
Contents

1 Introduction 2

2 General ideas 3
2.1 Theories and sub-theories . 3
2.2 Constants . 4
2.3 Parameters . 4
2.4 Transformation matrices and variables . 5

3 Header of the data file 6

4 Parameter file .par 7

5 Names 8

6 Building correlations 9

7 Helpfiles 11

8 Reading matter for the developer 12
8.1 Routines defining the structure of theory trees . 12

8.1.1 The routine frstr name . 12
8.1.2 The routine thstr name (distribute) . 15
8.1.3 The routine thstr name . 16
8.1.4 Definition of text strcmt() . 17
8.1.5 Assignment of array space by “convarmatpar” 19
8.1.6 Definition of constants thco() . 20
8.1.7 Transformation matrices ntrmt(),variables thvr(),and parameters thpa() . . 21

9 The fork of subroutines 22
9.1 Distribution list of theories . 23

9.1.1 Structure selecting routines . 23
9.2 Structure of the frame subroutine . 25

9.2.1 The first call . 25
9.2.2 Body of the fr routine . 26
9.2.3 Connection to the experimental data . 29
9.2.4 Connection to the plot routine . 29

9.3 Structure of the subroutines of the files th routine.f 30
9.3.1 Body of the th main-routine . 30
9.3.2 Body of the th routine called by get theory 33

9.4 Common blocks of the 3 levels . 34
9.5 Pointers on array fr . 35

1

effi: environment for fitting

H Spiering, Institut für Anorganische Chemie und Analytische Chemie,
Johannes Gutenberg-Universität Mainz

August 10, 2016

1 Introduction

The structure of the theory which can be handled by effi is demonstrated by the structure of a
complicated Mossbauer experiment, which may look as in Fig.1

Figure 1: Not a typical Mossbauer experimental setup.

Each part may require different theories. The source in an emission experiment has different
charge states (2+,3+,even 1+) of the Fe atom and different spin states which may change during
the lifetime of the nucleus. Each situation uses a different theory for the calculation of the emitted
radiation. The polarizer, sample, and analyzer have iron sites of different type and require also
different theories for the calculation of their scattering amplitudes. Even the detector window
typically contains a small amount of iron which in case of low iron concentration in the sample
produces non negligible effects in the Mossbauer spectrum. Not shown in Fig.1 are apertures
collimating the γ-beam from source to detector. The geometry, distances and apertures, effects
the baseline and also line shapes of the Mossbauer spectrum.

A simple program would handle such a problem with an large input file (template) containing a
large number of logical flags and positions for all constants and parameters for the most general
problem to be calculated. A simultaneous fit of several measurements on the same sample under
different conditions (experimental setups) would require large template files difficult to handle
and may become complex. Simultaneous fitting means to correlate parameters of the different
measurement such that an extra template somehow connecting the templates of the different
measurements complicates the set up problem even more.
effi aims at an environment for fitting which simplifies these problems and allows not only for
handling different measurements of the same type or method but also for simultaneously fitting

2

measurements requiring theories even of different structure like Mossbauer, synchrotron and neu-
tron scattering, magnetic susceptibility data, perturbed angular correlation, NMR, etc.
The development of effi [1] started more than 20 years ago from the Mossbauer program called
MOSFUN [2] which already used ideas realized in the Mossbauer program SIRIUS [3]. The struc-
ture was changed step by step in order to get the different parts and routines of the code more
and more independent. To that time memory and frequency of the computers (even main frames)
imposed many restrictions on the code. The programming technique, developed to that time, de-
termined the code even later on when memory and computing time allowed for a lot of ’freedom’
in writing code. The program was used in all stages of development mainly for fitting Mossbauer
spectra and later synchrotron nuclear scattering. On one hand the usage of the program provided
continuous testing on the other hand radical changes were not well accepted. This way the struc-
ture has developed as a compromise between technical requirements and those of users insisting
on structures and patterns of data and parameter files. A generalization of the outcome, the
present effi, which somehow is a dead-end street of an evolution process, would be a difficult task
beyond the authors intention and the time put at his disposal. Therefore it was decided in 2005
to build a new and ’modern’ effi from scratch in the frame of the DYNASYNC project at the
research institute KFKI in Budapest. Modern also means an up-to-date user interface avoiding
typed commands but clicking the mouse. The outcome after 3 years work of Szilard Sajti is now
renamed to FitSuite. The theories and parts of the functionality implemented in effi to that time
were taken over to FitSuite.

FitSuite follows a more general concept without restrictions into which effi developed by its his-
tory. The aim of FitSuite/effi is also to involve a community into the project by contributing
theories. Therefore in case of effi the distribution follows a procedure which leaves to the user
to compile the source code of the theories. The first contact to effi is the source code written
mainly in fortran77 and later adapted to fortran90, the plot routines for X-Window in C language.
Only the effi part is hidden by the binary code and collected in an archive (static library named
areffi.a). At right time in the future (to the authors decision) this source code will be also available.

In order to be able to contribute, the interface to ’effi’ has to be described. For long time such a
description had not been attempted because requirements of theories like synchrotron stroboscopic
scattering on multilayers lead again and again to changes and extensions. The first stage of the
description of the interface was written in order to give Szilard Sajti an insight of effi when he
started. FitSuite is written in C++, which educates the programmer to think of quite different
structures than realized in effi. ’Old’ programmer grown up with Fortran will have problems to
get familiar with FitSuite while young researchers educated with C++ will prefer it. Users may
be only interested in the user interface and prefer a graphical user interface GUI, which to the
authors opinion is ineffective as compared to a well organized command language.
The interface has now been described to some extent: Reading matter for developers 8.

2 General ideas

2.1 Theories and sub-theories

The theory for a measurement has a general part and calls subroutines which may be also called
for other type of experiments. In the example of a Mossbauer experiment of Fig.1 a global (frame)
theory T handles the ”properties” of source, ..., detector calculated in ’sub-theories’.

3

http://www.dynasync.kfki.hu
http://www.rmki.kfki.hu
http://www.fs.kfki.hu

The frame theory specifies already constants and parameters especially if the geometry of the
experiment is taken into account. Sub-theories (subroutines) Ti are called for each nuclear site.
Source: Choose the number of sites ns

In a loop over ns sites one of the sub-theories
Ti offered by effi have to be chosen.

The polarizer...detector play similar roles, they are absorbers. The number of absorbers are chosen
as a layer number and for each layer the procedure is the same as for the source.
These sub-theories may call further subroutines which are selected when defining the sub-theory
Ti. A typical example is the calculation of the absorption cross section of the nucleus by the
nuclear Spin-Hamiltonian. The nuclear Spin-Hamiltonian (theory Ti) depends on hyperfine fields
Vik, Hi in the sample.
The following list gives three different choices for the parameters to be fitted:

• Ti=nuclear Spin-Hamiltonian (Vik, Hi)
Vik, Hi are parameters inserted in the parameter list.

• Ti1=electronik Spin-Hamiltonian (parameter D,E) from which the magnetic hyperfine field
Hi is calculated.
Theory Ti calls theory Ti1and D,E,Hext, Vik are inserted in the parameter list.

• Ti2=ligand field Hamiltonian (parameter Ei) calculates Hi and Vik.
Theory Ti1 calls theory Ti2 and Ei, Hext are inserted in the parameter list.

This way any theory calling Ti automatically adopts all sub-theories Ti1, Ti2, ... (this example is
not implemented yet)

2.2 Constants

Constants cannot be fitted but their values can be changed. effi lists the constants and allows to
alter their values. However, there are constants which describe properties of the data sets, like the
channel number or the transducer mode (sinus/linear in case of a Mossbauer experiment), which
are typically never changed. Those constants should not lengthen the list. Therefore two types of
constants are handled:
Constants which value are read from the header of the data file and later on are not directly
accessible in the program (missing in the list of the constants) and constants in the constant list.
The developer decides for the type of the constant. effi leaves the option to the user to read from
the data file and not to include in the list of constants.
Since the theory can be simulated without having data, constants expected from the header of
the data file get default values defined by the developer. effi provides to alter them when calling
the theory.

2.3 Parameters

Parameters are fitted that means changed by effi at each iteration step. They can be ex-
cluded/included from a fit (fix/free) by the user. There are also parameters which are never
changed if they have been precisely measured. Typical example is the background fraction of a
Mossbauer spectrum or the Lamb Mossbauer factor of the source. Therefore there are also two
types of parameters. The developer can provide the option ” to be read from the header of the

4

data file” in order to shorten the list of parameters.
The developer may give another option for parameters, such that the user has the choice to in-
clude them in the list or strike them off completely. An example is a Hamiltonian for hyperfine
interaction providing parameters of the electric field gradient and magnetic field. If one of the
fields is zero all the time it is useful to ban it from the parameter list. In that case the parameters
are put to zero by effi independent of their default value.

2.4 Transformation matrices and variables

The transformation matrices already introduced 30 years ago in the Mossbauer fit program SIR-
IUS are the essential part of effi. These matrices enable to introduce correlations, that means
reducing fit parameters by the user (and not by programming), a necessary condition for arranging
simultaneous fits of several data sets.
If for example data sets fitted together measured with different external conditions (like magnetic
fields), the variables, which are independent of the external field can be correlated, this way re-
ducing the number of independent fit parameters.

It is useful to differentiate between the quantities seen by the fit routines, which are parameters,
and the quantities the theories depend on, here called variables and constants.
The parameters or a subset of them are fitted. They are mapped onto variables by a transformation
matrix. Three simple examples are shown in the tables 2.1, 2.2, and 2.3.

Table 2.1: Three parameters pi are mapped onto three variables vi by a unit matrix.
pi pi+1 pi+2

vi 1 0 0
vi+1 0 1 0
vi+2 0 0 1

Table 2.2: Two parameters, the quadrupole splitting ∆Eq and the Isomer-shift IS, are mapped
onto the line positions position1,2.

∆Eq IS
position1 −1

2
1

position2
1

2
1

Table 2.3: Two parameters pi are mapped onto three variables vi by a 3x2 matrix.
pi pi+1

vi 1 0
vi+1 0 1
vi+2 0 1

The developer of the theory defines the name of transformation matrices and parameters and
variables. effi allows to redefine the whole set of transformation matrices of all theories called for a

5

simultaneous fit. An essential task when programming effi was the handling of the transformation
matrices according to the following commands:

• mp :merge two parameters (pi,pk)

• dp :de-merge a parameter pi → pi,pi+1

• ip :insert product of two parameters pi*pk

• cb :combine two matrices i,k

• sm :split a matrix in two matrices

• ch :change of names and values

• pv :permute sequence of parameters and variables

• pm :permute the order of matrices in the list

• rm :remove matrices of zero dimensions

• cc :correlate constants

The product of two parameters pi ∗ pk can also be added and mapped onto variables, which
means an extension of the linear form to second order terms. This way ratios of parameters can
be fit parameters.
Identifying p2 with y and p1/p2 with x in table 2.4, then we have vi = pi, but x = p1/p2 and

Table 2.4: Two parameters x,y and their product x*y mapped onto two variables
x y x ∗ y

v1 0 0 1
v2 0 1 0

y = p2 as fit parameters.

Here and everywhere the aim has been pursued to have the parameter and constant list as short as
possible. Reading two theories with constants or parameters of the same name, they can be marked
by a # and then will be correlated automatically and appear only once in the constant/parameter
list (see 6).

3 Header of the data file

effi allows for 6 lines of information about the data. The first line is just an arbitrary comment.
The second line starts with the fortran format of the data followed by letters/abbreviations which
tell about the meaning of the columns of the data (x,y,dx,dy - z,dz not yet implemented). Stan-
dard Mossbauer spectra have only y-values (x is the channel number). If there is only one type
(say y), then the data can be written in several columns defined by the Fortran format.
The third line needs the number of data to read. The name of this number is defined by the
theory, in case of the Mossbauer routine the name is nu channels, typically nu channels=1024.
effi does not look for the EOF. This line is inspected for other names defining values. All names

6

are defined by the theory for which data are read in by effi. Again in case of Mossbauer with
standard geometry effi looks for the following names:
channels vmax, drive mode, f source, bg fraction, geo, v max, channel v0, vmax2, vphase2, vmax3,
vphase3
If cosine smearing is taken into account further constants/parameters can be read from the data
file:
N om samp, sc-aperture, Dabsorber,sc-absorber

The meaning of these constants and parameters are described in the help files. Actually it is
the users decision, which of this values are expected from effi to be found on the data file, with
one exception, namely the number of data, here nu channels. If a value is found, which was not
expected to be there, effi writes a warning:
*warning** v max not accepted
*warning** channel v0 not accepted
Up to 4 lines are analyzed for definitions of values.

The interpretation of the header requires a theory. The information contained in the header is
typical knowledge about experimental conditions (like the bg fraction of the Mossbauer gamma
spectrum) which belong to each data set and this way is automatically taken into account by the
theory.
If no data are read and only theoretical curves are simulated, the default values from the frstr ...f90
files are taken. They are shown in the printed list calling the command {te 1} where the values
can be interactively altered.

4 Parameter file .par

The parameter file .par stores all information of a project, the theories of all data sets, the variables
and constants including their positions in the common blocks, a list of matrices, the transformation
matrices, and the parameters including their boundaries and step-width for numerical differenti-
ation.
The name .par is misleading as the list of parameters is the smaller part of this file. To the time
of MOSFUN this name was justified. Now .project would be more adequate, but a change to
another extension would require a change of the default .par everywhere in effi.
When reading a .par file effi looks into the object code of the Fortran files frstr...f90 and thstr...f90
for further information of the announced theories. As the theories are recognized by name, the
complete string of the names have to match. An extra blank or letter destroys the .par file and
leads to error messages for which not in all cases information is found in the help file effi.help.

Most of the content of the .par file is self explaining. Few remarks shall help to get an idea of the
structure.
The difference between variables and parameters is obvious. There is a parameter list at the end
of the file and their names appear only there. The name variables appear two times, first together
with the theory name they belong to and the second time in the left column of the transformation
matrices. Variables have no values assigned to, effi does this by the transformation matrix and
the parameter values. The number in brackets are the position of the variable in the common
block. The type of common block is given by the device level the theory is called from. The device
levels are indicated by horizontally broken lines in the parameter file:

7

————————————— ——————————————
level 0 global
/common/avstrf/

device(i)=k ——————– —————————————
level 1 device
/common/avfr1trf/

module=lm —————————————
level 2 module
/common/avfr2trf/

component=jn ———————
level 3 component
/common/avsstrf/

The constants are printed also with their position (in brackets) in the common block (same struc-
ture but instead of av.. they are named ac..) and in addition their actual value. Constants do not
have a transformation matrix, a fact which lead to another solution for setting up correlations.
Inspection of one of the examples (effi/project/classic Mossbauer/biotit/blaum19/blaum19.par)
the hash ’#’ as the first character of the names of constants (indicating its 1 to 1 correlation to
other constants, is found many times. In this example only 20 constants are listed by the com-
mand {co a} instead of more then 100.
Constants from the handbook automatically have got the #. The other # are added by the user.

Automatic correlation of parameters is also possible if reading several sets by the command {rs}.
The first character of the parameter has been changed in the .par file by an editor to #. Reading
several times the same set - the case of data sets of the same type of experiment but different
conditions (temperature, external field, ...) - the parameters are correlated and the transformation
matrices are build. If .par files of different type of experiments are used, then the user has to comply
with the conditions of equal name of the parameters and the transformation matrix they belong
to (see section Building correlations 6).

5 Names

Names are not only names but carry also some information. The information is separated from
the freely chosen part by underscores. The number of underscores varies, it is adjusted such a way
that a list of names is well aligned. The length of the string of names is 24 characters. Compared
with length of names of MOSFUN with 6 characters for the LSI version, 12 character for the TOS
operating system (ATARI) and VMS system (DEC alpha) the length of 24 characters looked very
comfortable. Now there is the wish to double the length, but it means a pretty effort with the
chance of many mistakes in the code. Since the names have these first characters for structural
information followed by underscores there are effectively only 16 characters left for the name.
The length of names of transformation matrices is just 16 characters.

cc name,...
The first two characters are defined by the theory: (cc=sp) for spectrum (Mossbauer), (cc=sc) for
scatterer (synchrotron radiation, neutron), ... The underscore is a separator from the name.The
two characters have been introduced to suppress combinations of transformation matrices of equal
name which can be automatically done by effi. There is, for example, the matrix sc isomer shift

8

and ab isomer shift for source and absorber. Without the prefix the parameters belonging to
the two matrices isomer shift (the same name for absorber and source given by the subroutine
thstr ...f90) are in the one matrix: isomer shift. With the prefix 2+1 characters, only 15 characters
are left for the name (one of the bottlenecks of effi).

The names of parameters start with the set number (≤ 32) followed by the same first two characters
if the parameters are global.
The set numbers may be replaced by # if the parameter correlates som variables.
At the device level, two characters CC naming the device are offered (the user may choose other
characters) by the structure routines frstr ...f90: (sc) for source and (ab) for absorber (Mossbauer).

1CC name 32CC name

If theories are called by subroutine get theory() at module level, two characters of the name of
the module (an-alyser, po-larizer, etc) are added.

1aban name (set 1, device absorber, module analyser)

The components of all devices are consecutively numbered, one character for the name (s or S for
site) and one digit 1-9,A,...,Z,a,...z...

1scpos1 name, (set 1, device scatterer, module polarizer, site 1)
32scPOSz name, (set32, device scatterer, module polarizer, site S 73)

Names of constants taken from the handbook start with the # (see section 4): #hdbik name

6 Building correlations

Starting with one set correlations are build up by the command {tr} and the commands therein
(see 2.4). Transformation matrices as introduced by the set up of a theory model (command {th})
belong to a module/component. For example, the choice of Euler angles introduces a 3x3 unit
matrix mapping the parameter (phi,theta,psi) on to the variables (usually having the same name).
Correlations between variables inside such a matrix by the command {tr mp} (merge parameter)
reduces the number of parameters, such that the number of rows is larger than the number of
columns.
By the command {cb} matrices belonging to different modules/components can be build and this
way correlations between variables of different modules/components are possible.

The main concern are correlations between variables of different sets which may even belong to
different theories. Reading a second (or more) set (command {rs}) the matrices can be combined
({cb}) and then each 2 parameters of the same type merged to 1 parameter ({mp}. If the name of
matrix of the second set is the same the command {cb} is automatically executed. effi facilitates
merging of parameters automatically. The parameters in the .par file (see 4) which are tagged
with a ’#’ (edited) are merged with the parameters of the same name inside the matrix.
Constants correlated by the command {tr cc} can also be tagged. The constants which are by
definition the same for each set since they are taken frm the handbook are always tagged with a ’#’.

However, a complex correlation scheme involving many variables of modules and components can-

9

not be easily extended to further sets. The management of the indices of the matrix elements
when combining different type of matrices of diferent sets turned out to be too prone to errors.

What does effi offer in such a situation?

If the total number of transformation matrices of two .par files is less the maximal number maxco
(64 at present) the command {un} could be used to unify the two .par files. Afterwards matrices
can be combined. The command { tr cb} offers the further command to combine all matrices of
the same name. This command has been introduced in order to combine even .par files which
already consists of several sets.
The command {un} may be used instead of {rs}. {un} combines two .par files in a simple way
and effi writes out the unified file. The unified file is not accessible inside effi (automatic {qu}
command). It has to be read in by the command {rs} (at this step it is recognized if the number
maxco is exceeded). {rs} follows now all automatic correlation rules which may lead to problems.

Transformation matrices with correlations between variables belonging to the same component or
different components with a shape shown in table 6.1 can be handled, whereas a matrix of the

Table 6.1: Two parameters pi are mapped onto three variables vki belonging to different components

k and k+1.
pi pi+1

vki a 0

vk+1

i+1 b 0

vk+2

i+2 0 1

type of table 6.2 is misunderstood using the command {rs} - effi introduces additional parameters
and other nonsense.

Table 6.2: Two parameters pi are mapped onto three variables vki belonging to different components

k and k+1.
pi pi+1

vki a 0

vk+1

i+1
b c

vk+2

i+2 0 1

Table 6.3: Two parameters x,y and their product x*y mapped onto two variables
x y x ∗ y

v1 0 0 1
v2 0 1 0

There is a specialty for matrices of more parameter than variables (table 6.3) which are build by
the command {ip} introducing a product of two parameters (see section 2 the matrix 2.4). This

10

matrix in this shape will not be properly build in. The two zero in the first column cause the next
two ’parameter’ y and x ∗ y to be omitted.

The matrix will be accepted if it has the following shape of table 6.4. There are two values

Table 6.4: Two parameters x,y and their product x*y mapped onto two variables. This shape is
correctly read in by the command {rs}

x y x ∗ y
v1 a 0 1
v2 0 1 b

different from zero in the last row. If c=0 the product x ∗ y as ’parameter’ will be missing in the
transformation matrix and the parameters listing as well. After building up the total number of
sets the transformation matrix elements are conveniently changed directly in the .par file by an
editor (putting a,b back to 0).

7 Helpfiles

Any time effi is waiting for input the user may type {he} and should get a help. If there is no
helpfile found by effi the user get the information of the name of the helpfile expected. The name
is constructed from the name of the theory assigned to the string ’property’. If the file is created
but still empty effi tells the user which entry is expected for information. This entry may be
copied to the file. All lines following this entry are written to the terminal by the {he} command.
Inside the list of constants/parameters help is invoked by {he pi},{he ci}.

effi carries an integer ’info’ to the output of subroutines. If info > 0 a message of maximal 6 lines
is printed. Typically it is an error message inserted in the program by the developer to control if
constants or parameter have been chosen by the user out of some range. The first string points to
an entry in an user defined help file. The next line contains text which is printed on the output
screen and the last must be empty (recognition of the end of infotext strings).
info=1
infotext(1)=’theory/mossbauer/topic/subtopic’
infotext(2)=’message line1’
infotext(3)=’message line2’
...
infotext(8)=’ ’

The number info is also printed. The developer may make use of this integer number (print some
value like channel number etc.).

11

8 Reading matter for the developer

8.1 Routines defining the structure of theory trees

The structure of a theory tree is defined by one subroutine
frstr name(l nfrtheo,lstruct1,lstruct2,cmch,nhelpentry)

and an unlimited number of subroutines
thstr name(l jth,cmch,nhelpentry).

Available names are mossbauer(frstr mossbauer()), frstr stroboscopy(), frstr synchrotron(), frstr neutron(),
and frstr syndoubleSC().
The subroutines named thstr name(l jth,cmch,nhelpentry)
name: thstr 22indexrefl(), thstr 22indexreflnosampl(), thstr 22indextrm() are collected into files
named str method.f90 where str stands for structure and for this example method= 22index.

The integer l nfrtheo is an input parameter which is defined by the selection of a theory from a list
defined in a thstr name(l jth,cmch,nhelpentry) with a length of l jth (output parameter). The loop
numbers lstruct1 and lstruct2 and the string ’cmch’ are input parameters.The string ’nhelpentry’
is an output parameter.

The routine frstr name() defines a type of theory like Mossbauer, Neutron scattering, etc and may
define branches to theories like Mossbauer transmission, Mossbauer reemission, etc, which in turn
may have again branches defined by routines thstr name().

The number lstruct1 counts the device (maximum number of types is 3 - Mossbauer:source, scat-
terer, detector) and lstruct2 up to 192 modules (in case of scatterer the modules are typically
layers) of the device.
By the input string cmch=’name’, ’hdbk’ effi looks for the name of the theory calling the sub-
routine getfrstring(). The output string ’nhelpentry’ is constructed by effi and used to trace the
theory tree in order to find the helpfile for the theory with its constants and variables.
At each level defined by lstruct1 (devices) and lstruct2 (modules) constants (also from the hand-
book: cmch=’hdbk’) parameters and variables are defined. The menu of effi for the selection of
theories is patterned according to the specialties of the theory in question. The text string needed
for the menue are also defined for each level.

To each subroutine frstr name() corresponds a frame theory
subroutine fr name(cmch,iss,info) 9.2

which may cover several cases of similar structures (Mossbauer transmission, Mossbauer reemis-
sion, etc). As the different cases may require different constants, variables, parameters and text
strings the number l nfrtheo counts the cases. A name for each case is defined in fr name(cmch,iss,info).
So the fork of cases for the two routines fr name() and frstr name() correspond to each other.

8.1.1 The routine frstr name

The structure of the code is exemplified for the Mossbauer routine with only a single case:
l nfrtheo=1.

subroutine frstr name(l nfrtheo,lstruct1, lstruct2,cmch,nhelpentry)
use glbconst, only: maxn, etc’
use comthe, only: array fr,theoryname,thfrcase,ifrsto

12

The helpfile Mossbauer spectrum.help is expected by effi. The name of this theory and three
device names are defined.

if(cmch.eq.’name’) then
nhelpentry =’Mossbauer spectrum’
ntheory(1)=’Mossbauer radioactive source’

n device=3
ndevice(1)=’source’
ndevice(2)=’absorber/scatterer’
ndevice(3)=’detector’
return
end if

The input string ’cmch’ has two further values: hdbk and empt. In both cases the 8 characters of
chth are defined

chth=’fr’//nhelpentry(1:6)
which are added to the strings defining the constants, variables, correlation matrices and param-
eters. The information contained in chth is needed for the entry points in helpfiles.

lstruct1 runs from 0 to mstruct1 defined by the user (e.g. answering ’number of incoherent parts
of the mosaic absorber’). The entry number device(lstruct1=0) jumps to the section of global
definitions. The entries number device(lstruct1=1,2,..) to the sections for the devices.
The standard case assumes that each device is called only once. There may be the necessity to
call a device several times (e.g. incoherent parts of the absorber/scatterer). The default values of
the strings ’strcmt()’ shown in Tab. 8.1.4 in section 8.1.4 prompts effi to ask for ’mdevf’ (device
factor) the number of devices of number ’m device’ (device number ’m device’ > 0 is a multiple
device), defined by the string ’strcmt()’.

if(lstruct1.eq.0)then

The common blocks common/acstrf/ and common/avstrf/ for constants and variables are defined.

effi first asks for handbook constants. If no handbook constants are included at this point the
string ’nstruct’ has to be filled by blanks (nstruct=’ ’), otherwise the string contains the name of
the handbook, the list entries (list=1,3,...) taken from the handbook and the string chth. In case
of nucleus.hdb the entry 1 looks as
list1:thickness weight (transmission)
uthick w *f factor* mg(Fe)/cm**2 =teff (nat. abundance of Fe)
#sigma 0=2.56*10**(-18)cm**2, abundance=0.0214,atomic weight=55.85
Fe uthick w = 0.589 1 (name, value, position in the common block common/acstrf/)

if(cmch.eq.’hdbk’) then
nstruct=’handbook=nucleus.hdb list=1 chth=’//chth
return
end if

call convarmatpar(’coll’,jc,jv,jm,jp,chth) (coll:= collection of the the priviously defined con-
stants

13

(jc), matrices (jm), parameters (jp) and variables (jv).
String chth defines the entry for the help command

In between the routines convarmatpar(’coll’,...) and convarmatpar(cova,...) the strings
strcmt() containing comments to the structure and default values of the number

of devices and names of the set, modules and components 8.1.4.
thco() name of constants, position in the common block and default value 8.1.6
ntrmt() name and dimension of a transformation matrix 8.1.7
ctrmt() description of the transformation matrix 8.1.7
thpa() name of parameter and its default value 8.1.7
thvr() name of variables, position in the common block and default value 8.1.7
are defined. A detailed description of the strings are given later.

call convarmatpar(cova,jc,jv,jm,jp,chth) (cova:=’nnmm’, nn number of constants,
mm number of variables. The definition of the
numbers by cova is an option. An arbitary string
(’cova’ different from ’coll’) cedes the counting to effi)

return
end if ! of lstruct1.eq.0

goto(100,200,300)number device(lstruct1)
The integer function number device(lstruct1) calculates the device number (1, 2, 3). if no device
is called more than once, the device number is just lstruct1.
The structure for the 3 branch addresses (100,200,300) of the devices (here source, absorber,
detector) is the same.
100 continue

Definition of the content of common/acfr1trf/ and common/avfr1trf/ of device 1 (source)

if(cmch.eq.’hdbk’) then (effi asks for handbook)
nstruct=’ ’ (no constant is asked for)
return

end if
if(lstruct2.gt.0) goto 110 (after the call for handbook)

call convarmatpar(’coll’,jc,jv,jm,jp,chth)
...
call convarmatpar(cova,jc,jv,jm,jp,chth)
return

110 continue
modules (layers) of device source common/acfr2trf/ and common/avfr2trf/

if(cmch.eq.’hdbk’) then
nstruct=’ ’
return

end if
call convarmatpar(’coll’,jc,jv,jm,jp,chth)
...

14

call convarmatpar(cova,jc,jv,jm,jp,chth)
return

200 continue
Definition of the content of common/acfr2trf/ and common/avfr2trf/ of device 2 (absorber/scatterer)

if(cmch.eq.’hdbk’) then nstruct=’ return
end if
if(lstruct2.gt.0) goto 210 (after the call for handbook)

call convarmatpar(’coll’,jc,jv,jm,jp,chth)
...
call convarmatpar(cova,jc,jv,jm,jp,chth)
return

210 continue
modules (layers) of device absorber common/acfr2trf/ and common/avfr2trf/
...
...
return

300 continue
Definition of the content of common/acfr1trf/ and common/avfr1trf/ of device 3 (detector)
...
...
return

300 continue

At each level (100-300) and also at the global level (:lstruct1=0) effi can call for thstr name() rou-
tine, which itself introduces further constants and variables at that level and can call for another
thstr name() routine down to 8 levels.

8.1.2 The routine thstr name (distribute)

The present structure of the routine thstr mossbauer() makes 6 different child routines (or branch
addresses) available for the routine named ’Mossbauer radioactive source’. This name was de-
fined above for frstr mossbauer(), the parent routine. effi looks according to the distribution list
9.1 into all thstr name() for the selected parent theory (name) by the function name eq ntheo()
(if(name eq ntheo(mthparent))l jth=mthchild).

subroutine thstr mossbauer(l jth,cmch,nhelpentry)
use comstr,only: nameth,ntheory,nstruct,thco,ntrmt,ctrmt,thpa,thvr

if(cmch.eq.’name’)then
nhelpentry=’Mossbauer radioactive source (distribute)’
nameth(1) =’Mossbauer transmission vA’
nameth(2) =’Mossbauer transmission vB’
nameth(5) =’Mossbauer reemission vA’
nameth(6) =’Mossbauer reemission vB’
nameth(3) =’Mossbauer transmission vC’

15

nameth(4) =’Mossbauer transmission vD’
return

else if(cmch.eq.’theo’) then
ntheory(1)=’Mossbauer radioactive source’
if(name eq ntheo(1))l jth=6 ! mthparent=1,mthchild=6
return

end if

chth=’th’//nhelpentry(1:6)

The definition of constants, variables, parameters and matrices follows the same structure as in the
frstr name() routines. With the number l jth of the child routines branch addresses are defined
for individual definitions. Care must be taken for the position of the constants and variables in
the common blocks.

if(cmch.eq.’hdbk’) then
nstruct=’ ’
return

end if
call convarmatpar(’coll’,jc,jv,jm,jp,chth)
...
call convarmatpar(cova,jc,jv,jm,jp,chth)
return

8.1.3 The routine thstr name

The present structure of the routine thstr 22indexfmoss() makes 1 child routine nameth(1) avail-
able for 3 parent routines ntheory(1-3). effi looks according to the distribution list 9.1 into all
thstr name() for the selected parent theory (name) by the function name eq ntheo()
(if(name eq ntheo(mthparent))l jth=mthchild).

subroutine thstr 22indexfmoss(l jth,cmch,nhelpentry)
if(cmch.eq.’name’)then
nhelpentry=’2x2 refraction index f (sad)’

! names for child theories , mthchild=1 ¡= max nth
nameth(1)=’2x2 refraction index (static,f anisotrop,sad)’
namepg(1)=’2x2 ref index static sad plrs,1 ’
return
else if(cmch.eq.’theo’) then
! look for ntheory,mthparent=3,mthchild=1
ntheory(1)=’Mossbauer transmission vB 3b’
ntheory(2)=’Mossbauer reemission vB 3’
ntheory(3)=’Mossbauer transmission vC 3b’
if(name eq ntheo(3))l jth=1
return
end if

16

chth=’th’//nhelpentry(1:6)

if(cmch.eq.’hdbk’) then
nstruct=’handbook=nucleus.hdb list=3 chth=’//chth
return
end if

The definition of constants, variables, parameters and matrices follows the same structure as in the
frstr name() routines. With the number l jth of the child routines branch addresses are defined.

call convarmatpar(’coll’,jc,jv,jm,jp,chth)
...
...
call convarmatpar(cova,jc,jv,jm,jp,chth)
return

The string namepg(i) comprises three informations. The first substring ’2x2 ref index static sad’
is the name of the theory to be called. The theory is recognised by this name declared in the
subroutine by the string variable:theoryname (*64 of 64 byte). The second string of 4 characters
is passed to the theories by the common block ’common/struct/’ (see sections 9.2, 9.3.1 and 9.5).
Here it says ’plrs’ - a theory including polarisation. The 3rd string is a number which differentiates
between cases (here case=1) of the theory.
The parent routines are extended by two numbers which indicate the level (device, module, compo-
nent) and the device number the theory can be called from. Here the theory ’2x2 ref index static sad’
can be called from level 3= component (site theory) and from all devices of the parent theory
’Mossbauer reemission vB’, from devices 1 (source) and 2(absorber/scatterer) of the two trans-
mission theories. b stand for 1 or 2. The definitions are:

nameth as ij i=level, j=device
i=1 device-, =2 module-, =3 component-level
j=1,2,3 (maximum 3 different devices)

ntheory(k) selects sub theories by name
if ntheory(k)=name nameth as for all i,j
ntheory(k)=name l nameth as level i=l of all devices
ntheory(k)=name lm nameth as for i=l j=m
ntheory(k)=name XY X,Y=a,b,c,d

a=all, b=1 and 2, c=1 and 3 , d=2 and 3
ntheory(k=name) aa =:ntheory(k)
ntheory(k)=name ia =:ntheory(k) i
ntheory(k)=name bd theory nameth as is offered for

level 1 and 2 of device 2 and 3

Table 8.1: The definitions of the two characters added to the name of the thories

8.1.4 Definition of text strcmt()

The global structure comment has 5 lines (strcmt(i), i=1,2,...,5). The first one (strcmt(1)) has 6
possibilities shown in the table 8.1.4. The comment of ≤ 24 characters is used as a header in the

17

set up procedure. n set=ab or n set=[ab] provides the name of the spectrum/measurement. If it
is enclosed in brackets, the effi offers an alteration of the two letters.
The number is the number of devices used in the theory. If the number is bracketed the theory
is written such a way, that number of devices 1 ≤ m device ≤ 3 can be changed. There are two
situations:
- One or two devices are included. There is the choice to include the following two devices or one
device, which are offered by the theory. (Mossbauer case: source and absorber are device 1and 2,
respectively and the detector as third device can be included).
- A device type from the list of devices defined can be multiply included in the theory. (Spectra
of incoherent parts of the absorber are added. Each part represents a device which may have
modules (layers) and components (sites)).

strcmt(1)= ’comment set name n devices ’
’comment n set=ab n ’
’comment n set=ab [n] ’
’comment n set=[ab] n ’
’comment n set=[ab] [n] ’
’comment n set=[ab] [n] m device’

strcmt(2)= ’name for the set’
strcmt(3)= ’text dependent on m device/empty space’
strcmt(4)= ’effi/name/set’
strcmt(5)= ’theory/’//chth//’/helpfile entry’

Table 8.2: The strings strcmt() inside the section of global definitions. The first two cases are not
different, they have the same behaviour. The third one allows for a choice of the short name. The
next offers also to increse the number of devices. The last one m device ≤ n offers to introduce
≤ maxfr1− n devices of type m device.

Modules(layers) are defined for each device (entry points 100,200,300 in subroutine frstr ***(l nfrtheo,
lstruct1,lstruct2,cmch,nhelpentry)). the comment may designate the type of device, 2 characters
for the name of the device, a string for the construction of default names for the modules, the
number (default number) of modules and its lower limit (ll ≥ 1).

strcmt(1)= ’comment device name module name n-modules l-limit’
’comment n device=[ab] li [n] ll’
’comment n device=[ab] mij=xx;yy [n] ll’
’comment n device=[ab] mijk=xx;yy;zz [n] ll’

strcmt(2)= ’name for the module’
strcmt(3)= ’number of modules of the device’
strcmt(4)= ’distribution of parameters at components of the module’
strcmt(5)= ’theory/’//chth//’/helpfile entry’

Table 8.3: The strings strcmt() for the definitions of the device name and the number and default
names of its modules.

18

If the device has more than 1 module a name of the module (2 characters) is added to the name
of the parameters and constants. The rules for the construction of default names for the modules
(column 4) are as follows. If it is empty, the default is also empty. mi: The names are m1,m2,...;
mij=xx;yy: xx, m2,m3,...,yy; mijk=xx;yy;zz: xx,y1,y2,..,zz or for 3 modules xx, yy, zz.
For each module of each device components are defined (entry points 110,210,310 in subroutine
frstr ***(l nfrtheo,lstruct1,lstruct2,cmch,nhelpentry). These entry points are reached from x00:
if(lstruct2.gt.0) goto x10).
The comment may designate the type of device (according to lstruct1), n cmpt defines the one
character name of the component of the actual module (lstruct2>0 counts the modules) and actual
device, [n] the number of components, ll the lower limit of that number. ll=0 is also allowed (e.g.
a layer may be present only by its electronic susceptibility without nuclear scattering centers.)

strcmt(1)= ’comment name of component n-components l-limit’
’comment n cmpt=[a] [n] ll’

strcmt(2)= ’one letter for name of the site’
strcmt(3)= ’number of inequivalent sites of the layer’
strcmt(4)= ’distribution of parameters of site number’
strcmt(5)= ’theory/’//chth//’/helpfile entry’

Table 8.4: The strings strcmt() for the definitions of the name of components (sites) and the
number of components belonging to a module (sites inside a layer). Each component may depent
on a distribution of up to 3 parameters (independently distributed).

The queries for distribution of parameters belonging to a component (sites) are on two levels. On
the device level for each module (layer) a query (y/n): distribution of parameters at sites of the
layer and on the module (layer) level for each site a (y/n) query have to be answered. In a last
step (fixed text-string) the number of distributed parameter sets is requested.

8.1.5 Assignment of array space by “convarmatpar”

The routine convarmatpar() is called 2 times in the structure routines strf90, befor the defini-
tion of constants, ..., parameters with the fix string “coll” and afterwords with the variable string
cova (co nstants and va-riables).

call convarmatpar(’coll’,jc,jv,jm,jp,chth)

thco(jc+3)=’nu channels i pos=4 from data=y 1024 ’
! channel number of the spectrum
jc=jc+1

ntrmt(jm+1)=’baseline matrix=(1,1) include=y ’
ctrmt(jm+1)=’(1) parameter base line ’
thpa(jp+1)=’base 100000.0 0.0 0.0 1000.0’
thvr(jv+1)=’base 2 , 1 ’
jm=jm+1
jp=jp+1
jv=jv+1

19

...

...
call convarmatpar(cova,jc,jv,jm,jp,chth)
return

The string cova may content up to two integers (’1205’, ’12 5’, ’12va’,...,’co 5’, etc) defining the
number of constants jc (first 2) and/or the number of variables jv (second 2). The number of ma-
trices jm and parameters jp are numbers witch are not fixed and do not concern the requirement
of array space.
With the first call of the routine convarmatpar(’coll’,...) the numbers of jc,...,jv from all structure
routines strf90 already called by effi building the tree of routines belonging to the selected
theory (model) are collected.
effi registers the increase of the integers jc,...,jv and adds to the list of the common blocks by
convarmatpar(cova,...). If the string cova contains no integers, effi does not alter the list jc,...,jv.
Smaller integers of cova=’jcjv’ are ignored (a warning is printed). Larger integers are excepted.
Larger values may be usefull if extra space on the common block is needed by a special organiza-
tion of the theory.
Example: A variable defined in common/avfr1trf/...var.. is needed in common/avfr2trf/ which
is available for the components (sites in Mossbauer). Routine called by the components (and
routine further called by the calling routine etc) get their constants and variables from common
blocks /acmap/ and /avmap/ the values of which are taken from common/avfr2trf/....varcom,....
beginning with variable varcom(n) at position n. This position n can be shifted to n+1 and the
variable var is written on n to the block common/avfr2trf/....var(n),varcom(n+1). This way var
defined for all components of a module gets available for all components.

The better way is of course the declaration of variable var for all components and afterwards
correlate all.

8.1.6 Definition of constants thco()

The subroutine convarmatpar(’coll’,jc,jv,jm,jp,chth) provides the index jc. The next constants to
be defined is jc+1, jc+2,... At the end jc has to be incremented to the present value.
The string contains the name(≤ 16 characters), the relative position added to the positions in the
common block, an option how to handle this constant, and the default value x.

thco(jc+1)= ’name i pos=m include=[y] x’
’name i pos=m include=[n] x’
’name i pos=m include=y x’
’name i pos=m include=n x’

’name i pos=m from data=[y] x’
’name i pos=m from data=[n] x’
’name i pos=m from data=y x’
’name i pos=m from data=n x’

Table 8.5: The string thco() for the definition of constants

20

The options in brackets appear in the set up of the theory. The bracketed character is the default
one.
The option ’include’ may always be answered =y. In order to have not constants in the list, which
value is zero and which are never altered for the special problem, the answer =n puts the constant
to zero and excludes it from any printout list. There appear to be many constants of that type
when selecting specialized theories. The option ’from data=n’ is equivalent to ’include=y’.

The option ’from data’ is useful for constants which are defined by the data set, e.g. the channel
number= number of data points, or other characteristics like the drive mode. If no data file is
read or the constant is not defined in the header of data file the default value is taken. In case
of no data file the constant appears in the list shown by the command test:{te} otherwise the
command read data:{rd} leads to the subcommand {header of data} which shows the list.

8.1.7 Transformation matrices ntrmt(),
variables thvr(),and parameters thpa()

As for the constants 8.1.6 the subroutine convarmatpar(’coll’,jc,jv,jm,jp,chth) provides the indices
jv,jm,jp for the variables,matrices, and parameters. The indices have to be incremented to the
present value.
The string ntrmt for the matrix contains the name(≤ 18 characters), the dimension of the matrix
and an option which has the same definition as above for the constants 8.1.6,

ntrmt(jm+1)= ’name matrix=(m,n) include=[y]’
’name matrix=(m,n) include=[n] ’
’name matrix=(m,n) include=y ’
’name matrix=(m,n) include=n ’

’name matrix=(m,n) from data=[y] ’
’name matrix=(m,n) from data=[n] ’
’name matrix=(m,n) from data=y ’
’name matrix=(m,n) from data=n ’
’name intensity ’

Table 8.6: The string ntrmt() for the definition of a transformation matrix. The option
’from data=n’ is equivalent to ’include=y’and ’intensity’ stands for ’matrix=(1,1) include=y’.

The string ctrmt contains a description of the matrix, the parameters which is printed in the
selection procedure of effi. The parameters are transformed to the variables by the matrix as
shown in table 2.3. The parameter and variable names are ≤ 16 characters. The parameters have
a default value x, a lower and upper limit ll,ul and a step width step for numerical differentiation.
The string ’thvr()’ of the variables contains the relative position i pos and the row elements of the
matrix.

21

ntrmt(jm+1)= ’name matrix=(3,2) include=[y]’
ctrmt(jm+1)= ’description of the matrix type’
thpa(jp+1)= ’parameter1 x1 ll1 ul1 step1’
thpa(jp+2)= ’parameter2 x2 ll2 ul2 step2’
thvr(jv+1)= ’variable1 i pos1 1.0 0.0 ’
thvr(jv+2)= ’variable2 i pos2 0.5 0.5 ’
thvr(jv+3)= ’variable3 i pos3 0.0 1.0 ’

Table 8.7: The complete definition of a transformation matrix with its parameters and variables.

9 The fork of subroutines

The subroutines named thstr name(l jth,cmch,nhelpentry) are collected into files named str method.f90
where str stands for structure and method for mossbauer, neutron, stroboscopy, etc. the strings
’cmch’ and ’nhelpentry’ play the same role as for the frstr name() routine described in sec. 8.1.1.
The output integer l jth specifies the number of prongs of the fork.

subroutine thstr mossbauer(l jth,cmch,nhelpentry)

if(cmch.eq.’thna’)then
nhelpentry=’Mossbauer radioactive source (distribute)’
! names for child theories, mthchild=6
nameth(1) =’Mossbauer transmission vA’
nameth(2) =’Mossbauer transmission vB’
nameth(5) =’Mossbauer reemission vA’
nameth(6) =’Mossbauer reemission vB’
nameth(3) =’Mossbauer transmission vC’
nameth(4) =’Mossbauer transmission vD’
return
else if(cmch.eq.’theo’) then
ntheory(1)=’Mossbauer radioactive source’
if(name eq ntheo(1))l jth=6 ! mthparent=1,mthchild=6
return
end if

chth=’th’//nhelpentry(1:6)

if(cmch.eq.’hdbk’) then
nstruct=’ ’
return
end if

call convarmatpar(’coll’,jc,jv,jm,jp,chth)
......
call convarmatpar(cova,jc,jv,jm,jp,chth)
return
end

22

9.1 Distribution list of theories

A theory which shall be added to effi becomes known by effi by 4 subroutines. The first two
of them assign numbers to the name of the subroutines called by the frame theory and all other
theories.
effi runs through all numbers nfrtheo (fr routine number),l nfrtheo (cases handled in one fr routine)
and collects all names, which are listed on screen. The user selects a theory from the list. effi
takes out further information from the selected theory by the strings cmch*4 and property*132.
The two numbers (nfrtheo,l nfrtheoare) are communicated to effi as the first 4 characters of the
string property (here symbolically written as a function characterof()). These 4 characters are
attached to the constants and parameters defined in that subroutine, in order to find them when
calling the help function.

9.1.1 Structure selecting routines

The subroutines getfrstring(),getthstring(),distribthfr(), and distribth() are collected in the file
frth distribute.f90. By this routines effi replaces names by numbers in the 3 dimensional arrays
ktheo(set,n,m) which fixes the calling tree of subroutines.
The subroutines gethdb(ihdb,nhandbook) for handbooks and replace helpfile(helpfile) are also
supposed to be extended by the user. At present there is only one handbook to take constants
from. The routine replace helpfile allows to redirect helpentries to a larger file of one topic. The
helpentries are constructed by effi. Typing simply he at any place effi answers with an helpentry
if not yet found in the helpfile.

The two get string routines are self defining. The little function chentry puts the two numbers
nfrtheo,l nfrtheo to the string nhelpentry.
The get..tring routines give the number of offered theories back.

subroutine getfrstring(nfrtheo,l nfrtheo,lstruct1,lstruct2, cmch,nhelpentry)
nhelpentry(1:6)=chentry(nfrtheo,l nfrtheo)

select case(nfrtheo)
case(4)
call frstr stroboscopy(l nfrtheo,lstruct1,lstruct2, cmch,nhelpentry)
case(2)
call frstr synchrotron(l nfrtheo,lstruct1, lstruct2,cmch,nhelpentry)
case(1)
call frstr mossbauer(l nfrtheo,lstruct1,lstruct2, cmch,nhelpentry)
case(5)
call frstr neutron(l nfrtheo,lstruct1,lstruct2, cmch,nhelpentry)
case(3)
call frstr syndoubleSC(l nfrtheo,lstruct1,lstruct2, cmch,nhelpentry)
end select

if(nfrtheo.gt.5)l nfrtheo=0 then
nfrtheo=5

return

23

end

subroutine getthstring(jth,l jth,cmch,nhelpentry)
nhelpentry(1:6)=chentry(jth,l jth)

if(jth.eq.1) then
call thstr 11indexmoss(l jth,cmch,nhelpentry)

else if(jth.eq.2) then
...
else if(jth.eq.18) then
call thstr syntransmission(l jth,cmch,nhelpentry)

else if(jth.eq.19) then
...
else if(jth.eq.42) then

call thstr synFFscattering(l jth,cmch,nhelpentry)
end if
jth=42

return
end

If the number of the theory in the tree of execution is known by the array ktheo(). The jumb to
the theories is done by the following subroutine.

subroutine distribth(isubthe n,ntheo,icase,iput,iget,nath,info)
select case(ntheo)
case(1)
call th 22index(isubthe n,icase,iput,iget,info)
nath=’th 22index’
case(2)

...
case(19)
call th sH05slowrelax(isubthe n,icase,iput,iget,info)
nath=’th sH05slowrelax’
case default
isubthe n=-isubthe n
end select
ntheo=19 !necessary
return
END

The case default changes the sign of isubthe n. The number ntheo= 19 theories is communicated
to effi. effi enters the routines the first time with isubthe n negative. The array space required is
calculated from the known constants. for positiv isubthe n the routine is executed.

24

9.2 Structure of the frame subroutine

A theory called by effi is called by the frame theory: fr routine. There is a first sequence of
calls for some information from the theory which is then stored on a separated part of array fr.
These are pointers and constants and strings which typically do not change when the program
is repeatedly called by a fit routine. The routine stores this information on the common/struct/
block the content of which is transferred to array fr and later on read from array fr by effi before
entering the fr routine.
The description of the ’first call’ is along the code of the subroutine fr mossbauer(cmch,iss,info)
of the fortran file pg mossbauer.f. The body of the fr routine() is also outlined on the basis of
Mossbauer theory.
To the frame of a type of theory (like Mossbauer) belong further subroutines called at differ-
ent labels of the fr routine(). They are all independent of the tree of routines starting with
th mainroutine() (see 9.3.1)

9.2.1 The first call

The fr routine() has three arguments: the string cmch*4, the counter iss, and an integer info.
The integer iss also function later on as read or write channel opened in effi. Both cmch and iss
are used for calls for information. The string cmch has 3 values: ’arr0’, ’arri’ with iss > 0 and ’arre’.

• arr0: Global constants are defined, which are written to the common block ’common/struct/’,
and a size of a segment of the large complex*4 array named array fr() by the integer ’ifrsto’.
If experimental data are read in by an user written routine (here rdpu2d.f and rdpu3d.f,
read and punch of2 and 3 dimensional data) the data are stored on the first segment from
1-nuofdatas (nuofdatas has to be defined in the read data routine). Further segments are
reserved for some constants (5 of them) theoretical results and information about subspec-
tra. Two pointers are defined, that is nstorTH for the result of the theory and nstorTHyy
for the theoretical values at each experimental data point (by interpolation) for calculation
of chi**2. The relative adresses are obvious. The theory at nstorTH+1, the base has its
value at nstorTH+nstorTH2+1, and the theoretical values for chi**2 at nstorTHyy+1.

• arri: The structure of any theory is defined by a nested loop lstruct1 counting devices,
lstruct2 counting the ’modules of devices, and lstruct3 the components of a module. effi
provides a projective map between the integers ’iss’ and the triplets lstructi by the subroutine
l structure(iss,lstruct1,lstruct2,lstruct3). Theoretical data of each calculation within this
nested loop (that means for each iss value) may be stored in the array fr(). The required
size is again written on ifrsto.
Besides these storage space information from the subroutines str routine() is transferred by
the 4 character strings ’ci prp()’, which is used to set constants, which are added to the
common/struct/ block to be taken by the corresponding sub-theories.

• arre: If the nested loop ends (decided inside effi), there is a last possibility to reserve stor-
age space. effi enters the fr routine with ’cmch=arre’. Here storage space is reserved for
all absorber layers together depending on the polarization. It is accessible at the index
l1 put(mstruct1+1)+1 (see pointer structure 9.5).

After collection of the information about the theory the string cmch is used for the different tasks
of the theory (Mossbauer: ’test’, ’dfdp’,’subs’, ’subt’, ’plex’, ’dmod’, ’plot’) which are assigned by

25

a distrution list (goto statement from label 100 to 500) (see ”Body of the fr routine”).

The space belonging to nuofdatas of experimental data to be fitted is the only one on the array
’array fr, which is required by effi. The other storage space is organized by the programmer (HS)
in such a way, that repeated calculation of parts of the theory cam be avoided.
E.g. the subroutine which calculates the Lorentz curve with nstorLG values is stored and calcu-
lated only once if the values for the linewidth and maximum velocity remains the same for different
sites in the absorber.

effi carries an integer ’info’ to the main output (see section ”Help file” 7).

9.2.2 Body of the fr routine

subroutine fr mossbauer(cmch,iss,info)
use glbconst, only: maxfr1,maxfr2,maxn,maxsub,...
use comdat, only: b data,b theory,mxpt,mfpt,...
use complt, only: n subset
use comthe, only: array fr,theoryname,thfrcase,ifrsto,mGa,ibmisfit

common/struct/mstruct1,
& istruct1(0:maxfr1),istruct2(0:maxfr2),
& l1 get(0:maxfr1),l2 get(maxfr2),l3 get(maxss),
& l1 put(0:maxfr1),l2 put(maxfr2),l3 put(maxss),
& c1 prp(0:maxfr1),c2 prp(maxfr2),c3 prp(maxss),
& nstorTH,nstorTHyy,iaddress(6),
& nstorTH1,nstorTH2,nstorLG,nAS,nSC,nLG,ak8,
& sk8,srw8,lstr1case,jpolsource,jpolabsorber,cfill(12)

common/acstrf/acsp,ajg,aje,amueg,amuee,QgdQe,r E2M1,
& cTms,gamnat,uthick w,uthick A,wavelength,
& relchi,flag SAMP,flag Voigt,channels,vmsplit,aib,
& drive mode,channels vmax,....

common/avstrf/avsp,base,f factor,bg fraction,geo,v max,
& channel v0,v max2,vphase2,v max3,vphase3,...

!**
if(cmch.eq.’thna’)then
nhelpentry=’Mossbauer radioactive source’
thfrcase(1) =’Mossbauer transmission vA(1) v=210’
thfrcase(2) =’Mossbauer transmission vB(3) v=210’
thfrcase(5) =’Mossbauer reemission vA(2) v=210’
thfrcase(6) =’Mossbauer reemission vB(4) v=210’
thfrcase(3) =’Mossbauer transmission vC(5) v=210’
thfrcase(4) =’Mossbauer transmission vD(3) v=210’
return

’Mossbauer transmission vA(1) v=210’ means version A, ifrcase=1 and version of the code v=210 for
vA(1).
!***

26

nchansp=channels

The 3 entries arr0, arri, and arre provide code sections where storage space and the accociated pointer
are calculated dependent on constants copied to the common block common/acstrf/, the structure con-
stants copied to common/struct/, and some (e)xtra code for extra storage space and pointers, respectively.
arr stands for the large storage common/store/array fr(marray sp), 0) for the entry where global con-
stants are defined and i) for the theories of step i in the theory tree.
Several derived constants are stored in the common block common/strLOC/.

if(cmch.eq.’arr0’) then
...
calculations of the channel number of the source nSC
and the absorber nAS in view the convolution. They
dependent on the variable v max and the constant
vmsplit, the splitting of the source.

nLG=4*(nAS+nSC) Lorentzs curve, the size
is needed for convolution of source and absorber

nstorTH1=1 base (one real number)
nstorTH2=km+1 theory spectrum

nstorLG=(nLG+1)+(nLG+2*mGa+1)+mGa+1
storage for Lorentz-Gauss curves

ifrsto=nstorLG+nstorTH1+nstorTH2+nchansp/2
total storage taken up by effi

nstorTH=nstorLG pointer for the result
of the theory

nstorTHyy=nstorTH+nstorTH1+nstorTH2 pointer
for the result of the theory transformed to nchansp
experimental data points (real)

jpolsource=0
jpolabsorber=0 1,0= polarized or not
return

else if(cmch.eq.’arri’) then
call l structure(iss,lstruct1,lstruct2,lstruct3)
ifrsto=0
if(lstruct1.eq.2.and.lstruct3.gt.0.and.
c3 prp(lstruct3).eq.’plrs’) jpolabsorber=1

if(lstruct1.eq.2) then
if(lstruct3.eq.0) jpollay=0
if(istruct2(lstruct2)-istruct2(lstruct2-1).gt.1) then
if(c3 prp(lstruct3).eq.’plrs’) jpollay=1
if(lstruct3.eq.istruct2(lstruct2)) then
if(jpollay.eq.1) then
ifrsto=4*(nAS+1)

27

else
ifrsto=nAS+1

end if
end if

end if
end if
return

else if(cmch.eq.’arre’) then
storage for absorber (sum over all layers)
ifrsto=nAS+1
if(jpolabsorber.eq.1) ifrsto=4*(nAS+1)
return

end if ! arr0,i,e

srw8=abs(v max)/float(km)/8.
this stepwidth is calculated here and transferred to the subroutines with the common/struct/. The
transfer of v max and the parameter km (see declaration) is avoided.
mi=istruct2(istruct1(mstruct1))
is used for the calculation of the subspectra (developers solution)

**

if(cmch.eq.’data’) then

goto 100

else if(cmch.eq.’test’) then

goto 200

else if(cmch.eq.’dfdp’) then

goto 300

else if(cmch.eq.’subs’.or.cmch.eq.’subt’) then

goto 400

else if(cmch.eq.’dmod’.or.cmch.eq.’plot’) then

goto 500

end if

**

100 continue

i=int(mode drive)

if(i.le.2) data str=’y,dy’

if(i.ge.3) data str=’x,y,dy’

return

**

200 continue

k1=1

call spec2exp moss(k1,info)

return

...

effi does not accept data without a theory defined. The idea behind is that data can only be
plotted with some pre-knowledge about their structure. Before reading the data the jump to label
100 in the fr routine defines the expected format depending on some constants like the drive mode
of the transducer of the Mossbauer set up.

28

The command test leads to the subroutine call of spec2exp moss(k1,info). spec2exp moss organizes
the connection between experimental data and theoretical values. The subroutine calls the main
subroutine th moosbauer and expects the theoretical values at nstorTHyy. The theoretical values
are calculated on a linear scale, in case of the Mossbauer spectra with a fixed channel number
512. According to the x-scale of the experimental data the theoretical values are interpolated and
stored in an array of a common block which is accessible for the fit routines.

9.2.3 Connection to the experimental data

When the fr routine is called by effi (after the first call) it branches (in the Mossbauer case) to
’subroutine spec2exp moss()’ for the simulation of the theory (command {te}), calculation the
derivative for a parameter (command {ft}), and plots of sets and subsets (command {pl}). By
the integer number ifrcase the th mainroutine is selected, here ’mossbauer refl(b total)’ or ’moss-
bauer trm(b total)’, and comes back with the logical ’b total’. If b total=true, the theory was
recalculated and the values stored in array fr have been changed, otherwise not. The developer
may use this knowledge in order to save computing time.
The task of this subroutine is the interpolation of the theoretical values calculated at a certain
number of channels to the scale of the experimental data. Thereby, the number of theoretical
channels may be larger or smaller than the number of measured data. This interpolation is also
done for the derivatives and for the plot especially also for the plots of the subsets.
The interpolated theoretical values are stored on ’array fr(nstorTHyy+j)’, j=1,..., number of ex-
perimental data. The derivatives are stored in a common block ’commonscrt’ which is used by
fr routine for other purpose too.

9.2.4 Connection to the plot routine

The plot routines are specific for the type of the theory. For Mossbauer the name is ’subrou-
tine plotfold(cmch)’. (The attribute ’fold’ points at the folding procedure of Mossbauer spectra
-history). The string cmch (4 characters) is transferred by the calling fr routine. If cmch=’dmod’
(display mode) effi asked the theory of the set for its display modi, which later is stored in the
number ndisplay mode. In the Mossbauer case there are 4 display modi. When printing the exper-
imental and theoretical curves to a file effi takes from here also short names for the different data
arrays used in the plot of the screen and a string for a default printout: plotstrdef=’(xd,yd,erry)
(xt,yt)’. For example, (xd,yd,erry) means three columns with xddata (may be velocity), ydata
(counts or counts normalized to 1), erry (error values of ydata. The next bracket defining theory
data is appended in the file (see {he wd} (write display data). The ndisplay mode number allows
effi also to obtain from this routine the Fortran format of the values to be printed and the default
names of the axes.
The plot routine does not plot but filles the common block ’common/plot/’ which contains all
information for the routine which does the plot on the screen. Here the C-program xmosplo.c and
further subroutines are used. This routine is a derivative of the code programmed by A. Vef for
MOSFUN and other routines like MODEL.

effi first calls for all the information necessary and then calls for the plot routine executing the plot
in fr routine label 500. Here is it xmosplo(). The developer could also offer other plot routines like
xmgrace by extending the list of ndisply mode. The common block ’common/plot/’ is transferred
to xmosplo by a external structure plot{}.

29

The complex code of this routine for Mossbauer is necessary for the folded spectrum. effi fits the
unfolded spectrum and only for the plot it is folded. That means experimental data from the first
half and second half spectrum have to be added, which needs interpolations of the data too, as
the folding channel is not necessarily an integer number.

9.3 Structure of the subroutines of the files th routine.f

The structure of the main subroutine (th main-routine) of a user written theory (example here
th mossbauer()) and the subroutines (th routine, examples are th 11index(), th 11indexsad(),
th 22indexfsad(), th hdeqf(),...) are fixed by the structure of effi. The main subroutine does not
really take care about the experimental data. In the Mossbauer example the number of channels
(=512, fixed) calculated is independent of the number of experimental data. The main subroutine
th main-routine() calls recursively by the subroutine get theory() the subroutines th routine().

9.3.1 Body of the th main-routine

The developer finds 2 include files 17 common blocks, 4 calls to subroutines followed by do loops
which take values from array fr to a local array of interim results, here called res interim.
The include file comglb.for contains the dimensions of the various arrays, here maxfr1,maxfr1,and
maxss. The file comthe.for contains few important addresses for effi, two indices for case selec-
tions of the user built theory (see later) and a large complex array array fr(marray sp=1024*786
at present)(single precision real*4 values) which should be used to store interim results and the
final result of the theory at pointer positions provided by effi. This is necessary because the theory
can be called on different parameter sets by effi, so that the user will overwrite the results on any
locally defined storage area.

The four groups of common blocks contain the variables and constants entering the theory with
names as chosen by the developer. There are common blocks for constant values and variables
(which are ’connected’ to the parameters by the transformation matrices) as indicated by the
second letter of the common block name (c, v). The first letter is an a for real values or a b
for logical values. Each constant and variable on the common block have a logical value at the
corresponding place on the b-block. The value is .true. if the real value has been changed since the
last entry of the routine and otherwise .false.. Here at this place shall be mentioned that the first
logical of the constants has the value b c****=b cont(2).or.b cont(3).or...., such that the value is
.true. if at least one constant has changed otherwise .false. (see section ”Common blocks”9.4).
The developer can use this information to avoid recalculations and instead read the interim result
from array fr(pointer1...pointer2). How to handle the pointers in interaction with effi is described
in section ”Pointers on array fr” 9.5.
The common blocks with the endings of the block name strf (set-transfer) are reserved for global
constants and variables, which are the same for all cases of the theory. For a Mossbauer theory
these are channel number, constants describing geometry, drive mode etc and parameters like
base, background, etc.

When entering the subroutine mossbauer(b total) the values of the common blocks are not yet
assigned. The subroutine mapsub(iss) maps the values from an internal large array to this local
common block. With the counter value iss=0 the strf common blocks for global values are filled.
The further 3 groups of common blocks are assigned inside the 3 nested loops. The counter iss

30

which in each loop is incremented by 1 tells the routine mapsub(iss) to assign the proper group
of common blocks (the position after mapsub to increment iss must not be changed).

The subroutine get theory(issthe n) is called next. It has a counter issthe n which is increases
inside the subroutine. For simply constructed programs this call will not be used. Instead the
developer will call directly a subroutine which calculates some output with the common block
as input or he writes directly down a code at this place. The get theory(issthe n) subroutine
(belonging to effi) is supposed to be used if there is a decision branch in the user’s set up in order
to take the subroutine which fits to the present data evaluation. An example implemented are the
calculation of Fourier coefficient of time windows for stroboscopic Mossbauer measurements. In
the set up the type of time windows are selected. effi will call the proper subroutine, and stores
the result in array fr. The pointer l1 get(0) to the coefficients are contained in the first common
block common/struct/ which will be described later (section ”Pointers on array fr”9.5).

subroutine mossbauer tmr(b total,info)
use glbconst, only: maxfr1,maxfr2,maxn,maxscrd,maxthss
use comstr, only: nu device
use comthe, only: array fr,iarray sp,ifrcase,lstr1case

common/struct/mstruct1,istruct1(0:maxfr1),istruct2(0:maxfr2),
& l1 get(0:maxfr1),l2 get(maxfr2),l3 get(maxss),
& l1 put(0:maxfr1),l2 put(maxfr2),l3 put(maxss),
& c1 prp(0:maxfr1),c2 prp(maxfr2),c3 prp(maxss),
& frthname(2),nstorTH,nstorTH1,nstorTHyy,iaddress(5),
& jpolsource,jpolabsorber,ifrth(6),
& iflag basis,l Poincare,nLG,nAS,nSC,idum2,ak8,sk8,srw8,idex(7)

common/acstrf/acs,constant(icstrf-1)
common/avstrf/avs,variable(ivstrf-1)
common/bvstrf/b vs,b variable(ivstrf-1)

common/acfr1trf/acfr1,constant(icfr1trf-1)
common/avfr1trf/avfr1,variable(ivfr1trf-1)
common/bvfr1trf/b vfr1,b variable(ivfr1trf-1)

common/acfr2trf/acfr2,constant(icfr2trf-1)
common/avfr2trf/avfr2,variable(ivfr2trf-1)
common/bvfr2trf/b vfr2,b variable(ivfr2trf-1)

common/acsstrf/acss,constant(icsstrf-1)
common/avsstrf/avss,variable(ivsstrf-1)
common/bvsstrf/b vss,b variable(ivsstrf-1)

call mapsub(0,0,0)
issthe n=1
call get theory(issthe n)
if(issthe n.lt.0) no parameter/constant change (in the whole tree of subroutines called)
if(issthe n.eq.0) no subroutine called
do k=1,l
res interim(k)=array fr(l1 get(0)+k)

31

end do

do lstruct1=1,mstruct1
call mapsub(lstruct1,0,0)
issthe n=1
call get theory(issthe n)
see above for issthe n ≥ 0
do k=1,l
res interim(k)=array fr(l1 get(lstruct1)+k)

end do

do lstruct2=istruct1(lstruct1-1)+1,istruct1(lstruct1)
call mapsub(lstruct1,lstruct2,0)
issthe n=1
call get theory(issthe n)
see above for issthe n ≥ 0
do k=1,l
res interim(k)=array fr(l2 get(lstruct2)+k)

end do

do lstruct3=istruct2(lstruct2-1)+1,istruct2(lstruct2)
call mapsub(lstruct1,lstruct2,lstruct3)
issthe n=0 ! here 0 instead of 1
call get theory(issthe n)
see above for issthe n ≥ 0
do k=1,l
res interim(k)=array fr(l3 get(lstruct3)+k)

end do

end do ! lstruct3
end do ! lstruct2

end do ! lstruct1

do k=1,n/2
array fr(nstorTH+k)=cmplx(result(k),result(k+n/2))
end do
return
end

effi allows the subroutines of the file ’th routine.f’ called by get theory(issthe n) also to call
get theory(issthe n) up to a depth of 8 calls (see section ”Subroutines called by get theory”9.3.2).

The result of the subroutine th mossbauer() is at the end stored in array fr. As the theory func-
tion is real it is here by one half stored in the real and the other half in the imaginary part of the
complex array. The array has been chosen of complex type because almost all interim results to
be stored are complex numbers. The array can also be handled as a real array real fr() defined
by the command: equivalence (array fr(1),real fr(1)) to found in the include file comthe.for.
The pointer nstorTH is user defined with the aid of effi (see section ”Pointers on array fr”9.5) If
the theory function has not changed at all (the logical values of all parameters and constants are
.false.) the developer can communicate this fact to the calling routine by the logical b total.

32

Three nested loops are supported by effi, that means that the common block belonging to a loop
are assigned by the call of mapsub(lstruct1,lstruct2,lstruct3). **fr1trf belongs to the outer loop
lstruct1, **fr2trf to the loop lstruct2, and **sstrf to lstruct3. The loops are organized in such a way
that the counters lstruct2 and lstruct3 are continuously increasing as does lstruct1. At each level
(device, module, component) of the loop a subroutine can be called by get theory and the interim
result res interim(...) calculated by these theories is taken from a array fr(li get(lstructi)+...).
For the Mossbauer theory the loops have the following meaning: lstruct1 counts devices. 3 types
are defined, 1:source, 2:absorber, and 3:detector. The two further loops (lstruct2) are used for
layers (the modules of the theory) and (lstruct3) for nuclear sites (the components of the the
modules) inside the layers. The source and the thin detector window are considered as one layer,
so that this loop is used only once for them. The absorber my consist of several layers (see figure
1) the number of which can be chosen by the user. The variables and constants belonging to
source,absorber, detector of the outer loop 1, belonging to each layer in loop 2 and to each nuclear
site in loop 3 have the same names (the names in the common block) but will have different values,
which are mapped by mapsub onto the common block.
The same names of variables in the common block for all loops can only be used in a meaningful
way if the theories called for source,..., detector, each layer and each site are the same or at least
very similar. This disadvantage has been overcome by introducing a 5th group of common blocks
in the subroutines called by get theory (see section ”Subroutines called by get theory”9.3.2).
Simpler structured theories like X-ray scattering on multilayers (no nuclear scattering) lstruct1 is
just one and lstruct3 is not executed. For even simpler structured theories only the common block
of the outer loop is used and only once.

9.3.2 Body of the th routine called by get theory

The structure of a user written subroutine called by get theory -here called th abc(issthe,icase,iput,iget)-
is also fixed by the structure of effi. There are 4 common blocks, a single one common/struct/,
which contains some pointers and constants defined in the fr routine (see section ”Structure of the
fr routine”9.2), and a group of 4 which are almost of the same shape as the group containing the
global constants and variables (see previous section ”Structure of the user written fr routine”9.2).
A further call to get theory(issthe n) is optional (mark that the counter issthe n is untouched
here). The calculated values for res interim are obtained from array fr at the address iget pro-
vided by effi. The result of this subroutine (next do loop of the body) is written on array fr(iput
+...).
The branch given by icase is defined by the developer and is selected by the user.

subroutine th abc(issthe,icase,iput,iget)

(character*4 c1 prp,c2 prp,c3 prp,frthname*64, the strings take the space of 3*maxss+32 real*4
variables of dum.)
parameter(idum=6+4*(maxfr1+maxfr2)+3*maxss+32+8)
common/struct/dum(idum),
& jpolsource,jpolabsorber,ifrth(6),
& iflag basis,l Poincare,nLG,nAS,nSC,idum2,ak8,sk8,srw8,idex(7)

common/acmaps/c1,const(cstrf-17),theoryname
common/bcmaps/b c1,b const(cstrf-1)

33

common/avmaps/variable(cstrf)
common/bvmaps/b variable(cstrf)

if(issthe.lt.0) then
theoryname=’refraction index’
if(icase.eq.1) then
c1=constant(i)
else if(icase.eq.2)
c1=4*constant(i)
end if
return

end if
.

call get theory(issthe n)
see above for issthe n ≥ 0

do k=1,l
res interim(k)=array fr(iget+k)

end do
.

m=constant(i) or 4*constant(i)
do k=1,m
array fr(iput+k)= result(k)

end do
return
end

When the subroutine ist called the first time by effi the value of issthe is -lstruct1. effi reads
the name of the theory (here refraction index) from the common block acmaps (theoryname*64),
which is used to recognize the subroutine in the assignment list (see section ”Assignment list”8.1.5),
and requests for storage size on array fr. This request may depend on the case (icase=1 or 2).
For example the refraction index may be a scalar or a 2x2 matrix, which requires 4 times more
storage space for the result of the theory. The requested storage size is written on c1. The stor-
age requirement typically depends on global constants like channel numbers, the accuracy of the
calculation etc. In the fr routine (section ”Structure of the fr routine”9.2) several constants are
derived from the global constants when it is called first. Such derived constants are transported to
the subroutines which need them by common/struct/. The developer is of course free to declare
also the global common/acstrf/ here and take the information.

9.4 Common blocks of the 3 levels

The group of common blocks which belong to the three levels (device, layer, site) are of type’
real*4’ and ’logical’. with dimensions icXtrf/ivXtrf (X=fr1, fr2, ss). The first constant/variable
is the number of constants/variables of the common block. These numbers are added by effi.

The second place of the common/avXtrf/ of the variables is expected to be an intensity vari-
able by subroutines which calculate subsets (subspectra). The first logical has the value b vX =

34

b variable(1) .or.or. b variable(avXtrf-1)

common/acXtrf/acX,constant(icXtrf-1)

common/avXtrf/avX,aint,variable(ivXtrf-2)

common/bvXtrf/b vX,b int,b variable(ivXtrf-2)

In the group of constants/variables of a common block, common/acmaps/ and common/avmaps
called by get theory, the first place, both for constants and variables, counts the number of con-
stants/variables as in the acXtrf and avXtrf common blocks. effi actually takes the values from
the acXtrf and avXtrff common blocks. For example if a1,...,al are the variables defined in the
main subroutine and b1,...,bm in the subroutine beta called by get theory in main and g1,...,gn
in subroutine gamma called by get theory in subroutine beta then the common block is assigned
as follows:

common/avXtrf/l+m+n,a1,...,al,b1,...,bm,g1,...,gn,
variable(ivXtrf-(1+l+m+n))

This means, that values for bi are already available in the fr routine. In the subroutine the
variables have the names g1,...,gn, in the fr routine the values are a member of the array avXtrf
with indices from l+m+1 to l+m+n. The same holds for the constants.

9.5 Pointers on array fr

The common block common/store/ defines a large complex array fr(maxn*768) which stores all
the information belonging to a number of sets. If the storage is not sufficient for the 32 sets
allowed, the information of sets is externalized on disk with file name storage.am. This file is
removed if effi has been left by a command ({qu} or({ex}. For each set the first 2200 complex
numbers contain information evaluated by effi. The block ’common/struct/’ is stored in this first
section of the part on the array fr belonging to the actual set. With the first call of the set the
content of ’common/struct/’ is transferred to array fr and for each later call transferred back to
the common block (one has to keep in mind that different sets may use the same theory differently
structured).

common/struct/mstruct1,

& istruct1(0:maxfr1),istruct2(0:maxfr2),

& l1 get(0:maxfr1),l2 get(maxfr2),l3 get(maxss),

& l1 put(0:maxfr1),l2 put(maxfr2),l3 put(maxss),

& c1 prp(0:maxfr1),c2 prp(maxfr2),c3 prp(maxss),

& frthname(2),nstorTH,nstorTHyy,iaddress(6),

& ifrth(8),a1,n2,n3,...,a10,nfill(6)

The block contains the definition of the nested loops (the boundaries) and the pointer li get where
the results of the subroutines called by get theory 9.3.1 are read from. l1 get(0) (instead of l0 get)
is the pointer for the results outside the loop in the beginning of the subroutine. Starting with
the pointer li put results are written on array fr. The pointer list can be printed in a structured
layout using the command ”{st pointer}” (st for status). The command ”{st pointer}” sets a
logical to a write command inside effi. With the command ”te” the pointers are printed on the
output window together with the lstructi values, the iss counters and the requested storage in
each called subroutine. This way one can check for the pointers in the program. (see {he st} in

35

effi). The space required by the subroutines called by get theory()9.3.1 is communicated to effi
with the first call of the set.
The fr theory 9.2.2 has three entries: arr0, arri, arre. The string ’cmch’ (command character) has
the value arr0 for global definitions. The integer ifrsto is used to communicate the storage require-
ment to effi. These requirements depend on the code of th mainroutine 9.3 (i.e th mossbauer()).
To the first call belong the jump through all the subroutine tree (the nested loop , see 9.3) to
read the storage requirements. At each loop index iss (arri) fr theory can again ask for stor-
age by the number ifrsto. The strings ’ci prp(..)’ (character i - property) of the common block
’common/struct/’ carries information from the subroutines. There is a subroutine
call l structure(iss,lstruct1,lstruct2,lstruct3)
which gives back the loop indices: lstruct1,lstruct2,lstruct3 for each counter index iss by which
the fr theory is called. This information may be used to allocate on array fr appropriate space for
interim results.

The pointers li get/put are absolute addresses on array fr. The relative pointer addresses declared
by fr theory in a first call are changed to absolute addresses if they are stored of one of the
8 positions behind theoryname(2) on the block ’common/struct/’. Results of the theory used
for the plot and the fit routine need two pointers: nstorTH,nstorTHyy. They are defined in
fr theory and stored at one of the 8 positions. The last 24 positions are used for everything, what
is calculated only once and communicated to other subroutines for later calls. This group has
been divided into two groups (above), 8 for communication fr constants, (ifrth(8), and further 16
constants. All constants can be declared as integer and real (indicated by a1,n2,n3,...,a10) on all
24 positions.

References

[1] H. Spiering, L. Deák and L. Bottyán, Hyperfine Interactions 125, 197–204 (2000).

[2] E.W. Müller, MOSFUN, Internal report, Anorganische Chemie und Analytische Chemie,
Johannes Gutenberg-Universität, Mainz, 1982.

[3] K. Kulcsár, D.L. Nagy and L. Pócs, A complete package of programs for the evaluation of
Mssbauer and gamma spectra, In Proc. Conf. Mössbauer Spectrometry, Dresden, p. 594, 1971.

36

	Introduction
	General ideas
	Theories and sub-theories
	Constants
	 Parameters
	Transformation matrices and variables

	Header of the data file
	Parameter file .par
	Names
	Building correlations
	Helpfiles
	Reading matter for the developer
	Routines defining the structure of theory trees
	The routine frstr_name
	The routine thstr_name (distribute)
	The routine thstr_name
	Definition of text strcmt()
	Assignment of array space by ``convarmatpar''
	Definition of constants thco()
	Transformation matrices ntrmt(), variables thvr(),and parameters thpa()

	The fork of subroutines
	Distribution list of theories
	Structure selecting routines

	Structure of the frame subroutine
	The first call
	Body of the fr_routine
	Connection to the experimental data
	Connection to the plot routine

	Structure of the subroutines of the files th_routine.f
	Body of the th_main-routine
	Body of the th_routine called by get_theory

	Common blocks of the 3 levels
	Pointers on array_fr

