Theory encounters experiments of Mössbauer spectroscopy

Tutorial lecture

Hartmut Spiering

Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität Mainz, Mainz, Germany

Dénes Lajos Nagy

Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

International Conference on the Applications of the Mössbauer Effect

Saint Petersburg, Russia, 3–8 September 2017

Spectrum 57Co/Rh source, α-iron (25μm) absorber

Theory H, Is, (texture)

χ² value (close to expectation)?

Line width/shape?

area/thickness =>25µm ?

7 points concerning the Spectrometer/Adaption of theory to experiment

Outline

- Reduced χ²
- Baseline of a transmission spectrum
- The raw data problem
- Choice of the drive frequency
- Theoretical value at channel i
- Dead time
- Background
- Conclusion: some good practices

Counts: Poisson distribution: χ

$$\chi^2 = 1.0 \pm \sqrt{\frac{2}{N_{ch}}}, \qquad N_{ch} = 2048 \implies \chi^2 = 1 \pm 0.031$$

 $\chi^2 = 1.0 \pm \sqrt{\frac{2}{N_{ch}}},$

Counts: Poisson distribution:

$$N_{ch} = 2048 => \chi^2 = 1 \pm 0.031$$

$$\begin{array}{l} \textit{Beer-Lambert} \\ \textit{law} \\ \textit{Sp}\left(\boldsymbol{v}\right) \propto \int_{-\infty}^{\infty} L_{S}(\tau - \boldsymbol{v}) e^{\left(-t_{eff}L_{A}(\tau)\right)} d\tau \end{array}$$

 $\chi^2 = 1.0 \pm \sqrt{\frac{2}{N_{ch}}},$

Counts: Poisson distribution:

$$N_{ch} = 2048 => \chi^2 = 1 \pm 0.031$$

$$\begin{array}{l} \textit{Beer-Lambert} \\ \textit{law} \\ \textit{Sp}\left(\boldsymbol{v}\right) \propto \int_{-\infty}^{\infty} L_{S}(\tau - \boldsymbol{v}) e^{\left(-t_{eff}L_{A}(\tau)\right)} d\tau \end{array}$$

Fit: thin absorber approximation

$$Sp(v) \propto 1 - t_{eff} L(v, \Gamma = \Gamma_{S} + \Gamma_{A})$$

 $\chi^2 = 1.0 \pm \sqrt{\frac{2}{N}},$

Counts: Poisson distribution:

$$N_{ch} = 2048 \implies \chi^2 = 1 \pm 0.031$$

 $\begin{array}{l} \textbf{Beer-Lambert}\\ \boldsymbol{law}\\ \boldsymbol{Sp}\left(\boldsymbol{\nu}\right) \propto \int_{-\infty}^{\infty} \boldsymbol{L}_{\boldsymbol{S}}(\boldsymbol{\tau}-\boldsymbol{\nu}) \boldsymbol{e}^{\left(-\boldsymbol{t}_{eff}\boldsymbol{L}_{\boldsymbol{A}}(\boldsymbol{\tau})\right)} d\boldsymbol{\tau} \end{array}$

Fit: thin absorber approximation

 $Sp(v) \propto 1 - t_{eff} L(v, \Gamma = \Gamma_{S} + \Gamma_{A})$

synthetic data by Monte Carlo simulations

(AS70 algorithm of Odeh and Evans, 1974)

Lorentz-curve $\chi^2 = 5.47$, $\Gamma = 2.49\Gamma_N$ Voigt profile $\chi^2 = 1.42$, $\Gamma = 2.15\Gamma_N$, $\sigma_{Gauss} = 1.17\Gamma_N$

Note:

Fit: thin absorber approximation

area is obtained to a good approximation by the χ^{2-} fit procedure

Fit: finite thickness

Use of Beer–Lambert law and convolution integral: thickness instead of area χ^2 -value gets a meaning (validity of the theory)

Note:

The baseline is determined by three parameters:

counts
$$(v=\infty)$$
, $geo=\frac{S_{max}}{L_0}$, channel $_{v=0}$

Note:

The baseline is determined by three parameters:

$$counts (v=\infty), \quad geo = \frac{S_{max}}{L_0}, \quad channel (v=0)$$

$$geo = 5.77 \cdot 10^{-4} (fit!)$$

$$geo = \frac{v_{max}}{2\pi L_0 f} = \frac{7.24 \text{ mm/s}}{2\pi \cdot 120 \text{ mm} \cdot 17 \text{ Hz}}$$

$$= 5.65 \cdot 10^{-4}$$

$$(120 \text{ mm} \rightarrow 117.5 \text{ mm})$$

Calibration spectrum for FAS W. C. Tennant, Christchurch (2009).

Fit of 6 independent lines (position, Voigt profile)

1024

Fit of 6 independent lines (*position, Voigt profile*)

Fit of 6 independent lines (*position, Voigt profile*)

Folding point FP: minimum of Z(FP)

$$Z(FP) = \sum_{i>FP}^{N} (C_i - C_{FP-(i-FP)})^2$$

FP=512.5

6 Voigt profiles $\chi^2 = 1.61$

Folding point FP: minimum of Z(FP)

N

6 Voigt profiles $\chi^2 = 1.61$

v(i) π 2π $\omega \cdot 256 = \pi/2$ Correction of the nonlinearity of the velocity scale

$$v(i) = -v_{max} \frac{4}{\pi^2} \left(\cos \omega \cdot i + \frac{\cos 3 \omega \cdot i}{3^2} + \frac{\cos 5 \omega \cdot i}{5^2} + \dots \right)$$
$$dv(i) = \sum a_k \cos\left((2k+1) \omega \cdot i \right) + b_k \sin\left((2k+1) \omega \cdot i \right)$$

v(i) ω·i $\omega \cdot 256 = \pi/2$ 2π π counts [10⁵]

Correction of the nonlinearity of the velocity scale

$$v(i) = -v_{max} \frac{4}{\pi^2} \left(\cos \omega i + \frac{\cos 3 \omega \cdot i}{3^2} + \frac{\cos 5 \omega \cdot i}{5^2} + \ldots \right)$$
$$dv(i) = \sum a_k \cos\left((2k+1) \omega \cdot i \right) + b_k \sin\left((2k+1) \omega \cdot i \right)$$

 $dv = \pm 7.5$ channels

 $\Gamma(\alpha - iron) = \Gamma_N$

Note:

No reliable velocity scale after folding!!

Better solution by a fit of the full spectrum and velocity correction for each channel

Not only positions of the lines but also their shapes determine the velocity scale

Choice of the drive frequency

J Pechousek et al., Palacky University of Olomouc, Czech Republic www.researchgate.net/publication/252974211

Choice of the drive frequency

J Pechousek et al., Palacky University of Olomouc, Czech Republic www.researchgate.net/publication/252974211

Choice of the drive frequency

Note:

Nonlinearity correction dv(i) strongly depends on the drive frequency

The evaluated physical parameters of the spectrum shall not depend on the driving mode, the frequency nor the solid angle

Note:

Advantages of theory interpolation:

Fit of dv_i dependent on 6-18 parameters would not be feasible with the convolution for each iteration step: 1024-4096 numerical integrals

Note:

Advantages of theory interpolation:

Fit of dv_i dependent on 6-18 parameters would not be feasible with the convolution for each iteration step: 1024-4096 numerical integrals

Calculation of cos-smearing for large Ω can be easily added (weak sources)

Weighted (by Ω_k) superposition of spectra with $v_i \cos(\vartheta_k)$

paralyzable, nonparalyzable

Proportional counter $\tau = 100 \ \mu s$ Scintillator $\tau = 1 \ \mu s$

D.J. Morrissey,2009, Michigan State University

paralyzable, nonparalyzable

Proportional counter $\tau = 100 \ \mu s$ Scintilator $\tau = 1 \ \mu s$

 $N_{obs} = \frac{N e^{-N\tau_p}}{1 + N\tau_{np}}$

D.J. Morrissey, 2009, Michigan State University

Code for Monte Carlo simulations (nonparalyzable, paralyzable)

```
while(isimul[0] < *counts)
}
eventtime=-log(1.-frand())/(countrate*theo[ichannel]);
lastevent=lastevent+eventtime;</pre>
```

```
totaltime=totaltime+eventtime;
ichannel= totaltime/dwelltime;
i=ichannel/nu_channel; ichannel=ichannel-i*nu_channel;
```

```
if(lastevent > deadtime)
  {isimul[ichannel]++; lastevent=0.0; icount++;}
else
  {iloss++;}
  {iloss++;lastevent=0.;}
}
```

Nonparalyzable

paralyzable

Nonparalyzable

paralyzable

Nonparalyzable

paralyzable

paralyzable

up to $N\tau \le 0.5$ deadtime effects are kept within reasonable limits

$$N = counts(v_{\infty}) \frac{\Omega(geo, v_i)}{\Omega_0} \implies geo = 1.62 \cdot 10^{-3} \quad (fit!)$$

$$N = counts(v_{\infty}) \frac{\Omega(geo, v_i)}{\Omega_0} \qquad => geo = 1.62 \cdot 10^{-3} \quad (fit!)$$
$$N = counts(v_{\infty}) \frac{\Omega(2.32 \cdot 10^{-3}, v_i)}{\Omega_0} \quad N_c = \frac{N}{1 + N\tau_{np}} \qquad => N\tau_{np} = 0.42 \quad (fit!)$$

$$N=counts(v_{\infty})\frac{\Omega(geo,v_i)}{\Omega_0} \implies geo=1.62\cdot10^{-3} \text{ (fit!)}$$

$$N=counts(v_{\infty})\frac{\Omega(2.32\cdot10^{-3},v_i)}{\Omega_0} \text{ , } N_c=\frac{N}{1+N\tau_{np}} \implies N\tau_{np}=0.42 \text{ (fit!)}$$

$$\frac{2.32}{\left(1+N\tau_{np}\right)}=1.63$$

$$N_c = \frac{N}{1 + N\tau_{np}}$$

nonparalyzable

$$N_c = \frac{N}{1 + N\tau_{np}}$$

nonparalyzable

$$N_c = \frac{N}{1 + N\tau_{np}}$$

 $N\tau_{np} = 0.22 \rightarrow \tau_{np} < 4.4 \,\mu s$

(gated)

Note:

Avoid (severe) dead time effects !

Check by the distance law 1/r² for dead time

Check by the geo parameter for dead time:

 $\frac{geo}{geo_{eff}} = (1 + N\tau)$

up to $N\tau \le 0.5$ deadtime effects are kept within reasonable limits

A straightforward experimental method to evaluate the Lamb-Mossbauer factor of a 57Co/Rh source G. Spina , M. Lantieri, Nul. Instrum. Methods B 318 (2014) 253-257

A straightforward experimental method to evaluate the Lamb-Mossbauer factor of a 57Co/Rh source G. Spina , M. Lantieri, Nul. Instrum. Methods B 318 (2014) 253-257

$$b_{fr} = \frac{A_b(Ni)/0.9695}{A_t/0.9877} = 1.019 \frac{A_b(Ni)}{A_t}$$

$$\alpha$$
-iron 25.5 μ m, f=0.80, Γ = Γ_N

Green: 33.05 Tesla Red: 30.67 Tesla (Mn)

Mossbauer measurements in iron based alloys with transition metals I. Vincze and A. Campbell, J. Phys. F: Metal Phys. Vol.3 (1973) 647-663

$$b_{fr} = \frac{A_b(Ni)/0.9695}{A_t/0.9877} = 1.019 \frac{A_b(Ni)}{A_t}$$

$$\alpha$$
-iron 25.5 μ m, f=0.80, Γ = Γ_N

Green: 33.05 Tesla Red: 30.67 Tesla (Mn)

Fit results:

$$f_{source}(1-bg_{fr}) =>$$

$$f_{source} = 0.715$$
$$\Gamma_{source} = 1.38 \cdot \Gamma_N$$
$$\sigma_{source} = 0.59 \cdot \Gamma_N$$

Mossbauer measurements in iron based alloys with transition metals I. Vincze and A. Campbell, J. Phys. F: Metal Phys. Vol.3 (1973) 647-663

Conclusion: some good practices

Taking down to the logbook:

Source (link to data sheet), Absorber (mg/cm²), Geometry (L_o , aperture), drive(mode, frequency), counting system (detector, electronic settings) Background fraction (rate measurements: gated/ungated, Ni-foil), etc

Use of the convolution integral

Use of a reliable nonlinearity correction

Advantage:

Reliable values of t_{eff} instead relative areas

(independent of the complexity of the applied theory)

Continuous control of the components of the equipment