation17 (DWBA) has been published earlier.18,19,20,21 DWBA perturbatively de-

2



termines the diffuse (off-specular) field22 around the specular field, the latter being easily

calculated, even for general stratified media, by suitable matrix methods.18,19,23,24,25,26 The

optical solution of the specular SMR problem is also well-known.15,26,27,28,29,30,31,32,33,34 The

idea to apply the DWBA technique to describe off-specular SMR experiments is therefore

plausible. However, as we shall see, due to strong energy dependence of the coherent field

and the susceptibilities and the consequent temporal character of SMR, this approach is

not a trivial application of the existing theory. In the present paper, based on perturbation

theory, we work out a theory description for off-specular SMR.

Starting from Lax’ general theory1 and from the common optical formalism of polarized

neutron and Mössbauer reflectometry,26 an expression for diffuse scattering of electromag-

netic and/or quantum mechanical particle waves on laterally inhomogeneous stratified media

is obtained. From the point of view of specular reflection, the set of discrete atomic scatter-

ing centers can be described/replaced by a homogeneous index of refraction n and solving

the scattering problem is equivalent to solving the wave equation.1 This approach is valid

only if the direction of the scattered wave is far from the direction of low-index atomic Bragg

reflections. In this paper we shall study the grazing-incidence limit, for which the index of

refraction approximation is valid.15,29,32,33,34

The model systems of the present paper are multilayers and thin films, i.e., stratified

media, having lateral inhomogeneities on the mesoscopic scale, i.e., unlike in case of surface

roughness, at distances much larger then the atomic distances. In each homogeneous part

around position r an index of refraction n (r) is defined. Since n for both slow neutrons and

X-rays differs only slightly from the 2×2 unit matrix I, the susceptibility χ (r) = 2 [n (r) − I]

can be conveniently used.26

II. OFF-SPECULAR SCATTERING

Using the index-of-refraction approximation in each homogeneous part of the system the

solution of the inhomogeneous wave equation

[

∆ + k2I
]

Ψ (r) = −k2χ (r) Ψ (r) (2.1)

yields Ψ (r), representing the two components of the photon field or the neutron quantum

mechanical spinor state at position r, with k being the wave number in vacuum. In a
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stratified medium we compose the susceptibility function

χ (r) =
S

∑

l=1

χl

(

r‖
)

, (2.2)

as the sum of the susceptibility functions of the individual layers l..l = 1..S, the last layer

S is the substrate) depending solely on th in-plane coordinate, r‖.

If the homogeneous parts of the system are large compared to the wavelength, we may

assume that the exact solution Ψ (r) is close to the solution Ψcoh (r) of the coherent (specular)

field equation1

[

∆ + k2I
]

Ψcoh (r) = −k2
∑

χlΨcoh (r) , (2.3)

which is obtained from Eq.(2.1) by replacing the susceptibilities χl

(

r‖
)

by the average

susceptibility χl of each layer l. In order to arrive at a perturbative equation, the sum

−k2
∑

χlΨ (r) is added and subtracted on the right-hand side of Eq.(2.1)

[

∆ + k2I
]

Ψ (r) = −k2
∑

χlΨ (r) − k2
∑

[

χl

(

r‖
)

− χl

]

Ψ (r) . (2.4)

For homogeneous layers χl

(

r‖
)

= χl the second sum vanishes on the right, so that

Eq.(2.4) reduces is to Eq.(2.3), the basic equation of specular reflectometry.21,26,32,35 The

general solutions of Eq.(2.4) are looked for in a form

Ψ (r) = Ψcoh (r) + Ψoff (r) , (2.5)

where Ψcoh (r) is the coherent field, which vanishes in any non-specular direction, and

Ψoff (r) is the off-specular field. Substituting Eq.(2.5) into Eq.(2.4) and taking Eq.(2.3) into

account

[

∆ + k2I
]

Ψoff (r) = −k2
∑

[

χl

(

r‖
)

− χl

]

Ψcoh (r) − k2
∑

χl

(

r‖
)

Ψoff (r) . (2.6)

The coherent field Ψcoh (r), the solution of Eq.(2.3), is obtained by the optical method26

as

Ψcoh (k, r) = T (k⊥, r⊥) Ψinexp
(

ik‖ · r‖
)

(2.7)

(see Appendix A), where ⊥ and ‖ denote the out-of-plane and in-plane components of

the respective vectors and Ψin is the amplitude of the incident plane wave of wave number

vector k =
(

k⊥,k‖

)

. Now we introduce the ”cumulative transmittance” of the upper layer

of the reflecting film of thickness r⊥ by:
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T (k⊥, r⊥) = L[21] (k⊥, r⊥) [I − Rsp (k⊥)] + L[22] (k⊥, r⊥) [I + Rsp (k⊥)] . (2.8)

Rsp (k⊥) is the 2 × 2 specular reflectivity matrix of the system26, L[21] (k⊥, r⊥) and

L[22] (k⊥, r⊥) are the respective 2 × 2 submatrices of the 4 × 4 characteristic matrix26,32

L at depth r⊥ for an incoming plain wave defined by k⊥.

The physical interpretation of Eq.(2.6) is seen from its right-hand side, where the first

term gives the source of the off-specular radiation, and the second term shows that the

off-specular field is scattered by the whole multilayer. The off-specular field arises from the

coherent field at the lateral inhomogeneities, namely from the regions, where the suscepti-

bility χ differs from its average value χ. Eq.(2.6) can be solved up to arbitrary accuracy

applying higher-order Born approximations.

As a first approximation the second term of the right-hand side of Eq.(2.6) is neglected,

so the solution can be obtained by using the Green-function technique,

Ψoff (k, r) =
k2

4π

∑

l

∫

d3r′
exp (ikR)

R

[

χl

(

r′‖
)

− χl

]

Ψcoh (k, r′) , (2.9)

where R = |r − r′| . The approximation requires ‖Ψcoh (r)‖ ≫ ‖Ψoff (r)‖, which condition

is feasible in the vicinity of the specular direction for magnetic multilayers of large enough

homogeneous domain size16,20 so that the exact solution Ψ (r) is close to the coherent field

Ψcoh (r).

Far from the scatterer the Fraunhofer approximation

exp (ikR)

R
≈ exp (ikr)

r
exp

(

−ik′ · r′
)

(2.10)

is applied (k′ being the wave number vector of the outgoing plane wave). The final result

reads

Ψoff

(

k, r =
k′

k
r

)

=

√

π

2

k2

r
exp (ikr)

∑

l

Sl

(

K‖

)

Tl (k⊥,k′
⊥) Ψin, (2.11)

where

Tl (k⊥,k′
⊥) =

1√
2π

∫

Zl

dr⊥ exp (−ik′
⊥r⊥) T (k⊥, r⊥) (2.12)

is the Fourier integral over the one dimensional interval Zl of layer l;

Sl

(

K‖

)

=
1

2π

∫

d2r‖ exp
(

−iK‖ r‖
) [

χl

(

r‖
)

− χl

]

(2.13)
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is the two dimensional Fourier transform of χl

(

r‖
)

− χ where K‖ is the in-plain component

of the momentum transfer vector K = k′ − k. We note that Tl (k⊥,k′
⊥) can be analytically

calculated (See Appendix B)

The off-specularly scattered intensity Ioff = (Ψoff , Ψoff) is then

Ioff =
πk4

2r2

∑

ll′

(

Ψin, T †
l (k⊥,k′

⊥) S†
l

(

K‖

)

Sl′
(

K‖

)

Tl′ (k⊥,k′
⊥) · Ψin

)

, (2.14)

which is written as

Ioff =
πk4

2r2

∑

ll′

Tr
[

T †
l (k⊥,k′

⊥) S†
l

(

K‖

)

Sl′
(

K‖

)

Tl′ (k⊥,k′
⊥) ρ

]

, (2.15)

for arbitrary incident polarization, where ρ is the polarization density matrix of the incident

radiation.36 From the convolution theorem, it follows that the Fourier transform Cll′
(

R‖

)

of

Cll′
(

K‖

)

=
1

2π
S†

l

(

K‖

)

Sl′
(

K‖

)

, (2.16)

is the cross-correlation function of the susceptibilities between layers l and l′

Cll′
(

R‖

)

=
1

A

∫

d2r‖
[

χl

(

R‖ + r‖
)

− χl

]† [

χl′
(

r‖
)

− χl′

]

(2.17)

A being the area of the surface (A → ∞). The final result then becomes

Ioff =
πk4

2r2

∑

ll′

Tr
[

T †
l (k⊥,k′

⊥) Cll′
(

K‖

)

Tl′ (k⊥,k′
⊥) ρ

]

, (2.18)

a very convenient expression for randomly distributed lateral inhomogeneities. We note that

the off-specular intensity Ioff = Ioff

(

K‖,k⊥,k′
⊥

)

is a function of K‖, k⊥ and k′
⊥, a notation

dropped in the calculations. The corresponding values of K‖, k⊥ and k′
⊥ can be given for

the chosen experimental geometry.

A possible experimental realization of the off-specular reflectometry is the so-called ’ω-

scan’ geometry, where the detector position is set to 2θ and the sample orientation ω on

the goniometer is varied. In the special case of ω- scan the in-plain components of the

momentum transfer vector K‖ and the out-of-plain component of the wave vector of the

outgoing wave k′
⊥can be expressed by the grazing angle θ and by ω

K‖ = 2k sin θ sin (ω − θ) , (2.19)

k⊥ = k sin ω, (2.20)
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k′
⊥ = −k sin (2θ − ω) , (2.21)

noting that K‖ vanish at the specular condition ω = θ. The full two-dimensional scan in

angles ω and 2θ is also used and called ’2θ − ω’ -scan. Another widely used arrangement is

the so-called ’detector scan’ geometry, in which the angle of incidence θin is fixed, and the

scattered intensity is recorded as a function of the outgoing angle, θout. In case of a detector

scan Eqs.(2.19) and (2.24) read

K‖ = k (cos θout − cos θin) , (2.22)

k⊥ = k sin θin, (2.23)

k′
⊥ = −k sin θout, (2.24)

with the specular condition being θout = θin.

III. OFF-SPECULAR SMR

A. Time-differential off-specular SMR

The off-specular intensity in Eq.(2.18) is valid for neutron and x-ray reflectometry, where

the time of the scattering process is negligible. However, in case of SMR we detect the time

response

Ψoff (r,t) =
1

~
√

2π

∞
∫

−∞

dE Ψoff (r,E) exp (−iEt/~) , (3.1)

after the synchrotron pulse,37 which is the Fourier transform of the energy-dependent off-

specular field. Close to the Mössbauer resonance, both the susceptibilities χl

(

r′‖, E
)

−χl (E)

and the coherent field Ψcoh (r′, E) are strongly energy-dependent37 and, through Eqs.(2.8),

(2.12) and (2.13), carry an energy dependence, too, Sl

(

K‖, E
)

and Tl (k⊥,k′
⊥, E), so that

Eq.(2.18) can no longer be applied to calculate the off-specular intensity.

A possible workaround of this problem is to define a distribution function Ωµ
l

(

r‖
)

of

each homogeneous region µ = 1, ..,M of layer l. This function Ωµ
l

(

r‖
)

characterizes the

homogeneous regions of layer l of an energy dependent susceptibility χµ
l (E) . Over the

region of χµ
l (E) the distribution function Ωµ

l

(

r‖
)

= 1 otherwise Ωµ
l

(

r‖
)

= 0, so that the
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total inhomogeneous susceptibility is the sum

χ (r,E) =
M

∑

µ=1

S
∑

l=1

Ωµ
l

(

r‖
)

χµ
l (E) , (3.2)

where the space- and energy-dependent parts of χ (r,E) have been separated. The average

susceptibility inside layer l reads

χl (E) =
1

A

M
∑

µ=1

Aµ
l χ

µ
l (E) , (3.3)

where Aµ
l =

∫

d2r‖ Ωµ
l

(

r‖
)

is the total area of the homogeneous part µ inside layer l. Using

(3.2) and (3.3) Eq.(2.13) becomes

Sl

(

K‖, E
)

=
M

∑

µ=1

Gµ
l

(

K‖

)

χµ
l (E) , (3.4)

with

Gµ
l

(

K‖

)

=
1

2π

∫

d2r‖ exp
(

−iK‖r‖
)

[

Ωµ
l

(

r‖
)

− 1

A
Aµ

l

]

, (3.5)

and finally, the energy-dependent off-specular field in Fraunhofer approximation reads

Ψoff (r,E) =

√

π

2

k2

r
exp (ikr)

∑

l,µ

Gµ
l

(

K‖

)

χµ
l (E) Tl (E) Ψin, (3.6)

while the off-specular intensity is

Ioff (E) =
k4

4r2

∑

ll′µµ′

Cµ′µ
l′l

(

K‖

)

Tr
[

Γµ′

l′ (E)† Γµ
l (E) · ρ

]

. (3.7)

The matrices for the homogeneous region µ, l

Γµ
l (E) = χµ

l (E) Tl (E) , (3.8)

are the products of the homogeneous solution Tl (E) and the susceptibility χµ
l (E) of that

region. For the sake of brevity we have dropped the notation of dependence of Tl and Γµ
l on

both, k⊥ and k′
⊥.

Cµ′µ
l′l

(

K‖

)

=
1

2π
Gµ′

l

(

K‖

)∗
Gµ

l

(

K‖

)

(3.9)

is the geometrical correlation function between layers l and l′ , homogeneous parts µ and

µ′. In Eq.(3.7) the geometrical correlation function is separated from the energy dependent

functions, and can therefore be applied for both time- and energy-domain measurements.
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The Fourier transformation can be performed so that with Eq.(3.1) the time dependent

intensity becomes

Ioff (t) =
k4

4r2

∑

ll′µµ′

Cµ′µ
l′l

(

K‖

)

Tr
[

Γµ′

l′ (t)† Γµ
l (t) · ρ

]

, (3.10)

where

Γµ
l (t) =

1

~
√

2π

∞
∫

−∞

dE Γµ
l (E) exp (−iEt/~) . (3.11)

B. Time-integral off-specular SMR

The time-integrated intensity is I int
off =

t2
∫

t2

dt Ioff (t) , where t1 and t2 define the time window

of the measurement after the synchrotron bunch. Applying Eqs.(3.10) and (3.11)

I int
off =

k4

4~r2

∞
∑

m=−∞

sm

∞
∫

−∞

dE
∑

ll′µµ′

Cµ′µ
l′l

(

K‖

)

Tr
[

Γµ′

l′ (E + mε)† Γµ
l (E) ρ

]

, (3.12)

where ε = h
tbunch

with tbunch being the time interval between the synchrotron bunches, h

is the Planck constant, sm is the mth discrete Fourier component of the periodical time

window function S (t) =
∞
∑

m=−∞

sm exp
(

i 2mπ
tbunch

t
)

of the experiment defined by S (t) = 1 for

t1 < t < t2, otherwise S (t) = 0 after each synchrotron bunch.

IV. APPLICATIONS AND COMPARISON WITH EXPERIMENT

Applying the above theory, off-specular SMR and PNR curves were calculated and com-

pared with the experiment for an MgO/ [57Fe (2.6 nm) /Cr (1.3 nm)]20 antiferromagnetic (AF)

multilayer. Due to the strong AF coupling between the iron layers at this spacer thickness

one may assume that the domain walls are perpendicular to the surface and run through

the multilayer stack from surface to substrate. Model calculation were performed with the

following assumptions and parameters. The SMR curves were calculated for the 14.4-keV

Mössbauer resonance of 57Fe (λ = 0.086 nm). The scattering geometry was selected so that

the layer magnetizations were parallel/antiparallel to k′
‖, the condition for the appearance of

the SMR specular AF reflection.13 In case of PNR, a neutron wavelength of λ = 0.1 nm was

assumed. The layer magnetizations were assumed parallel/antiparallel to the neutron spin

and perpendicular to k′
‖. For both, SMR and PNR, the specular intensities were calculated

by the free data evaluation computer program EFFI (Environment For FItting).35,42
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A. Model calculations

The studied MgO/ [57Fe (2.6 nm) /Cr (1.3 nm)]20 ML is a layer antiferromagnet. Conse-

quently, in remanence, the net magnetization of the Fe layers is zero. Moreover, (except for

a trivial case of full in-plane saturation) the in-layer magnetization is broken into domains of

different orientations resulting in fact in zero layer magnetizations. In the simplest case the

situation can be demonstrated by two types of domains, (say type ’+’ and type ’−’ domains)

separated by 180◦ domain walls, a situation which can indeed be realized experimentally by

an easy axis magnetization of the ML followed by relaxing the field to remanence.16 In

the case of a 1 to 1 surface coverage ratio of the ’+’ and ’− ’ type domains averaging the

magnetizations within a layer - as mentioned in the introduction - the magnetic contrast

is missing, i.e. no AF Bragg peak in the specular reflectometry curves appears. However,

when the domain size is comparable to the coherence length (a few times ten to a few thou-

sand nanometers38) a net layer magnetization is sampled within the coherence length and a

consequent magnetic contrast is seen in the specular reflectometric experiment. Therefore

a specific magnetic bias parameter η is introduced by the definition η = A+/ (A+ + A−),

where A+ and A− are the surface areas of the ’+’ and ’−’ type domains inside the coherence

area within the upper layer. This coherence is smaller then the illuminated area and may

have arbitrary position which can be identified by η, therefore we have to average to η.

Indeed, the integration in Eq.(2.17) is then performed as a function of η and the off-specular

intensity in (2.18) is calculated as

Ioff =

1
∫

0

p (η) Ioff (η) dη, (4.1)

where p (η) is the normalized probability density of having the magnetic bias parameter η.

The upper layer unambiguously identifies the domain structure in the lower layers, since a

strict antiferromagnetic out-of-plane correlation is assumed throughout the multilayer stack.

For the numerical simulations we assume equal probability of the different configurations

and the (4.1) integral is replaced by a discrete sum

Ioff =
1

M

M
∑

i=1

Ioff (ηi) , (4.2)

with ηi = (i − 1) / (M − 1) , i = 1..M and M being the number of configurations considered

in the calculation.
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For simplicity, we use an exponential function to describe the correlation of the magne-

tization directions and interpret the average domain size as the correlation length of this

exponential correlation function

C
(

r‖
)

∼ exp

(

−r‖
ξ

)

, (4.3)

with ξ being the correlation length.17 Moreover, the layer and domain type indexes, l and µ,

were dropped since the same correlation functions were assumed for each indices, taking into

account the alternating sign corresponding to both the strict out-of-plane AF correlation

and an in-plane ’+’/’−’ domain model with 180◦ domain walls. The Fourier transform of

Eq.(4.3) reads

C
(

K‖

)

∼ 2πξ2

[

1 +
(

K‖ ξ
)2

]3/2
, (4.4)

which is then substituted into Eqs.(2.18) and (3.10) for calculating the off-specular PNR

and SMR intensities, respectively. Figs. 1 and 2 show the SMR and PNR simulations of the

above multilayer, with curves ’a’ and ’b’ being the specular and off-specular calculations,

respectively. The specular curves are typical for AF multilayers, the structural Bragg peaks

showing up at θin = 11.3 mrad and θin = 13 mrad for SMR and PNR, respectively). The AF

Bragg peaks appear at θin = 6.7 mrad and θin = 6.5 mrad for SMR and PNR, respectively).

The AF Bragg peaks are small on both specular curves, since the presence of domains

decreases the AF contrast between the layers. The Kiessig-type oscillations39 characteristic

of the total thickness of the multilayer are also present on both specular curves, however,

due to the strong nuclear resonant absorption, their amplitude is much smaller in case

of SMR. Conversely, the absorption of neutrons is negligible, therefore the Kiessig fringes

are strong. The simulation in Fig.2 were performed for two different polarizations of the

incident neutrons with spin parallel and antiparallel with the direction of magnetization of

the majority domains of the top layer. The largest contrast between the curves in Fig.2.a

is around the AF Bragg angle, θin = 6.5 mrad. Below the critical angle, the SMR intensity

decreases,40,41 whereas the PNR curve behaves normally and tends to 1. The off-specular

SMR and PNR curves are shown in Figs. 1.b and 2.b, respectively. As seen in Fig.2.b, the

off-specular SMR curves are sensitive to the correlation length ξ. Due to geometrical reasons,

the frequency of the oscillations on the specular curve in Fig.2.a is twice the frequency of the

off-specular case in Fig.2.b. Indeed, following from Eqs.(2.22) and (2.24), any change in θin
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obeying the specular condition θout = θin causes a change in the perpendicular momentum

transfer component that is the double of the change in θout with fixed θin in the ’detector

scan’ geometry.

B. Experimental results and discussion

In order to compare Eq.(3.12) with experiments, the two-dimensional ’2θ − ω’ SMR

scan of a 57Fe/Cr antiferromagnetic multilayer was measured for the first time. Using the

14.4 keV Mössbauer transition of 57Fe nuclei the experiments were performed at the BL09XU

nuclear resonance beam line43 of SPring-8, Japan. The synchrotron was operated in the 203-

bunch mode, corresponding to a bunch separation time of tbunch = 23.6 ns. The SR was

monochromated by a Si(4 2 2)/Si(12 2 2) double channel-cut high resolution monochromator

with 6 meV resolution. It was incident on the multilayer specimen downstream mounted in

grazing incidence geometry. The delayed radiation was detected using three 2 ns dead time

Hamamatsu avalanche photo diodes (APD) in series. These SMR data were time integrated

using the time windows given by t1 = 1.97 ns and t2 = 21.63 ns.

The multilayers were prepared under ultra-high vacuum conditions by molecular beam

epitaxy at the IMBL facility in IKS Leuven. Preparation and characterization of the

MgO(001)/[57Fe/Cr]20 multilayer sample has been described earlier.16,44,45 The layering was

verified as epitaxial and periodic, with thicknesses of 2.6 nm for the 57Fe layer, and 1.3 nm

for the Cr layer. SQUID magnetometry showed dominantly antiferromagnetic coupling be-

tween neighboring Fe layers. According to previous studies on this multilayer,16,44,45 the

magnetizations in Fe align to the (100) and (010) perpendicular easy directions in rema-

nence, respectively corresponding to the (110) and (110) directions of the MgO substrate.

The layer magnetizations were aligned antiparallel in the consecutive Fe layers by applying

a magnetic field (1.6 T) above the saturation value (0.96 T) in the Fe(010) easy direction

of magnetization, and then releasing the field to remanence. The alignment is global, the

antiferromagnetic domains are only different in the layer sequence of the parallel/antiparallel

orientations.16

Fig.3 show the two-dimensional ’2θ−ω’ SMR scan in the vicinity of the AF-Bragg position.

The corresponding simulation for the experimental interval is shown in Fig.4, where the (4.4)

correlation function with the correlation length of ξ = 4.6 µm was used. Near the specular

12



line (2θ = 2ω) the simulation is in good agreement with the experimental data. As stated

above, far from the specular direction the (2.6) approximation fails, therefore the simulation

less fit to the experimental data.

V. CONCLUSION

Off-specular SMR is sensitive to the lateral structure of the hyperfine fields, therefore

it can be used for studying magnetic domains in multilayers. Due to the existing common

optical approach, the same theory can be applied for SMR, x-ray reflectometry and polarized

neutron reflectometry26 for both specular and off-specular reflection. Using the perturbative

DWBA theory, the off-specularly reflected intensity of SMR is expressed as a function of

the geometrical correlation functions of the lateral structure and the specular field profile

in the layers. Off-specular SMR and PNR ’detector scan’ spectra of an antiferromagnetic

[57Fe (2.6 nm) /Cr (1.3 nm)]20 /MgO multilayer were calculated and compared to each other.

The two-dimensional ’2θ−ω’ SMR scan of the sample was reported and compared with the

simulation, the value of the correlation lenth was determined.

APPENDIX A: GENERAL SOLUTION OF THE COHERENT FIELD EQUA-

TION

The solution of Eq.(2.3) was given in Refs.26,32,35 where, using the derivative field

Φcoh (r⊥) = (ik sin θ)−1 Ψ′
coh (r⊥), the second order differential equation regarding to Ψcoh (r),

was replaced by a set of first order differential equations,26 providing the solution
(

Φ (k⊥, r⊥)

Ψ (k⊥, r⊥)

)

= L (k⊥, r⊥)

(

Φ (k⊥, 0)

Ψ (k⊥, 0)

)

, (A1)

where L is the 4×4 characteristic matrix of the system,26,32,35 k⊥ = k sin θ is the out-of-plain

component of the wave number vector of the incident plain wave, which latter dependence

we drop in this appendix. Here Ψ and Φ are coherent fields, but the ’coh’ notation is

dropped. The physical meaning of Eq.(A1) is that there is a linear connection expressed by

the characteristic matrix L between the fields at depth r⊥ = 0 and at an arbitrary depth

r⊥. Taking into account the boundary conditions, the field at the top surfaces of the system

(r⊥ = 0) is

Ψ (0) = Ψin + RspΨ
in, (A2)

13



the sum of the incident Ψin and the reflected RspΨ
in waves so Eq.(A1) reads

(

Φ (r⊥)

Ψ (r⊥)

)

= L (r⊥)

(

Ψin − RspΨ
in

Ψin + RspΨin

)

, (A3)

where the concept of impedance tensors was used,46 taking into account that the fields at

r⊥ = 0 are in vacuum (see Eqs.(21) and (22) of Ref.26). Expressing the second component

from Eq.(A3), the field at an arbitrary depth r⊥ we have

Ψ (r⊥) =
⌊

L[21] (r⊥) (I − Rsp) + L[22] (r⊥) (I + Rsp)
⌋

Ψin, (A4)

and using the notation T (r⊥) = L[21] (r⊥) (I − Rsp) + L[22] (r⊥) (I + Rsp) the solution of the

three dimensional homogeneous wave equation is

Ψcoh (k, r) = T (k⊥, r⊥) Ψin exp
(

ik‖ · r‖
)

. (A5)

APPENDIX B: CALCULATION OF THE Tl (k⊥,k′
⊥) FOURIER INTEGRALS

In this appendix the analytical calculation of the integral (2.12) is given. The 4 × 4

characteristic matrix32,46 of an arbitrary homogeneous multilayered film with layers l =

1, ..., S reads

L = LS · ... · L2 · L1, (B1)

where

Ll =





cosh (kdlFl)
1
x
Fl sinh (kdlFl)

xF−1
l sinh (kdlFl) cosh (kdlFl)



 , (B2)

is the characteristic matrix of the lth homogeneous layer26,32 with dl being the thickness

of the lth layer, x = i sin θ and the 2 × 2 matrix Fl =
√

−I sin2 θ − χl. We note that L

depends on k⊥ = k sin θ, which dependence is not signed in this Appendix. At depth r⊥

measured from the top surface of the multilayer the position vector points into layer j < S.

The interval r⊥ totally covers the first j − 1 layers, therefore the characteristic matrix at

depth r⊥ can be written as

L (r⊥) = Lj (r⊥ − Dj−1) · L(j−1), (B3)

where Dj−1 =
j−1
∑

l=1

dl is the total thickness of layers up to layer j−1 and L(j−1) = Lj−1 · ... ·L1

is the characteristic matrix of layers 1, .., j−1. We note that layer j is only partially covered
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by the depth interval, which is indicated by the argument (r⊥ − Dj−1) in Eq.(B3) instead

of the total thickness dj. It is also important to note that L (r⊥) depends on the thicknesses

and susceptibilities of all the covered layers and furthermore it also depends on the angle of

grazing incidence θ.

Using Eqs.(2.8), (B2) and (B3) the integral (2.12) can be analytically calculated. Indeed,

the two integrals

I+
j =

1√
2π

∫

Zj

dr⊥ exp (−ik′
⊥r⊥) sinh [k (r⊥ − Dj−1) Fj] (B4a)

I−
j =

1√
2π

∫

Zj

dr⊥ exp (−ik′
⊥r⊥) cosh [k (r⊥ − Dj−1) Fj] (B4b)

results

I+
j = αj + βj (B5a)

I−
j = αj − βj, (B5b)

with

αj = exp (−ik′
⊥Dj−1) · (B6a)

{

(kFj − ik′
⊥I)

−1
exp

[

dj

2
(kFj − ik′

⊥I)

]

sinh

[

dj

2
(kFj − ik′

⊥I)

]}

βj = exp (−ik′
⊥Dj−1) · (B6b)

{

(kFj + ik′
⊥I)

−1
exp

[

−dj

2
(kFj + ik′

⊥I)

]

sinh

[

dj

2
(kFj + ik′

⊥I)

]}

.

Finally the required expression reads

Tl (k⊥,k′
⊥) =

[

xF−1
j I+

j L
[11]
(j−1) + I−

j L
[21]
(j−1)

]

(I − Rsp) + (B7)
[

xF−1
j I+

j L
[12]
(j−1) + I−

j L
[22]
(j−1)

]

(I + Rsp) .

Eq.(B8) is physically the Fourier transform of the depth profile function of the coherent field

and we note again the dependence on k⊥.
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144/145 (2002) 45.

16

mailto:deak@rmki.kfki.hu
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B 32 (1985) 6363.

30 S.M. Irkaev, M.A. Andreeva, V.G. Semenov, G.N. Belozerskii and O.V. Grishin, Nucl. Instrum.

Methods B 74 (1993) 545.

31 S.M. Irkaev, M.A. Andreeva, V.G. Semenov, G.N. Beloserskii, and O.V. Grishin, Nucl. Instrum.

Methods B 74 (1993) 554.

32 L. Deák, L. Bottyán, D.L. Nagy and H. Spiering, Phys. Rev. B. 53 (1996) 6158.
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FIG. 1: Specular (a) and off-specular Synchrotron Mössbauer reflectometry curves of
[

57Fe (2.6 nm) /Cr (1.3 nm)
]

20
/MgO antiferromagnetic multilayer(calculated for the 14.4-keV

Mössbauer resonance of 57Fe, with wavelength λ = 0.086 nm). The off-specular intensity is

calculated for three different correlation lengths ξ with the incident angle θin fixed at the anti-

ferromagnetic Bragg position. We have set a 33% majority of the ’+’ type domains in the model.
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FIG. 2: Specular (a) and off-specular Polarized Neutron Reflectometry curves of
[

57Fe (2.6 nm) /Cr (1.3 nm)
]

20
/MgO antiferromagnetic multilayer (with neutron wavelength of

λ = 0.1 nm). The off-specular intensity is calculated for the incident angle θin fixed to the AF

Bragg position. The solid and dashed lines show the calculations for two different incident polar-

izations of neutrons, where notations ’plus’ and ’minus’ indicate the neutron polarizations parallel

and antiparallel to the the magnetization of the ’+’ type domains of the 1st layer, respectively. We

have set a 33% majority of the ’+’ type domains and used ξ = 10 µm correlation length in the

model.
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FIG. 3: Two-dimensional off-specular Synchrotron Mössbauer reflectometry map of
[

57Fe (2.6 nm) /Cr (1.3 nm)
]

20
/MgO antiferromagnetic multilayer around the first AF-Bragg peak

measured in the ’ 2θ − ω scan’ geometry. The intensities are shown on the logarithmic color scale

and are normalized.

FIG. 4: Symulated off-specular Synchrotron Mössbauer reflectometry map of
[

57Fe (2.6 nm) /Cr (1.3 nm)
]

20
/MgO antiferromagnetic multilayer around the first AF-Bragg

peak using the ’2θ − ω scan’ geometry. ξ = 4.6 µm correlation length was used in the model. The

intensities are shown on the logarithmic color scale and are normalized.
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