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1 Intoduction

The routines of the file gpg 22nuclear.f90 is the core of all nuclear scat-

tering programms. The quantum-mechanical solution of the general

case of multipol transitions is taken from the article M. Blume and O.C.

Kistner [3] who follow the concept of the index of refraction for thin

media. The classical solution for a dipole transition already shows all

characteristics and can be found in any text book of electrodynamics:

Theorie of dispersion and absorption of weakly absorbing media.

2 Classical index of refraction

The complex index of refraction of oszillators (electrons) in the limit

of infinitely thin medium (the external electric field is the same at all

ozillator sites)

n2(ω) = 1 + 4π N
e2/m

ω2
0 − ω2 − iγω

(1)

with the charge e, mass m, eigen frequency ω0 and the damping factor

γ = γγ+γα, the sum of radiation damping and internal friction. γα will

be identified with the decay channel of internal conversion.

The classical total cross section of an oszillator is given by

σ =
6π c2γγγ

(ω2
0 − ω2)2 + γ2ω2

(2)

γγ =
2

3
·
e2ω2

mc3



γγ is the damping by radiation of the oszillator. n2
≅ 1 differs from

1 only close to resonanz, ω close to ω0. With the total cross section at

resonance (k0 · c = ω0)

σ0 =
6πγγ
γk20

(3)

the index of refraction can be written as

n(ω) = 1−
1

2k0
σ0N

γ/2

ω − ω0 + iγ/2
(4)

Since n2
≅ 1 the first term of the expansion series of the square root

is sufficient and ω + ω0 is replaced by 2ω0. In order to model real me-

dia an oszillator strength f is intoduced which modifies σ0 to fσ0. For

nuclear scattering the cross section is lowered by the Lamb-Mossbauer

(Debye-Waller) factor f.

Eq. 4 shall be generalized to different types i of oszillators and polar-

izabilities different for electric fields in x,y directions (propagation in

z-direction). Then the oscillator strength becomes a 2x2 matrix ri.

n(ω) = 1−
1

2k0
fσ0

∑

i

Niri
γ/2

ω − ω0i + iγ/2
(5)

Now n(ω) is a complex 2x2 matrix and 1 the unit matrix.

The electric field vector E of the plane wave propagating in z-direction

develops as

E(z) = einkzE0 (6)

The intensity I(z)=E E†

I(z) =
∑

j

EjE
†
j (7)

=
∑

j

∑

α

(einkz)jαE0α ·
∑

β

E∗
0β(e

−in†kz)βj

=
∑

jα,β

(einkz)jαρα,β(e
−in†kz)βj

The density matrix ρα,β(z) = E0αE
∗
0β at z=0 depends on z

ρ(ω, z) = einkzρe−in†kz (8)
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and the intensity at z is the trace of ρ(z)

I(z) = Tr(einkzρe−in†kz) (9)

The index of refraction is readily translated to the case of nuclear scat-

tering

n = 1−
σf(k)

2k

∑

j

Nj

∑

i

rji ·
Γ/2

E − Ej
i − iΓ/2

(10)

The total intensity, sum over all Lorentzians, is normalized to 1. Γ is

the natural linewidth. Since the Lorentz function is real and the density

matrix Ri of a transition is hermitian, the diagonal elements of ρr(E)
are real numbers. f depends on the direction of propagation k.

3 Index of refraction for multipole transitions

Following the article of M. Blume and O.C. Kistner [3] the index of

refraction (M. Lax [1]) is the first equation

n = 1 +
2π

k2
NF (11)

The solution for the forward scattering matrix Fpq of eq. 19 is rewritten

by the tensor quantities (introduced in [2])

V αβ
LM =

(

2L+ 1

2Ie + 1

)
1

2 ∑

memg

(eme

α )∗g
mg

β C(Ig L Ie,mgMme) (12)

where C(Ig L Ie,mgMme) are the Clebsch-Gordan coefficients, |Iggβ〉 =
∑

mg
|Igmg〉 the ground states and |Ieeα〉 =

∑

me
|Ieme〉 the excited states

of the nuclear spin-Hamiltonian.

The rotation to another coordinate system (Wigner rotation matrix) can

be omitted because the hyperfine fields entering the spin-Hamiltonian

are already rotated such that the z-axis is always the γ-direction.
With the amplitudes xp

xαβp (mag. L− pol) = V αβ
Lp ML − pV αβ

L+1pEL+1 (13)

xαβp (elect. L− pol) = −pV αβ
Lp EL + V αβ

L+1pML+1
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the forward scattering matrix F of eq. 19 in [3] reads

F αβ
pq = −2πf(k)

2Ie + 1

2Ig + 1

xαβp xαβ∗q

E − (Eα − Eβ) + iΓ/2
(14)

ML and EL are reduced matrix elements

ML = 〈Ie||
1

c

∑

i

j(ri)AL(m)||Ig〉 (15)

EL = 〈Ie||
1

c

∑

i

j(ri)AL(e)||Ig〉

The partial width for γ-emission of the excited nuclear state 〈Ie| is ex-

pressed by the reduced matrix elements (see Appendix in [3])

Γγ(mag.L− pol) = 8πk(|ML|
2 + |EL+1|

2) (16)

Γγ(elect.L− pol) = 8πk(|EL|
2 + |ML+1|

2)

The phase ǫ of the ratios EL+1/ML = δm eiǫ and ML+1/EL = δe e
iǫ

should be either 0 or π ([4]) by time-reversal invariance (the topic of

[3]), so that δ is real.

Redefining the amplitudes to ap

aαβp (mag. L− pol) = V αβ
Lp − pV αβ

L+1pδm (17)

aαβp (elect. L− pol) = −pV αβ
Lp + V αβ

L+1pδe

and inserting the cross section at resonance (Γ is the total width factor-

ing in internal conversion)

σ0 =
2π

k2
2Ie + 1

2Ig + 1

Γγ

Γ
(18)

1

1 + δ2m
= |ML|

2/(|ML|
2 + |EL+1|

2)
1

2

1

1 + δ2e
= |EL|

2/(|EL|
2 + |ML+1|

2)
1

2

the forward scattering matrix F of eq. 19 in [3] now reads

F αβ
pq = −

k

4π
f(k)σ0

1

1 + δ2
aαβp aαβ∗q

Γ/2

E − (Eα − Eβ) + iΓ/2
(19)

where δ without index stands for both type of transitions.
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The index of refraction npq for one type of site of the absorber finally is

written as

npq = δpq −
f(k)σ0

k
N

∑

αβ

1

2
rαβpq

Γ/2

E − (Eα − Eβ) + iΓ/2
(20)

The matrix rαβpq = aαβp aαβ∗q /(1+δ2)which shall be called absorber matrix

has the property

∑

αβ

rαβpq = δpq (21)

4 Miscellaneous

4.1 Effective thickness

The product σ0Nf is called effective thickness of the absorber. The

parameter for effective thickness of the Mossbauer routine is named

mg/cm2*f. It measures the effective thickness in units of mg of the

Mossbauer isotope per cm2. In case of 57Fe 1mg/cm2 of natural iron

gives

Fe uthick w = σ0 ·NAvogadro/Gatomicweight · abundance (22)

= 2.56 10−18cm2 · 6.022 1023/55.85g · 0.0214

= 0.5907 · (mg/cm2)−1

The fitted number for the parameter mg/cm2*f is multiplied by 0.5907 ·
(mg/cm2)−1 giving an dimensionless number t, called the effective thick-

ness. The Lamb-Mossbauer factor f is obtained from the fitted parame-

ter mg/cm2*f devided by the amountmg/cm2 of natural iron contained

in the absorber.

4.2 Powder average

The following property of the tensor VLm is used when calculating in-

tensities of powder samples in the case of an isotropic Lamb-Mossbauer

factor. The absorber matrices rpq are elements of the tensor products

IL,αβMM ′ = V αβ
LMV αβ∗

LM ′ (23)

JL,αβ
MM ′ = V αβ

LMV αβ∗
L+1M ′
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The IL are called intensity matrix. The powder average of an intensity

matrix is diagonal for all transitions α, β

Tr(IL,αβ)δpq = (2L+ 1)
1

Ω

∫

Ω

dΩDL
pM(Ω)IL,αβMM ′DL

M ′q(Ω) (24)

The average of the JL-matrix is zero.
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