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1 Coordinate Transformations

1.1 Coordinate Systems

Principal axes systems (PAS) are defined for various tensors and axes
systems fixed to different objects:
name axes system

S0 at site 1 (ONE). Equivalent sites related by
symmetry transformations of the crystal are not counted.

Sc single crystal
Ss absorber/sample/scatterer
Sl laboratory
Sg polarized γ-quanta

Sei PAS of the electric field gradient tensor (EFG at site i)
Sx2i PAS of the mean square displacement tensor (MSD at site i)
Sx2c PAS of the mean square displacement tensor (MSD of the crystal)
Sdi PAS of the zero field splitting tensor of the spin Hamiltonian

at site i
SA PAS of the A-tensor of the spin Hamiltonian
SG PAS of the g-tensor of the spin Hamiltonian



1.2 Euler angles

Two coordinate systems Sa and Sb with unit vectors ea
i and eb

i (i=x,y,z),
respectively, are related to each other by a rotation matrix Rab, such that

eb
i =

∑

k

ea
kRki(φ

ab, θab, ψab) (1)

with the short notation
eb = eaRab. (2)

The Cartesian vectors (i=x,y,z) are expressed by spherical vectors (m =
±1, 0) [1]:

ea
+1 = − 1√

2
(ea

x + iea
y) (3)

ea
0 = ea

z

ea
−1 =

1√
2
(ea

x − iea
y)

The spherical rotation matrix

DL
mn(φ, θ, ψ) = e−imφdL

mn(θ)e
−inψ (4)

transforms spherical unit vectors with L=1

eb
n =

∑

m

ea
mD1

mn(φ
ab, θab, ψab) (5)

Inserting the spherical vectors of eq. 3 and the matrix elements of d1

according to the definition in [1]:

d1 =
+1
0
−1







cos2 θ
2 − 1√

2
sinθ sin2 θ

2

+ 1√
2
sinθ cosθ − 1√

2
sinθ

sin2 θ
2 + 1√

2
sinθ cos2 θ

2







the following Cartesian vector equations are obtained:

φ = φab θ = θab ψ = ψab (6)

eb
x = +

[

cos2(θ/2)cos(φ + ψ) − sin2(θ/2)cos(φ − ψ)
]

ea
x

+
[

cos2(θ/2)sin(φ + ψ) − sin2(θ/2)sin(φ − ψ)
]

ea
y − sinθcosψ ea

z

eb
y = −

[

cos2(θ/2)sin(φ + ψ) + sin2(θ/2)sin(φ − ψ)
]

ea
x

+
[

cos2(θ/2)cos(φ + ψ) + sin2(θ/2)cos(φ − ψ)
]

ea
y + sinθsinψ ea

z

eb
z = +sinθcosφ ea

x + sinθsinφ ea
y + cosθ ea

z
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The polar angle of the z-axis ea
z of system Sa with respect to system Sb

and vice versa eb
z with respect to Sa are read from eq. 6

eb
z(θ

ab, φab) ea
z(θ

ab, π − ψab) (7)

The transformation of eq.5 is a rotation of the unit vectors ea
m to new

vectors eb
m which are expressed in the system Sa. Considering the rota-

tion as an operation D acting on the vector ea
m and applying the property

ea∗
n′ ea

n = δn′n for orthonormal vectors

Dea
m = eb

m (8)

=
∑

n′

ea
n′Dn′m

ea∗
n Dea

m = Dnm

the familiar definition of the elements of the rotation matrix is obtained.
An arbitrary vector q in space is rotated by D to a vector q′. The
matrix d1 has been defined to evaluate the vector components of the
rotated vector q′ = Dq. The definition of [2] is opposite in the sense
that the coordinate system is rotated and the vector (the field) is fixed
in space, which leads to an inverse transformation and that way another
meaning of the Euler angles.
The vector q with respect to Sa has Cartesian components qa

i

q =
∑

i

qa
i e

a
i (9)

which are expressed by the spherical components qm, m = ±, 0

qa
+1 = − 1√

2
(qa

x + iqa
y) (10)

qa
0 = qa

z

qa
−1 =

1√
2
(qa

x − iqa
y)

so that eq. 9 is replaced by

q =
∑

m

qa∗
m ea

m (11)

The rotation of q reads step by step:

Dq = D
∑

m

qa∗
m ea

m (12)
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=
∑

m

qa∗
m Dea

m

=
∑

m

qa∗
m

∑

n

ea
nDnm

=
∑

n

[

∑

m

Dnmqa∗
m

]

ea
n

=
∑

n

q
′a∗
n ea

n

The last equation defines the components q
′a
n of the rotated vector q′.

q
′a
n =

∑

m

qa
mD†

mn (13)

This equation 13 is used if an object, a tensor of any rank, is rotated in
space. The transformation is given by the inverse rotation D† = D−1.

The other task is to express tensor components qa
m with respect to a

coordinate system Sb, which axes eb
m are known with respect to Sa by

eq.5. By the following equations this transformation is defined:

q =
∑

m

qa∗
m ea

m =
∑

n

qb∗
n eb

n (14)

The components qa
m and qb

n of a vector q are expressed with respect to
both systems.
Inserting eb

n from eq. 5 one obtains step by step
∑

m

qa∗
m ea

m =
∑

n

qb∗
n

∑

m

ea
mD(Ωab)mn (15)

qa∗
m =

∑

n

qb∗
n D(Ωab)mn

qa
m =

∑

n

qb
nD(Ωab)†nm

The same way qb
m can be written by the qa

m:

∑

m

qa
mD(Ωab)mn′ =

∑

n

qb
nδnn′ (16)

∑

m

qa
mD(Ωab)mn′ = qb

n′
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The invers transformation of D(Ωab)† (e.g. read from Eq. 4)

D(φab, θab, ψab)† = D(−ψab,−θab,−φab) (17)

shall be written as

D(Ωab)† = D(Ωba) (18)

Ωba = (−ψab,−θab,−φab)

With this notation the results from above are summerized as follows:

eb = eaD1(Ωab) with eb
z(θ

ab, φab) (19)

ea = ebD1(Ωba) with ea
z(−θab,−ψab) = ea

z(θ
ab, π − ψab)

This way the polar angle of the unit vector ea
z of Eq. 7 are obtained

back. For the components of tensors of any rank L the set of equations
are according to Eqs. 15,16:

TL
n (b) =

∑

m

TL
m(a)DL

mn(Ω
ab) (20)

an the invers transformation

TL
n (a) =

∑

m

TL
m(b)DL

mn(Ω
ba) (21)

For the rotated tensor components T ′ (Eq. 13)

T
′L
n (a) =

∑

m

TL
m(a)DL†

mn(Ω
ab) (22)

the Euler angles are defined by eb of Eq. 19.

2 The tensor V L
M

The amplitudes for electric and magnetic multi-pole transition aαβ
p (e, m)

with polarization p = ±1 to the excited state |eα〉 from the ground state
|gβ〉 are written as [3]:

aαβ
p (e) = 2π

(

~c

V k

)

√

2Ie + 1ELiL+1
∑

M

V αβ
LMDL

Mp (23)

aαβ
p (m) = 2π

(

~c

V k

)

√

2Ie + 1MLiLp
∑

M

V αβ
LMDL

Mp

V αβ
LM =

(

2L + 1

2Ie + 1

)1/2
∑

memg

e∗αme
gβmg

C(IgLIe, mgMme)
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with the reduced matrix elements [4, 5]

EL = 〈Ie||
1

c

∑

i

j(ri)AL(e)||Ig〉 (24)

ML = 〈Ie||
1

c

∑

i

j(ri)AL(m)||Ig〉

and the eigenstates of the ground state |gβ〉 and excited state |eα〉:

|eα〉 =
∑

me

eαme
|Ieme〉 (25)

|gβ〉 =
∑

mg

gβmg
|Igmg〉

The reduced matrix elements are differently defined in the literature.
The definition used here is that of Wigner [5] and Rose [4]. Edmonds [2]
define reduced elements

〈j′||Tkq||j〉Edmons = (−1)2k
√

2j′ + 1〈j′||Tkq||j〉Wigner (26)

Here the factor (−1)2k plays no role since k=L is an integer.

If VLM(a) is known in the system Sa the components of the rotated
multipole (of an equivalent site) are according to Eq. 23

V αβ
LN(b) =

∑

M

V αβ
LM(a)DL

MN(φab, θab, ψab) (27)

and the components of the rotated multipole (of an equivalent site):

V ′αβ
LN (a) =

∑

M

V αβ
LM(a)DL†

MN(φab, θab, ψab) (28)

=
∑

M

V αβ
LM(a)DL

MN(−ψab,−θab,−φab)

A compact equation for intensities of nuclear transitions is obtained in-
troducing the intensity matrices [3]

IL
MN = V ∗

LMVLN JLL′

MN = V ∗
LMVL′N (29)

which are transformed as

IL(b) = DL†IL(a)DL JLL′

(b) = DL†JLL′

(a)DL′

(30)
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The calculation of intensities of nuclear transitions is written in terms
of the IL and JLL′

[3], which leads to compact equations with clear
transformation properties for the 2x2 matrix rαβ

pq (p, q = ±1) entering
the index of refraction for nuclear scattering .

rαβ
pq =

1

(1 + δ2)
· (31)

[

(I1)αβ
pq + p · qδ2(I2)αβ

pq − δ
(

p(J21)αβ
pq + q(J12)αβ

pq

)]

The real number δ = M1/E2 is the ratio of the reduced matrix elements
of Eq. 24. The powder average of rαβ

pq (φ, θ, ψ) of a transition is given by
the trace of the intensity matrices

rαβ
pp =

1

(1 + δ2)
·
[

Tr(I1αβ) + δ2Tr(I2αβ)
]

, p = ±1 (32)

The code for the calculation of rαβ
pq offers the use of time inversion sym-

metry by which the relation of symmetry equivalent sites with an internal
magnetic field is effectively calculated. The time inversion transforma-
tion Θ applied to VLM is derived from the transformation properties of
the eigenstates (eq. 25) as defined by

Θ|αjm〉 = (−1)j−m|αj − m〉 [1] (33)

Θ|αjm〉 = (−1)j+m|αj − m〉 [2]

For both conventions eq. 33 is also satisfied for the vector addition state

|JM〉 =
∑

m1m2

|j1m1〉|j2m2〉C(j1j2J, m1m2M) (34)

Note that (−1)j+m is not equal (−1)j−m for have integer m.

Applying Θ to the eigenstates gives

Θ|eα〉 =
∑

me

Θeαme
|Ieme〉 (35)

=
∑

me

e∗αme
Θ|Ieme〉

=
∑

me

e∗αme
(−1)Ie−me|Ie − me〉

=
∑

me

e∗α−me
(−1)Ie+me|Ieme〉
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Inserting the time inverted eigen states the ΘV αβ
LM are deduced step by

step:

ΘV αβ
LM ∼

∑

memg

(−1)Ie+meeα−me
(−1)Ig+mgg∗β−mg

C(IgLIe, mgMme)

∼ (−1)Ie+M
∑

memg

(−1)Ig+2mgeα−me
g∗β−mg

C(IgLIe, mgMme)

ΘV αβ
L−M ∼ (−1)L−M

∑

memg

(−1)2(Ig−mg)eαme
g∗βmg

C(IgLIe, mgMme)

= (−1)L−MV ∗
LM

ΘV αβ
LM = (−1)L+MV ∗

L−M Brink and Satchler (36)

= (−1)L−MV ∗
L−M Edmonds

Since L is an integer the two conventions give the same result.

3 Spherical and cartesian 2. rank tensors

Several 2. rank tensors are preferably expressed as cartesian tensors,
as the electric field graient tensor Vαβ with αβ = xx, xy, xz, ..., zz, the
g-tensor, A-tensor, and others defined for ligand field theories, phonons
in crystals etc. In order to use the Wigner rotation matrices the tensors
have to be expressed in spherical coordinates. This task has been solved
by A.J. Stone [6]. Some results for second rank tensors are collected here.
The transformation is carraied out by Clebsch-Gordon like coefficients.

Tαβ =
∑

ηjm

Tηj;m〈ηj; m|αβ〉 (37)

Tηj;m =
∑

αβ

Tαβ〈αβ|ηj; m〉

〈αβ|ηj; m〉∗ = 〈ηj; m|αβ〉

For vectors (irreducible tensors of 1. rank) the standard transformation
reads:

A1;m =
∑

α

Aα〈α|1; m〉 (38)
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where the unitary matrix of coefficients 〈α|1; m〉 is

|1; 1〉 |1; 0〉 |1;−1〉

U =
〈x|
〈y|
〈z|







−iκ 1√
2

0 iκ 1√
2

κ 1√
2

0 κ 1√
2

0 iκ 0







(39)

Condon and Shortley’s phase convention κ = −i is used (taken over by
[1, 2]).
The spherical vectors are coupled together with the Clebsch-Gordan co-
efficients. For a second rank tensor the coupling coefficients 〈αβ|1j; m〉
are derived step by step:

(AB)1j;m =
∑

m′,m′′

A1;m′B1;m′′〈11m′m′′|jm〉 (40)

=
∑

m′,m′′

∑

α

Aα〈α|1; m′〉
∑

β

Aβ〈β|1; m′′〉〈11m′m′′|jm〉

=
∑

αβ

AαBβ〈αβ|1j; m〉

〈αβ|1j; m〉 =
∑

m′,m′′

〈α|1; m′〉〈β|1; m′′〉〈11m′m′′|jm〉

The coefficients 〈αβ|1j; m〉 are called by A.J. Stone the cartesian-spherical
transformation coefficients: CS coefficients. The CS for 2. rank tensors
are tabulated in [6].
The 2. rank tensors Aαβ, gαβ of a Spin-hamiltonian are symmetric so
that they can be split into two irreducible tensors, 1/3 of the trace times
the unit matrix and an traceless symmetric tensor. In the PAS the tensor
A can be written as

A = 1
3Tr(A) · 1 +(Azz − 1

3Tr(A)) ·





−1
2(1 − η) 0 0

0 −1
2(1 + η) 0

0 0 1



 (41)

where the asymmetry η = (Axx −Ayy)/Azz is introduced. The spherical
tensor components are calculated according to Eq. 37.

A00 = − 1√
3
Tr(A) (42)

A22 =
1

2
η A21 = 0 A20 =

√

3

2

A2−1 = 0 A2−2 =
1

2
η
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The set up of the Spin-Hamiltonian requires the calculation of e.g. the
effective magnetic field Heff,α =

∑

β gαβHβ acting on the spin from the
applied field H. The equation written in spherical coordinates is given
by Eqs. 2.9 and 2.14 in the paper [6]:

Heff,1m = −
∑

l

(−1)l

(

2l + 1

3

)1/2
∑

m′m′′

Hm′glm′′〈1lm′m′′|1m〉 (43)

Inserting the Clebsch-Gordan coefficients the following vector compo-
nents are obtained.

Heff,1 =
1

3
H1Tr(g) − H−1g22 +

1√
2
H0g21 −

1√
6
H1g20 (44)

Heff,0 =
1

3
H0Tr(g) − 1√

2
H1g2−1 +

√

2

3
H0g20 −

1√
2
H−1g21

Heff,−1 =
1

3
H−1Tr(g) − H1g2−2 +

1√
2
H0g2−1 −

1√
6
H−1g20

Analog equations are obtained for the hyperfine field, the product of the
A-tensor with the expectation value of the spin: A < Seff > (or the
S-operators).

Heff,1m = −
∑

l

(−1)l

(

2l + 1

3

)1/2
∑

m′m′′

Alm′〈Sm′′〉〈l1m′m′′|1m〉 (45)

Vector components of the same structure are obtained.

Heff,1 =
1

3
Tr(A)〈S1〉 − A22〈S−1〉 +

1√
2
A21〈S0〉 −

1√
6
A20〈S1〉 (46)

Heff,0 =
1

3
Tr(A)〈S0〉 −

1√
2
A2−1〈S1〉 +

√

2

3
A20〈S0〉 −

1√
2
A21〈S−1〉

Heff,−1 =
1

3
Tr(A)〈S−1〉 − A2−2〈S1〉 +

1√
2
A2−1〈S0〉 −

1√
6
A20〈S−1〉

It shall be noted that the spherical vector operators S±1 are not the shift
operators S± but according to the matrix Eq. 39 S±1 = ∓1/

√
2 S±.

4 Application to experimental setups

The convention for the coordinates as used in the code of the sub-
routines th hdeqf(isubthe,icase,iput,iget,info) and th hdeq() in the file
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th 22nuclear.f shall be described in the following.
The sample, which containes one, several, or a powder of single crys-
tal(s), is oriented with respect to the laboratory system Sl. Sl is fixed in
space, the γ-direction is along the z-axis of the lab. system.
In order to assign the notation of 1.2 the system Sl is identified with
Sa and the sample system Ss with Sb. The orientation of Sb given by
the unit vectors eb

n of Eq. 5 determines the Euler angle φ, θ, ψ. The
z-direction eb

z of the sample system Ss determines already φ, θ. The
auxiliary routine euler in the directory effi/helproutines/euler has an
entry point in the list of functions for the calculation of the Euler angles.

All physical quantities (tensors of different rank) known with respect to
the sample system have to be transformed to the lab. system. That
means qb

m are expressed with respect to the Sa system. The transforma-
tion is achieved by Eq. 16 (Eq. 20, resp. ).

With the following short notation, which is used in the Fortran code, the
varoius transformatioms and Euler angles involved with the coordinate
systems of Tab. 1.1 are easily identified:

T (l) = T (s) Dsl with es
k(Ω

ls) (47)

T (s) = T (c) Dcs with ec
k(Ω

sc)

T (c) = T (e) Dec with ee
k(Ω

ce)

T (c) = T (x2i) Dx2ic with ex2i
k (Ωc,x2i)

T (c) = T (d) Ddc with ee
k(Ω

cd)

Dab stands for DL(Ωab) with L denoting the rank of tensors T(a) and
T(b) of systems Sa and Sb, respectively. ea

k(Ω
ba) uneqivocally defines

the Euler angle by the unit vectors ea
k in the system Sb. In all cases

of Eq. 47 the invers of the Wigner rotation matrices are used as Dab =
D(Ωab) = D†(Ωba) = Dba†.
The physical quantities are refered to the system Sc which shall be
choosen with respect to symmetry axes of the crystal. The principal
axes systems of Tab. 1.1 :Sei, Sx2i, Sx2c and Si are usually defined with
respect to the crystal system. This gives the sequence of transformations
of Eqs. 47.
If the sample is a single crystal the systems Sc of the crystal and Ss shall
be the same. For the ideal powder a random distribution of crystal orien-
tations implicates a random distribution of coordinate systems fixed to
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the crystals. The subroutine sphere() provides an almost uniform distri-
bution of grid points over the unit sphere. The directions p(θ, φ) defined
by the grid points (up to 128*48) are considered as the z-direction of the
system Ss of the sample. For a random orientation also a sufficient large
number np of angles ψ increases the number of coordinate systems to
maximal np · 128 · 48.

In this case the sample system Ss=S(grid point) is oriented with respect
to a single crystal by the Euler angles es

k(Ω
cs) with Ωcs = (φ, θ, ψ).

The angle ψ, the rotation around p(θ, φ) is arbitrarily fixed. For the
transformation of the tensor components of the crystal system to the
sample system

T (grid point) = T (c) Dcs (48)

(where T(s)=T(grid point)) the Wigner rotation matrix Dcs = DL(φ, θ, ψ)
is used with the Euler angles as taken from the subroutine sphere().

The last point concerns symmetry equivalent sites in the crystal (trans-
lational symmetry is disregarded). There are a small number of rota-
tions/reflections (according to the point symmetry groups of the crystal
C2, C3, D2, etc and the local symmetry at each site) which relate the
equivalent sites. The rotations are defined in the crystal system Sc. The
tensor fields in the PAS of site 1 are transformed to the crystal system
Sc as described above. This tensor field is rotated by some Euler angle
and the rotated field in the same system S are asked for. This problem
is met by Eq. 13 (Eq. 22, resp.).
Some remarks to the average over the angle ψ, the integral 1

2π

∫

eimψdψ
which is replaced by a summation

I =
n

∑

k=0

eimψk (49)

The angular dependence of the intensities which in turn depend on ten-
sor quantities of different rank and orientation could be developed in
an expansion series of spherical harmonics Ylm. This series ends at some
value l determined by the sequence of direct products of the tensor quan-
tities involved. The largest l value which is the largest m value in the
sum Eq. 49 determines the n value for the sum to be zero as is required
by the exact integral.
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It is easily deduced that the sum I is zero for equidistant ψk = 2π
n+1 · k

and n ≥ m. With a = eim2π/(n+1) and the formula
n

∑

k=0

ak =
1 − an+1

1 − a
(50)

we have for an+1 = eim2π = 1 and 1 − eim2π/(n+1) 6= 0.
As the choice of np = n depends on the largest m value in an expansion
series of the intensities, which in case of a single site is already a 2. rank
tensor for dipole and a 4. rank tensor for quadrupole transitions, the
lowest value for np is 2 or even 4, respectively.

The subroutine th hdeq() has no constant np = n psi powder for the
case of an ideal powder in an external magnetic field. This routine does
not transform the fields at the nuclear site but transforms the inten-
sity tensor and diagonalizes the nuclear Hamiltonian only once for each
direction (given by the grid points over the unit sphere) of the exter-
nal field. The intensity matrices (VLM tensors) are calculated for the
γ-direction parallel to the field such that the angle ψ is a rotation of
the crystal around the magnetic field. This rotation does not effect the
energy eigen values of the Hamiltonian and the intensity matrices are
calculated by the transformation I(ψ) = D(ψ, 0, 0)†ID(ψ, 0, 0). The in-
tegration over ψ is readily performed with the result, that all off-diagonal

elements I(ψ)MN
ψ

(M 6= N) vanish. As the full intensity tensor (3 ten-
sors for mixed transition) is stored the rpq matrices can be calculated for
any γ-direction with respect to the field direction (only the θ-angle is
considered) This possibility requires the mean square displacement ten-
sor (MSD-tensor) to be isotropic.
If there is no external magnetic field and by the choice of a grid point
density by the constan iset ≥ 0 the subroutine th hdeq() calculates the

ideal powder intensities according to Eq. 32, the average of rαβ
pq for each

transition (αβ).

5 Appendix

The rotation matrices used are following the definition used by Brink
and Satchler [1]:

dj
mn(β) =

∑

t

(−1)t [(j + m)!(j − m)!(j + n)!(j − n)!]1/2

(j + m − t)!(j − n − t)!t!(t + n − m)!
(51)
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(

cos
β

2

)2j+m−n−2t (

sin
β

2

)2t+n−m

The equation given by Rose [4] on p. 52 is obtained by changing the sign
of m,n, and sinβ/2 inside the brackets. The tables given in both cases
(j=1/2,1 in [4] and j=1/2,...,2 in [1]) are identical. The matrix elements
are different from that used by Edmonds [2].

References

[1] D.M. Brink and G.R. Satchler, Angular Momentum, (Clarendon
Press . Oxford, second editionth edition, 1968).

[2] A.R. Edmonds, Drehimpulse in der Quantenmechanik, volume 53 of
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