Contents

1 3-Dimensional plot 1
2 Quadratic interpolationJ 1
3 The grid of theoretical values | 5

1 3-Dimensional plot

The 3-dimensional plot requires an interpolation in 2 dimensions. The
theoretical values are calculated at the points of a rectangular grid of
equidistant steps. The stepwidths in the two directions may be different.
A second order equation in two variables x,y has coefficients of six terms
z,2%y,y%,ry, and a constant. 6 theoretical values determine a parabolic
surface. The coordinates of the point the value of which will be interpo-
lated should be inside the the coordinates used for the calculation of the
parabolic surface. Four points are chosen as the corners of the rectangle
with the point inside. Two further coordinates of the grid are choosen in
a systematic way whithout further reference to the position of the point.

2 Quadratic interpolation

The quadratic equation in €2 and ©

® = aQ? + O +70? +60 + 106 + ¢ (1)

approximates the theory around the experimental coordinates. The rect-
angular network of theoretical coordinates (€2, - 2. and ©, - ©.) has
stepwidth of dQ2 and d©, such that there are ng = (2, — €.)/dQ + 1
points in 2 direction. The experimental point (€2eyp, Oczp) is supposed
to be inside the network. The integer numbers

jQ = int(Qexp — Qb)/dQ (2)
j@ = int(@exp — @b)/d@
range from 0 < jo < ng and 0 < jo < ng. The coordinates of the experi-

mental point inside the rectangular (jo, jo), (o, jo + 1), (jo + 1,Je), (o + 1, jo + 1)
shown in Figll,a) are given by



00 = (Quap — V) — jo - O
00 = (O —6)) — jo - dO

The coefficients « ..., ¢ of Eq./1 have to be solved for the rectanle of the
experimental point. The coordinates of the 6 points of Fig/1,a) are from
1 to 6: (0,0), (d£2,0),(2d$2,0),(0,dO),(d2,dO),(0,2dO). Inserting these
6 points 6 simple equations are obtained for the determination of the
coefficients.

P, = o (3)
b, = ad’+ BdY+ @

b3 = 4-adQ*+3dQ+ ¢

&, = adO®+3dO + ¢

$; = 4-adO?+ £dO + ¢

®g = adO? + BdQ + vdO? + 6dO + 1ndQdO + ¢

The values ®,, n=1,...,6 are calculated from the theory. With f, = ®,—¢
the coefficients are written as

L2~ fy)/d9? ()
§ = —5(fs —Af2)/d0
s )07
5 =~ s~ Af)/d

n = %(2f2_f3)+%(f3_4f2)+%(2f4_f6)+%(f6—4f4) /dQdO

Inserting the relative coordinates (0€2, 00) together with the coefficients
Eq.4linto Eq. 1 the stepwidths cancel down such that with w = 9Q/d2, 0 =
00/dO) the interpolated value becomes

® = aw® + bw + ch* + db + ewd + (5)

and
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a = —52fH~f) (6)
b= —3(s—4h)
g = —52fi— 1)
d = _%(f6_4f4)

e = SRR F) 4 LU AR 4 S2F— f)+ (s 4F)

The case of Fig.[1,a) is met for the majority of experimental points with
positions inside the network of theoretical points. If the boundary is
reached Fig. 1,b), the point number 6 as defined in a) is outside the
network (jo +2 > ng). Therefore the figure of 6 coordinates is arranged
in a different way. Mirrowing Fig. b) by the Q-border line the figure is
the same as a) but the ©-coordinate of the experimental point is d© —00
or the reduced coordinate 6 is replaced by 1 —6. In case ¢) (jo+2 > ng)
the mirror line is the €2-border line at €2, and the 2-coordinate has to be
replaced: 1 —w. In case d) two mirror operations are necessary in order
to obtain the situation of Fig. a) (jo + 2 > ng and je + 2 > ng) and
both coordinates are replaced: 1 —w,1 — 6. The last case is only met for
experimental points inside the rectangle at the corner of (€2, ©,).
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Figure 1: The interpolated theoretical value is obtained from 6 values in the neighbor-
hood of the experimental point. The rectangle containing the eexperimental point is
extended by two triangles depending on the position in the network of coordinates of
theoretical points. At the upper bounderies for © and €2 of the network the triangles
are added in different ways, case b), c), d). The integer values jq, jo of Eq.2 belong to
point 1 in a), to 4 in b), to 2 in ¢) and 5 in d). The coordinate numbers of all 6 points
relative to jg, jo are listed in the figure.



3 The grid of theoretical values

There are 2 types of grid design corresponding to scan modes case 3) and
case 4). Fig.2 shows the grid for the scan mode of two independent ©-,
2 loops. The Q-angle is for the incident beam and © for the direction of
the detector. The theoretical values are calculated with ) as the inner
loop and different ©’s in the outer loop. Counting the pairs of angles
(2,0) the numbers attached to the pairs defining the grid are indicated
in the figure. The (2-loop runs over 6 equidistant values. The second
O-loop starts with number 7, the third with 13, etc.

The red line in the figure marks the specular reflection case (6=). An
experimental point indicated by a dot defines the triangle highlighted
in blue color. The corners are point numbers 9,11,21. It represents the
standard triangle a) of Fig.[1.
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Figure 2: The grid of (€2,0)- pairs as used for the calculation of theoretical values.The
red line marks the specular reflection case (©=). The grid points are counted as
a results of the nested loops for €2,0. The triangle in blue color is defined by an
experimental point (black dot) - see section [2.

A second choice of the grid is shown in Fig.3. The sequence of angular
(2,0)-pairs are in the order as obtained from a 2-20-scan which probes
the offspecular intensity in the direction orthonormal to the red colored
line of specular reflections. In cases where different approximations of
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the theory are used when crossing the specular condition from low to
high €2-angles, this arrangement of the grid is more adequate than that
of Fig.2.
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Figure 3: The grid of (£2,0)- pairs as used for the calculation of theoretical values is
oriented with respect to the red line which marks the specular reflection case (©=%2).
The grid points are counted as a results of the nested loops for 2,0 as obtained for a
2-20-scan. The triangle in blue color is defined by an experimental point (black dot)
- see section 2|

In order to use the same interpolation procedure as described in section
2 the experimental points are expressed in the coordinate sytem of the
rotated grid with unit vectors (e, e;) as shown in Fig.l4. the following
equations are obvious:

e = %(ea—e@ (7)
B 1
e = E(eﬂ—i_e@)

The vector q = we; + ey is the difference q = p — ry.

rgp = Qeq+ Oeq (8)
p = (eq+ Oeg



(%, ©;) are the coordinates of point number 1 of the grid.
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Figure 4: For the transformation of the experimental (£2,0)- pairs to the coordinate
system of the grid oriented to the specular reflection line (red colored) unit vectors
(eq,ee) and (e, ey) and vectors (rp, p, q) are defined (see text) .

The transformation is obtained as

1
v = 5= -0+8) 9)

1
v = — (O —-—0Qy+6 -0
\/5( 0 0)

The stepwidth in the (w,)-variables is obtained from the constuction
of the loop (Q. = Q + dQ(ng — 1)).

Q = O+ dQ(/{ZQ — 1) + (i@ — 1)d@ (10)
© = 20, + dQ(nQ — 1) + (i@ — 1)2d@ —

The loop start at kg = ig = 1 with (2 = €2, © = €2,) for point number 1.
ko = 2,19 = 1 gives point number 2 with 2 = Q,+d2 and © = Q. — df).
Therefore, the stepwidth is v/2dQ) in e;-direction. In e,-direction point

1 and point ng + 1 with kg = 1,79 = 2 have to be compared. The
stepwidth becomes v/2dO.
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