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1 Introduction

Deadtime effects are barely considered evaluating Mössbauer spectra.
Typically the deadtime of the counting system is not known according
to which deadtime parameters have been not introduced in programm
codes. But as it can be sshown that the baseline of the spectrum hides
the deadtime parameter if a detailed knowledge of the geometry of dis-
tances of source, diaphragm and detector and its dimensions are taken
into account.

2 Baseline

The measurement of the baseline of a Mössbauer spectrum already pro-
vides valuable information about the equipment, that is the geometry
and dead time effects. In a first step the dependence of the baseline on
the position of the moving source shall be considered. Secondly the po-
sition of the source dependent on velocity v is described by a parameter
geo which differ in triangular and sinusoidal mode. The parameter geo
is well defined by the geometry of the experimental set up. The effectiv
value of geo from the fit of the spectrum may differ from the geometrical
value as a result of dead time effects of the detector and its electronic.



2.1 Solid angle of a circle

The intensity of the radiation from the source S through an aperture
proportional to the solid angle Ω determined by the position of the source
relative to the aperture. The simplest case is a point source on the axis
orthonormal to the aperture as shown in Fig. 1. The surface of the

Figure 1: Source at position S, an aperture at a distance A is centered to an optical
axis. The solid angle dΩ belonging to the surface element at r and width δr is equal
to the projection of the surface element 2πrδr · cosϑ onto the unit sphere.

infinitesimal ring element from r to r+ δr of the aperture is 2πrδr. The
ring element resects from the surface of the sphere with radius R =√
r2 + A2 the element 2πrδr · cosϑ. The solid angle dΩ of the surface

element is given by the sphere of radius 1 such that

dΩ = 2πrδr · cosϑ/R2 with

cosϑ(r) =
A√
1 + r2

The solid angle is obtained by integration over r.

Ω = 2π

∫ rA

0

rdr

(r2 + A2)
√

(r2 + A2

= 2π

(

1− 1/

√

1 +
(rA
A

)2
)

For the experimental cases with ratios rA/A << 1 the Taylor expansion
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is sufficient. Denoting the area πr2A by FA the solid angle becomes

Ω =
FA

A2

(

1−
3

4π

FA

A2
+ ...

)

(1)

The the solid angle changes with the position A + S(v) of the moving
source such that the baseline is modulated by Ω(S(v))/Ω(0). With δ =
S(v)/A and τ = FA/A

2 the ratio

Ω(S)

Ω(0)
=

1

(1 + δ)2

(

1−
57

16π2
τ 2 +

3

2π
τδ

)

(2)

is well approximated by 1/(1+ δ)2 as will be checked for the experiment
under consideration.

2.2 The geometry parameter geo

In case of a sinusoidal motion of the source S = Smax sin(ωt) with the
distance r(t) = A + S(t) to the aperture the largest distance A + Smax

is reached at time t = T/4 ad at t = 3/4T the distance is A− Smax. In
multiscaling mode the channel number k is proportional to time t such
that at the full period time T the counts are collected in the highest
channel K. Time t is expressed by channel k according t = k ·T/K. The
velocity v(t) = dS/dt = Smaxω·cos(ωt) starts at t = 0 with vmax = Smaxω
and reaches at t = T/4 the zero velocity channel.
The geometry effect is well characterized by the parameter geo = Smax/A.

δ(v) =
S(k)

A
=

Smax

A

S(v)

Smax

(3)

= geo · sin(ωt)

The sin function is replaced by ±
√
1− cos2 and cos(ωt) by v(t)/vmax

from above to obtain δ as function of v.

δ(v) = ±geo

√

1−
(

v

vmax

)2

(4)

geo =
vmax

2πA
T

The last equation uses the identity ω = 2πT .
The same consideration for the triangular mode starts at t = 0 and
v = vmax. The acceleration b in the opposite direction decreases the
velocity to zero in a quarter of a period T/4.

v(t) = vmax + bt
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Integration of v(t) with the boundary condition S(t = 0) = 0 gives

S(t) = vmaxt+
1

2
bt2 (5)

At t = T/4 the velocity is zero, so that from Eq. 5 vmax = −bT/4, and
the source gets the maximum deviation Smax. Inserting t = T/4 and
b = −4vmax/T the maximal deviation in the triangular mode becomes
Smax = vmax/8T . The dependency of S on the velocity v is obtained
inserting t from Eq. 5 into S(t) and using vmax = −bT/4 from above.

S(v) = vmax

v − vmax

b
+

1

2
b

(

v − vmax

b

)2

(6)

S(v) = +Smax

(

1−
(

v

vmax

)2
)

The second half period starting at t = T/2 with v(t = T/2) = −vmax

v(t) = −vmax + b(t−
T

2
)

yields the same expression for S(v) with the minus sign. Similar to Eqs.4
for the sinusoidal case the equations for the triangular case are

δ(v) = ±geo

(

1−
(

v

vmax

)2
)

(7)

geo =
vmax

8A
T

Note the differences of the equations Eq.7 and Eq.4.
The approximation of Eq.2 by the prefactor of the bracket

Ω(S)

Ω(0)
=

1

(1 + δ)2
(8)

can now be jusified. For the aperture of the tube of the conic section
of an area FA = 28.3mm2 at the distances A = 23mm the corrections
turns out to be very small compared to 1. With vmax = 5.9mm/s
and 1/T = 4.5Hz the ratio δ(v = 0) = Smax/A becomes 7.1 · 10−3

which together with τ = FA/A
2 = 0.053 gives 3/2/πδτ = 1.8 · 10−4 and

57/16/π2τ 2 = 1.0 · 10−3.
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2.3 Dead time effects

Dead time in the detection system reduces the number of counts which
are detected. The are two types of detection systems, so called par-
alyzable and non-paralyzable ones. (also called extendable and non-
extendable, resp.). A detailed description can be found in the book of
Glenn F. Knoll [1] which is available as a pdf-file. A general test for
detection of dead-time distortions in a Poisson-process is described by
Jörg W. Müller [2]. Malvin C. Teich [3] considers normalizing transfor-
mations for dead-time modified Poisson counting distribution. In case
of large dead-times a reductions of the Poisson distribution leading to
χ2-values appreciably below 1. The following considerations are in the
limit where between paralyzable and non-paralyzable detection systems
cannot yet be differentiated. The non-paralyzable system reduces the
count rate N to Nτ by Eq. 9. τ is the dead-time of the system.

Nτ =
N

1 +Nτ
(9)

The paralyzable system reduces the rate exponentially (see Eq. 10). For
small nτ ≤ 0.2 the expansion of the exponential is still a good approxi-
mation and the system behaves like a non-paralyzable one.

Nτ = Ne−Nτ

= N/eNτ

≈
N

1 +Nτ
(10)

The approximation of non-paralyzable counters is assumed in the fol-
lowing discussion of the shape of the baseline. The reversed relation

N =
Nτ

1−Nττ
(11)

is of later use.

The number of counts/sec at the detector is modulated by the ratio
of solid angles from source position S(v) at velocity v and at S(v =
±vmax) = 0.

N(S(v)) = N(S = 0)
Ω(S(v))

Ω(S = 0)
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and according to Eq. 8

N(v) =
N(S = 0)

(1 + δ(v))2
(12)

Dead time effects reduce the rate N(v) which is counted by the detector
(Eq. 9) to

Nτ(v) =
N(v)

1 +N(v)τ
(13)

Inserting Eq.12 with N0 = N(S = 0) gives

Nτ(v) =
N0

(1 + δ(v))2
/

(

1 +
N0τ

(1 + δ(v))2

)

(14)

=
N0

(1 + δ(v))2 +N0τ

Three parameter N0, τ and geo of the function δ(v) determine the base-
line. The count rate N0 shall be replaced by the detected rate, such
that the number of counts Nτ(0) at S = 0 becomes a fit parameter.
Nτ0 = Nτ(0) from Eq.13 by use of the reversed relation of Eq.11 inserted
in Eq.14 gives

Nτ(v) =
Nτ0

1−Nτ0τ
/

(

(1 + δ(v))2 +
Nτ0τ

1−Nτ0τ

)

(15)

=
Nτ0

(1 + δ(v))2 −Nτ0τ((1 + δ(v))2 − 1)

Nτ(v) can be well approximated by two parameters Nτ0 and effective
geometry parameter geoeff such that there is no deadtime parameter as
Eq.12

Nτ(v) =
Nτ0

(1 + δeff(v))2
(16)

Equating Nτ(v) of Eq.16 and Eq.15 and considering only linear terms of
δ and δeff the relation

δeff(v) = δ(v) · (1−Nτ0τ)

is obtained which lead to similar relationship for the geo parameters by
Eqs. 4 and 7

geoeff = geo · (1−Nτ0τ) (17)
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The effectiv value is obtained from the spectrum without taking dead-
time into account. The geo-parameter uncovers the deadtime of the
measurement. Note that independent of the deadtime of the detector
1 − Nτ0τ is never less than 0 since according to Eq. 11 this value is
1/(1 +N0τ).

Using parameter geo not as fit parameter but as known from Eq.7 the
product of the count rate at S = 0 and the deadtime Nτ0τ is evaluated
already from the shape of the baseline. The fact that the intensities of
the absorption lines of the spectrum are affected by the deadtime as is
the baseline impresses the neccessity for deadtime corrections which are
easily accessible by the geo-parameter.

3 The product Nτ

The productNτ as evaluated by the shape of the baseline of the Mössbauer
spectrum or by fits of the measured count rate versus the true count rate
do not depend on the energy window for the selected counts. Although
the energy window around the Mössbauer transition, 14.4keV in case of
57Co(Rh)-source, is choosen as narrow as possible in order to minimize
non resonant γ-quanta contributing to the background the relative loss
of true counts is the same as counting the full energy spectrum. Fig.2
shows the γ-spectrum of a 57Co(Rh)-source obtained with a sodium io-
dide (NaI) scintillation counter. The low count rate at large distance

Figure 2: γ-spectrum of a 57Co(Rh)-source obtained with a sodium iodide (NaI) scin-
tillation counter. The narrow peak is the 14.4keV energy of the Mössbauer radiation.
The broad line stems from 122keV and 136keV and the background of their Compton
radiation inside the NaI-crystal.
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was defined as the true rate without deadtime loss. At half the distance
the expected increase by a factor 4 (according to 1/r2) justified this as-
sumption. Fig.3 demonstrates deadtime count loss for the full energy
spectrum (ungated) and for the gated spectrum of the Mössbauer win-
dow. The increase of the detected counts is plotted versus the linear
scale of the solid angle Ω/4π corresponding to the decreasing distances
shown on top for each measurement. The straigt line represents no count
loss which is the same by the different scales on the left for the ungated
counts and the gated ones on the right. Within the error the detected
counts are on the same curve which is fitted with the product Nτ = 0.22.

Figure 3: The count loss by the deadtime of the scintillator counting system (see
Fig.2) for two energy windows, the full energy spectrum (ungated) and for the gated
spectrum of the Mössbauer window. The straigt line means no count loss corresponding
to Deadtime τ = 0. The value Nτ reaches 0.22 at the rate measured at the solid angle
Ω/4π = 8 · 10−3 which is about 50kHz for the ungated case (scale on the left ordinate)
and 8kHz for the Mössbauer window (scale on the right one). The two curves match
with in the error.

The value of Nτ provides an answer for the nonparalyzable deadtime τ
of the detection system in the limit of large rate N

Nτ =
N

(1 +Nτ)
∝

1

τ
(18)

The detected rate for paralyzable deadtime behaviour reaches a maxi-
mum at 1/τ .
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4 Hybrid model of paralyzable and non-paralyzable

deadtime

The non-paralyzable deadtime could be easily handled by the fact that
the detected rate can be expressed by the true rate and vice versa (Eqs.
9,11). Using the hybrid model [4]

Nτ = Ne−NτP
1

1 +NτN
(19)

with two deadtimes τP and τN the rate Nτ(v) at velocity v cannot be
expressed anymore by the rate Nτ0 at the position S = 0 of the source.
Inserting the rate N(v) from the source of Eq. 12

Nτ(v) =
N0

(1 + δ)2
exp

(

−
N0τP

(1 + δ)2

)

1

1 + N0τN
(1+δ)2

(20)

=
N0

(1 + δ)2 +N0τN
exp

(

−
N0τP

(1 + δ)2

)

Nτ(v) depends on 3 parameters, N0 and 2 deadtimes, each one changes
the value Nτ0 which is directly determined by the baseline at S = 0.

Nτ0 = N0e
−N0τP

1

1 +N0τN
(21)

Taking Nτ0 and the products N0τP ,N0τN as parameters the following
equation replaces Eq. 15

Nτ(v) = Nτ0
1 +N0τN

(1 + δ)2 +N0τN
exp

(

−
N0τP

(1 + δ)2
(1− (1 + δ)2)

)

(22)

5 Mössbauer spectrum

5.1 Absorption

So far the dependence of the baseline on the solid angle by δ(v) and
the deadtimes τP and τN are considered. The absorber decreases by its
Mössbauer spectrum the count rate at various velocities v. The rate
N0 = N(v = vmax) in Eq. 15 becomes N0 ·M(v) where

M(v) = 1− fr(1− T (v)), T (∞) = 1 (23)

fr = f · (1− bf)
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The fraction of resonant counts fr is a product of the Lamb-Mössbauer
factor f of the source and the fraction of Mössbauer transitions (1 −
bf), such that bf is the fraction of background counts. The Mössbauer
spectrum is obtained replacing N0 by the product N0M(v) in Eq. 20

Nτ(v) =
N0M(v)

(1 + δ)2 +N0M(v)τN
exp

(

−
N0M(v)τP
(1 + δ)2

)

(24)

The value N0 is defined by Eq. 21, the rate at vmax where M(vmax) = 1.

Nτ(v) = Nτ0M(v)
1 +N0τN

(1 + δ(v))2 +M(v)N0τN
(25)

·exp
(

−N0τP (M(v)/(1 + δ(v))2 − 1)
)

Nτ0 from Eq. 21 is not affected by the Mössbauer spectrum if vmax at
S = 0 is large enough where the baseline is reached. The parameters
N0τN and N0τP are determined by the baseline. The function δ(v) is
known from the geometry, the drive mode and freqeuncy. The Mössbauer
spectrum obviously can be strongly affected by the deadtime parameters.

5.2 emission

The scatterer inceases by its Mössbauer spectrum the count rate at var-
ious velocities v. The rate is the sum of the rate of the baseline plus the
counts NrcM(v) generated by resonance scattering

N(v) = Nb +NrcM(v)
∑

k

M(v(k)) = 1

M(v = ∞) = 0 and Nrc are the resonant generated counts. The number
of detected counts with deadtime τ and v-dependence by the geometry
effect

Nτ(v) =
Nb +NrcM(v)

(1 + δ)2 + (Nb +NrcM(v))τ

Nτ(∞) =
Nb

1 +Nbτ

Nτ(∞) is the measured rate of the baseline Nτb which shall be a fit
parameter and also instead of τ again a product Nbτ . Replacing Nb

gives

Nτ(v) =
Nτb(1 +Nbτ) +NrcM(v)

(1 + δ)2 + (Nτb(1 +Nbτ) +NrcM(v))τ
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Replacing further Nrc by Nτrc/(1−Nτrcτ) and the deadtime τ by

τ =
Nτbτ

Nτb

Nτbτ =
Nbτ

1 +Nbτ

=
1

Nτb

Nbτ

1 +Nbτ

Nτ(v) depends on the parameters Nτb, Nτrc directly obtained from the
spectrum and Θ = Nbτ proportional to the deadtime.

Nτ(v) = Nτb

(1 + Θ)(1 +NτrcM(v)/((Nτb −Nτrc)Θ +Nτb))

(1 + δ)2 + (1 +NτrcM(v)/((Nτb −Nτrc)Θ +Nτb)Θ
(26)

6 Appendix

6.1 Derivatives transmission

Analytical derivatives speed up the search for the minimum of χ2 of fit
routines as compared to numerical ones. For several parameters of Eq. 25
the derivatives are readily obtaind. Some abbreviations an relations
derived from Eq. 23 are collected:

ΘN = N0τN

ΘP = N0τP

gf = (1 + δ(v))2

∂M(v)

∂bf
=

1−M(v)

1− bf

∂M(v)

∂f
= −

1−M(v)

f

Eq. 25 takes the shape

Nτ(v) = Nτ0M(v)
1 + ΘN

gf +M(v)ΘN

· exp (−ΘP (1−M(v)/gf))

The following 7 derivatives are used in the code of the program.

∂Nτ(v)

∂Nτ0
=

Nτ(v)

Nτ0

∂Nτ(v)

∂ΘN

= Nτ(v)

(

1

1 + ΘN

−
M(v)

gf +M(v)ΘN

)

∂Nτ(v)

∂ΘP

= −Nτ(v)(1−M(v)/gf)
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∂Nτ(v)

∂g
= −Nτ(v)

(

1

gf +M(v)ΘN

−
M(v)ΘP

g2f

)

· 2(1 + δ(v))
∂δ(v)

∂g

∂Nτ(v)

∂bf
= Nτ(v)

1−M(v)

1− bf

(

1

M(v)
−

1

gf +M(v)ΘN

+
ΘP

gf

)

∂Nτ(v)

∂f
= −Nτ(v)

1−M(v)

f

(

1

M(v)
−

1

gf +M(v)ΘN

+
ΘP

gf

)

The value of gf = (1 + δ(v))2 and the derivative ∂δ(v)/∂g multiplied by
2(1 + δ(v)) are provided by the “subroutine drive()”.

6.2 Derivatives emission

The complicated structure of E. 26 leads to clumsy partial analytical
derivatives, which are not any more advantages over numerical ones. The
partial derivative of ∂/∂g for the geometry parameter is an exception as
the derivative

(1 + δ(v))2

∂g
= 2(1 + δ(v))

δ(v)

∂g
(27)

is provided by the ’subroutine drive()’.

∂Nτ(v)

∂g
= −

Nτ(v)

dN
2(1 + δ(v))

δ(v)

∂g
(28)

dN = (1 + δ)2 + (1 +NτrcM(v)/((Nτb −Nτrc)Θ +Nτb)Θ(29)

dN denotes the denomenator in Eq. 26.
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