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1 Introduction

The 57Co in α-iron is a source with considerable selfabsorption by the

natural abundance of 57Fe of 0.0214. A thickness of 1µ of iron foil gives

an effective thickness of

1µ·7.8748g/cm3 · σ0·6.022 ·1023/atomic weight·abundance·f-factor=

0.465·f-factor. W. Sturhahn and A. Chumakov measured the f-factor

of polycrystalline iron foils [2] in the temperature range of 4.2K up to

400K. The f-factor at RT is f=0.8 such that the effective thickness of

1µ iron becomes teff = 0.372 If the diffusion depth is large enough

emission lines will be absorbed dependent on their polarization and

intensity. The stronger and less polarized lines lose the most. In case

of a magnetized iron foil parallel and the γ-direction orthonormal to

the surface the emission lines 2,5 of the sextet are mainly concerned.

Disregarding selfabsorption the surface of the source seems to be ori-

ented at an angle less than θ = 90o with respect to the γ-direction.



Calculating the source function with an angle less than θ = 90o, the po-

larization of the emission lines is also changed, so that measurements

with polarized absorbers cannot be accurately simulated.

2 Emission

The source spectrum is the sum of Lorentzians multiplied by the 2x2

density matrices ri:

ρr(E) =
2

Γπ

∑

i

1

2
ri ·

(Γ/2)2

(E − Ei)2 + (Γ/2)2
(1)

1 = Tr

(

∑

i

1

2
ri

)

(

1/2 0
0 1/2

)

=

∫ ∞

−∞
ρr(E)dE

The total intensity, sum over all Lorentzians, is normalized to 1. Γ is

the natural linewidth. Since the Lorentz function is real and the density

matrix ri of a transition is hermitian, the diagonal elements of ρr(E) are

real numbers.

The sum can be taken a double sum over inequivalent sites j with

weights wj and transitions Ej
i .

ρr(E) =
2

Γπ

∑

j

wj

∑

i

1

2
rji ·

(Γ/2)2

(E − Ej
i )

2 + (Γ/2)2
(2)

∑

j

wj = 1

The radiation travels through a material of refraction index n(E):

n = 1− σf(k)

2k

∑

j

Nj

∑

i

Rj
i ·

Γ/2

E − Ej
i + iΓ/2

(3)

with the unit 2x2 matrix 1, the cross section σ, the Lamb-Mossbauer

factor f in direction k, the density Nj of nuclei of type j. The density

matrix at position z (travelling from 0 to z) is given by

ρ(E, z) = e−inkzρr(E)e+in†kz (4)
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The electronic absorption exp(−µez) shall be included later. In the fol-

lowing the double sum is is written aa a sum over i only for simplicity.

Several simplifications for the selfabsorption of a 57Co in α-iron are in-

troduced. First of all the f-factor is taken to be isotropic. The profile

of the distribution of the 57Co diffused into the α-iron foil is simplified

to a) an δ-function, b) uniform distribution, and a distribution given by

some function C(z), i.e a diifusion profile (see section 4). The integra-

tions will be approximated by summations over up to 128 integration

points.

The case a) is already described by eq. 4 where z is the depth d. In-

serting the refraction index of α-iron which is assumed to be homoge-

neously magnetized, such that the Ri = ri and the Ei are the same, eq.3

is rewritten as

ρ(E, z) = e
i
2
tz(A(E)+h(E))ρr(E)e−

i
2
tz(A†(E)+h†(E)) (5)

A(E) =
∑

i

(

ri −
1

2
Tr(ri) · 1

)

· Γ/2

E − Ei + iΓ/2

h(E) = 1 ·
∑

i

1

2
Tr(ri) ·

Γ/2

E − Ei + iΓ/2

Since the unit matrix commutes with all matrices ih(E) − ih†(E) =
D(E) can be taken out

ρ(E, z) = e−
1

2
tzD(E)e−

i
2
tzA(E)ρr(E)e

i
2
tzA†(E) (6)

D(E), a real 2x2 unit matrix,

D(E) = 1 ·
∑

i

1

2
Tr(ri) ·

(

i
Γ/2

E − Ei + iΓ/2
− i

Γ/2

E − Ei − iΓ/2

)

(7)

= 1 ·
∑

i

Tr(ri) ·
(Γ/2)2

(E − Ei)2 + (Γ/2)2

The product td is the effective thickness of the absorber of thickness d.

td = σ0f(k)Nd (8)

N = 6.022 · 1023/atomic weight · density · abundance
t = 0.465µ−1 · f(k)
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The density matrix of the source radiation in case a) with all 57Co at

a depth of z=d in α-iron changes from ρr(E) to ρ(E, d). The Lamb-

Mossbauer factor f for the source function ρr(E) appears to be reduced

by th efact that the resonanz part f of radiation is absorpt more strongly

than the non-resonat part (1-f) with is only attenuated by electronic

absorption exp(-µe · z) (absorption coeffizient µe). Ir shall denote the

fraction of resonant and Inr of non-resonant γ’s

Ir = e−µe·d
∫ ∞

−∞
Tr(ρ(E, d))dE (9)

Inr = e−µe·d

then the effective Lamb-Mossbauer factor is the ratio

feff =
f · Ir

f · Ir + (1− f) · Inr
(10)

3 Constant concentration

The concentration 57Co is taken constant fom the surface to a depth d.

Each layer at z is an independent source.

The integral over z from the surface z=0 to the depth z=d is replace by

a sum with weights/concentrations c and thickness δ.

δ = d/N c = 1/N (11)
N
∑

j=1

c = 1

ρ from Eq. 6 multiplied by the attenuation factor of electronic absorp-

tion

ρ(E, z) = e−µe·de−
1

2
tzD(E)e−

i
2
tzA(E)ρr(E)e

i
2
tzA†(E) (12)

is sumed over N layers of thichness δ.

ρ(E) =
N
∑

k=1

c · ρ(E, k · δ) (13)
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The attennuation factors are

Ir =

∫ ∞

−∞
Tr(ρ(E))dE (14)

Inr =
N
∑

k=1

ce−µe·kδ

4 Concentration profile

The preparation of the source by diffusion of the Co atoms deposited

on the surface leads to an diffusion profile with decreasing concentra-

tion. The solution for the situation of a fixed number of atoms N/area

deposited at the surface, which diffuse into the bulk for some time t

can be found in the lecture about Fick’s law

http://www.eng.utah.edu/ lzang/images/lecture-4.pdf The solution

for the 1-dimensional problem is given by

c(z, t) =
1√
πDt

exp

(

− z2

4Dt

)

(15)

1 =

∫ ∞

0
c(x, t)dx

The length 2
√
Dt is called the diffusion length (dependent on time t),

which will be a fit parameter. It is no problem to insert the function

c(z = kδ) instead of a constant c in Eq. 13 for ρ(E) and in Eq. 14 for the

attenuation coefficients.

5 Theory function of an absorption spectrum

If n(E(v)) is the index of refraction of a moving absorber and dA the

thickness of the absorber the convolution integral

I(v) =

∫ ∞

−∞
Tr (ρ(E, v, dA)) dE (16)

with

ρ(E, v, dA) = ein(E,v)kdAρ(E)e−in(E,v)†kdA (17)

I(v) concerns the fraction fCM of reonant γ’s. At v = ±∞ only the

fraction I(±∞) = Ir of fCM comes out of the source. The total counts
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of the baseline Cbase are therefore the sum

Cbase = CB + IrfCM + Inr(1− f)CM (18)

At velocity v the number of counts are

C = CB + I(v)fCM + Inr(1− f)CM (19)

= CB + IrfCM + Inr(1− f)CM − IrfCM + I(v)fCM

= Cbase − fCMIr(1− I(v)/Ir)

Factoring out Cbase

C = Cbase

(

1− (1− I(v)/Ir)
fCMIr

CB + IrfCM + Inr(1− f)CM

)

(20)

For an infinite thin source (Ir = Inr = 1) the usual equation

C = Cbase (1− (1− I(v))f(1− bf)) (21)

bf =
CB

CM + CB

is obtained. The following equality should hold if the theory is correct:

feff =
Irf

Irf + Inr(1− f)
(22)

f(1− bf) = feff(1− b)

where f is the true f factor, bf the fitted background fraction and b the

measured one. Inserting b the expected value for bf can be calculated

with feff .

6 Concentration profile in a source

The selfabsorption in a source is caused by the same distribution of

absorbing and the emitting nulei. The number of absorbing nuclei at

depth d = kδ is then given by the sum

c(d) =
k
∑

n=1

c(n) (23)

An array intc(k) with intc(N) = 1 is used in the program code.
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7 Source localized in 3 dimension [1]

It is straightforward to verify that the product of three prototypical

solutions, with spatial variables x, y and z, respectively,

c(x, y, z, t) =
M

(
√
4πDt)3

exp

(

−x2 + y2 + z2

4Dt

)

(24)

is a solution to the 3D equation. Obviously, this is the solution to the

case of a localized and instantaneous release, at location (0,0,0) and

at time t = 0 of a quantity M of the substance. In contrast to the

1D situation, where M was expressed in units of substance per unit

cross-section, the quantity M here is in units of substance (example: in

grams). Since r =
√

x2 + y2 + z2 is the distance to the point of release,

the concentration c depends on that distance and time only. It does not

depend on the direction with respect to the coordinate axes. Physically,

the spreading is identical in all directions of space; diffusion is said to

be isotropic. The size of the 3D ’cloud’is measured by the diametrical

span

4σ = 4
√
2Dt (25)

7.1 Anisotropic medium

In most environmental systems (atmosphere, rivers, lakes and oceans),

turbulence in the vertical direction differs greatly from that in the two

horizontal directions, chiefly because of gravity. As a result, diffusion

does not proceed at the same rates in the horizontal and vertical direc-

tions. If we generalize and imagine that all three directions are different

from one another, then we are brought to define three distinct diffusion

coefficients:

Dx diffusion in the x− direction : qx = −Dx
∂c

∂x
(26)

Dy diffusion in the y − direction : qy = −Dy
∂c

∂y

Dz diffusion in the z − direction : qz = −Dz
∂c

∂z

the diffusion equation becomes

∂c

∂t
=

∂

∂x

(

Dx
∂c

∂x

)

+
∂

∂y

(

Dy
∂c

∂y

)

+
∂

∂z

(

Dz
∂c

∂z

)

(27)
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and the solution to an instantaneous (t = 0) and localized (x = y = z =

0) release is:

c(x, y, z, t) =
m

(
√
4πt)3

√

DxDyDz

exp

(

− x2

4Dxt
− y2

4Dyt
− z2

4Dzt

)

(28)

The spatial dimensions of the corresponding 3D cloud are measured

by 3 equations of type Eq.25 wit indices x, y, z.

7.2 Presence of a horizontal boundary

As for 1D problems, the preceding solution can serve as a building

block for the construction of more realistic 3D applications. An impor-

tant problem is that of a 3D instantaneous and punctual release near a

boundary, such as an explosion in the air at some height (say z = H)

above the ground (say z = 0). The ground, which we take to be flat

and horizontal for simplification, acts as an impermeable horizontal

boundary and requires that the vertical component of the diffusive flux

be zero at that level (qz = 0 at z = 0). This condition is accommodated

by introducing a virtual release of the same amount at the same time

and at a symmetric position below the ground (z = -H). The solution

then consists in the sum of two prototypical solutions, one caused by

the actual release at (x = 0, y = 0, z = +H) and the other due to the

image at (x = 0, y = 0, z = -H):

c(x, y, z, t) =
m

(
√
4πt)3

√

DxDyDz

exp

(

− x2

4Dxt
− y2

4Dyt

)

· (29)

[

exp

(

−(z −H)2

4Dzt

)

+ exp

(

−(z +H)2

4Dzt

)]

where M is the amount released (e.g., mass) at time t = 0. The horizon-

tal coordinates x and y are measured along the ground, with the origin

at the vertical below the point of release. Of interest is the ground

concentration, cground = c(x, y, z = 0, t), which is:

cground(x, y, t) =
m

(
√
4πt)3

√

DxDyDz

exp

(

− x2

4Dxt
− y2

4Dyt
− H2

4Dzt

)

(30)
The ground concentration is highest at the vertical below the release

loca- ion (x = y = 0) and decreases away with distance from there. Only
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when Dx nd Dy are equal is this decrease 2D isotropic. At any time t,

the maximum round concentration is thus:

cground(t) =
m

(
√
4πt)3

√

DxDyDz

exp

(

− H2

4Dzt

)

(31)

7.3 Source over a finite area

This problem can be solved by superposition of many prototypical so-

lutions. If a localized release occurs not at r = 0 but at x = ξ, y = η ,

then the solution is simply shifted by the distance ξ, η:

c(x, y, z, t) =
M(ξ, η)

(
√
4πt)3

√

DxDyDz

exp

(

−(x− ξ)2

4Dxt
− (y − η)2

4Dyt

)

(32)

) · 2
[

exp

(

− (z)2

4Dzt

)]

The generalization to three and more punctual releases is straightfor-

ward. For a continuous release, we add an infinite number of tiny

releases collectively covering a finite interval. If in 1 dimension the

release the [ξ, ξ + dξ] interval is dM(ξ) = c0(ξ)dξ, then

c(x, y, z, t) = exp

(

− z2

4Dzt

)

(33)

∫ +∞

−∞
dξdη

c0(ξ, η)

(
√
4πt)3

√

DxDyDz

· exp
(

−(x− ξ)2

4Dxt
− (y − η)2

4Dyt

)

The function c0(ξ, η) is the initial concentration. The z- dependence is

the same for any x, y.

7.4 The real source

A conventional 57Co source diffused into Rh(Cu,...)-matrix has a diam-

eter of ca. 5mm and a thickness of 6-7µ. The typical diffusion length of

2-3µ < 6-7µ is by a factor of 100 smaller than the diameter of the foil of

the source. This means that the diffusion in the direction of the plane

is negligible. If the initial concentration on the surface is homogeneous

over some fraction of the foil the diffusion profile is essentially only

dependent on z. A diffusion theory in 3-dimension is not necessary. If

the aktive area is 3mm in diameter the area of the margin is about 4%

where the activity will be less. Very likely the homogeneity over the

3mm is even worse.
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7.5 Appendix

7.6 Number of nuclei in the source

The number of nuclei in the excited state of source is calculated from

the its decays per second given by Ci value corresponding to 3.7·1010Bq.

N = N0e
−λt (34)

N0/2 = N0e
−λt1/2

−ln2 = −λt1/2

λ =
ln2

t1/2

The 57Co half-life was measured to be 271.82 (17) days [3].

λ = 2.9514 · 10−8s−1 (35)

A 100mCi = 3.7GBq has n=3.7·109 counts per s

n = N0 −N0e
−λ1s (36)

= N0 −N0(1− λ1s)

3.7 · 109 = N02.9514 · 10−8s−1s

N0 = 1.2536 · 1017

7.7 Effective thickness per µm

After time t are Ng nuclei in the ground state, which contribute to

the index of refraction of the source material. The typical source of
57Co/Rh has an area of a diameter of 5mm and a thickness of the Rh-

foil of 6µm. The average density of nuclei in the ground state is then

given by

Ng/v = N0(1− e−λt)/v (37)

=
N0(1− e−λt)

πr26µm

The effective thickness per µm (cross section σ0(
57Co) = 2.56barn)) for

a 100mCi source with a thickness of 6µm is then calculated to be

τeff/µm = Ng/vσ0 · f(1− e−λt) (38)

=
170.25 · 104µmf(1− e−λt)

r2
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τeff is the fitted value from which an effective radius of the active area

can be calculated.

r = 1.305mm

√

f(1− e−λt)

τeff
(39)

= 1.130mm

√

1− e−λt

τeff
f(Rh)

= 0.799mm

√

1− e−λt

τeff
f(Rh), 50mCi

r does not depend on t. τeff(t) is equal 0 at t=0, so that the ratio 0/0 is

indefinite.
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