
A. Point-source Diffusion in an Infinite Domain:

Boundary and Initial Conditions

In this appendix we discuss how the boundary and initial conditions for a point source in an

infinite, one-dimensional domain are applied to find the solution of the diffusion equation. The

governing equation is

∂C

∂t
= D

∂2C

∂x2
(A.1)

with boundary conditions C(±∞, t) = 0 and initial condition C(x, 0) = (M/A)δ(x) (for more

detail, refer to Chapter 1).

In this case we will use the Fourier exponential transform instead of the similary method to

obtain our result. Although each method is equally valid, it is easier to see how the boundary

conditions are applied using the Fourier transform. Since the governing equations that is obtained

after applying the boundary conditions will be the same using either method, applying the

Fourier transform method here is the better approach. For this method we use the Fourier

exponential transformation defined by

F(α, t) =

∫ ∞

−∞
F (x, t)e−iαxdx (A.2)

where F(α, t) is the Fourier transformation of F (x, t), α is a transformation variable, and i is

the imaginary number. This method implicitly satisfies the boundary conditions at ±∞. This is

called a behavioral boundary condition (see e.g. Boyd 1989), and it is not necessary to apply the

boundary to fix the values of integration constants—the solution implicitely obeys the boundary

conditions because of our use of the Fourier transform. The following application of this method

to the diffusion equation is taken from Mei (1997).

The Fourier transform of the governing diffusion equation gives

dC
dt

+ Dα2C = 0. (A.3)

The power of the Fourier transform is that it converts partial differential equations into ordinary

differential equations, this time a simple, first-order ODE with solution

C(α, t) = F(α) exp(−Dα2t). (A.4)

F(α) is found by applying the initial condition. Applying the Fourier transform to the initial

condition gives

F(α) = C(α, 0)

=

∫ ∞

−∞
(M/A)δ(x)e−iαxdx
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= M/A. (A.5)

The drawback of the Fourier transform method is that the inverse transform to get back to our

desired dimensional space is sometimes a difficult integral.

We stop here to take a look at what we have done so far. The Fourier transform method

implicitly satisfies the boundary conditions; therefore, we do not have to think about them

anymore. Further, the initial condition was used to find the solution to the ODE obtained after

the Fourier transform. Thus, our solution

C(α, t) = (M/A) exp(−Dα2t) (A.6)

satisfies all our boundary and initial conditions. The remaining task is to perform a Fourier

inverse transform on this solution.

The Fourier inverse transform is defined in general as

F (x, t) =
1

2π

∫ ∞

−∞
F(α, t)eiαxdα. (A.7)

For our problem, the inverse transform becomes

C(x, t) =
1

2π

∫ ∞

−∞
(M/A) exp(−Dα2t)eiαxdα. (A.8)

We can simplify a little by recognizing that eiαx = cos(αx) + i sin(αx). Since e−Dα2t is an even

function and i sin(αx) is an odd function, we can neglect the sin-contribution, leaving us with

the integral

C(x, t) =
M

2πA

(

2

∫ ∞

0
e−Dα2t cos(αx)dα

)

(A.9)

which we still must solve.

The first step in solving (A.9) is to simplify the exponential using the change of variable

α =
x√
Dt

(A.10)

dα =
dx√
Dt

(A.11)

(note, this in an arbitrary change of variable that puts the integral in a form more likely to be

found in integral tables). Further, we define a new variable

η =
x√
Dt

(A.12)

(note, this is also an arbitrary decision). Substituting these definitions leaves us with

C(x, t) =
M

πA
√

Dt

∫ ∞

0
e−x2

cos(ηx)dx. (A.13)

Thus, our solution simplifies to having to solve the integral

I(η) =

∫ ∞

0
e−x2

cos(ηx)dx. (A.14)

The integral in (A.14) is not a trivial integral, but can be solved by employing the following

tricks. Basically, we need to find the derivative of I with respect to η and then put it in a useful

form. We begin with
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dI

dη
=

∫ ∞

0
−xe−x2

sin(ηx)dx. (A.15)

Next, recognize that xdx = (1/2)d(x2), giving

dI

dη
= −1

2

∫ ∞

0
e−x2

sin(ηx)d(x2). (A.16)

Similarly, we make use of the identity e−x2

d(x2) = −d(e−x2

), which lets us write

dI

dη
=

1

2

∫ ∞

0
sin(ηx)d(e−x2

). (A.17)

Now, we integrate by parts (where u = sin(ηx) and dv = d(e−x2

)) yielding

dI

dη
=

1

2
(e−x2

sin(ηx))

∣

∣

∣

∣

∞

0
− 1

2

∫ ∞

0
e−x2

d(sin(ηx))

= 0 − η

2

∫ ∞

0
e−x2

cos(ηx)dx

= −η

2
I(η). (A.18)

We can rearrange the last line as follows

dI

dη
+

η

2
I(η) = 0 (A.19)

which looks remarkably like (1.49) if C0 is taken as zero. The initial condition necessary to solve

the above ODE is given by

I(0) =

∫ ∞

0
e−x2

dx. (A.20)

If we convert I in the previous two equations to our variables used in the similarity solution,

we obtain

df

dη
+

η

2
f(η) = 0 (A.21)

with initial condition
∫ ∞

−∞
f(η)dη = 1. (A.22)

Therefore, we have shown through a rigorous application of the Fourier transform method, that

the above two equations give the solution to the diffusion equation that we seek in an infinite

domain for an instantaneous point source after having applied the appropriate boundary and

initial conditions.
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