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1 Abstract

The influence of the detector deadtime and dwelltime at a channel given by the

sweep frequency of the tranducer on the Mossbauer absorption spectrum shall

be studied by Monte Carlo simulation. Deadtime effects distort the shape of the

absorption lines since the count rate depends on the channel number. In the limit

of infinite long dwelltimes the deadtime effect is calculated. The influence of the

dwelltime on the lineshape is an unsolved problem.

2 Interval distribution

The pulse train of the radioactive source reaching the detector follows the Poisson

statistic the distribution of intervals ∆t is given by the exponential:

f(∆t) = λ ∗ exp(−λ ∗∆t) (1)

where λ is the counting rate. Time intervals are simulated by a random number

generator using the cumulative distribution function (cdf) obtained by integrating

from 0 to ∆t.

F (∆t) =

∫
∆t

0

f(x)dx (2)

= 1− exp(−λ ∗∆t)

F( ∆t) is set equal to the cdf of the uniform random number F(∆t)=u to obtain ∆t

from the uniform number u=[0,1).

∆t = −
1

λ
ln(1− u) (3)

The Fig.1 is calculated with the fortran code where RAND denotes the random

number generator and k=100 channels for time unit 1.
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Figure 1: The logarithm of the simulated counts give a straight line. The time intervals
in arbitrary units of 0.01 per channels are plotted for three values of λ = 102, 200, and
300. The total number of counts is N = 106.

ix=RAND(iseed)

do i=1,N

ix=-alog(1.-RAND(0))/lambda*k

if(ix.le.512) channel(ix)=channel(ix)+1

end do

The following observation has not been analytically derived. The code asking for a

shorter ∆t by the iy line

do i=1,N

ix=-alog(1.-RAND(0))/lambda*k

iy=-alog(1.-RAND(0))/lambda*k; if(iy.lt.ix)ix=iy

if(ix.le.512) channel(ix)=channel(ix)+1

end do

gives the same straight line as λ = 2 · 102. Asking again for a shorter ∆t by adding

the line

iz=-alog(1.-RAND(0))/lambda*k; if(iz.lt.ix)ix=iz

the result is not again equivalent with the double rate (which could have been

expected) of 400, but coincides with the straigt line of rate 300.
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3 Single line Mossbauer spectrum in the limit of

infinite dwelltime

Single line spectra (natural linewidths of 57Co source and fictive absorber of 1mg

natural iron/cm2 and f-factor 1, back ground fraction zero) with 104 counts in the

baseline are simulated. The event train of the γ-quanta passing the absorber has

rates proportional to the value of the theoretical curve at each channel number. The

rates are multiplied by 1 at large velocities (channels 0, 512, 1024) and by 0.75 at

Figure 2: The single line spetra (±1mm/s are simulated with 105 counts per time unit
and a sweep frequency of ω = 10−1 ( (ω ∗ nu channels)−1 ∼ 10−2 time units duration
time per channel), so that in average 103 events are collected in a channel each period.
After about 10 periods 104 counts are reached. The simulation when omitting events
with time distance ∆t < dt, deadtime dt (events during dt do not start a new deadtime
-non-paralyzable deadtime) is shown for dt·λ = 10−1 and dt·λ = 2·10−1, corresponding
to a count loss of 10% and 19%, respectively. The zero velocity channel are 256 and
768.

zero velocity, so that the loss of counts is less around zero velocity. This behaviour
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is demonstrated in Fig.2, clearly seen in the upper spectrum by the missing counts

at zero velocity.

The C-code is again quite simple.

ichannel=0; srandom(*iseed);

lastevent=0.0;

while(isimul[0] < counts){

eventtime=-log(1.-frand())/(lambda*theo[ichannel]);

lastevent=lastevent+eventtime;

if(lastevent > deadtime){isimul[ichannel]++; lastevent=0.0;

}else{iloss++;}

totaltime=totaltime+eventtime;

ichannel= totaltime/dwelltime;

i=ichannel/nu channel; ichannel=ichannel-i*nu channel;

}

This simulation can be used to study the influence of deadtime effects on the fit-

parameters like intensities, line broadening, thickness etc.

4 Finite dwelltime

In case of finite dwelltime the count rate change from channel to the next channel

comes into play. The time ∆t between events becomes larger than the dwelltime

dt, so that a channel may be reached during ∆t with a quite different rate. If e.g.

larger time distances ∆t0 are given by the average rate at zero velocity, the next

event far from zero velocity has a higher rate so that the probability to have an

event earlier than ∆t0 is not accounted for. The pulse train seen by the detector

cannot be simulated correctly by the code given above.

The result of the code is shown in Fig.3 for three different sweep frequencies ω.

Lets take the usual time unit [s:second]. At ω = 103s−1, which is 104 times larger

than the value taken as small enough to simulate infinite dwelltime the simulated

single line is shifted to higher channels.

There seems to be no solution for an event train in case of a time dependent average

rate. A first guess is to compare the time interval ∆t0 at the present channel with

interval ∆t1 at the channel reached in time ∆t0. If ∆t0 is larger than ∆t1 (to many

channels are jumped over) the shorter time ∆t1 could be taken to proceed to the

next channel. The rate λ is a function of time. Such a Poisson process is called non-
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homogeneous (NHPP) (see e.g. [1]). Here λ(t) = λ·theo[ichannel] with ichannel=

int(dwelltime· t) modulo nu channel.

One possibility to handle NHPP is simulating by thinning/rejection of events ac-

cording to its probability.

Figure 3: The single line spetra of Fig.2 are simulated with 105s−1 count rate, zero
deadtime and three sweep frequencies ω = 10−1, 10, 1000s−1 such that the dwelltime
dt = (ω ∗ nu channels)−1 takes values of 10−2s, 10−4s and 10−6s. The finite dwelltime
leads to a shift of the lines to higher channels (which tendency is remakable at ω =
100s−1 by the χ2 value - not shown) und obvious at ω = 103s−1. 105 counts per s
means in average 10 sweeps are neccessary to collect 1 count.

Starting from the constant rate of the source and its exponential distribution of

time intervals the spectrum is obtained by the probability at each channel to pass

the absorber. This probability shall be close to 1 at vmax (channel 1) and less than 1

at resonance. By the rejection condition u > theo[ichannel] (u ⊂ (0,1]) for channel

number ichannel low count rates are obtained according to the absorption profile.

The following code collects the eventtime stored in totaltime, which by the dwell-

time determines the next channel number until a γ passes the rejection condition
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at the current channel.

step:

eventtime=-log(1.-frand())/lambda; icall++;

// of source

jch=ichannel;

totaltime=totaltime+eventtime;

lastevent=lastevent+eventtime;

ichannel= totaltime/dwelltime;

i=ichannel/nu channel; ichannel=ichannel-i*nu channel;

if(frand() > theo[jch])goto step;

Passing this code the current channel is incremented if the last event is later than

the deadtime.

if(lastevent > deadtime){

isimul[jch]++; lastevent=0.0; icount++;

}else{iloss++;}

This code is quite different from the code (I) above (long dwelltime). The simulated

spectra at ω = 10−1 are the same.

For higher sweep frequencies (finite dwelltimes) one can only rely on the second

code(II). Its behaviour is quite different. With zero deadtime the simulated spectra

do not or rather very weak depend on the sweep frequency. the χ2-values are

different although the random number generator starts with the same seed number.

The pairs of values (ω, χ2) are (103, 0.91), (102, 1.01), (101, 1.03), (100, 1.06), (10−1,

0.99). The last pair for code(I) reads (10−1, 1.02), which is obviously the same.

(Fig.4 shows the dependence of the simulated counts at constant deadtime of

dt = 4.0 · 10−5s and rate λ = 105/s and 3 sweep frequencies. At dt · λ = 4 the

code misses 38% of counts. At ω = 0.1/s the two codes have the same result. The

deadtime is most effective in the region of high rates (baseline). Around zero veloc-

ity the rate is lower such that less counts are rejected by the deadtime condition. At

large sweep frequencies this effect decreases and at ω = 1000/s which corresponds

to a dwelltime of 1/1.024 · 10−6s a shift to the left is observed. This behaviour ques-

tions the validity of the code for all ω although an approximation is not obvious

from the logic of the code.

Fig.5 shows a fit including the intensity, which means the underlying theory is

changed and adapted to the distorted spectrum (for ω = 0.1/s the two codes give

the same result - see above). The decrase of χ2 to values much smaller than 1 is a

typical deadtime effect. The intensity of 0.67 instead of 1 demonstrates the misin-
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Figure 4: The single line spetra with sweep frequency fixed rate λ = 105/s and deadtime
dt = 4 · 10−5 at different sweep frequencies.

terpretation of spectra if deadtime effect are present.

5 Conclusion

Three times/timescale are important for the realibility of a measured spectrum:

sweepfrequency, total counts entering the detector/measurering system and the

deadtime of the measurering system. The simulation shall serve to estimate the

quality of the spectra to be measured.
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Figure 5: The single line spetra of Fig.4 at ω = 0.1/s has a χ2 = 0.55 much less than
1. The fit includes the intensity with a value of 0.72 instead of 1 as a result of the large
deadtime.

References

[1] Krzysztof Burnecki, Simulation of counting processes, http://

prac.im.pwr.edu.pl/∽burnecki/Simulation of counting processes.pdf,

Hugo Steinhaus Center Wroclaw University of Technology.

8


	Abstract
	Interval distribution
	Single line Mossbauer spectrum in the limit of infinite dwelltime
	Finite dwelltime
	Conclusion

