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1 Geometry of a Mössbauer measurement

1.1 Moving source

The standard configuration of source, absorber and detector of a Mössbauer
experiment is depicted in Fig. 1. The source is mounted on a drive unit
and moves S(v) between positions Smin and Smax, the absorber is at
rest between source and detector. As indicated in Fig. 1 the solid angle
changes with the position of the source. The variation of the solid an-
gle shall be included in the theoretical description of the experimental
data. Prerequisite is a well defined geometry. The detector area has to
be large enough not to miss γ-radiation at the edge of the cone of the
varying solid angle. In addition the detection efficiency is assumed to be
constant over the detector area.

Figure 1: Source is moving between Smax ≤ S0 ≤ Smin and the absorber is fixed at the
distance H from position S0. The solid angle subtended by the detector reaches its
maximum at the source position Smin and is determined by H plus the displacement
of the source and the radius rH of the absorber holder. In Fig. a) a uniform efficiency
almost right up to the edge is presupposed. The aperture (Fig. b)) the solid angle
depends on the distance A and radius rA instead and is decreased to the safe region of
the detector area.

The source holder is the aperture diaphragm in ( Fig. 1a)). The solid
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angle is determined by the actual distance H + S(v) and its shape. In
Fig. 1b) an extra aperture diaphragm at a distance A from the v = 0
position S0 of the source in front of the detector determines the solid
angle and restricts the γ-radiation to the best (homogeneously) region
of the detector.
This geometry is well suitable for an absorber in a cryostat.

1.2 Moving absorber

The moving absorber in most cases is used as an analyzer and the source
at rest in a cryostat the object of research. In this case the geometry
in Fig. 2a) is the most favorable one since the solid angle is independent
on the velocity. This geometry can be always achieved by an aperture
diaphragm in front of the detector. The condition of homogeneity of
the detector is not any more required. The situation Fig. 2b) should be
avoided.
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Figure 2: Source at position Psource is fixed and the absorber is moving between the
distances from the source Hmin and Hmax. With the aperture of radius rA at a distance
A from the source (Fig. a)) the solid angle subtended by the detector at a point source
depends on A and rA and not on the position of the absorber. Removing the aperture
(Fig. b)) the solid angle becomes larger and depends on the position of the absorber.
The figure emphasizes the dependence on the dimensions of the absorber holder, the
distance Hmin ≤ H ≤ Hmax and the radius rH .
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2 Baseline

The measurement of the baseline of a Mössbauer spectrum already pro-
vides valuable information about the equipment, that is the geometry
and dead time effects. In a first step the geometry effect of the mov-
ing source both in triangular and sinusoidal mode in the limit of large
distances from the detector or aperture in front of the detector shall
be considered. The distance law 1/r2 for the intensity of radiation at
distance r from the isotropically radiating source leads to a type of sinu-
soidal modulation of the baseline. At large distances the source can be
approximated by a point source and the shape of the aperture plays no
role. This case is outlined first. Then the corrections for short distances
for a point source and afterwards for an extended source are considered.
The latter can only be done numerically. Three types of shape of the
aperture are discussed, that are the most common circular aperture, the
square or rectangular shape and the special case of an elliptical shape
oriented at an angle α which were used for a series of single crystal
measurements.

2.1 Shape of the baseline

The dependence of the count rate on the position S of the source at
channel number k is given by the distance rk. In case of a sinusoidal
motion of the source S = Smax sin(ωt) with the distance r(t) = A+S(t)
to the aperture the largest distance A + Smax and lowest count rate is
reached at time t = T/4. At t = 3/4T the distance is A − Smax with
the highest count rate. The count rate is proportional to 1/(A+ S(k))2

which gives some kind of sinusoidal modulation of the baseline as shown
in Fig.3. In multi scaling mode the channel number k is proportional
to time t such that at the full period time T the counts are collected
in the highest channel K. Time t is expressed by channel k according
t = k · T/K. The velocity v(t) = dS/dt = Smaxω · cos(ωt) starts at t = 0
with vmax = Smaxω and reaches at t = T/4 corresponding to channel
k = 512 zero velocity.
The geometry effect is well characterized by the parameter geo = Smax/A.
If N0 is the number of counts with the source at rest (S(k) = 0) the num-
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Figure 3: The baseline of 2.4 · 105 counts measured with the sinusoidal mode shows
the characteristic geometry effect. The χ2 = 1.030 value deviates from 1 by less than
1σ =

√
2/
√
K = 2048 = 0.031.

ber of counts N(k) (Fig.3) is written as:

N = N0
A2

(A+ S(k))2
=

N0

(1 + S(k)
A )2

(1)

=
N0

(1 + Smax

A
S(k)
Smax

)2

=
N0

(1 + geo · sin(2π/K · k))2

The argument ωt is replaced by 2π/T · (T/K)k.

For later use the source position S is expressed by the dependence on its
velocity v replacing the sin function by ±

√
1− cos2 and Smax replacing

ω by 2π/T

S(v) = ±Smax

√

1−
(

v

vmax

)2

(2)

Smax =
vmax

2π
T

The same consideration for the triangular mode requires some lengthy
evaluation. Starting at t = 0 and v = vmax the acceleration b in the
opposite direction decreases the velocity to zero in a quarter of a period
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T/4.
v(t) = vmax + bt

Integration of v(t) with the boundary condition S(t = 0) = 0 gives

S(t) = vmaxt+
1

2
bt2 (3)

At t = T/4 the velocity is zero, so that from Eq. 3 vmax = −bT/4, and
the source gets the maximum deviation Smax. Inserting t = T/4 and
b = −4vmax/T the maximal deviation in the triangular mode is obtained

Smax =
vmax

8
T (4)

The dependency of S on the velocity v is obtained inserting t from Eq. 3
into S(t) and using vmax = −bT/4 from above.

S(v) = vmax
v − vmax

b
+

1

2
b

(

v − vmax

b

)2

(5)

S(v) = +Smax

(

1−
(

v

vmax

)2
)

The second half period starting at t = T/2 with v(t = T/2) = −vmax

v(t) = −vmax + b(t− T

2
)

yields the same expression for S(v) with the minus sign. Similar to the
Eqs.2 for the sinusoidal case the equations for the triangular case are

S(v) = ±Smax

(

1−
(

v

vmax

)2
)

(6)

Smax =
vmax

8
T

Note the differences of the equations. Fig.4 shows the difference of the
baselines of the 2 modes with the same parameter geo = Smax/A. The
curve of Fig.3 fitted to experimental points measured with the sinusoidal
mode has been recalculated with the triangular mode.

2.2 Solid angle of a point source

The modulation of the baseline as considered above is only an approx-
imation valid for large distances. It is proportional to the ratio of the
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Figure 4: The fitted baseline of of Fig.3 measured with the sinusoidal mode is compared
with the curve calculated with the triangular mode. The slope of the curve belonging
to the triangular mode turns out to be larger.

solid angles Ω(S)/Ω(S = 0) subtended at the point source by an aper-
ture and depends also on the shape. In the following the solid angles for
apertures of the shape of a circle, a square and an ellipse are discussed.

2.2.1 Solid angle of a circle

The intensity of the radiation from the source S through an aperture
proportional to the solid angle Ω determined by the position of the source
relative to the aperture. The simplest case is a point source on the axis
orthonormal to the aperture as shown in Fig. 5.
The surface of the infinitesimal ring element from r to r + δr of the
aperture is 2πrδr. The ring element resects from the surface of the
sphere with radius R =

√
r2 + A2 the element 2πrδr · cosϑ. The solid

angle dΩ of the surface element is given by the sphere of radius 1 such
that

dΩ = 2πrδr · cosϑ/R2 with

tgϑ = r/A

The solid angle is obtained by integration over r. With the identity

cosϑ(r) = cos(arctan(r/A))

=
1

√

1 + ( rA)
2

8



Figure 5: Source at position S, an aperture at a distance A is centered to an optical
axis. The solid angle dΩ belonging to the surface element at r and width δr is equal
to the projection of the surface element 2πrδr · cosϑ onto the unit sphere. The point
near ϑ marks the angle π/2.

the integral is written as

Ω = 2π

∫ rA

0

Ardr

(r2 + A2)
√

(r2 + A2

= 2π

∫ rA

0

1

2
dx2

(

1 + x2
)− 3

2 with x = r/A

which is evaluated to be

Ω = 2π






1− 1

√

1 +
(

rA
A

)2






(7)

For the experimental cases with ratios rA/A << 1 the Taylor expansion
is sufficient. Denoting the area πr2A by FA the solid angle becomes

Ω =
FA

A2

(

1− 3

4π

FA

A2
+ ...

)

(8)

The distance r(S) of the moving source is A + S. With δ = S/A and
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τ = FA/A
2 the ratio

Ω(S)

Ω(0)
=

1

δ)2

(

1− 57

16π2
τ 2 +

3

2π
τδ +

9

8π2
τ 2δ

)

(9)

is well approximated by 1/(1+δ)2. Even for typical apertures of an area
FA = 1cm2 at small distances A = 25mm the product τδ turns out to
be very small compared to 1. Taking vmax = 10mm/s and 1/T = 10Hz
the ratio δ(v = 0) = Smax/A becomes 5 · 10−3 which together with
τ = FA/A

2 = 0.16 gives δτ = 8 · 10−4 (neglection of τ 2-terms).

2.2.2 Solid angle of a square

There exist also an analytical solution for the solid angle of a rectangular
aperture of of length a and width b at a distance A [1]. With the
definition of two parameters α = (a/2)/A andβ = (b/2)/A) the solid
angle is given by

Ω(a, b, A) = 4 arccos

√

1 + α2 + β2

(1 + α2)(1 + β2)
(10)

An expansion to the order (αβ)4 is also accomplished in [1].

Ω(a, b, A) = 4αβ − 2αβ(α2 + β2) + ...

The solid angle of the square (a=b) with F = a2 is similar to Eq. 8

Ω =
F

A2

(

1− 1

4

F

A2
+ ...

)

(11)

The comparison with the circular aperture shows that the correction
which differs by the ratio 3/π can be neglected by the same argument.

2.2.3 Solid angle of an ellipse

The crystal orientation technique involves rotation of the crystal on a
single-circle goniometer inclined at fixed angle (α = 45o) about an axis
fixed in the crystal; the gamma beam then traces out a right (circular)
cone in the crystal. The technique has been described analytically by
Weil, Buch and Clapp[2] and has been utilized by Spiering and Vogel [3]
in their single-crystal Mössbauer study of FeCl2·4H2O and later several
times by Bull et al. [4, 5, 6] using the geometry of Fig.6 where the cut of
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Figure 6: Configuration of source, absorber and detector (proportional counter) for
a series of measurements at different γ-directions with respect to the single crystal
absorber as used in the work of Bull et al. [4, 5, 6]. The different γ-directions are
obtained by rotation around the axis orthonormal to the absorber plate which includes
an angle α = 45o with the optical axis defined by the direction of the velocity vector
of the source. The aperture given by the cut at α 6= 0o of the cylindrical bore hole is
an ellipse. the asymmetric radiation cone is depicted for an extended source.

the guide tube for the γ-radiation at an angle α < 90o gives the aperture
an elliptical shape.
There exist analytical formulas to calculate the solid angle subtended at
an arbitrarily positioned point source by an elliptically shaped aperture.
In the paper of Abbas et al.[7] six cases concerning the positions of the
source are considered. The first and plainest case is that of an ellipti-
cally shaped aperture with an isotropic radiating central point source at
distance z=A. The solid angle is given by:

Ω(0, 0, A) =

∫ 2π

0

∫ θ(φ)

0

sin θdθdφ (12)

where the function θ(φ) depends on the principal axes a and b.

θ(φ) = arctan(r(φ)/A))

r(φ) =
ab

√

(a · sin(φ))2 + (b · cos(φ))2

The result for the circle of Eq. 8 is readily obtained setting a=b. In-
troducing the eccentricity ǫ =

√
a2 − b2/a and the area F = πab of the
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ellipse the expansion of the solid angle for small ǫ starts with ǫ2.

Ω(0, 0, A) =
F

A2

(

1− 3

4π

F

A2
(1 +

3

2
ǫ2) + ...

)

(13)

The case corresponding to Fig.6 is case number 4 which reads with the
notation of Fig.7:

Ω(p, 0, h) = 2

∫ φmax

0

∫ θb(φ)

θa(φ)

sin θdθdφ (14)

Figure 7: The larger principal axis a of the elliptical aperture cut at an angle α from the
tube (see Fig.6) of radius b is along the x-axis of the coordinate system (a = b/ sinα).
The point source S(p,0,h) has the distance A =

√

p2 + h2 from the center of the ellipse.
The y-axis is alog the principal b-axis.

The integration limits φmax, θa and θb are calculated from the relative
position of the source and ellipse as shown in Fig.7.

φmax = arctan(b/
√

p2 − a2)

θa(φ) = arctan((ra(φ) + rb(φ))/h), θb(φ) = arctan(ra(φ)/h)

The dθ integration can again be accomplished

Ω(p, 0, h) = 2

∫ φmax

0

dφ (− cos(θb(φ)) + cos(θa(φ))) (15)

= 2

∫ φmax

0

dφ



1/

√

1 +
(ra
h

)2

− 1/

√

1 +

(

ra + rb
h

)2



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The functions ra and rb are complicated function of φ such that the
integration over φ is done numerically.

ra(φ) =
pb2 cosφ− ab

√

(b · cosφ)2 + (a2 − p2) sin2 φ

(a · sinφ)2 + (b · cosφ)2

rb(φ) =
2ab
√

(b · cosφ)2 + (a2 − p2) sin2 φ

(a · sinφ)2 + (b · cosφ)2

The numerical results show that the solid angle of a circle (α = π/2,
the result of Eq. 8) is by facor of 1.317 larger than the solid angle at
α = π/4 and independent of the distance A for A/b ≥ 8 within the
numerical precision.
The consequence is that the baseline with the same geometrical factor
geo = Smax/A has the same shape as the baseline for a circular aperture.

Table 1: The geometry factor geo is calculated for a point source moving with an
amplitude Smax = 0.1mm at 3 distances A = 20, 40, 80mm and aperture areas FA =
25, 100, 200mm2. Note the decrease of geo with increasing aperture (∝ FA) for a circle
and the slight increase for a cone section at α = 45o of a circular tube of area FA.

A = 20mm A = 40mm A = 80mm

Smax

A
0.500 · 10−2 0.250 · 10−2 0.125 · 10−2

circle
25mm2 0.492 · 10−2 0.249 · 10−2 0.125 · 10−2

100mm2 0.472 · 10−2 0.246 · 10−2 0.125 · 10−2

200mm2 0.447 · 10−2 0.243 · 10−2 0.125 · 10−2

square
25mm2 0.493 · 10−2 0.249 · 10−2 0.125 · 10−2

100mm2 0.472 · 10−2 0.246 · 10−2 0.125 · 10−2

cone section (α = 45o)
25mm2 0.507 · 10−2 0.251 · 10−2 0.125 · 10−2

100mm2 0.520 · 10−2 0.254 · 10−2 0.125 · 10−2
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2.3 Solid angle of an extended circular source

2.3.1 Reciprocal property

The solid angle element dΩ at an isotropic radiating point source S
subtended by an aperture element dfA

dΩ =
dfA · cos(ϑS,a)

R2
S,A

with the distance RS,A between the position of the source and the sur-

face element dfA and the angle ϑS,A between the direction ~RS,A and the
orthonormal of the surface element (see Fig.5). Accounting for the ex-
tension of the source the integral runs over the source area FS and has
to be normalized. Each surface element dfS is considered as an isotropic
emitter in contrast to the Lambert’s cosine law for diffuse radiators.
The typical geometry of parallel areas of source and aperture has the
consequence that for each pair of area elements dfS and dfA the angle ϑ
is the same on both sites such that cos(ϑA,S) = cos(ϑS,A). In these cases
the integral can be written in the symmetrical form (RS,A = RA,S)

Ω

FA
=

∫

FS

∫

FA

dfA
FA

cos(ϑS,A)

R2
S,A

dfS
FS

(16)

Interchanging A and S the integral is the same so that the relation holds:

ΩS

FA
=

ΩA

FS
(17)

The starting situation when integrating first over FA for a point source
and then over the source area calculates ΩS, that is Ω seen from the
source.
This reciprocal property turns out to be useful especially for the calcu-
lation of cosine-smearing effects on the Mössbauer spectrum.

2.3.2 Circular aperture

The position of a point of the extended circular source of radius rS at a
distance p ≤ rs from the center has the coordinate S(p,0,h). The solid
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Figure 8: The two reciprocal geometries of circular source and aperture. On the left
the small source of area FS at hight h sees the aperture by the solid angle ΩA and on
the right the solid angle ΩS subtended by the small aperture of the area of the source
at the large radiating area of the size FA.

angle subtended by a circular aperture at that point is given by [7]:

ΩA(p, 0, h) = 2π −
∫ 2π

0

dφ
√

1 +
(

r(φ)
h

)2
(18)

r(φ) = −p · cosφ+
√

(a cosφ)2 + (a2 − p2) sin2 φ

Integration over the source area reduces to an integration over p from
r = 0 to r = rS.

ΩA(h) = 2π

∫ rS

0

ΩA(p, 0, h)pdp (19)

This integration is performed numerically. For typical values of the ve-
locity of vmax = 8mm/s and frequency ν = 10Hz of the source the
amplitude (triangular mode) Smax = vmax/8/ν becomes 0.1mm. The
parameter geo = Smax/A for a point source at distance h = A = 25mm
from the aperture of circular shape has the value geo = 0.4 · 10−2. The
effect of the extension of the circular source of rS = 2mm on the geo-
parameter is shown in Table 2. With increasing radius of the aper-
ture geo decreases by about 10% at rA = 10mm. This deviation from
geo = Smax/A decreases rapidly with increasing distance A. The shape
Ω(S(v))/Omega(S = 0) is very well preserved inserting an effective pa-
rameter geo.
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Table 2: The geometry factor geo is calculated for an extended source of rS =
2.5mm at 3 distances A = 20, 40, 80mm and aperture areas with radius from FA =
25, 100, 200mm2. Note the decrease of geo with increasing aperture (∝ FA) for a circle
and square and the slight increase for an ellipse at α = 45o. At A ≥ 80mm the size
rS ≤ 2.5mm has almost no effect on the parameter geo.

A = 28mm A = 40mm A = 80mm

Smax

A
0.400 · 10−2 0.250 · 10−2 0.200 · 10−2

circle
25mm2 0.487 · 10−2 0.248 · 10−2 0.125 · 10−2

100mm2 0.468 · 10−2 0.246 · 10−2 0.124 · 10−2

200mm2 0.445 · 10−2 0.242 · 10−2 0.124 · 10−2

square
25mm2 0.487 · 10−2 0.248 · 10−2 0.125 · 10−2

100mm2 0.467 · 10−2 0.246 · 10−2 0.124 · 10−2

ellipse (α = 45o)
25mm2 0.501 · 10−2 0.250 · 10−2 0.125 · 10−2

100mm2 0.514 · 10−2 0.253 · 10−2 0.125 · 10−2

2.3.3 Quadratic aperture

The off-axis case of a point source has also been solved in [1]. Here the
reciprocal property Eq. 17 shall be used. The solid angle subtended by
the circular source at a point of the quadratic aperture is calculated in
two steps. Eq. 19 cover the area rA ≤ rS

ΩS(h, r ≤ rS) = 2π

∫ rS

0

ΩS(p, 0, h)pdp

and the specialized Eq. 15 for α = π/2 and r = a = b the area rA > rS.

φmax = arctan(a/
√

p2 − a2)

ΩS(p, 0, h) =

∫ φmax

0

dφ

[

1/

√

1 +
(r−
h

)2

− 1/

√

1 +
(r+
h

)2
]

The functions r±(φ) become

r±(φ) = p cosφ±
√

(a · cosφ)2 + (a2 − p2) sin2 φ
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The integration is again in two parts (see Fig.9)

ΩS(h, r > rs) = 2π

∫ a/2

rS

ΩS(p, 0, h)pdp+ 4 · α
∫ a/

√
2

a/2

ΩS(p, 0, h)pdp

The angle α = π/2− 2β is obtained from a/2 = p cos β.

ΩA(h) · FA = ΩS(h, r ≤ rS) · FS + ΩS(h, r > rS) · (a2 − FS) (20)

Figure 9: The squared area F = a2 of the aperture is divided into a circular part up
to the radius rA = a/2 and the four remainder. The circular part is integrated by
dfA = 2πrdr. For the remainder dfA reduces to 4 times the fraction given by α/2π.

The calculated geometry effect for a square aperture with edge length of
double the radius of a circular aperture is slightly smaller. The values
of the parameter geo differ by few % (see Table 2).

2.3.4 Elliptical aperture of a cone section

The point source at point S in Fig.7 is replaced by a circular source of
radius rS orthonormal to the axis of the tube which is parallel to the line
A in Fig.7. Using right handed unit vectors ~ex, ~ey, ~ez the coordinates of
a source point at distance 0 ≤ ρ ≤ rS and angle ψ is given by

ρ~eρ = ρ (cosψ~eξ + sinψ~ey) (21)

~eξ = cosα~ex + sinα~ez
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The (x,z)-plane is a mirror plane in Fig.7 with a point source and an
extended circular source as well. The angle ψ = 0 in the mirror plane.
A general point of the extended source

~S(ρ, ψ) = (−P + ρ cosψ cosα)~ex + ρ sinψ~ey + h~ez (22)

The more general case of Fig.7 with ~S(ρ, ψ) in the (x,y)-plane is treated
by Mahmoud et al.[8] as the case of fig. 6 requiring the condition

√

(−P + ρ cosψ cosα)2 + (ρ sinψ)2 ≥ a

which is fulfilled for A > 2 b/ sin 2α + rS. The solid angle is calculated
with the parameters p = P − ρ cosψ cosα and q = ρ sinψ.

Ω(p, q, h) =

∫ φmax

φmin

∫ θb(φ)

θa(φ)

sin θdθdφ (23)

The integration limits φmin, φmax, θa and θb are calculated from the rela-
tive position of the source and ellipse as shown in Fig.7.

φmin = arctan

(

pq −
√

b2(p2 − a2) + a2q2

p2 − a2

)

φmax = arctan

(

pq +
√

b2(p2 − a2) + a2q2

p2 − a2

)

θa(φ) = arctan((ra(φ) + rb(φ))/h)

θb(φ) = arctan(ra(φ)/h)

The dθ integration can again be accomplished

Ω(p, q, h) =

∫ φmax

φmin

dφ (− cos(θb(φ)) + cos(θa(φ))) (24)

=

∫ φmax

φmin

dφ



1/

√

1 +
(ra
h

)2

− 1/

√

1 +

(

ra + rb
h

)2




The functions ra and rb are complicated function of φ such that the
integration over φ is done numerically.

ra(φ) =
pb2 cosφ+ qa2 sinφ

(a · sinφ)2 + (b · cosφ)2 −
1

2
rb(φ)

rb(φ) =
2ab
√

(b · cosφ)2 + (a2 − p2) sin2 φ+ q cosφ(p sinφ− q cosφ)

(a · sinφ)2 + (b · cosφ)2

18



The numerical results show that the solid angle of an ellipsis of a cone
section of a tube of 6mm in diameter at α = π/4 a source radius of
rS = 2mm at a distance A = 35mm) is by facor of 1.59 larger than
a circular aperture at the same distance (see Table 2). Although geo

deviates considerably from geo = Smax/A the shape of the baseline fits
quite well (< 1/10σ for 106 counts) with the larger value of geo.
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3 Cosine smearing

The ”cosine-smearing effect” is related to the geometry of the experimen-
tal setup. This effect leads to broadened lines with asymmetric shapes
and shifts line centers outwards, particularly at higher velocities [13].

Crespo and Parellada [14] outlined in 1986: “The finite size of the
Mössbauer absorber is taken into account to relieve geometrical condi-
tions. An analytical expression reproducing quite accurately the actual
shape of the resonant lines is derived. Deviations from the assumptions
made have a small effect on line shape. The expression can easily be in-
cluded in standard Mössbauer fitting routines to obtain accurate values
of physical parameters even with bad geometrical conditions”

Flores-Llamas and Zamorano-Ulloa [15] considered Mössbauer line shape
distortions due to finite dimensions of both the source and detector.
“The effects of non-collimation of γ-rays and finite dimensions of source
and detector upon the isomer shift, line broadening and line height of
Mössbauer spectra have been determined by means of a two-dimensional
angular distribution f(r, ρ) that weights a Lorentzian line shape func-
tion. This distribution function, along with a few approximations, allow
one to calculate, with ease, these Mössbauer spectral parameters. Our
expressions, valid for finite dimensions, of source, detector and absorber,
generalize previous calculations.”

The numerical calculation developed in the following considers not only
the shifts of the absorption lines of the superposed spectra but also their
intensities diminished by the thickness effect increasing with the line
shifts. Nevertheless there are approximations very elaborate to over-
come. The emission and absorption of a polarized source and absorber,
respectively, depend on the γ-direction so that the angular spread of the
non-collimated γ-ray would require the calculation of the cross sections
and the thickness effect for each direction.

The calculation is independent of any details of the theoretical spectrum
(relaxation, distribution and other complexity).
Two apertures are considered, the circular one as a diaphragm or the
quadratic detector surface, which is the typical shape of a pin-diode.
First a solution is described for the case of a point source and afterwards
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Figure 10: The angle α between the perpendicular of the square aperture and the
direction from the point source to one of the circular rings (here the gray outer most
complete circle) causes a reduced velocity (double arrow directions) by cosα. The
distance between source and aperture is A.

the generalization for an extended source requiring much more compu-
tation time.

In a third step some simulations are presented which shall provide some
limits of validity for the point source approximation and also an intrinsic
approximation concerning the velocity dependence of the position of the
source.

3.1 Area elements

There are many ways to choose the area elements df . Equidistant rings
as in Fig.10 with sections ∆ϕ of the same area element df is an obvious
choice. Fig.11 shows another choice of closely arranged circles which
define uniformly distributed coordinates of the area elements. For both
cases the total number of area elements can be extended to any approx-
imation of the integral.
The first element is a circle of radius r at (0, 0) and area df = πr2. In
the first case ring radii Ri (R0 = r) and angle sections ∆ϕi have to be
calculated in order to get approximately equal area elements df . The
coordinates of the elements are defined by (ρ, ϕ) with ρi = (Ri+Ri−1)/2
in the middle of the ring from Ri−1 to Ri. The Ri shall fulfill two
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conditions:

nϕi πr
2 = πR2

i − πR2
i−1, nϕi integer (25)

nϕi ≈ 2πρi
Ri −Ri−1

The first condition determines the number nϕi of angular sections ∆ϕi

by equal area elements. The second condition requires a shape of similar
hight and width, namely Ri − Ri−1. Eliminating nϕi in a first step (as a
non integer value)

2π(Ri +Ri−1)/2

Ri −Ri−1
=

πR2
i − πR2

i−1

πr2

r
√
π = Ri −Ri−1

such that integer value nϕi can be defined as the integer round off νϕi

νϕi =
√
π(Ri +Ri−1)/r and

νϕi = π
Ri +Ri−1

Ri −Ri−1

Figure 11: The integration area is covered with small circles of radius r which define a
R,ϕ value at the center. The integration area of the large circle of radii 3r, (2

√
3+1)r,

(2
√
7 + 1)r, (2

√
13 + 1)r,... contain 7, 19, 37, 61,... small circles.

Starting with R1 = r and R0 = 0 the integer νϕ1 =
√
π is nϕ1 = 1. The

22



value of νϕ2 is obtained step by step

νϕ2 =
√
π(R2 + r)/r and νϕ2 = π

R2 + r

R2 − r
R2

r
= 1 +

√
π

νϕ2 =
√
π(2 +

√
π)

and gives νϕ2 = 6.68 such that nϕ2 = 6 inserted in the first Eq. 25 gives
the value R2/r =

√
7. This way table Tab.3 is obtained.

Table 3: The first 5 rings with nϕ
i = floor(νϕi ) area elements of size πr2 and the total

number
∑

i are listed. ∆ϕi of ring i > 1 is 2π/nϕ
i . At ϕ0

i = ±2π/nϕ
i are the first and

the last angle sectionsas a consequence of even nϕ
i -values.

i Ri/r νϕi nϕ
i

∑

i

1 1 1 1 1

2
√
7

√
π(2 +

√
π) 6 7

3
√
19

√
π(2

√
7 +

√
π) 12 19

4
√
37

√
π(2

√
19 +

√
π) 18 37

5
√
61

√
π(2

√
37 +

√
π) 24 61

6
√
91

√
π(2

√
61 +

√
π) 30 91

7
√
127

√
π(2

√
91 +

√
π) 36 127

Interestingly, the total number of area elements df = πr2 of the ring
structure with the closed packed circles in Fig.11 is the same for the first
5 rings. However, the area enclosed by the outer ring in Fig.11 with a
radius of R = r(2

√
13 + 1) is by ≈ 6.4 area elements (= circle area)

larger than for the ring structure of Tab.3. The fact that the nϕi up to
i=7 have even values preserves the mirror symmetry with respect to the
ϕ = 0o, 180o axis as is the case in Fig. 11.

3.2 Point source

3.2.1 Absorber area orthonormal to the optical axis

The task to be solved is described by means of Fig.10. For each angle
ϑi a spectrum is counted with a velocity scale vϑmax = cosϑi · vmax. The
measured spectrum averages over all ϑ weighted by the solid angle be-
longing to the ring area 2πrδr. The integrals of Eq. 20 for the solid angle
of a squared and circular aperture are approximated by sums. The solid
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Table 4: The (x, y)-coordinates of the circles of Fig.11 are tabulated for x, y ≥ 0. The
unit length is 1/2 the diameter of the circle.

x 0 1 2 3 4 5 6 7 8
y 0 0 0 0 0√

3
√
3

√
3

√
3

2
√
3 2

√
3 2

√
3 2

√
3

3
√
3 3

√
3 3

√
3

4
√
3 4

√
3 4

√
3

angles for the N circular areas with the same angle ϑ according Fig.9
from ri −∆r to ri +∆r are per definition:

∆ΩAi =
π(ri +∆r)2 − π(ri −∆r)2

(A+ S)2 + r2i
cosϑi

cosϑi =
A+ S

√

(A+ S)2 + r2i

The position of the source S(v) at velocity v which belongs to channel
number k is given by Eq. 2 for the sinusoidal and Eq. 6 for the triangular
case. Recalling Eq. 9 with the definition A+S(v) = A(1+δ(v)) the solid
angle ∆ΩAi is written as:

∆ΩAi =
2πri∆r

A2
cos3 ϑi(v)

1

(1 + δ(v))2
(26)

cosϑi =
1 + δ(v)

√

(1 + δ(v))2 + (ri/A)2

The sum over ∆ΩAi(v) is only approximately equal to the solid angle
Ω(S(v)) of Eq.9 obtained by integration so that the terms of the sum
have to normalized for each v by a factor R(v).

R(v) ·
∑

i

∆ΩAi(v) = Ω(S(v))

The normalization is necessary in order to preserve the geometry effect,
the modulation of the baseline Ω(S(v))/Ω(0), by the calculation of the
cos-smearing.
The squared aperture (see Fig. 9) is treated the same way introducing
the angular sections 4α instead of 2π in Eq. 26.
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3.2.2 Absorber area tilted to the optical axis

The orientation technique for a series of single crystal measurements
involves rotation of the crystal on a single-circle goniometer inclined at
fixed angle α about an axis fixed in the crystal such that the γ-beam
traces out a right (circular) cone in the crystal. Although the more
complicated situation of Fig. 6 can be avoided by an extra aperture as
shown in Fig. 12 the algebra is elaborated,

Figure 12: In order to avoid the more complicate situation of an elliptical shape of the
aperture the configuration shown in Fig. 6 is improved by an extra circular aperture
which has the diameter of the tube in front of the detector. The decrease of the solid
angle can be reduced by a much shorter distance between source and cone section.

first since this thechnique was used several times and the data, which
comprise a lot of measuring time, are still avaiable [4, 5, 16]. The evalu-
ation of the electic field gradient (EFG) together with the mean square
displacement MSD-tensor by a simultaneous fit of 19 spectra is a chal-
lenge, especially the comparison with the published results obtained by
point by point fits of the spectra. A second reason can be the decrease
of the solid angle by the extra aperture which distance to the source is
necessarily increased.

The area of the cone section at an angle α is enlarged by the factor
1/ cosα. This area is covered by ellipses with an enlarged main axis by
the same factor as shown in Fig. 14 so that there are the same number of
area elements πr·r/ cosα. The coordinates of the centers of the ellipses in
the (x,y,z)-system are the (x,y) coordinates of the corresponding circles
in the (x,y)-plane and in the tilted (x,y’)-plane with the rotated unit
vector

~eξ = cosα~ex + sinα~ez
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Figure 13: The source on the left, the absorber is tilted around the y-axis clockwise
by an angle α. Two γ-direction γ and γ′ are shown. Direction γ includes the angle
ϑ with the z-axis and leads to a decrease of the doppler velocity by cosϑ. The angle
β determines the solid angle of the area element of the absorber. The center of the
absorber is at A~ez. The point P in the (x,y)-plane at φ = π the surface element of the
tilted absorber at P ′ has the z-coordinate A + x tanα. The surface element at P ′ is
enlarged by the factor 1/ cosα.

a z-component has to be added the length of which is x tanα such that
the ellipse number i has the position

~ri = r cosφi~ex + r sinφi~ey + A~ez + r cosφi tanα~ez

in the (x,y,z)-system. The solid angle ∆ΩAi at the position (0,0,0) of the
source subtended by the ellipse at ~ri becomes

∆ΩAi =
πr2/ cosα

|~ri|2
cos βi (27)

cos βi =
~e⊥(−~ri)

|~ri|

~e⊥ is the unit vector orthonormal to the (x,y’)-plane.

~e⊥ = sinα~ex − cosα~ez
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The solid angle element finally becomes:

∆ΩAi =
πr2A

|~ri(v)|3
(28)

The sum over ∆ΩAi(v) is only approximately equal to the solid angle
Ω(S(v)) obtained by the integral of Eq. 15. The angle ϑ is given by

cosϑ =
~ez~ri(v)

|~ri(v)|
(29)

=
A+ r cosφi tanα

|~ri(v)|

Figure 14: The area shown in Fig. 11 is tilted around the y-axis by the angle α between
the x- and ξ-axis and adapted to the conic section of the geometry shown in Fig. 6
covered by ellipses. The principal axes of the ellipses in y-direction are that of the circles
and in ξ-direction are multiplied by 1/ cosα. The position of the ellipses in the x, ξ-
plan have the same (x,y)-coordinates, the z-coordinates are shifted to z(α) = x tanα
as indicated on the left side. This choice preserves the summation algorithm used for
the circles of Fig. 11.

3.3 Extended source

The integrals over dfS of the source and dfA of the aperture in Eq. 16
have to be evaluated by a double sum storing each pair product dfS · dfA
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together with cosϑ of the angle ϑ between the vector from dfS to dfA.
The solid angle and the effective velocity decrease by the same factor
cosϑ. In case of the tilted absorber the situation is more complicated as
the solid angle decreases by the cos of another angle β (see Sec.3.2.2).
For each member of the double sum a spectrum is calculated. The sum
of these spectra represent the theoretical spectrum to be compared with
the experimental one.
In order to minimize the number of spectra the symmetry of the geom-
etry shall be accounted for.
Only sources with rotational symmetry are considered. The usual case
of a source smaller than the aperture suggest first to sum over the source
from a point of the aperture which by the rotational symmetry of the
source has a manifold of equivalent points, the ring sections of Fig.10.
The arrays of ∆Ω and cosϑ have N members in case of a point source
counting the rings and partial rings at the corners of squared apertures
(/detectors). The integral over the source (replace by a sum up to 61 area
elements) is the same from all points on a ring obvious by the rotational
symmetry of the source. Eq. 16

ΩS

FA
=

∫

FA

dfA
FA

∫

FS

cos(ϑS,A)

R2
S,A

dfS
FS

ΩS =
1

FS

∑

NA

dfA
∑

NS

dfS
cos(ϑS,A)

R2
S,A

The double sum shall be evaluated in detail. The vectors in the plane of
the source and aperture are ~ρk and ~ri, respectively.

~ri = (ri cosφi, ri sinφi, A)

~ρk = (ρk cosφk, ρk sinφk, 0)

The vector ~Ri,k = ~ri − ~ρk points from surface element dfSk to dfAi and
forms an angle ϑi,k with the z-axis which is parallel to the velocity di-
rections.

cosϑi,k =
A

|~ri − ~ρk|

=
A

√

A2 + r2i + ρ2k − 2riρk cos(φk − φi)

The integrand of the integral
∫ 2π

0 dφk over the source ring

cosϑi,k
R2

i,k

=
A

√

A2 + r2i + ρ2k − 2riρk cos(φk − φi)
3
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is independent of the angle φi (obvious by variable substitution dφk to
d(φk − φi)). The rotational symmetry is, of course, only approximated
by the sum substituting the integral.
The integration over the aperture with area elements dfAi = ridridφi
can be replaced by dfAi = 2πridri. Following the convention leading to
Eq. 26 the solid angle

∆ΩSi =
4πri∆r

A2

Ns
∑

k=1

dfSk
FS

· cos3 ϑi,k(A, ri, ρk, φk)

belongs to Ns spectra with vϑmax = cosϑk · vmax. The area elements
dfSk = πr2 are independent of k and equal to the small circle area, such
that FS/dfSk is just the number of area elements NS. The NS spectra
are of equal weight dfSk/FS, their sum is averaged by the factor 1/NS.
The area and the area elements drop out of the calculation. How closely
the area elements cover the source area (see Fig.11) comes not into play
only their coordinates.

The position of the source is introduced changing the distance A to
A+ S = A(1 + δ(v)).

∆ΩSi(v) =
4πri∆r

A2

1

NS

Ns
∑

k=1

cos3 ϑi,k(δ(v), ri, ρk, φk)
1

(1 + δ(v))2
(30)

The NA ring areas of an circular aperture give an array of NA solid angle
elements ∆ΩSk and an array of dimension NA ·NS of cosϑi,k functions.
The ri and ∆r are calculated for a circular aperture of radius RA:

∆r =
RA

2NA
, ri = ∆r(1 + 2i)

In case of quadratic aperture the corners have to be added to the arrays
according to Fig.9. The ∆ΩAk are the calculated by use of Eq. 20.
As argued for the point source (Eq.26 ) the ∆ΩAk have to be normalized
by ΩAk(0), the solid angle at source position S = 0.

3.4 Approximtion of the velocity dependence

3.5 Reduction of cosine arrays

3.6 Cosine thickness correction

The γ-ray deviating from the otical axis is not only modulated by a
changed maximal velocity cosϑ · vmax but also by an increase of the
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thickness of the absorber. The thickness t of the absorber increases to
t/ cosϑ. The small correction t · (1 + ǫ)

t · (1 + ǫ) = t/ cosϑ

ǫ = 1/ cosϑ− 1

has to be calculated for each velocity channel of the theory.

In order to calculate a correction proportional to ǫ the equations of the
forward scattering theory (see [17]) are expanded to terms linear in ǫ.
The resonant part (∝ f -factor) of the source spectrum is the sum of
Lorentzians multiplied by the 2x2 density matrices ri:

ρS(E) =
2

Γπ

∑

i

1

2
ri ·

(Γ/2)2

(E − Ei)2 + (Γ/2)2
(31)

1 = Tr

(

∑

i

1

2
ri

)

(

1/2 0
0 1/2

)

=

∫ ∞

−∞
ρS(E)dE

The total intensity of the resonance part, sum over all Lorentzians, is
normalized to 1. Γ is the natural line width. Since the Lorentz function
is real and the density matrix ri of a transition is hermitian, the diagonal
elements of ρS(E) are real numbers. If the source is moving with velocity
v the energies Ei are shifted by the Doppler effect to Ei(1 + v/c) such
that ρS(E, v) is a function of E and v.

The radiation travels through a material of refraction index n(E):

n = 1− σf(k)

2k

∑

j

Nj

∑

i

rji ·
Γ/2

E − Ej
i − iΓ/2

− iκ/21 (32)

with the unit 2x2 matrix 1, the cross section σ, the Lamb-Mössbauer
factor f in direction k, Nj of nuclei of type j with density matrix rji and
the non-resonant absorption coefficient κ due to all oscillators far from
resonance. The density matrix at position z (traveling from 0 to z) is
given by

ρ(E, z) = e−inkzρS(E)e
+in†kz (33)
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Eq. 32 shall be split in a scalar part n1 proportional to the unit matrix
1 and a traceless 2x2 matrix n2. Only n2 depends on the polarization of
the absorber.

n(E) = (n1(E)− iκ/2) · 1 + n2(E)

n1 = 1− σf(k)

2k

∑

j,i

Nj
1

2
Tr(rji ) ·

Γ/2

(E − Ej
i )− iΓ/2

n2 = −σf(k)
2k

∑

j,i

Nj

(

rji −
1

2
Tr(rji )

)

Γ/2

(E − Ej
i )− iΓ/2

The density matrix of Eq. 33 shall be expressed by n1 and n2 written
as a product of three factors.

ρ(E, v, t) = e−i((n1−iκ/2)1+n2)ktρS(E)e
+i((n1−iκ/2)†1+n

†
2)kt

= e−κkte−i(n1−n
∗
1)kt · e−in2ktρS(E, v)e

+in†
2kt

= e−κktρ1(E)ρ2(E, v)

The first two factors are scalars. The third factor ρ2(E, v) depends on
n2 which vanishes for an unpolarized absorber and ρ2(E, v) reduces to
ρS(E, v).

The counts of the Mössbauer spectrum are a sum of three contributions,

N(v) = NMfS

∫ +∞

−∞
Tr(ρ(E, v, z))dE (34)

+NM(1− fS)e
−µmt

+Nbackgrounde
−µbt

the resonance part fS of the source calculated by the convolution inte-
gral of the trace of the density matrix, the non-resonance part (1− fS)
only attenuated by electronic absorption (µm = κk) and the electronic
absorption of the background radiation with an absorption coefficient
µb. Using ρ(E, v, t) = e−κktρ1(E)ρ2(E, v) from above

N(v) = NMe
−µmt

(

fS

∫ +∞

−∞
ρ1Tr(ρ2)dE + (1− fS)

)

+Nbackgrounde
−µbt

the attenuation of γ-radiation of the Mössbauer transition becomes a
common factor Nm = NMe

−µmt. The attenuation of the background
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Nbackground passing the absorber Nbg = Nbackgrounde
−µbt can be neglected

in most cases.

At z = t(1+ǫ) Eq. 33 and the background radiation is expanded to linear
term of ǫ:

ρ(E, v, z) = (1− ǫ κkt− ǫ kti(n1 − n∗
1)) ρ(E, v, t) (35)

−ǫ kti
(

n2ρ(E, v, t)− ρ(E, v, t)n†
2

)

Nbg(z) = (1− ǫtµb)Nbg(t)

The property that e−inkt and n commutes has been used. N(v, ǫ) ≡
N(v, t(1+ǫ)) at t(1+ǫ) in Eq. 34 is expressed by N(v, 0) and a term pro-
portional to ǫ. The counts NM of the Mössbauer transition are attenu-
ated passing the absorber by non-resonant absorption to Nm = NMe

−κkt.
This attenuation e−µmt is a common factor for all contributions, resonant
and non-resonant absorption, such that the ratio of the measured back-
ground Nbg = Nbackgrounde

−µbt passing the absorber Ngb/(Nm +Ngb), the
background fraction bgfraction, is a well defined number of the spectrum.
The alteration of thickness t(1 + ǫ(θ)) by the angle θ leads to a depen-
dence of the bgfraction on the γ-direction from a source area element to
an absorber area element.

N(v, ǫ) = N(v, 0)− ǫtµbNbg (36)

−ǫt · κkNm

(

fS

∫ +∞

−∞
ρ1Tr(ρ2)dE + (1− fS)

)

−ǫt · ikNm · fS
∫ +∞

−∞
(n1 − n∗

1) ρ1Tr(ρ2) dE

−ǫt · ikNm · fS
∫ +∞

−∞
ρ1Tr

(

n2ρ2 − ρ2n
†
2

)

dE

The ǫt-terms start with the decrease of the background Nbg. The first
of the three convolution integrals is calculated to obtain the spectrum
at thickness t (Eq. 35). Here it appears to correct for the increase of
non-resonant absorption with increasing thickness. For an unpolarized
absorber the contribution n2 to the index of refraction is a zero 2x2
matrix. In that case only one further convolution integral has to be
calculated, which corrects for the increased resonant absorption with
increasing thickness ǫt. The case of an polarized absorber is by the
third convolution integral only approximately captured. n2 and also n1
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depend on the γ-direction with respect to the orientation of the absorber
(single crystal) which slightly differ not only for each ϑ- but also the ϕ-
angle of the area element of absorber and source.
The theory curve th(v) =

∑

i,kN(v, ǫ(ϑi,k))/a is normalized to the unit
areas of source and aperture by some constant a, such that N(v = ∞, 0)
remains unchanged. N(v = ∞, 0), however, is not any more equal to
th(v = ∞) since the electronic absorption factored in decreases th(v =
∞). To be comparable with the baseline of the experimentel counts
th(v) has to be readjusted to Th(v)

Th(v) = th(v)/th(v = ∞) (37)

th(v = ∞) =
1

a

∑

i,k

bgfractionǫ(ϑi,k)µb − (1− bgfraction)ǫ(ϑi,k)µm
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3.7 Simulations

All simulations have been done using the convolution integral with a
source of natural line width ΓN = 0.097mm/s, a Lamb-Mössbauer fac-
tor 0f 0.7 and setting the background fraction to bgfraction = 0.2. There
are two possibilities to generate “experimental” spectra. Simulating the
counting process by an algorithm [18], which transforms a uniform ran-
dom variable u ∈ (0, 1) to a rate λ = counts/s of a Poisson process.
The time consumption is much less using of the cumulative distribution
function (CDF) valid in the limit of the normal distribution of large
numbers of accumulated counts C(channel = k). The experimental
spectrum points C(k) are calculated by the inverted CDF [19] Φ(u) of
a random number u ∈ (0, 1): C(k) =

√

th(k) · Φ−1(u). For the inverted
CDF Φ−1(u) the approximation AS70 of Odeh and Evans (1974) [12] is
applied.

The line position and the thickness correspond to the line at negative
velocities and the effective thickness of a 25µ α-iron foil at RT (Lamb-
Mössbauer factor f=0.8). The baseline has been set to 106 counts and all
χ2 values refer to 512 channels around the position of −5mm/s such that
the 1 σ standard deviation of χ2 becomes σχ2 =

√

2/512 = 0.088. The
most accurate theory is calculated with 10 rings for the circular and 15
rings for the square aperture and 61 (= 5 rings of Fig. 11) area elements
for the extended source. This means up to 15 · 61 = 915 spectra have to
be superposed. The “true” experimental counts are obtained from this
spectrum with a χ2-value close to 1. The calculation of the spectrum
with a single line which shall be considered in the following takes about
0.2s using a 2GHz processor. The first check of the accuracy of the the-
ory is done reducing the number of superposed spectra. 6 rings and 9
rings for the circular and square aperture, respectively, together with 19
(Tab. 3) area elements of the extended source increases the χ2-value by
about 1/3 σχ2 in case of the geometry used to calculate the spectra of
Fig. 16.

Fig. 15 demonstrates the cosine-smearing effect. In order to show up this
effect extreme dimensions of the geometry are chosen, a circular/square
aperture of 20mm in diameter/edge length at a distance of only 25mm
from a point source. For the circular aperture 6 ring elements give the
superposition of 6 spectra with linearly (with radius r) increasing inten-
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sity shifted to higher velocities from vp = −5mm/s to vp + vp/ cosϑr.
For the outer ring the ϑr-angle a value of tanϑ = 10mm/6 · 5.5/25mm
(see Fig. 10 and also Fig. 9) gives a shift of 0.326mm/s. With a much
smaller line width of 0.005mm/s 5 lines become visible in Fig. 15 on the
left. The spectrum of the first ring r = 10mm/6 is almost unshifted
and not resolved from the spectrum of the second ring. The square
aperture which is realized in case of pin-diodes (aperture is the detector
area) with its outer ring sections as shown in Fig. 9 adds spectra with
decreasing intensities with further increasing shifts. Preserving the value
of ∆r = 10mm/6 three r-values from 10mm to 10mm ·

√
2 are defined

which intensities decrease with increasing radius to edges of the square.

Figure 15: On both sites, left and right, the absorption line at −5mm/s calculated with
an effective thickness of teff = 4 and natural line width (ΓN = 0.097mm/s) is plotted
for three cases using an ideal point source: The absorption line at infinite distance
from the aperture, and the lines at a distance of 25mm from a circular aperture of a
diameter of 20mm shown on the left and a square aperture of the same edge length on
the right side on the upper half of the figure. In order to visualize the different shapes
obtained with a circular aperture and square aperture the former one is also plotted
on the right side as a third absorption line. The lower half of the figure shows the
superposition of the absorption lines (6 and 10, respectively) with narrow line width
which has been set to ΓN/20.

Fig. 16 demonstrates the influence on the shape of the absorption line
by stepwise neglect of the thickness effect of electronic absorption and
the extension of the source.
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Figure 16: The single line at position −5mm/s and an effective thickness of 4.0 corre-
sponding to the lines 5,6 of a 25µ thick α-iron foil is calculated for the geometry of an
ideal source of 5mm diameter at a distance of 25mm to a circular aperture (Fig. a))
of 16mm in diameter (2cm2) and a square aperture of 10mm edge length (Fig. b)). A
baseline 106 counts has been simulated according to Poisson statistics such that χ2 is
close to 1. The first 512 of 2048 channels are plotted. Three steps of approximations
are shown. The residual spectra on top are obtained neglecting the electronic absorp-
tion µt = 1.2875 of iron (0.0515/µ), the next below reduces further to a point source,
and the third one belongs to a fit of the absorption line below with effective param-
eters. For the circular aperture a) the χ2 = 5.7 is large with a thickness teff = 3.55
instead of 4, position −5.0017mm/s (−5mm/s) and an increased line width 1.333ΓN

are obtained. Although the approximation by a point source gives residual spectra of
similar deviations in a) and b) the χ2 = 1.7-value is much smaller and the effective
parameters are closer to the true one ( teff = 3.69, −5.0068mm/s, and 1.225ΓN ).

The definition of limits of the geometry where the cosine-smearing effect
becomes small enough to be neglected is linked to the acceptable χ2-value
which depends on the number of collected counts. If the theory model is
far from the measured spectrum such that χ2 is large (χ2−1 >> σχ2) and
increases with increasing number of counts the neglect of cosine-smearing
and point source approximation is indicated. At larger distances between
source and aperture/detector theses effects become negligible. In Fig. 17
the distance is doubled to 50mm and the effect calculated for a squared
aperture of 1cm. The geometry corresponds to a distance of 80mm for a
1.6cm sized absorber as a circular aperture. It is shown that χ2 increases
only by 1 σχ2. This means that the aim of a fit of χ2 ≈ 1 cannot be
reached for an exact(=true) theory.
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Figure 17: The single line is simulated at position -5mm/s, an effective thickness of
4.0 (see Fig. 16), an ideal source of 5mm in diameter, and a square aperture of 10mm
edge length at a distance of 50mm. Fig. a) shows the fitted absorption line without
electronic absorption and a point source. χ2 is close to 1, the slight increase is much
smaller than σχ2 . The neglect of the electronic absorption has a negligible effect on
χ2. Fig. b) is the residue before the fit. Complete neglect of cosine-smearing (source at
infinity) produces a residue of Fig. c). Fitting under this condition increase χ2 by about
σχ2 = 0.088. The effective parameters of the two fits are very similar: teff = 3.95(3.94),
−5.0028mm/s(−5.0190), and 1.023ΓN(1.053ΓN). The effective values for the source
at infinite distance are in brackets.
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4 Calibration of the velocity scale

The calibration of the velocity scale of the Mössbauer spectrum is a pre-
requisite for a reliable evaluation of the experimental spectra, especially
concerning line positions and their widths. The standard method is the
determination of the line positions of an α-iron absorber on the channel
scale and calculating the mm/s per channel by the known overall split-
ting of the iron absorber or the average of the three splittings (1,6),(2,5)
and (3,4). The Fit;o)- Mössbauer spectrum fitting program takes the un-
folded spectrum and the appropriate average of the 12 absorption lines
[20]. In WMOSS4 [21] a simple interpolation by the best straight line
fitted to the peak positions is offered. The fit-program NORMOS [22]
interpolates using a cubic spline between the first and the last velocity
value. Other programs [23, 24, 25, 26, 27, 28, 29] do not handle the
non-linearity of the velocity scale. The fit of the calibration spectrum
stops at some local minimum where the position of the more intense
absorption lines (1 and 6 in case of α−Fe) have the higher weight for
the scaling factor.
The linearity error for driving units in the triangular mode is guaran-
teed to be < 0.15% at the resonance frequency by WISSEL [30], which
still corresponds to more than one channel in 103. Using optimal soft
springs an error less than 0.5% can be promised by FASTCOMTEX [31].

A more accurate calibration of the velocity scale of a Mössbauer spec-
trum can only be obtained with a more elaborate correction function
for the non-linearity of the driving unit. Several functions based on a
Fourier expansion are constructed to get a fit over a large velocity range
to both halfs of the MCS-spectrum.

4.1 Velocity to channel

4.1.1 Velocity correction function

The Fourier series of the triangular wave v(t) on the time axis

v(t) = −vmax
4

π2

(

cos ωt+
cos 3ωt

32
+
cos 5ωt

52
+ ...

)

(38)

is to some accuracy reproduced by the signal of the function generator
driving the transducer. The deviations from the triangular wave form
may be caused by deviations δai from the amplitudes 1/(2i + 1)2 at
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frequencies ωi = (2i+ 1)ω of the components of the series. In that case
the function

dv(k) =
∑

i

δai cos (ωik) (39)

should be a good choice for correcting the velocity scale. The continuous
variable t is replaced by the channel number k corresponding to time
steps ∆t such that

v(k) + dv(k) = −vmax
4

π2

(

cosΩ ∗ k + cos 3Ωk

32
+
cos 5Ωk

52
+ ...

)

(40)

Ω =
π

2
/ channel(v = 0)

is supposed to be the correct velocity to channel conversion.
However, more successfully turned out taking all frequencies Ωi = iΩ
(i=1,2,...). The cos functions implies a symmetry which is broken by
adding sin functions such that

dv(k) =
∑

i

δai cos (Ωik) + δbi sin (Ωik) (41)

These two correction equations 39 and 41 allow for 4 cases using the
different frequency sets Ωi = iΩ and Ωi = (2i + 1)Ω. Two further cases
are introduced by changing the sign of the amplitudes δbi for channels k
of the second half of the spectrum. Up to 18 parameters can be declared.
The summation index runs from 1-9 in case of two amplitudes δai, δbi.
The sinusoidal mode is also not free from nonlinearities of the velocity
scale and can be corrected by the same functions. The amplitudes δai,δbi
turn out to be very small.

4.1.2 Interpolation of the theory function

The velocity scale of the theory is different from the velocity scale at-
tached to the channels. The velocity steps ∆vt = vtj+1−vtj of the theory
are choosen to be larger than 4 ∗ vmax/N , with the number of channels
N of the full period. Such a choice saves computation time since the
number of theory points Nt = 2 ∗ vmax/∆vt is the number of time con-
suming convolution integrals. The selection of the 4 equidistant theory
points vtj−1, ..., vtj+2 is displayed in Fig.18. The velocity vi+3 attached
to channel i+3 is as close as possible to vtj or vtj+1, the two velocities
with the exact theory values thj and thj+1. The first and last sampling
points are only approximated by the 3 constants of a parabola.
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Figure 18: a) the time t with time markers ti at the begin of channel i in b). The dwell
time of the channels ti+1−ti is reduced by the dead time for the channel switch from i to
i+1 (indicated by the thick bars). c) The velocities at the beginning of the channels are
represented by bars pointing downwards (v < 0), crossing v=0 and upwards (v > 0).
A stepwise velocity increase is depicted by the horizontal red lines. The theoretical
spectrum is shown in d). It has its own velocity scale vtj. At vi+3 the function value is
interpolated by a parabola calculated from vtj−1 until vtj+2. The scale of c) is adjusted
to the best fit of the interpolated values with the experimental spectrum.

The parabola th = av2 + bv + c is fitted to the theory curve at the four
equidistant v-values replaced by ∆vt units ((v − vj)/∆vt = −1, 0, 1, 2)
so that the linear equation system reads:

thj−1 = a− b+ c (42)

thj = c

thj+1 = a+ b+ c

thj+2 = 4a+ 2b+ c

The constants b and c can be expressed by a. f(a) is minimized so that
the parabola hits the two inner points (j) and (j+1) and approximates the
outer points (j-1) and (j+2). The following set of equations determine
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Figure 19: For a) and b) see Fig.18. c) The velocity changes linearily from vi+3 to
vi+4 by a constant acceleration. d) The theoretical spectrum is integrated from the
interpolated values at vi+3 to vi+4.

a,b and c.

b = thj+1 − thj − a (43)

c = thj

f(a) = (thj−1 − (a− b+ c))2 + (thj+2 − (4a+ 2b+ c))2

∂f

∂a
= 0

=> a =
1

4
(thj−1 + thj+2 − thj − thj+1)

Following Oshtrakha and Semionkin [32] the velocity is constant for the
dwell time of a channel and is accelerated in a very short time preferably
during the dead time for switching to the next channel (see Fig. 18).
If this is the case, the theoretical value assigned to channel i+3 is the
intersection of the red straight line with the theory curve. In Fig. 19 the
velocity is linearly increasing from vi+3 to vi+4 during the time ti+3 till
ti+4 = ti+3+∆t. The integral from ti+3 till ti+3+∆t under the theoretical
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curve divided by ∆t corresponds to the counts collected in channel i+3.

Figure 20: For a) and b) see Fig.18. c) The velocity change linearly. d) The theoretical
spectrum is interpolated at (vi+3 + vi+4)/2.

Ith =
1

∆t

∫ ti+4

ti+3

th(v(t))dt (44)

Ith =
1

∆t

∫ ti+4

ti+3

th(v(t))
dt

dv
dv

With the constant acceleration dv/dt and dv/dt ·∆t = ∆v = vi+4− vi+3

the integral

Ith =
1

∆v

∫ ti+4

ti+3

th(v)dv (45)

=
1

∆v

[

1

3
av3 +

1

2
bv2 + cv

]ti+4

ti+3

=
1

3
a(v2i+3 + v2i+4 + vi+3 · vi+4) +

1

2
b(vi+3 + vi+4) + c
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is the theoretical value of channel i+3. A linear interpolation is sufficient
for small velocity steps achieved by large channel numbers. Omitting the
constant a (a=0) the integral is given by

Ith =
1

2
b(vi+3 + vi+4) + c (46)

=
1

2
(vi+3 + vi+4)(thj+1 − thj) + thj

Only two values of the theory have to be calculated. The integral can
also be well approximated by the theory value at the center of channel
i+3 at 1

2(vi+3 + vi+4) multiplied by ∆v = vi+4 − vi+3 as is obvious from
Fig. 20. The disadvantage is the recalculation of the theory at the center
of the channels scaled by velocity and not by the time. The majority
of the Mössbauer programs have only this possibility. It shall be noted
that the intuitive choice of the center of the channel implicates a constant
acceleration. The stepwise increase of the velocity as shown in Fig. 18
seems to be not realized in any of the programs.

Non-equidistant velocity axis

Eq.42 has been set up for 4 equidistant v-values (v−vi)/∆v = −1, 0, 1, 2
with v2 shifted to the second value. For non-equidistant v-values the 4
points reads:

xi = vi − v2 → x1, x2 = 0, x3, x4

The parabola function th = ax2 + bx+ c matches point number 2 and 3

th2 = c (47)

th3 = ax23 + bx3 + c

The th-distances at point x1 and x4 are minimized by

D = (th1 − (ax21 + bx1 + c))2 + (th4 − (ax24 + bx+c))
2 (48)

∂D

∂a
= 2(th1 − (ax21 + bx1 + c))(−x21 +

∂b

∂a
x1) +

2(th4 − (ax24 + bx4 + c))(−x24 +
∂b

∂a
x4)

With b(a) = (th3 − ax23 − c)/x3 the condition ∂D/∂a = 0 gives

α = (th1 − c)(x1 − x3)x1 + (th4 − c)(x4 − x3)x4 (49)

β = (th3 − c)((x1 − x3)x
2
1 + (x4 − x3)x

2
4)

a =
α− β/x3

(x1 − x3)2x21 + (x4 − x3)2x24
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Inserting the special case of equidistant x-values : x1 = −∆v, x2 =
0, x3 = ∆v, x4 = 2∆v

α = (th1 − c)2(∆v)2 + (th4 − c)2(∆v)2

β = (th3 − c)(−2 + 4)(∆v)2

a =
α− β

(4 + 4)(∆v)4
=

th1 + th4 − th3 − th2
4(∆v)2

4.2 Example of an α-iron spectrum

The calibration of the velocity to channel scale in principle is determined
by two parameters, the maximum velocity vmax[mm/s] or α[mm/s/channel]
and the channel of zero velocity kv0 or the folding point kv0+N/4. These
two values are obtained by a fit of the positions of 6 independend lines
of the α− iron spectrum of one of the half-period spectra.

Figure 21: Calibration spectrum with vmax ≈ 6mm/s for quadrupole split Fe2+-
spectra. The α-iron foil of a thickness of 10µ was mounted at 45o such that the
thickness becomes

√
2 · 10µ.

The separation of ∆1,6 = 10.64256mm/s devided by the difference ch1,6
between channels of lines 1 and 6 gives α[mm/s/channel] and times
N/4 the maximum velocity vmax[mm/s]. The zero velocity channel is
obtained from the isomer shift is (referred to the source).

kv0 =
1

2
(ch1 + ch6) + is · α
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If nonlinearity corrections dvi are not necessary the full period spectrum
should fit with the line positions.

p1 = −5.32128 + is, p2 = −3.08079 + is, p3 = −0.84029 + is

p6 = 5.32128 + is, p5 = 3.08079 + is, p4 = 0.84029 + is

Typically the velocity scale is nonlinear indicated by large χ2-value im-
posing the positions of Eq. 50 by the Hamiltonian with an internal field
of 33.05 Tesla and an isomer shift (here 57Co/Rh-source) of -0.114mm/s.
In Fig. 21 the left half is fitted . The nonlinearity is obvious by the large
misfit of the first and second line. The fitted parameters are vmax = 5.831

Figure 22: Calibration spectrum fitted with 6 nonlinearity parameter (chi2 = 1.040).
The correction of the velocity dv at each channel from equidistant values 4vmax/1024
varies from -0.15mm/s to +0.15mm/s which is almost the line withs of 2Γn of the
absorption lines.

and kv0 = 253.50 with χ2 = 33. The fit with 6 nonlinearity parameter
gives a χ2 = 1.026 and a slightly larger vmax = 5.864. The folding point
kv0+N/4 = 512.08 shifts to a value almost N/2 and is also very close to
the folding point 512.50 obtained by the standard procedure described
in [23].
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The misfit of the right half of the spectrum is much larger. The theory
appears to be shifted to the left. Including the second half of the full
period spectrum shown in Fig. 22 reaches χ2 = 1.040 and changes again
the maximum velocity to vmax = 5.918 and the folding point by 2 chan-
nels to kv0 +N/4 = 514.60.

The fit is obtained without any line broadening of the transitions in the
α-iron foil. The intensity ratio of lines (2,5)/(3,4)=2 for random ori-
ented internal fields changes to 2.128 and the thickness of the foil comes
out to be 10.62µm which is somewhat lager than the nominal value of
10µm. The 5mCi-source has a slightly reduced Lamb-Mössbauer factor
fsource = 0.73 instead of 0.75 (from the data sheet) and a Voigt-profile
with σGauss = 0.47ΓN and Γ = 1.05 · ΓN . Fitting the Voigt profile with
a Lorentzian shape the width Γ = 0.119mm/s is without doubt too
large to be caused by selfabsorption effects of an old 5m Ci-source. The
equipment of this measurement was not of high quality as obvious by the
large nonlinearity correction so that apparative broadening independent
on the velocity may be compensated by a small extra broadening of the
source width.
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Spectral Analysis Software for Windows, 1999.

[29] Kristjan Jonsson, Program Mfit : A Program For Fitting
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