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1 Abstract

The information carried by the positions of the absorption lines of an 57Fe Mossbauer
spectrum with combined electric and magnetic hyperfine interaction was a matter of
concern of several theoretical papers [1], [2],[3],[4] (see also [5],[6],[7]).A Fortran routine
which visualize the manifold of solutions of the ambiguity problem were written in a
Diploma work in Erlangen [8].

2 Energy level scheme

The Energy level scheme of a 3

2
− 1

2
transition is schown in Fig. 1 for 57Fe. The 2 ground

states are eigenstates of the Iz operator (z-axis choosen parallel to the magnetic field)
with eigenvalues ±µ1/2H and eigenstates |I = 1/2,∓1/2〉 for µ1/2 = µg > 0, respec-
tively, while the 4 exited states are of mixed type (linear combination of |I = 3/2,m〉
states) in the general case of combined electric and magnetic interaction. The eigenval-
ues E1, ..., E4 are obtained from the secular equation of a 4x4 Hermitian matrix. The
8 transitions are assigned as L1, ...L8 in Fig.1. In case of pure magnetic interaction the
eigenstates are |I = 3/2, +3/2〉, ..., |I = 3/2,−3/2〉 fromE1 to E4 and the transitions
L7 : −1/2 → +3/2 and L8 : +1/2 → −3/2 become forbidden.
The transition energies Er +Li are the sum of the energy of the γ-quanta of the source
Er and the energy Li provided by the Doppler velocity. If the difference in energy
shifts by the electron densities at the nuclei of source and absorber, the isomer shift or
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Figure 1: The 1

2
− 3

2
14.4keV transition of 57Fe from the ground state to the exited state

of an absorption experiment. The 8 transitions are assigned as L1, ...L8. The broken
lines of L7 and L8 are forbidden transitions in case of pure magnetic interaction. The
figure is taken from [8]

chemical shifts, is denoted by Is, the line positions are readily read from left to right
hand side of Fig. 1.

L6 = Is + µgH + E1 L7 = Is − µgH + E1 (1)

L5 = Is + µgH + E2 L3 = Is − µgH + E2

L4 = Is + µgH + E3 L2 = Is − µgH + E3

L8 = Is + µgH + E4 L1 = Is − µgH + E4

The center of gravity of the hyperfine energies Ei of nuclear Hamiltonians (see Eq. 5,6)
of magnetic and electric quadrupole interactions is zero:

∑

i Ei = 0. This fact provides
easy access to the isomer shift Is from the line postions Li.

Is =
1

8

8
∑

i=1

Ei and also (2)

=
1

4
(L1 + L2 + L5 + L6)

The positions of the absorption lines of the Mossbauer spectrum are shown in Fig.2.
L = L1 and R = L6 are always the outer lines in the spectrum. If the magnetic field
interaction is large compared to the quadrupole interaction lines L2 and L5 are also
readily identified and with them the isomer shift Is by Eq. 2.
The 8 line positions Li dependent on 5 quantities (

∑

i Ei = 0 factored in) are related
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Figure 2: The 1

2
− 3

2
14.4keV transition of 57Fe from the ground state to the exited state

of an absorption experiment. The 8 line positions assigned as L1, ...L8 belong to the 8
transitions shown in Fig.1. The broken lines of L7 and L8 are forbidden transitions in
case of pure magnetic interaction. The figure is taken from [8]

to each other as follows:

L1 − Is = l L2 − Is = x L6 − Is = r (3)

L3 − Is = − (r + l + x + 2µgH) L4 − Is = x + 2µgH

L5 − Is = − (r + l + x) L7 − Is = r − 2µgH L8 − Is = l + 2µgH

These equations are used in the program lines alpl in the directory effi/helproutines/
lineLR/lpos LRIsDq, where alpl stands for the plot program xalpl, which plots a one
parameter manifold of line positions together with an experimental spectrum in order
to identify all 8 resonance lines.

3 Interrelations of the line positions

The interrelation of the line positions according to Eq. 3 are still a 2 parameter manifold
if the positions of the outer lines are taken to be fixed. The solutions of the Hamiltonian
are used to reduce the manifold of line positions, which are determined by 5 parameters,
which are with respect to the principal axes system (PAS) of the electric field gradient
(EFG) 3 parameters for the magnetic field H(θ, φ) and 2 for the EFG, Deq = eQVzz/4
and η = (Vxx − Vyy)/Vzz. The Hamiltonian H of the nuclear spin states with spin I
reads

HI = −µIH +
eQIVzz

4I(2I − 1)

[

3I2

z − I(I + 1) +
η

2

(

I2

+ + I2

−

)

]

(4)

with the magnetic moment µI = µII/I and the quadrupole moment QI .
The magnetic field H defined with respect to the PAS of the EFG is given by H(θ, φ) =
H (sinθcosφex + sinθsinφey + cosθez). The spin Hamiltonian of the I=1/2 ground
state is the 2x2 matrix:

| + 1

2
〉 | − 1

2
〉

H1/2/(−µ1/2) =
〈+1

2
|

〈−1

2
|





cosθ sinθe−iφ

sinθeiφ −cosθ





(5)
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with eigenvalues ±µ1/2 = ±µg(= 0.090604µk) nuclear magnetons. The I=3/2 exited
state is the 4x4 matrix:

| + 3

2
〉 | + 1

2
〉 | − 1

2
〉 | − 3

2
〉

H3/2/m =

〈+3

2
|

〈+1

2
|

〈−1

2
|

〈−3

2
|























q + 3cosθ
√

3sinθe−iφ qη
√

3
0

√
3sinθeiφ −q + cosθ 2sinθe−iφ qη

√

3

qη
√

3
2sinθeiφ −q − cosθ

√
3sinθe−iφ

0 qη
√

3

√
3sinθe−iφ q − 3cosθ























(6)

with m = −µeH/3 and q = eQVzz/4/m (the magnetic moment µe = µ3/2 = −0.15531µk

nuclear magnetons, the Quadrupole moment Q = Q3/2 = 0.18 · 10−24cm2 ).

The characteristic polynomial x4 + A3x
3 + A2x

2 + A1x + A0 = 0 for the eigenvalues
E = x · m has 3 nonzero coefficients:

A0 = 9 − 2q2(5 − η2) + q4

(

1 +
η2

3

)2

+ 4q2sin2θ
(

3 + 2ηcos2φ − η2
)

(7)

A1 = 8q
(

sin2θ(3 − ηcos2φ) − 2
)

A2 = −10 − 2q2

(

1 +
η2

3

)

A3 = 0

The coefficients Ai depend on 4 parameters q, η, θ, and φ. Next it is shown, that the
Ai can be determined from the line positions.

Viéte’s formulas express the coefficients by the roots of the polynomial

A0 = x1x2x3x4 A1 = −
4

∑

i,j,k=1

i<j<k

xixjxk (8)

A2 =
4

∑

i,j=1

i<j<

xixj A3 = −
4

∑

i=1

xi

which can be simplified by A3 = 0 to

A0 = E1E2E3E4/m
4 A1 = −1

3

4
∑

i=1

(Ei/m)3 A2 = −1

3

4
∑

i=1

(Ei/m)2 (9)

Th eigenvalues Ei are connected to the line positions as directly read from Fig.1:

E1 − E2 = L6 − L5 (10)

E2 − E3 = L5 − L4 = L3 − L2

E3 − E4 = L2 − L1

2µgH = L5 − L3 = L4 − L2
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Using A3 =
∑

i Ei = 0 and the abbreviations

c1 = L6 − L5 c2 = L2 − L1 (11)

d =
1

2
((L6 − L1) − (L4 − L3))

the energies of the J = 3/2-state are expressed by line positions Li as

E1 = (d + c1)/2 E2 = (d − c1)/2 (12)

E3 = (−d + c1)/2 E4 = (−d − c1)/2

by which using Eq. 8 the coefficients Ai are calculated.

4 Range of line positions

If the isomer shift Is is known and the quadrupole interaction by the quarupole splitting
∆Eq, which is the seperation of the two resonance lines with the magnetic interaction
switched off, there is a one parameter manifold left for the line positions in between
line numbers L1 and L6. In the program lines alpl the position x = L2 − Is is taken
as a parameter. Using Eqs. 9,12 the coefficient A2 is expressed by the line positions as
written by Eq. 3.

∑

i

E2

i = (r + l)2 + (l + x)2 + (r + x)2 + 4(µgH)2 + 4(l + x)(µgH) (13)

On the other hand is the coefficient A2 from Eq. 7 proportional to
∑

i E
2
i such that

∑

i

E2

i = 20m2 + 4q2m2

(

1 +
η2

3

)

(14)

The second term of the sum is just the square (∆Eq)2,of the quadrupole splitting. The
last two equations can be resolved for µgH

µgH =
1

2κ

(

(l + x) ±
√

(l + x)2 + κα
)

(15)

κ =
5

9

(

µe

µg

)2

− 1

α = (r + l)2 + (l + x)2 + (r + x)2 − (∆Eq)2

From the fact that L2 ≤ L5 (see Fig. 1) the relation x ≤ −(l + r)/2 is derived by Eq. 3
and in the same way from L8 ≥ L1 the value of µgH of Eq. 15 always to be ≥ 0. These
two lower bounds determine the sign of the square root in the equation for µgH to be
the positive one since κ = 1.2648376 > 0 and (x + l) comes out to be ≤ (l − r)/2 < 0.
The lower limit of x, x ≥ l and x ≥ −(2r + l), stems from L1 ≤ L2 and L5 ≤ L6,
respectively.

Fig. 3 shows the manifold of line positions compatible with L1 and L6 and Eq. 15. The
positions were taken from a simulated spectrum with Hi(θ = 75, φ = 25), Hi = 330 kG,
η = 0.9, Deq = −4.0 mm/s, and Is = −0.5 mm/s. This manifold is restricted to the
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Figure 3: The one parameter (L2 − Is = x) manifold based on Eq. 3 and 15 is shown.
The values in [mm/s] of the outer line positions (red lines) are L1 = −6.55, L6 = 5.83
and an isomer shift IS = −0.50 and Deq = −4.0, that is a quadrupole splitting
∆Eq = |Deq| with a negativ Vzz. The dashed horizontal lines mark the region which
in addition is compatible with 0 ≤ sin2θ ≤ 1 and −1 ≤ cosφ ≤ 1 restricting L2 to
−4.5 mm/s ≤ L2 ≤ −2.7 mm/s.

region between the dashed horizontal lines of Fig. 3 by the conditions 0 ≤ sin2θ ≤ 1
and −1 ≤ cosφ ≤ 1 dirived from A0 and A1 of Eq. 7.
For each x the values A0 and A1 are known by Eq. 12 and 9 and the value of m =
−µeH/3 is known with µgH from above. With the quantities F and G

F (η) =
1 + η2/3

m2

(

A0 − 9m4

(Deq)2
− 1

16
(Deq)2

)

+ (5 − η2)/2 (16)

G(η) =
A1

4Deq

√

1 + η2/3

the equations are solved for sin2θ and cosφ.

sin2θ = (F (η) + 2(G(η) + 2)) /(9 − η2) (17)

cosφ =
1

η

(

3 − (G(η) + 2)/sin2θ
)

Fig. 4 shows 4 different simulated spectra with the same line positions L1 and L6,
isomeric shift Is = −0.5 mm/s and quadrupole splitting ∆Eq = |Deq| with a negative
field gradient Vzz defining the input parameter Deq = −4 mm/s. The 4 simulated
’experimental’ spectra have different line positions of x = L2 − Is from top to bottom:
L2 = −4.23, L2 = −4.47, L2 = −3.37 and L2 = −2.70 [mm/s].
For each of the line positions defined by the values of L2 there exists a manifold of
solutions compatible with Eq. 7. The program hyperfield in the directory
”EFFI/helproutines/lineLR/hyper field” prints the manifold of solutions.
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Figure 4: Four ’Experimental’ absorption spectra of the 1

2
− 3

2
14.4keV transition of

57Fe has been simulated with the program effi. All have the same line positions L1

and L6 and isomeric shift Is = −0.5 mm/s and quadrupole splitting ∆Eq = |Deq|
with Deq = −4 mm/s. As a consequence the manifold of 8 line positions 1, ..., 8 are
the same for all simulated spectra. Their different parameters of the hyperfine fields
(η, Hi, φ and θ) are written at the right border.
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5 Program hyperfine fields

The program hyperfield has three entries where two of them define 4 line positions
and one is eqivalent to the program lines alpl with L1, L6, Is and Deq as input
parameters. The first two cases require L1, L2,L5 and L6 or eqivalently using Eq. 2 L1,
L2, L6 and Is.
If L2 is given, two parameters η and Deq are tested for compatibility, so that the
printout covers the manifold of solutions of two parameters. For the 4 spectra of Fig. 4
the solution with Deq = −4 mm/s and an η-value close to 0.9 (stepwidth was 0.1) has
been selected.
If Deq is fixed for each L2 the parameters η are tested.
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