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1 Powder average

An efficient average of Mossbauer spectra of randomly oriented single crystals (powder
samples) was described in the thesis of Katja Knese,Leipzig 1994, Fachbereich Physik
Universität Leipzig, based on the work of Hasselbach and Spiering from 1980 [2]. The
figures are copied from the thesis.

1.1 The choice of grid points

The average f of a function f(Ω) over the unit sphere given by the integral

f =
1

4π

∫

Ω

f(Ω)dΩ (1)

=
1

4π

N
∑

i=1

f(Ωi)∆Ωi

1 =
1

4π

N
∑

i=1

∆Ωi

is replaced by a sum over N directions Ωi = (θi, φi) with weighting factors ∆Ωi which
are normalized to 1 (Eq. 1). Numerical calculation requires the selection of the N
directions and solid angle segments ∆Ωi of the sphere. The choice of Alderman et al.
[1] uses ∆Ωi depending on the direction Ωi as illustrated in Fig. 1.
Earlier in 1980 Hasselbach et al. developed a numerical solution which best fits to

problems where an expansion of f(Ω) in a series of spherical harmonics is meaningful
from the physical properties of f . The directional dependence of intensities of multipole
radiation is a typical example. The average value of f of the expansion series with
coefficients Alm
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Figure 1: The 6 vertices of the octaedron lie on the x,y,z-axes of the coordinate system
and its 8 faces belong to the octants. The equilateral triangular faces are partitioned as
shown for the triangle in (111)-direction on the right side. The center of (sub) triangles
in the plane serve as the directions on the sphere. The solid angle belonging to the
sub-triangles depends on their distance to the surface of the sphere [1]

f(Ω) =
∞

∑

l=0

l
∑

m=−l

AlmYlm(θ, φ)

is just proportional to A00 according to the property of the spherical harmonics (Eq.
2).

∫

Ω

Ylm(Ω)dΩ = 0 for l 6= 0 (2)

f =
1√
4π

A00

The aim is the minimization of each spherical harmonic (the S(l,m) of Eq.3) by the
choice of directions and solid angle segments ∆Ωi. In the thesis of Knese following
the ideas from 1980 the ∆Ωi were restricted to be of equal size. The minimization
procedure, however, was completely changed. The calculation of spherical harmonics
and minimization of the sum over ǫlm (Eq. 3) by variation of Ωi has been avoided and
instead the function V (N) of Eq. 4 was used.

S(l,m) =
1

4π

N
∑

i=1

Ylm(θi, φi)∆Ωi (3)

ǫlm = |S(l,m)|

∆Ωi =
4π

N
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The idea behind is that this Coulomb potential of equal charges bound to the surface
of the sphere will have its minimum ’energy’ if the points ~ri (ri = 1) on the sphere
have equal distances to each other.

V (N) =
N

∑

i=1
k>i

1

|~ri − ~rk|
(4)

The development of computer capabilities (1980 to 1994) allowed to extend the number
of grid points on the sphere in the minimization procedure considerably, from 6 to 128
grid points in 1/48 of the sphere shown as hatched part in Fig. 2. Fig. 3 shows the
projection of the 1/8 sphere on the equilateral triangular faces of the octahedron.
The projection of the hatched part in Fig. 2 is the upper left triangle, the two others
filled with 32 cirles are obtained by a C3, C32-rotation. The circles have a diameter
calculated from the area 4π/48 of the unit sphere. Their different size in the figure
makes evident, that the choice of Alderman et al. of equal triangles on this equilateral
triangular faces leads to increasing weights to the center (C3-axis) of the figure.

1.2 Quality of data sets

The quality of the data sets dependent on the number of grid points is shown in Fig. 4.
The sum over i of the spherical harmonics for l values up to l=100 are plotted. In the
range from l to l+1 all sums at l and m with values different from zero are equidistantly
plotted, such that with increasing l the number of points per interval becomes larger.
Appreciable deviations from the exact average value of zero start at some order l of the
spherical harmonics. As expected l increases with increasing number of grid points.
For l=6 (the solution of [2]) the average value itself was minimized up to l=18 and
the scattering of the sum from zero starts just at l=18. Minimizing with the potential
function of Eq. 4 the scattering starts more smoothly and requires more grid points for
the quality obtained for l=18 in [2](a number n between 8 and 16).

The average ǫ (Eq. 5) of the absulute deviation from zero, the ǫ-values of Eq. 3, have
been plotted in Fig. 5. A comparison with the method of Alderman et al. with 26 ·26 =
676 grid points per 1/8 of the sphere (corresponding to 8 ·n) lies in between the values
of the average deviations obtained for n=32 and n=64 for l larger than 50. However,
for l< 50 the average comes out to be much higher. The minimized positions of the grid
points on the sphere with equal solid angle turns out to be the better choice. However,
the extension to much higher densities of grid points (as they are neccessary for NMR
Pake-spectra) is reserved to Alderman’s method.

ǫ =

l
∑

m=−l

ǫl,m)

2l + 1
(5)
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Figure 2: The x,y,z-axes as used in Fig. 1 enclose 1/8 of the surface which is subdevided
by 6 spherical triangles. Two groups of 3 are related by the 3-fold axis. The mirror
plane C3-Z maps the two groups to each other. By the transformations of the cubic
group O with 24 elements the hatched triangle is mapped on half of the sphere. The
transformations of Oh covers the complete sphere.

Figure 3: The projection of 1/8 of the surface as shown in Fig. 2 on the equilateral
triangle faces of Fig. 1 gives 6 triangles. 3 of them related by the 3-fold axis are filled
with 32 cirles each (partly overlapping) of equal area on the surface of the sphere, such
that for each direction given by the center of the cirlce the solid angle is the same.
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Figure 4: The sum over n*48 grid points over the sphere (n=4,..., 128) for the sperical
harmonics l=0,...,100. The scatter of the sum increases with increasing order l. For
n=6 te grid points of the original paper of Hasselbach et al. [2] were used.
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Figure 5: Comparison between optimized (potential function eq. 4) grid points and the
fixed choice of grid points according to Alderman et al. [1]. The ǫ values (Eq. 5) for
26 · 26 sub-triangles inside the equilateral triangle of the octahedron denoted by ald26
( = 676 grid points per 1/8 of the sphere) are compared with the optimized values for
n=32 and n=64 corresponding to 256 and 512 grid points per 1/8 of the sphere.

1.3 Average of an object with an intrinsic symmetry

The choice of the configuration of the grid points on the sphere is very useful if the
function f(Ω) to be averaged has some symmetry characterized by a symmetry group
U which is a subgroup of the cubic group Oh. To begin with the sum over n · 48 grid
points over the sphere is written as

f =
48

∑

k=1

(

n
∑

i=1

f(TkΩi)

)

where the set {E = T1, T2, ..., T48} denote the 48 symmetry transformations of the group
Oh. Be T1 the identity element E then the inner sum of Eq. 6 represents the integral
over the hatched spherical triangle in Fig. 2 and the outer sum the integral over the 48
triangles. It is obvious that in the case of an invariant f with respect to a subset of
transformations the outer sum can be restricted to transformations which are effecting
f . Group theory has an answer to this problem. The subgroup U = {E,U2, ..., UM} of
order MU (Mu is a divisor of MOh

= 48) has LU − 1 cosets (LU ·MU = MOh
) such that

the set {Oh} can be written as (E = S1):

{Oh} = {{U}, {U} · S2, ..., {U} · SLU
} (6)

{U} · Si are right cosets. The outer sum is now written as a double sum
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f =

MU
∑

k=1

LU
∑

j=1

(

n
∑

i=1

f(Uk · SjΩi)

)

Invariance of f does mean that f(UkΩi) = f(Ωi). Since f(SjΩi) = f(Ωij) with ij one
of the 48 elements, the value of f(Uk ·SjΩi) is equal to f(SjΩi). The sum in Eq. 7 gives
the same value for all k.

f = Mu ·
LU
∑

j=1

(

n
∑

i=1

f(SjΩi)

)

The set of elements {E = S1, S2, ..., SLU
} generating the right cosets may be different

from the set generating left cosets. If we have the left cosets {E = T1, T2, ..., TLU
} the

transformations have to defined as invers transformations. Since with Uj also U−1
j is

an element of U the sum can be written step by step:

f =

MU
∑

k=1

LU
∑

j=1

(

n
∑

i=1

f((Tj · Uk·)−1Ωi)

)

(7)

=

MU
∑

k=1

LU
∑

j=1

(

n
∑

i=1

f(U−1
k T−1

j Ωi)

)

= Mu ·
LU
∑

j=1

(

n
∑

i=1

f(T−1
j Ωi)

)

Wether the transformations of the right or left coset have to be used depends on
the code of the program, on the definition of the transformation matrices. It turns
out that the transformation of tensor components t(n) by sequence of multiplication:
t lab(k)= Sum t(n)*Dcpt(n,l)*Dslt(l,k) in the subroutines th hdeqf() and th hdeq()
(file th 22nuclear.f) requires the right cosets as defined in the routine group available in
the directory effi/helproutines/Octahedral. The tensor t(n) may have its own symmetry
like the D2 symmetry of an 2. rank tensor in its PAS or the sum over jloop eqivalent
sites t(m)*d1(m,n,jloop), jloop=1,...,nloop as a whole expression become invariant with
respect to a subgroup of O. For several subgroups the right cosets as obtained from
the program group are implemented and are called by a constant named isymmetry
in the subroutine sphere().

2 Equivalent sites of single crystals

The situation of symmetry-related equivalent sites of a crystal (despite translational
symmetry) requires the transformations (rotations/reflections) to generate the orienta-
tions of the fields at each site. If the point group symmetry of the crystal is G and the
number of eqivalent sites is less than the order of G then the site itself has a symmetry,
it takes a special position in the unit cell.
The general answer for all point groups to the number of equivalent sites and their
symmetry has been published by Weil et al. [3]. The program group has an entry
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point: { Tensor T: R ∗ T ∗ R† with R(U)} which gives an answer to this problem.
A standard second rank tensor (at present) is transformed with all group elenents of the
choosen subgroup U of the octahedral goup O (at present) and equal results are grouped
together. From each list of equal tensors one of the transformations is taken to generate
an equivalent site. The subroutine {sym equiv(ncase,timeinvers,nloop,ctimeinv,d1,d2)}
has data statements for integer arrays iO3a,...,iO3d and iO4a,...,iO4e. O stands for the
group and 3 and 4 for the PAS with z-axes C3‖z and C4‖z, respectively. The ar-
ray elements are the numbers of the transformations (all 24 are defined in another
data statement) and as a first integer the number of transformations. Example: {data
iO4c/5,2,5,7,8,10/ } lists the five transformations 2,5,7,8,10 which can be found for
the full octahedral group U=O and the symmetry elements C2z = C4z2 (denoted by
C4z*) and C2-xy, which are compatible with the 2. rank tensor η = 0.5(6= 0) and the
Euler angle (φ = 135o, θ = 0, ψ = 0). The example is met for the cubic crystal of
Almandine (see project directories) which has six equivalent sites.
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