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1 Intoduction

The routines of the file gpg 22nuclear.f90 is the core of all nuclear scattering pro-

grams. The quantum-mechanical solution of the general case of multipol tran-

sitions is taken from the article M. Blume and O.C. Kistner [1] who follow the

concept of the index of refraction for thin media. The classical solution for a dipole

transition already shows all characteristics and can be found in any text book of

electrodynamics: Theorie of dispersion and absorption of weakly absorbing media.

These outlines shall help to understand the structure of the two subroutines th hdeq()

and the more detailed th hdeqf() including an anistropic Lamb-Mossbauer factor

and texture.

Further the input/fit parameters mg/cm2xf (effective thickness) and the Poincaré

vector used for the programs of synchrotron scattering are described.

2 Classical index of refraction

The complex index of refraction of oszillators (electrons) in the limit of infinitely

thin medium (only the external electric field is at all ozillator sites)

n2(ω) = 1 + 4π N
e2/m

ω2
0 − ω2 − iγω

(1)

with the charge e, mass m, eigen frequency ω0 and the damping factor γ = γγ + γα,

the sum of radiation damping and internal friction. γα will be identified with the
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decay channel of internal conversion.

The classical total cross section of an oszillator is given by

σ =
6π c2γγγ

(ω2
0 − ω2)2 + γ2ω2

(2)

γγ =
2

3
· e

2ω2

mc3

γγ is the damping by radiation of the oszillator. n2
≅ 1 differs from 1 only close to

resonanz, ω close to ω0. With the total cross section at resonance (k0 · c = ω0)

σ0 =
6πγγ
γk2

0

(3)

the index of refraction can be written as

n(ω) = 1− 1

2k0
σ0 N

γ/2

ω − ω0 + iγ/2
(4)

Since n2
≅ 1 the first term of the expansion series of the square root is sufficient

and ω + ω0 is replaced by 2ω0. In order to model real media an oszillator strength

f is intoduced which modifies σ0 to fσ0. For nuclear scattering the cross section is

lowered by the Lamb-Mossbauer (Debye-Waller) factor f.

Eq. 4 shall be generalized to different types i of oszillators and polarizabilities dif-

ferent for electric fields in x,y directions (propagation in z-direction). Then the

oscillator strength becomes a 2x2 matrix ri.

n(ω) = 1− 1

2k0
fσ0

∑

i

Niri
γ/2

ω − ω0i + iγ/2
(5)

Now n(ω) is a complex 2x2 matrix and 1 the unit matrix.

The electric field vector E of the plane wave propagating in z-direction develops as

E(z) = einkzE0 (6)

The intensity I(z)=E E†

I(z) =
∑

j

EjE
†
j (7)

=
∑

j

∑

α

(einkz)jαE0α ·
∑

β

E∗
0β(e

−in†kz)βj

= |E0|2
∑

jα,β

(einkz)jαρα,β(e
−in†kz)βj
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with the density matrix ρα,β = E0αE
∗
0β/|E0|2. The sum is written as the trace of a

density matrix dependent on z

ρ(ω, z) = einkzρe−in†kz (8)

I(z) = |E0|2Tr(einkzρe−in†kz)

The index of refraction is readily translated to the case of nuclear scattering

n = 1− σf(k)

2k

∑

j

Nj

∑

i

rji ·
Γ/2

E − Ej
i − iΓ/2

(9)

f depends on the direction of propagation k. Γ is the natural linewidth. The first

sum collects Nj scatteres of type j and the second sum runs over alltransitions of

site j. rji are the density matrices of the transitions i with transition energies Ej
i .

3 Index of refraction for multipole transitions

Following the article of M. Blume and O.C. Kistner [1] the index of refraction (M.

Lax [2]) is the first equation

n = 1 +
2π

k2
NF (10)

The solution for the forward scattering matrix Fpq of Eq. 19 in [1] the index of

refraction (M. Lax [2]) is the first equation is rewritten by the tensor quantities

(introduced in [3])

V αβ
LM =

(

2L+ 1

2Ie + 1

)
1

2 ∑

memg

(eme

α )∗g
mg

β C(Ig L Ie,mgMme) (11)

where C(Ig L Ie,mgMme) are the Clebsch-Gordan coefficients, |Iggβ〉 =
∑

mg
|Igmg〉

the ground states and |Ieeα〉 =
∑

me
|Ieme〉 the excited states of the nuclear spin-

Hamiltonian.

The rotation to another coordinate system (Wigner rotation matrix) in Eq. 19 can

be omitted because the hyperfine fields entering the spin-Hamiltonian are already

rotated such that the z-axis is always the γ-direction.

With the amplitudes xp

xαβ
p (mag. L− pol) = V αβ

Lp ML − pV αβ
L+1pEL+1 (12)

xαβ
p (elect. L− pol) = −pV αβ

Lp EL + V αβ
L+1pML+1

the forward scattering matrix F of Eq. 19 in [1] reads
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F αβ
pq = −2πf(k)

2Ie + 1

2Ig + 1

xαβ
p xαβ∗

q

E − (Eα − Eβ) + iΓ/2
(13)

ML and EL are reduced matrix elements

ML = 〈Ie||
1

c

∑

i

j(ri)AL(m)||Ig〉 (14)

EL = 〈Ie||
1

c

∑

i

j(ri)AL(e)||Ig〉

The partial width for γ-emission of the excited nuclear state 〈Ie| is expressed by the

reduced matrix elements (see Appendix in [1])

Γγ(mag.L− pol) = 8πk(|ML|2 + |EL+1|2) (15)

Γγ(elect.L− pol) = 8πk(|EL|2 + |ML+1|2)

The phase ǫ of the ratios EL+1/ML = δm eiǫ and ML+1/EL = δe e
iǫ should be either 0

or π ([4]) by time-reversal invariance (the topic of [1]), so that δ is real.

Redefining the amplitudes to ap

aαβp (mag. L− pol) = V αβ
Lp − pV αβ

L+1pδm (16)

aαβp (elect. L− pol) = −pV αβ
Lp + V αβ

L+1pδe

and inserting the cross section at resonance (Γ is the total width factoring in internal

conversion)

σ0 =
2π

k2

2Ie + 1

2Ig + 1

Γγ

Γ
(17)

1

1 + δ2m
= |ML|2/(|ML|2 + |EL+1|2)

1

2

1

1 + δ2e
= |EL|2/(|EL|2 + |ML+1|2)

1

2

the forward scattering matrix F of Eq. 19 in [1] now reads

F αβ
pq = − k

4π
f(k)σ0

1

1 + δ2
aαβp aαβ∗q

Γ/2

E − (Eα − Eβ) + iΓ/2
(18)

where δ without index stands for both type of transitions.

The index of refraction npq for one type of site of the absorber finally is written as

npq = δpq −
f(k)σ0

k
N
∑

αβ

1

2
rαβpq

Γ/2

E − (Eα − Eβ) + iΓ/2
(19)

The matrix rαβpq = aαβp aαβ∗q /(1 + δ2) which shall be called absorber matrix has the

property
∑

αβ

rαβpq = δpq (20)
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4 The density matrix of photons

According the Eq. 8 the calculation of the intensity or even the polarization of the

beam traveling throug an absober of thickness z the density matrix ρ of the incom-

ing beam has to be known. For a single line Mossbauer source ρ is 1/2 of the 2x2

unit matrix. In case of a split source ρ(E) depends on energy and its polarization

degree varies with E. The synchrotran beam has a linear polarization in the hori-

zontal plane which will be the x-direction ex in a coordinate system with ez parallel

the γ-direction and ey pointing upwards.

ρ depends on the basis, which should be the same as used for the forward scattering

matrix Fpq. Two spherical bases are in use. In the textbook of Rose [5] (Elementary

Theory of Angular Momentum) the vector potential of the elektromagnetic field

A = upexp(ik · r) uses the definition

ξ1 = − 1√
2
(ex + iey) (21)

ξ0 = ez

ξ−1 =
1√
2
(ex − iey)

up = −pξp

The textbook of Brink and Satchler [6] (Angular Momentum) use the basis ξp itself

instead of -pξp. Their choice does not exclude from the beginning fields which have

also longitudinal components (p=0). The forward scattering matrix Fpq of section 3

uses the basis up. The Ep components expressed by the carthesian components of

electric vector E = Exex + Eyey (orthonormal to ez) reads

Ep = E∗ · up (22)

=
1√
2
(Ex + ipEy)

such that
∑

p E
∗
pup = E. In optics u1 defines a left circular and u−1 a right circular

polarization. The density matrices ραβ = EαE
∗
β/E

2

ρ =

(

E1E
∗
1 E1E

∗
−1

E−1E
∗
1 E−1E

∗
−1

)

/E2 (23)

are in case of left (E1 6= 0, E−1 = 0), and right (E1 = 0, E−1 6= 0) circular polarisation

ρ(left) =

(

1 0

0 0

)

, ρ(right) =

(

0 0

0 1

)
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Inserting Ep = 1√
2
Ex or Ep = 1√

2
ipEy the ρ matrices for an electric field in x/y-

direction are obtained:

ρ(Ex) =

(

1 1

1 1

)

/2 ρ(Ey) =

(

1 −1

−1 1

)

/2 (24)

The linear polarisation with Ex = Ecosϕ and Ey = Esinϕ gives the density matrix

(Ep =
E√
2
eipϕ)

ρ(Eϕ) =

(

1 ei2ϕ

e−i2ϕ 1

)

/2 (25)

Starting with the basis ξ= -p u Eq. 22 reads

Ep = E∗ · ξp (26)

=
−p√
2
(Ex + ipEy)

and the linear polarization in direction ϕ is calculated from Ep = −p E√
2
eipϕ:

ρ(Eϕ) =

(

1 −ei2ϕ

−e−i2ϕ 1

)

/2 (27)

The offdiagonal elements get opposite signs. The transition amplitudes of Eq. 16

according to Brink and Satchler [6] are

aαβp (mag. L− pol) = −pV αβ
Lp + V αβ

L+1pδm (28)

= −paαβp (mag. L− pol, Rose)

and give absorber matrices which also have opposite signs of the offdiagonal ele-

ments. So the results at the end are independent of the bases.

Where come this basis change from? In the contribution of Karl Blum “Density Ma-

trix Theory and Applications” in - Springer Series on Atomic, Optical, and Plasma

Physics 64 (2012) - is stated: ”Note that in the terminology of classical optics the op-

posite convention is usually adopted: Light of positive (negative) helicity is called

left-handed (right-handed) circularly polarized. We will always use the helicity

state notation in order to avoid this ambiguity”.

The ±1 indices of the basis components of ξ are conform with the helicity λ = ±1.

5 Poincaré vector

The Poincaré vector components are used to describe the density matrix ρ of the

synchrotron beam. The Poincaré representation decomposes ρ

ρ =
1

2
(12 +P · σ) (29)
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12 is the 2x2 unit matrix and σ represents the three Pauli matrices.

σξ =

(

0 1

1 0

)

ση =

(

0 −i

i 0

)

σζ =

(

1 0

0 −1

)

(30)

The routines of the file gpg 22nuclear.f90 follow the article of Blume and Kistner

[1] with the up-basis with the density matrix of Eq. 25

ρ(Eϕ) =

(

1 ei2ϕ

e−i2ϕ 1

)

/2 (31)

The Poincaré vector components for linear polarization become

Pξ = cos 2ϕ, Pη = sin 2ϕ, Pζ = 0 (32)

The synchrotran beam with its linear polarization in the horizontal plane choosen

as the x-direction ex in a coordinate system with ez parallel the γ-direction and ey

pointing upwards has the Poincaré vector P = (1, 0, 0).

6 Miscellaneous

6.1 Effective thickness

The product σ0Nf is called effective thickness of the absorber. The parameter for

effective thickness of the Mossbauer routine is named mg/cm2*f. It measures the

effective thickness in units of mg of the Mossbauer isotope per cm2. In case of 57Fe

1mg/cm2 of natural iron gives

Fe uthick w = σ0 ·NAvogadro/Gatomicweight · abundance (33)

= 2.56 10−18cm2 · 6.022 1023/55.85g · 0.0214
= 0.5907 · (mg/cm2)−1

The fitted number for the parameter mg/cm2*f is multiplied by 0.5907 ·(mg/cm2)−1

giving a dimensionless number t, called the effective thickness. The Lamb-Mossbauer

factor f is obtained from the fitted parameter mg/cm2*f devided by the amount

mg/cm2 of natural iron contained in the absorber.

6.2 Powder average

The following property of the tensor VLm is used when calculating intensities of

powder samples in the case of an isotropic Lamb-Mossbauer factor. The absorber

matrices rpq are elements of the tensor products

IL,αβMM ′ = V αβ
LMV αβ∗

LM ′ (34)

JL,αβ
MM ′ = V αβ

LMV αβ∗
L+1M ′
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The IL are called intensity matrix. The powder average of an intensity matrix is

diagonal for all transitions α, β

Tr(IL,αβ)δpq = (2L+ 1)
1

Ω

∫

Ω

dΩDL
pM(Ω)IL,αβMM ′D

L
M ′q(Ω) (35)

The average of the JL-matrix is zero.
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