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1 The inversion solution decomposed

The original solution of M. Blume and J.A. Tjon (1976)[1] of the “Mössbauer spectrum
in a fluctuating environment” ends up with an inversion of a matrix for each veloc-
ity point. Later (1970) M.J. Clauser [2] published the paper “ Relaxation Effects in
Spectra: Eigenvalue treatment of Superoperators”. In that paper it is shown, that the
spectrum is a sum of resonance lines. For a special case of ±H fluctuation of the the
hyperfine field the solution of Blume & Tjon is decomposed (partial fraction decom-
position) to a sum of resonance lines. The result gives some insight in the origion of
lineshifts and broadening, especially the condition of the collaps of resonance lines.

2 Appendix B of M. Blume and J.A. Tjon[1]
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Performing the matrix inversion (decomposes to 2x2 matrices) the sum is written as
the ratio ∑

ij

pi(j|[Ã
−1(p) + 3Q2η2B̃(p)]−1|i) = N/D (2)

where

N = d(p+ iβ + 2w) + 3Q2η2(p− iβ) (3)

D = d[(p+ i(β − C1 + C0) + w)(p+ i(β + C1 − C0) + w)− w2]

+3Q2η2[(p+ i(β + C1 − C0) + w)(p− i(β − C ′

1 + C0) + w)

+(p+ i(β − C1 + C0) + w)(p− i(β + C ′

1 − C0) + w) + 2w2 + 3Q2η2]

and d
d = (p− iβ)2 + (C ′

1 − C0)
2 + 2w(p− iβ) (4)
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pi = 1/2 and w = w+− = w−+ were used. Further on

p = −i(ω − ω0) +
1

2
Γ (5)

C1 = g1m1µh

C ′

1 = g1(m1 ± 2)µh

C0 = g0m0µhh

β = Q(3m2
1 − 15/4)

Here the simple case Q=0 is considered such that N/D reduces to

N/D =
(p+ 2w)

(p− i(C1 − C0) + w)(p+ i(C1 − C0) + w)− w2
(6)

=
(p+ 2w)

p2 + ω2
n + 2pw

ωn = (C1 − C0) = (g1m1 − g0m0)µh

N/D shall be written as a sum of 2 Lorentz curves such the the number of Lorentzians
is 2 times the number of allowed (by the Clebsch Gordon coefficients) m1,m0 pairs.
The partial fraction decomposition determines the constants δ, ζ for the nominators,
Γδ,Γζ for the linewidth and ωδ, ωζ for the positions of the Lorentzians.
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(7)

This equality for all ω is obtained with

ωδ =
√
ω2
n − w2, Γδ = Γ + 2w, δ =

1

2

(
1− i

w

ωδ

)
(8)

and Γζ = Γδ, ωζ = −ωδ, ζ = δ∗
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(9)

If w = 0 (no fluctuation) there are 2 Lorentzians at positions ±ωn. With increasing
w the positions move to ωδ = 0 and the linewidth increases by w. The lineshape has
contibutions of squared Lorentzians by the w/ωδ term in the nominator. For the spezial
case w = ωn where ωδ = 0 the real part of equation 6 becomes

Re{N/D} =
Γ
2

ω2 +
(
Γ
2
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)2 +
2ωn

(
Γ
2
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)2
(
ω2 +

(
Γ
2
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)2)2 (10)

If w increases w > ωn the position parameter ωδ becomes imaginary (eq. 8) so that the
denominators of equation 9 stay at position zero and ωδ contributes to the linewidth.
The situation becomes more complicate if the “relaxation matrix” does not rearange
quasidiagonally to 2x2 matrices. The general case is much more effectively handled
by diagonalisation of the“relaxation matrix” instead of diagonalization (M. J. Clauser
[2]).
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3 Eigenvalue Treatment of Superoperators [2]

The forward scattering amplitude is written as follows using the definitions given in
the article of M. Blume and O.C. Kistner [3] and [4] concerning the tensors V.
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Γ = Γγ + Γα = Γγ(1 + α), total width
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2

Only L=1,2 dipole and quadrupole transitions are of interest.

Fpq = −
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2π
σ0

1

1 + δ2
(13)
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βg′e′,αge
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The matrix −iΠ+Hx is non-Hermitian and is diagonalized by left and right eigenvec-
tors. ( subroutine jacCmplx16(N,fOUT,A,V,W,nrot) in mth routine.f90: VAW=diagonal)
The left eigenvectors are the rows of V and the right one the columns of W.

V (Ω · 1− iΠ+Hx)W = Ω · 1 + V (−iΠ+Hx)W (15)

= Ω · 1 +D, diagonal matrix
[
V −1V (Ω · 1− iΠ+Hx)W ·W−1

]
−1

= W [V (Ω · 1− iΠ+Hx)W ]−1 · V

= W [Ω · 1 +D]−1 · V

The invers of a diagonal martrix is the invers of its diagonal elementsDjj = Drjj+iDijj
such that

Γ

2
(Ω +Djj)

−1 =
Γ
2

E +Drjj + i
(
Γ
2
+Dijj

) (16)

A sum over Lorentzians at positions −Drjj and width (Γ/2 + Dijj) are obtained.
The broadening Dijj is decribed by the parameter w Lorentz defined as Dijj/(Γ/2)
(gamnat=Γ).
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This type of Lorentzian is coded in the routines:
subroutine LORGAU(gamnat,e xsi,srw,w Lorentz,w Gauss,iflag Voigt,ipos,nLG)
cLORGAU(gamnat,e xsi,srw,w Lorentz,w Gauss,nLG,cLG) and
aLORGAU(Eagd,gamnat,e xsi,srw,w Lorentz,w Gauss,iflag Voigt,nLG,cLG)
contained in tpg lorgau.f90.

The matrices W and V are multiplied by the matrices V eg
Lp such that products of the

following type are obtained (L,L’=1,2).

(
W [Ω · 1 +D]−1 · V

)
βα

=
∑

e′g′j,egj

V e′g′

Lp Wβe′g′,j [Ω · 1 +D]−1
j,j Vj,αegV

eg
L′q (17)

The index j stands for three indices j := β′′, e′′, g′′. The matrices

()βLpj =
∑

e′g′

V e′g′

Lp Wβe′g′,j (18)

()αL′qj =
∑

eg

Vj,αegV
eg
L′q

are calculated only once and then multiplied to the Lorentz curves of Eq.16. According
to Eq.13 the sum L,L’ and α, β can be elaborated with population γβ of the different
nuclear Hamiltonians so that three indices (p, q, j) are left. The subroutines:
subroutine intJgJeRELAX2(itr,icase,r QUDI,amueg,amuee,QgdQe,cTms,je,jg,jge,

shift12,pop1,fsx1,fsx2,w12,hv1,efg1,hv2,efg2,Eagd,VV)
and subroutine hintJgJeRELAX2() provide the energies Eagd(=Drjj) and the matrix
V V (p, q, j) for integral and halfintegral nuclear spin, respectively. The sum over all
Lorentzcurves at energies Eagd(j) is done by the subroutine:
subroutine th 22indexRELAXsad(isubthe,icase,iput,iget,info)
which calculates the index of refraction at all energies seperated by a stepwidth srw.
The array of the index of refraction is called by the subroutine:
subroutine mossbauer tmre(b total,info) which is part of the file pg mossbauer.f90.
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