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Dynamics of domain walls in weak ferromagnets
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Department of Physics, University of Crete, and Research Center of Crete, Heraklion, Greece

~Received 3 September 1996; revised manuscript received 3 December 1996!

The dynamics of domain walls in a model weak ferromagnet is shown to be governed by a suitable extension
of the relativistic nonlinears model to account for the Dzyaloshinskii-Moriya anisotropy and an applied
magnetic field. Our analytical results are confirmed by a numerical calculation in a discrete spin model and
significantly amend earlier treatments. Thus we provide a detailed description of static domain walls and
subsequently study their dynamics. A virial theorem is derived that underlies the existence of a terminal state
and allows a simple calculation of the mobility at low fields for both Bloch and Ne´el walls. We further
establish the existence of a critical field above which a driven domain wall is always Ne´el, whereas a bifur-
cation takes place below the critical value where the two types of walls behave rather differently. The terminal
states as well as the mobility curves are obtained for practically any strength of the applied field. Implications
for the phenomenology of domain walls in orthoferrites and in rhombohedron weak ferromagnets are discussed
briefly. @S0163-1829~97!10017-0#
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I. INTRODUCTION

Weak ferromagnets~WFM’s! are basically antiferromag
nets ~AFM’s! in which a small permanent magnetizatio
arises thanks to an antisymmetric exchange interaction
covered and studied by Dzyaloshinskii1 and Moriya.2 An
early account of the main properties of weak ferromagn
may be found in the review article of Moriya3 while a recent
book4 focuses on the dynamics of topological magnetic s
tons such as domain walls.

At first sight, it is natural to assume that the situation
similar to that of the extensively studied ferromagnetic~FM!
domain walls where the essential dynamical features are
tured by an analytical solution derived by Walker.5 When a
FM wall is subjected to an external fieldh, it reaches a
terminal state with constant velocityv5v(h) for field
strengths below a certain critical valuehw but undergoes a
complicated evolution forh.hw . A related fact is that the
maximum velocity achieved by the wall in the regionh
,hw is typically small, of the order of a few hundred mete
per sec. Although important boundary effects in ferroma
netic films render the Walker solution inapplicable in its d
tails, the overall picture is essentially correct and has b
the main source of intuition for many refinements th
followed.6

However, experimental studies of WFM walls4 have re-
vealed a significantly different dynamical behavior; no tra
of a critical Walker field has been found and the observ
wall velocities are typically much greater than those enco
tered in ferromagnets. Instead of a Walker maximum o
observes a limiting velocityc that coincides with the phas
velocity of the magnons associated with the underlying a
ferromagnetic exchange interaction. As a consequence
limiting velocity is rather high, reaching the valuec
'20 km/sec in the most typical example of an orthoferr
that exhibits weak ferromagnetism (YFeO3). One may then
invoke the simple formula

v5
mh

A11~mh/c!2
~1.1!
550163-1829/97/55~18!/12290~19!/$10.00
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to interpolate between the expected linear behavior at
fields ~v'mh, wherem is the wall mobility! and a limiting
velocity (v'c) in the opposite limit (h→`). Formula~1.1!
shows no sign of a critical field but is in reasonable agr
ment with experimental data.4

The actual picture in, say, YFeO3 is more involved in that
Eq. ~1.1! provides only a rough envelop of the experimen
curve. The latter is interrupted by at least two plateaus in
vicinity of v'4 and 7 km/sec which are identified with th
velocities of longitudinal and transverse sound and sugge
resonant coupling between magnetic degrees of freedom
lattice vibrations. Such magnetoelastic anomalies are ab
in ordinary ferromagnets because the maximum Walker
locity is usually smaller than the speed of sound. Since
pure WFM wall dynamics already confronts us with a no
trivial problem, magnetoelastic couplings will be neglect
in the present work but could be included on a future oc
sion.

The semiempirical relation~1.1! may be thought of as a
relativistic extension of the linear mobility relationv5mh.
Indeed all previous attempts at a theoretical derivation of
~1.1! were based on a phenomenological continuum mo
that is a generalization of the relativistic nonlinears model.4

On the other hand, our recent study of AFM domain wal7

suggests that some tricky issues arise in the derivation
continuum approximation. The first objective of the prese
paper is then to repeat the analysis of Ref. 7 in the prese
of the Dzyaloshinskii-Moriya anisotropy. We shall find th
relation ~1.1! survives in a subtle and interesting way but
certainly falls short of explaining the whole story. For e
ample, it is tacitly assumed in the work reviewed in Ref.
that the terminal velocities of driven Bloch and Ne´el walls
are given by two independent copies of relation~1.1! distin-
guished only by the respective mobilities. Instead, we fi
that only Néel walls are described by the simple relativist
formula ~1.1! whereas the mobility curve of Bloch walls i
significantly different. Nevertheless, a critical fieldhc exists
above which a driven Bloch wall is dynamically converte
into a Néel wall. Abovehc both types of walls are describe
12 290 © 1997 The American Physical Society
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55 12 291DYNAMICS OF DOMAIN WALLS IN WEAK FERROMAGNETS
by a single mobility curve of type~1.1! applied with a mo-
bility m appropriate for Ne´el walls; see Fig. 9 at the end o
the paper.

In view of the great diversity as well as crystallograph
complexity of realistic weak ferromagnets, it is useful to d
velop a simple microscopic model that entails only the
sential features of the dynamics. In a sense, our aim here
obtain the analog of the idealized Walker solution. Hence
Sec. II, we introduce the simplest discrete spin model t
embodies the main interactions present in a typical w
ferromagnet. The model is then used to calculate the pro
of static domain walls by a relaxation algorithm applied
rectly on the lattice. The calculated domain walls are rep
duced very precisely by analytical solutions derived with
the continuum approximation worked out in Sec. III. T
same section lays down the foundation for a complete st
of the dynamics of driven domain walls, which is carried o
in Sec. IV. The main conclusions are summarized in Sec
and some calculational details are relegated to the Appen

II. THE DISCRETE SPIN MODEL

In order to obtain a manageable theoretical framework
consider a strictly one-dimensional~1D! discrete spin mode
in which magnetic ions are placed on a chain whose sites
labeled byi51,2, . . . ,L. The spin Hamiltonian consists o
three terms,

W5WE1WDM1WA , ~2.1!

corresponding to the exchange, Dzyaloshinskii-Mor
~DM!, and single-ion anisotropy contributions. The exchan
interaction is taken to be antiferromagnetic, i.e.,

WE5J(
i

~Si•Si11!, ~2.2!

with J.0, and we consider an antisymmetric DM interacti
of the form

WDM5(
i

~21! i11D•~Si3Si11!, ~2.3!

whereD is a vector of constant direction and magnitu
D. A microscopic explanation of the sign alternation pres
in the sum of Eq.~2.3! may be inferred from the discussio
of Moriya3 and is crucial for the occurrence of weak ferr
magnetism. Lack of sign alternation would instead lead t
spiral spin state.

A strictly 1D model describes fairly well rhombohedro
weak ferromagnets such as MnCO3 where the magnetic Mn
ions interact significantly only along the crystallographicc
axis.8 Between any two successive Mn ions on thec axis
there exists a CO3 complex such that the relative orientatio
of the triangle formed by the three oxygen atoms alterna
at any two successive bonds, in direct correspondence
the sign alternation in Eq.~2.3!. This example suggests th
more abstract notation9 employed in the first row of Fig. 1 to
illustrate a short chain where open circles stand for the m
netic ions and up~down! triangles located on the bonds in
dicate positive~negative! signs in the sum~2.3!.

It would be natural to pursue the discussion of the ab
example through to its conclusion. However, rhombohed
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weak ferromagnets are characterized by a sixth-order sin
ion anisotropy in the basal plane which would technica
complicate the theoretical development. We thus prefer
complete our model by considering instead the most gen
rhombic anisotropy

WA5
1

2 (
i

@g1~Si
1!21g2~Si

2!21g3~Si
3!2#, ~2.4!

whereSi
1, Si

2, andSi
3 are the Cartesian components of sp

along the principal axes andg1 , g2 , andg3 are anisotropy
constants.

Actually a rhombic anisotropy is suitable for the study
orthoferrites such as YFeO3. But a strictly 1D model is not
directly relevant in this case because the interacting magn
Fe ions form a 3D lattice.10 Recall, however, that domain
walls are 1D structures embedded in a crystal in such a
that substantial variations of spin occur along a single dir
tion. Therefore, when a continuum approximation is app
cable, domain walls are effectively described by a differe
tial equation that is formulated in terms of a single spa
variable in addition to time. In such a context all memory
the original lattice is reflected in appropriate renormaliz
tions of the microscopic parameters by simple functions
the coordination number. Hence we shall assume that the
discrete spin model applies to the domain-wall dynamics
orthoferrites, with due caution on the determination of t
relevant microscopic parameters. Some indirect conclus
will also be drawn for rhombohedron weak ferromagnets

Within the limits of the 1D model the chain direction nee
not coincide with any of the principal axes used for t
specification of the anisotropy constants in Eq.~2.4!. In other
words, spin rotations act as an internal group without spec
reference to a coordinate system in real space. In orde

FIG. 1. Illustration on a short chain of labeling conventions a
the dimerization process~first row!, of the two degenerate groun
states~second and third rows!, and of the two types~antikink and
kink! of prototype domain walls~fourth and fifth rows!.
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12 292 55N. PAPANICOLAOU
keep with the interpretation alluded to in the preceding pa
graph we will adopt the real-space conventions commo
used in discussions of orthoferrites4,10but the direction of the
chain will be left arbitrary. We introduce the unit vecto
e15(1,0,0), e25(0,1,0), ande35(0,0,1) along the three
principal axes and take the constant vectorD to point along
the second axis:D5De2 . Spins will be treated as classic
vectors with constant magnitudes, Si

25s2, which is a simple
multiple of the Planck constant; e.g.,s5 5

2\ for the Fe ions in
YFeO3. Because of this constraint one of the anisotropy c
stants may be set equal to zero, e.g.,g150, without loss of
generality. The remaining constantsg2 and g3 are often
taken to be equal and positive, a choice that leads t
uniaxial anisotropy with the easy axis in the first directio
The restriction of equal magnitudes will not be made in
present work but we will assume for the moment that b
g2 andg3 are positive so that the first axis is still the ea
axis.

Thus we are ready to address the first important ques
concerning the nature of the ground state. If the DM anis
ropy were absent (D50) the minimum energy configuratio
would be the usual Ne´el state with spins polarized along th
first axis. ForDÞ0, the ground state is also achieved w
spins alternating between two distinct values. In the nota
of Fig. 1 all spins to the left of an up triangle take the val
A and those to the right of such a triangle the valueB. In
terms of the corresponding unit vectorsa5A/s andb5B/s
the energy per site measured in units ofs2J, i.e., w
5W/s2JL, is given by

w5~a•b!1
1

J
D•~a3b!1

g2
4J

~a2
21b2

2!1
g3
4J

~a3
21b3

2!.

~2.5!

The sign alternation present in Eq.~2.3! is crucial for the
validity of Eq. ~2.5! and for the implied repetition of the pa
~a,b! along the chain. Now the energy~2.5! is minimized by
the two distinct canted spin configurations shown in Fig.
which lie in the~13! plane and are related to each other
the parity transformation (a,b)→(2a,2b). In both cases
the energy is given by

w52cos2d2
D

J
sin2d1

g3
4J

~12cos2d!, ~2.6!

and the canting angled is found by minimizing Eq.~2.6! to
obtain

tan2d5
D

J1g3/4
. ~2.7!

Figure 2 also depicts the two vectors

m5
1

2
~a1b!, n5

1

2
~a2b!, ~2.8!

which will play a special role in the following. These vecto
may be expressed in terms of the canting angle as

m56~0,0,sind!, n56~cosd,0,0!, ~2.9!

where the6 choice corresponds to the two degener
ground states shown in Fig. 2. The vectorm may be inter-
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preted as the magnetization and is seen to assume a no
nishing value, hence leading to weak ferromagnetism.

The two types of ground states described above are sh
schematically in the second and third rows of Fig. 1,
preparation for the definition of the prototype domain wa
given in the fourth and fifth rows of the same figure. B
convention, these configurations will be referred to as a
kink and kink and correspond to the two distinct ways
connecting the two degenerate ground states between the
ends of the chain. More general domain-wall configuratio
may be constructed on long chains by retaining
asymptotic characteristics of the prototype walls wh
choosing the intermediate spin values more or less at
dom.

However our aim here is to obtain true domain walls th
are local minima of the energy functional and are thus sta
spin configurations, even though their energy is greater t
the energy of the ground state. It is then important to c
sider the dynamics associated with the Hamiltonian~2.1!–
~2.4!. The equation of motion for the spin vectorSi treated as
classical may be put in the standard Landau-Lifshitz form

]Si
]t

5Si3Fi , Si
25s2, ~2.10!

where the effective fieldFi is given by the general relation

Fi52
]W

]Si
, ~2.11!

or, more explicitly, by

Fi52J~Si111Si21!2~21! iD3~Si111Si21!

2g1Si
1e12g2Si

2e22g3Si
3e3 . ~2.12!

Our first concern is to search for static solutions whi
satisfy Eq. ~2.10! with the time derivative absent. It is
straightforward matter to verify explicitly that the ground
state configurations may be viewed as the simplest st

FIG. 2. The two degenerate ground states in the absence o
external field, which are related to each other by the parity tra
formation ~a,b!→~2a,2b!.
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55 12 293DYNAMICS OF DOMAIN WALLS IN WEAK FERROMAGNETS
solutions. Nontrivial solutions are difficult to obtain analy
cally but their existence is guaranteed by the following ar
ments. Note that the prototype domain walls do not solve
~2.10! thanks to the obstruction created at the interface.~This
situation is slightly different from the case of pure AF
walls studied in Ref. 7.! Therefore, if a prototype wall is
somehow created, it will evolve according to Eq.~2.10! in a
complicated precessional mode. Nevertheless, if some d
pation is at work, it will eventually relax in a spin configu
ration that solves the static equation and is a local minim
of the energy functional. This minimum inherits the top
logical structure of the prototype wall and is thus distin
from the absolute ground-state minimum.

The preceding remarks also suggest a simple nume
method for the calculation of static domain walls through
relaxation algorithm described in Ref. 7. At this point o
must specify the parameters employed in the numerical
culation. The spin magnitudes and the exchange consta
J can be scaled out of static solutions and the only relev
parameters are the dimensionless ratios formed by sca
the DM and single-ion anisotropy constants with the e
change constant. These ratios are chosen to belong to
rameter regime that is appropriate for orthoferrites but
special effort is made at this stage to select constants
correspond precisely to a specific substance. Hence we a
the valuesD/J51022, g150, g2 /J510245g3 /J in all nu-
merical calculations and consider other possibilities on
basis of analytical solutions derived in subsequent secti
The small canting angle calculated from Eq.~2.7!, namely
2d'0.57°, is typical of orthoferrites. To complete the di
cussion of parameters we introduce the equivalent seg1
50 and

«5Ag3
J
, r25

g2
g3
, d5

D

«J
, ~2.13!

whose theoretical significance will become apparent as
discussion progresses. In our standard numerical exam
«51022, r51, andd51.

The numerical calculation was performed on an op
chain with an even total number of sitesL52N whereN is
also even; these are technical assumptions of no great
nificance and will be commented upon at later stages.
consider only the antikink configuration illustrated for
small (L58) chain in the fourth row of Fig. 1, the discus
sion of the kink being completely analogous. The init
~prototype! wall was prepared by assigning the pair of sp
values (a,b) throughout the first half of the chain and th
pair (2a,2b) on the second half. This configuration wa
then used as initial condition in the relaxation algorithm
Ref. 7 applied for an effective fieldFi now given by Eq.
~2.12!. The resulting relaxed state is a static domain w
whose interface spreads out to a~half! width given roughly
by 1/«5100 sites, where«51022 is the parameter intro
duced in Eq.~2.13!. To avoid interference from the bound
aries the total number of sites must satisfy the inequalityL
@1/«. In our calculation we used a long chain withL
55000 sites in which domain walls fit quite comfortably.

Because of the implicit antiferromagnetic discontinuity
the spin values as one moves from site to site, presenting
explicit results in a concise fashion is in itself an interest
-
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exercise. Anticipating the discussion of the continuum a
proximation in Sec. III we search for variables that may po
sess a smooth continuum limit at least in some regions of
parameter space. Thus theL52N sites of the chain are
grouped into dimers labeled by a sublattice indexa
51,2, . . . ,N as illustrated in the first row of Fig. 1. Thi
mode of dimerization is not unique in that every dimer co
tains a bond that carries an up triangle. Discussion of
dual dimerization in which all dimers contain down triangl
is deferred for the moment. Now it is convenient to relab
the two spins contained in theath dimer according to

S2a215Aa , S2a5Ba . ~2.14!

The advantage of the new spin variablesAa andBa is that
each one of them is expected to be smooth as the indea
moves from one discrete value to the next. An even m
convenient set is provided by the two linear combination4

ma5
1

2s
~Aa1Ba!, na5

1

2s
~Aa2Ba! ~2.15!

which satisfy the constraints

ma•na50, ma
21na

251. ~2.16!

The idea is simply to present the numerical data for
variables ma and na as histograms calculated ata
51,2, . . . ,N. As it turns out, these histograms approa
continuous curves at small values of the parameter« intro-
duced in Eq.~2.13!. We may then drop the indexa in the
vectorsm andn and plot their three components as functio
of the position variable

j52«~a2a0!, a51,2, . . . ,N, ~2.17!

joining discrete points in the graph by the graphics routi
Here a0 is an arbitrary constant that sets the origin of t
coordinate system. Nevertheless, it is convenient to set
origin at the center of the domain wall which coincides in t
present calculation with the center of the open chain a
hencea05(N11)/2. The resulting graphs are shown in Fi
3 and make it apparent that a smooth continuum limit h
indeed been reached for the small value«51022 used in the
numerical calculation.

It is clear that bothm andn exhibit a more or less stan
dard domain-wall structure. A closer look at the numeric
data reveals that the vectorsm andn quickly approach con-
stant values far from the wall center which are in excelle
agreement with the ground-state values~2.9! calculated with
a canting angled derived from Eq.~2.7!. Also note that the
components ofm and n along the second axis vanish. I
other words, spins are confined in the~13! plane in order to
optimize the energy cost imparted by the DM anisotropy.
the context of orthoferrites such configurations are cal
ac or Bloch domain walls.4

The numerical calculation just presented accomplishes
main goal of this section but its content cannot be fully a
preciated before we tie some loose ends. First we retur
the use of an open chain with an even total number of s
L52N whereN is also even. Once a domain wall has be
realized on the open chain, removing one or more spins fr
either side and reiterating the relaxation algorithm would
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12 294 55N. PAPANICOLAOU
fect the wall only mildly provided thatL@1/«. In particular,
the wall need not be located at the center of the chain
long as it stays sufficiently appart from the end points, n
does its center have to coincide with the middle of a bo
On the contrary, when we study the dynamics, we shall
tensively deal with domain walls that glide through the l
tice.

The possible occurrence of interesting surface sta
around the end points of the chain, which may or may not
related to domain walls, is a separate issue that is not stu
in the present paper. This issue has recently attracted co
erable attention within the pure AFM model applied to
Fe/Cr superlattice.11,12 One can only expect that adding
the model the DM anisotropy would lead to a more involv
picture.

Yet we must address an apparent ‘‘ambiguity’’ that is n
related to the size of the chain but rather to the proces

FIG. 3. The profile of a static domain wall calculated nume
cally within the discrete spin model. The numerical results are p
sented using the standard dimerization scheme discussed in th
and are very accurately reproduced by the continuum solu
~3.30! and ~3.31! for a static Bloch wall applied for«51022, d
51, andk5215n.
as
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s
e
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dimerization. The best way to illustrate the question is
present thesamenumerical data as those employed in Fig
in conjunction with the dual dimerization where all dime
contain down triangles. Specifically, we simply omit the tw
end points of the chain and consider the dimers~23!,
~45!, . . . , (L22,L21) labeled consecutively by an intege
b51,2, . . . ,N21. We then construct the fields

mb5
1

2s
~S2b1S2b11!, nb5

1

2s
~S2b2S2b11!,

~2.18!

which are the direct analogs of Eq.~2.15! in the dual dimer-
ization scheme. We again consider the histograms formb
andnb by plotting the data as functions of the variable

j52«~b2b0!, b51,2, . . . ,N21, ~2.19!

with discrete points joined smoothly through the graph
routine. Here we may set the origin of the coordinate syst
at the center of the wall by choosing the arbitrary constan
b05N/2. The resulting curves are shown in Fig. 4 a
should be compared to those of Fig. 3.

The observed significant differences between the two
ures are at first disturbing. However a closer examinat
reveals that these differences are quite natural and, ind
necessary for the consistency of the entire calculation.
example, the fieldn has flipped sign and now appears as
kink configuration in contrast to the antikink of Fig. 3. O
the other hand, the asymptotic values ofm andn must now
be given by

m5
1

2
~b1a!, n5

1

2
~b2a!, ~2.20!

instead of the values~2.8! in the original dimerization.
Therefore, the necessity of a sign flip in the fieldn becomes
self-evident at least in the asymptotic region. The same
gument suggests that the asymptotic values of the fieldm
must remain the same, as actually observed in Figs. 3 an
or that the kink~antikink! character ofm is preserved. The
last statement could have been anticipated on phys
grounds, for a nonvanishingm in the ground state signals th
occurrence of~weak! ferromagnetism and cannot depend
the mathematical process of dimerization.

Nevertheless, no such simple explanation of the obser
curious differences around the wall center can be given u
a complete analytical solution is obtained within the co
tinuum approximation in Sec. III. At this point we mere
state that the answer to any physically relevant questio
independent of the specific mode of dimerization, provid
that the mathematical framework is not overinterpreted.
instance, ifm is interpreted literally as magnetization, on
may wonder whether Fig. 3 or Fig. 4 will describe the resu
of an actual measurement. In fact, either figure can be u
as long as experimental resolution is such that spin va
can be measured at every site. Otherwise, one should ex
to observe a fuzzy magnetization curve around the wall c
ter, which becomes progressively sharper as one moves a
from the wall where the fieldm attains definite values tha
are independent of the mode of dimerization.

A number of physically relevant questions will be ask
and answered unambiguously in the continuation of the

-
text
n
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55 12 295DYNAMICS OF DOMAIN WALLS IN WEAK FERROMAGNETS
per. This section is concluded by recalling an example
such a question that was posed within the pure AFM mo
in Ref. 7. At small«, AFM domain walls acquire a nonvan
ishing total magnetic moment equal to6s with respect to the
ground state. However, it is impossible to ascertain wh
the moment of a pure AFM wall is actually located, in vie
of the fact that the local values ofm are sensitive to the
mode of dimerization; in this respect, the result of Ref. 7 w
overstated. Nevertheless the total moment is unambiguo
defined on any finite chain irrespectively of the mode
dimerization, the latter being only a technique for obtainin
continuum approximation. Specifically, let us return to a d
main wall of the type shown schematically in Fig. 1 of Re
7 on a long finite chain with an even number of sitesL
52N. Such a wall carries a total moments at sufficiently
weak anisotropy, whereas a wall with total moment2s can
be obtained on thesamechain by reversing the signs of a
spins. Now suppose that one removes both the leftmost
the rightmost spin of the original configuration, a move th
amounts to reducing the total moment by 2s. The spin con-

FIG. 4. The same numerical results as those of Fig. 3 n
presented using the dual dimerization scheme and very accur
reproduced by the continuum solution~3.30! and~3.31! applied for
«51022, d521, andk515n.
f
el

e
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figuration on the reduced chain is now a domain wall w
total moment2s. But a wall with total moments also exists
on the reduced chain and is again obtained by reversing
signs of all spins. Therefore for any finite chain with an ev
number of sites domain walls develop a net moment6s
while the moment of the ground state vanishes. The last
mark is pertinent to the possibility of removing only one sp
from either side of the chain. The resulting spin configu
tion carries a vanishing total moment, but the ground state
the reduced chain with an odd number of sitesL2152N
21 is now doubly degenerate and carries a moment ei
s or 2s. Hence the total moment of the domain wall aga
differs from that of either ground state by an amount2s or
s.

The above examples strengthen the earlier conclusion
the tiny wall moment6s is not localized and is to som
extent elusive. Therefore such a moment is hardly relev
for macroscopic properties, such as those discussed in
present paper, but could be important in, say, a semiclass
quantization of pure AFM domain walls in a quantum an
ferromagnetic chain.13 The process of dimerization, or an
other substitute, is an inevitable fact of life in the derivati
of a continuum approximation for antiferromagnets. It is th
important that the continuum model derived in the followin
section cope with apparent paradoxes, as is discussed fu
after Eq.~3.33!.

III. THE NONLINEAR s MODEL

The numerical calculation of static domain walls in th
discrete spin model makes it clear that a suitable continu
approximation should be possible to obtain in some region
the parameter space. The appropriate region is actually
gested by the specific choice made in Sec. II. Indeed a r
tively simple continuum model emerges for parameters s
that g150 and

D

J
,
g2

J
,
g3

J
!1. ~3.1!

These inequalities are generally satisfied in realistic w
ferromagnets and will be invoked in the following withou
exception. We must also consider the effects of an extern
applied field as well as dissipation. The latter is taken to
of the standard Landau-Gilbert form and Eq.~2.10! is further
extended to include the effect of a uniform magnetic fieldH,

]Si
]t

1gSSi3]Si
]t D5Si3~Fi1g0m0H!, ~3.2!

whereg is the dissipation constant,g0;2 is the gyromag-
netic ratio, andm05e/2mec is the Bohr magneton divided
by the Planck constant. In our conventions the combinati
of parameterssg andg0m0H/sJ are dimensionless and ma
assume any values within the discrete spin model. Howe
for the validity of a continuum description, inequalities~3.1!
must be supplemented by

sg,
g0m0H

sJ
!1, ~3.3!

w
ely
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which are sufficiently nonstringent for all practical purpos
More convenient rationalized quantities are defined by

l5
2sg

«
, h5

g0m0H

2«sJ
, ~3.4!

and extend the set of parameters introduced in Eq.~2.13!.
Inequalities~3.1! and ~3.3! then read

«,«r,«d,«l,«h!1 ~3.5!

and are conditions for the validity of the continuum mod
derived in this section.

The continuum model is derived by a method already e
ployed in the simpler context of Ref. 7. We adopt the dim
ization scheme of Fig. 1 and again defer discussion of
dual dimerization. The Landau-Lifshitz equation~3.2! is then
rewritten as a system of two coupled equations for the s
lattice spinsAa andBa introduced in Eq.~2.14!:

]Aa

]t
1gSAa3

]Aa

]t D5Aa3~Fa1g0m0H!,
~3.6!

]Ba

]t
1gSBa3

]Ba

]t D5Ba3~Ga1g0m0H!,

where the effective fieldsFa andGa are given by

Fa52J~Ba211Ba!1D3~Ba211Ba!

2g1Aa
1e12g2Aa

2e22g3Aa
3e3 ,

Ga52J~Aa1Aa11!2D3~Aa1Aa11!

2g1Ba
1e12g2Ba

2e22g3Ba
3e3 .

~3.7!

A sign alternation is no longer present in the DM contrib
tions but its effect has been correctly accounted for in E
~3.7! in relation to the specific mode of dimerization.

The main assumption supported by the numerical dat
that the sublattice spinsAa andBa approach smooth con
tinuum limitsA5A(j) andB5B(j) wherej is the discrete
variable ~2.17! that becomes continuous in the limit«→0.
The dimensionless variablej provides a measure of positio
along the original chain. The actual distance on the chai
given byaj/« wherea is the physical distance between tw
magnetic ions. However the lattice constanta will not be
used in any stage of the theoretical development except w
quantities such as distance, velocity, etc., will have to
translated in physical units. Thus we make the replacem
Aa→A andBa→B in Eqs.~3.6! and ~3.7! together with

Aa11→A1~2«!A81
1

2
~2«!2A9,

~3.8!

Ba21→B2~2«!B81
1

2
~2«!2B9,

where the prime denotes differentiation with respect toj.
Subsequent steps of the argument differ from those

Ref. 7 only in the length of the required algebra and will
relegated to the Appendix to avoid obscurring the simplic
of the final result. Let us consider the continuum analogs
the fields~2.15!, i.e.,
.

l

-
-
e

b-

-
s.

is

is

en
e
ts

f

f

m5
1

2s
~A1B!, n5

1

2s
~A2B!, ~3.9!

and introduce the rescaled time variable

t52«sJt. ~3.10!

We further recall the set of parametersg150, «, r, andd of
Eq. ~2.13!, which we extend slightly by defining a vectord
whose magnitude is equal tod and its direction coincides
with the DM axis (d5de2), and the rationalized dissipatio
constantl and fieldh of Eq. ~3.4!.

In the strict continuum limitm andn satisfy the reduced
constraints

m•n50, n251, ~3.11!

m is expressed entirely in terms ofn as

m5
«

2
@2n81~n3ṅ!1~n3d!2n3~n3h!#, ~3.12!

and the fieldn satisfies the differential equation

n3~ f1lṅ!50, ~3.13!

where we have separated the dissipative term and the e
tive field f reads

f5n̈2n912~h3ṅ!1~h3d!1~n•h!h1~n•d!d

1r2n2e21n3e3 . ~3.14!

The dot stands for differentiation with respect to the tim
variable t of Eq. ~3.10! and the prime with respect to th
spatial variablej of Eq. ~2.17!. It is understood that the
strong inequalities~3.5! are enforced and terms of order«2

and higher have been neglected.
Therefore the ‘‘magnetization’’m may be viewed as an

auxiliary field and the dynamics is governed mainly by E
~3.13! at the heart of which lies the relativistic nonlinears
model. The latter corresponds to the first two terms of
effective fieldf which originate in the pure antiferromagnet
interaction. The fifth and sixth terms amount to a redefiniti
of the anisotropy constants due to the applied field and
DM interaction. The third term inf is special in that it breaks
Lorentz invariance at nonvanishing field, whereas the te
(h3d) introduces a direct coupling between the applied fi
and the DM anisotropy.

In order to facilitate a direct comparison to the early wo
it is also useful to derive the effective field from an actio
principle,

f52
dA
dn

, ~3.15!

whereA is the action

A5E L dj dt ~3.16!

andL the corresponding Lagrangian density:
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L5
1

2
~ ṅ22n82!1h•~n3ṅ!2~h3d!•n

2
1

2
@~n•h!21~n•d!21r2n2

21n3
2#. ~3.17!

This result agrees for the most part with Eq.~2.30! of Ref. 4
~restricted to an antisymmetric DM interaction! with the im-
portant exception of the crossed term2(h3d)•n which is
absent in the above reference; so is a parity-breaking gr
ent term in Eq.~2.28! of the same reference. It should b
mentioned here that the possible existence of a pa
breaking contribution in the fieldm had been anticipated o
symmetry grounds14 but such a possibility was apparent
overlooked in the literature for a long time.7,13 This contri-
bution is sensitive to the symmetry of the lattice and may
special to the model considered here. But it should also
clear that the crossed term (h3d) in the effective fieldf is
not related to the parity-breaking contribution and its con
quences are more drastic for the dynamics of domain wa
The implications of these differences will be discussed in
following as the need arises.

Before proceeding with detailed applications of the d
rived continuum model we must comment on the ration
ized physical units employed throughout this paper. The s
magnitudes carries dimension of action,sJ of frequency,
and s2J of energy. The constantss and J as well as the
lattice constanta do not appear explicitly in the dynamica
equations which are formulated in terms of the dimensi
less ratios«, r, d, l, andh. In particular, the spatial coordi
natej of Eq. ~2.17! and the time variablet of Eq. ~3.10! are
both dimensionless. A related fact is that the ‘‘velocity
light’’ associated with Eq.~3.14! is equal to unity. Recalling
that the actual distance on the chain is given byaj/« and
taking into account the definition of time in Eq.~3.10! we
conclude that velocity is measured in units of

c52asJ, ~3.18!

which coincides with the phase velocity of magnons in
long-wavelength limit of the underlying pure 1D antiferr
magnet and also provides an expression for the limiting
locity c discussed in the Introduction. On this occasion,
wish to return to our earlier remarks concerning the use
the 1D model in relation to orthoferrites. The rationaliz
continuum equations of the fieldn for the description of
domain walls within the 3D crystal will have the same for
as those derived above but the interpretation of constants
be slightly different. For instance, the limiting velocity
given more generally by

c52asJAz

2
, ~3.19!

wherez is the lattice coordination number.
As a first application of the continuum model we consid

the derivation of static domain walls at vanishing field. O
may then neglect field-dependent terms as well as time
rivatives in Eqs.~3.12!–~3.14! and further insert the specia
form of the vectord5de2 to obtain
i-

y-

e
e

-
s.
e

-
l-
in

-

e

-
e
f

ill

r

e-

m5
«

2
@2n81d~n3e2!# ~3.20!

and

n3f50, f52n91~d21r2!n2e21n3e3 . ~3.21!

It proves useful to rewrite the effective fieldf in the abstract
form

f5
dF
dn

, ~3.22!

whereF is an energy functional given by

F5
1

2 E @n821~d21r2!n2
21n3

2#dj. ~3.23!

Resolving the constraintn251 by the standard spherical pa
rametrization,

n15sinQ cosF, n25sinQ sinF, n35cosQ,
~3.24!

yields

F5
1

2 E @Q821sin2QF821~d21r2!

3sin2Q sin2F1cos2Q#dj, ~3.25!

and static solutions are stationary points ofF with respect to
Q andF. Hence we are led to the system of ordinary diffe
ential equations

Q91@12F822~d21r2!sin2F#cosQ sinQ50,
~3.26!

~sin2QF8!85~d21r2!sin2Q cosF sinF.

Bloch domain wallsare confined in the~13! plane and
thus satisfy the simpler system

F50, Q91cosQ sinQ50, ~3.27!

whose solution reads

sinQ5k tanhj, cosQ5
n

coshj
, ~3.28!

where the ‘‘kink number’’k and the ‘‘polarity’’ n are given
by

k561, n561, ~3.29!

taken in any combination. Therefore the vectorn
5(n1 ,n2 ,n3) is given explicitly by

n15k tanhj, n250, n35
n

coshj
, ~3.30!

and the corresponding expressions form5(m1 ,m2 ,m3) are
calculated from Eq.~3.20! using as input Eq.~3.30!:
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m152
«

2 coshj S k

coshj
1ndD ,

m250,

m35
«

2
tanhjS n

coshj
1kdD . ~3.31!

Applied for «51022, d51, andk5215n the above
continuum approximation is found to be graphically indist
guishable from the numerical solution of Fig. 3. A goo
estimate of the relative accuracy is already given by
asymptotic values of the fields~3.30! and~3.31! evaluated at
j56`:

m~6`!56k~0,0,«d/2!, n~6`!56k~1,0,0!.
~3.32!

For the specific numerical example, Eq.~3.26! yields
m(6`)57(0,0,0.005) andn(6`)57(1,0,0) which are
consistent with the accurate values given in Eq.~2.9!. More
generally, for parameters satisfying the inequalities~3.1!, the
canting angle of Eq.~2.7! may be approximated byd
'D/2J5«d/2 and Eq.~3.32! is consistent with Eq.~2.9!
applied for sind'd and cosd'1. An analogous statement o
relative accuracy holds true for all values ofj.

We are now in a position to clarify the dimerization am
biguity discussed in Sec. II. Had we derived the continu
approximation using the dual dimerization centered aro
down triangles would simply amount to the replacem
d→2d in Eqs. ~3.12!–~3.14!. Therefore the numerical re
sults of Fig. 4 should also be predicted by Eqs.~3.30! and
~3.31! applied ford521 and for some suitable choice of th
kink number and polarity which are still free to take th
values k561 and n561 in any combination. It is not
difficult to see that Fig. 4 is reproduced very precisely
applying the continuum solution~3.30! and ~3.31! for d5
21 andk515n. More generally, the mapping of solution
between the two modes of dimerization is given by t
simple ruled→2d, k→2k, n→2n. Therefore the fieldn
changes by an overall sign while the corresponding chan
in m may be inferred also from the general relation~3.12!
subjected to the transformation

n→2n, d→2d. ~3.33!

The above rule summarizes the manner in which the c
tinuum model copes with the dimerization ambiguity. In pa
ticular, the asymptotic values and the kink~antikink! charac-
ter of the fieldm are invariant under transformation~3.33! as
is evident from Eq.~3.32!. Furthermore the continuum mode
handles quite efficiently questions such as the elusive t
moment of a pure AFM wall. Indeed, although the co
tinuum approximation is by construction oblivious to the c
ting and pasting of a finite chain, it copes with the vario
moves described in the concluding paragraphs of Sec. I
mapping solutions of the underlying nonlinears model onto
other solutions of the same model obtained through the s
metry transformationn→2n. Having understood this point
no real ambiguity is present in comparing careful numeri
calculations with continuum solutions. Moreover a definiti
of a magnetizationm with definite local values is not strictly
e

d
t

es

n-
-

al
-
-
s
y

-

l

speaking necessary and is probably unattainable on lat
whose symmetry allows the appearance of parity-break
gradient terms.14 This digression is concluded noting that th
dimerization process becomes more intricate in high
dimensional lattices, as discussed in a forthcoming art
on the dynamics of topological solitons in 2
antiferromagnets.15

We may then return to the standard dimerization sche
of Fig. 1 to which we will consistently adhere in the rest
the paper. An immediate dynamical consequence of the r
tivistic invariance of Eq.~3.13! at vanishing field and dissi
pation is that domain walls moving with a constant veloc
v,1(5c) can be derived by elementary means. For a fre
moving Bloch wall the fieldn is obtained simply by a Lor-
entz transformation of the static solution~3.30!:

n15k tanhu, n250, n35
n

coshu
, ~3.34!

where

u5
j2vt

A12v2
. ~3.35!

The magnetizationm is then computed from Eq.~3.12!
where the first three terms~gradient, dynamical, and DM! are
now all important and the fourth term is absent at vanish
field:

m152
«

2coshu S 1

A12v2
k

coshu
1ndD ,

m252
«v

2A12v2
kn

coshu
, ~3.36!

m35
«

2
tanhuS 1

A12v2
n

coshu
1kdD .

In addition to an apparent Lorentz contraction we note t
the fieldm develops a nonvanishing component in the s
ond direction due entirely to the wall motion. Incidentally w
mention that the continuum approximation breaks down
the ultrarelativistic limit (v;1) where the wall width re-
duces to a few lattice spacings.

This section is completed with a corresponding discuss
of Néel domain walls. We consider first static solutions fo
which the vectorn is confined in the~12! plane and system
~3.26! reduces to

Q5
p

2
, F95~d21r2!cosF sinF. ~3.37!

Solutions of the second equation are given by

cosF5k tanhz, sinF5
n

coshz
, ~3.38!

where the kink numberk and the polarityn take the same
values as those of Eq.~3.29! and z is the rescaled spatia
coordinate
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z5Ad21r2j. ~3.39!

The vectorn reads

n15k tanhz, n25
n

coshz
, n350, ~3.40!

and the vectorm is calculated from Eq.~3.20! to yield

m152
«

2
Ad21r2

k

cosh2z
,

m25
«

2
Ad21r2

n tanhz

coshz
,

m35
«

2
kd tanhz, ~3.41!

where we note that all three components are now differ
from zero.

The numerical calculation of Sec. II did not produce e
dence for Ne´el domain walls because it was based on a
laxation algorithm that inevitably leads to a local minimu
of the energy functional. As a result a Ne´el wall would decay
into a topologically equivalent Bloch wall with lower energ
A more precise statement is that~13! walls have lower en-
ergy than~12! walls for parameters such that

d21r2.1 or SDJ D 21 g2
J

.
g3
J
. ~3.42!

This inequality is certainly satisfied for the uniaxial aniso
ropy (g25g3) used in our numerical calculation and is al
typical of orthoferrites. However, at least one example
quoted in the literature, the dysprosium orthoferr
DyFeO3, where the inequality is reversed below 150 K a
the role of Bloch and Ne´el walls is interchanged.4 Hence, in
the bulk of the paper, we shall assume that Eq.~3.42! is
satisfied and defer discussion of the consequences of the
posite inequality for the end of the argument. Since N´el
walls are unstable one may question whether or not they
relevant for the phenomenology of weak ferromagnets.
tually the inequality~3.42! is marginally satisfied in orthof-
errites and Ne´el walls are substantially stable; they can
experimentally produced and studied apparently with
great difficulty. Furthermore they will prove to be crucial
our theoretical analysis of driven domain walls. The situat
is different in rhombohedron weak ferromagnets where
two types of walls are separated by a wide energy gap
Néel walls are rather unstable.

We conclude this line of reasoning by quoting an analy
cal solution for a freely moving Ne´el wall at vanishing field
and dissipation. The fieldn is obtained by a Lorentz trans
formation of the static solution~3.40!,

n15k tanhw, n25
n

coshw
, n350, ~3.43!

with

w5Ad21r2u5Ad21r2

12v2
~j2vt!, ~3.44!
nt

-
-

s

op-

re
-

t

n
e
d

-

whereas the fieldm is calculated from Eq.~3.12! using as
input Eq.~3.43! andh50:

m152
«

2
Ad21r2

12v2
k

cosh2w
, m25

«

2
Ad21r2

12v2
n tanhw

coshw
,

~3.45!

m35
«

2 FAd21r2

12v2
knv
coshw

1kd tanhwG .
IV. DRIVEN DOMAIN WALLS

The main point of this work is the study of the dynamic
response of a domain wall, either Bloch or Ne´el, to an exter-
nally applied magnetic field in the presence of dissipati
During the initial steps of the development it is conceptua
simpler to work strictly within the discrete spin model. Th
continuum description will be invoked at a later stage a
will prove more powerful in establishing the complete pi
ture. For definiteness let us assume that the initial configu
tion is the static Bloch wall calculated in Sec. II for th
discrete system~Fig. 3! which is subjected to a uniform field
that is turned on att50 and points in the third direction,

h5~0,0,h!5he3 . ~4.1!

The mathematical problem consists of solving Eq.~3.2! with
initial condition supplied by the static wall. One must the
study the ensuing evolution and possibly ascertain the
mation of a terminal state where the spin configurat
moves rigidly with constant velocityv. In particular, one
must determine the nature of such a state and the term
velocity v as functions of the applied field.

To appreciate the results of an explicit numerical solut
we first examine the behavior of the spin configuration
from the wall center or, equivalently, determine the fate
the two degenerate ground states after the field is turned
It is clear that the applied field lifts the degeneracy and c
ates an imbalance between the two sides of the wall. Ac
ally a field by itself would merely set the ground state
eternal precession. The role of dissipation is also import
in that precession eventually dies out and two new st
ground-state configurations emerge that are both lo
minima of the energy functional but now have different e
ergies thanks to the magnetic field. The precise nature
these minima is again determined by optimizing the simp
fied energy function~2.5! extended to include a Zeema
term:

w5~a•b!1«d•~a3b!1
«2

4
~a3

21b3
2!2«h~a31b3!.

~4.2!

Here we have anticipated that the optimal configurations
confined in the~13! plane~hencea2505b2! and have also
expressed parameters in their rationalized form.

The original ground state depicted in the first row of F
2 evolves into a state with a field-dependent canting angd
satisfying the algebraic equation

S 11
«2

4 D sin2d2«d cos2d2«h cosd50, ~4.3!
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which reduces to Eq.~2.7! at vanishing field (h50). Simi-
larly the ground state shown in the second row of Fig
becomes a state with a different canting angled8 given by

S 11
«2

4 D sin2d82«d cos2d81«h cosd850. ~4.4!

The two states are depicted symbolically in the first and s
ond rows of Fig. 5 and are no longer related by a pa
reflection becausedÞd8. A simple numerical solution of the
algebraic equations and a corresponding calculation of
energy~4.2! establishes that both states are local minima
the energy of the second solution is higher. The third row
Fig. 5 illustrates the manner in which the second st
evolves for a sufficiently strong field (h.d). Note that for
h5d the solution of Eq.~4.4! is d850. A new element in the
regionh.d is that the vectorm points in the same direction
~the direction of the magnetic field! for both types of ground
states but its magnitude is different in the two cases. T
canting angled9 is calculated from

S 11
«2

4 D sin2d91«d cos2d92«h cosd950, ~4.5!

which is related to Eq.~4.4! by the substitutiond8→2d9.
Within the domain of validity of the continuum approxima
tion the various canting angles introduced above can be
proximated by

FIG. 5. The fate of the two degenerate ground states of Fig.
the presence of an external fieldh. Degeneracy is lifted because th
second ground state displays a different canting angle (dÞd8) and
higher energy. The third row of the figure illustrates the seco
ground state in connection with a mild crossover that takes plac
h5d.
2

c-
y

e
t
n
e

e

p-

d'
«

2
~d1h!, d8'

«

2
~d2h!, d9'

«

2
~h2d!.

~4.6!

This approximation becomes progressively questionable
very strong fields in the regionh;1/«.

Therefore, when the field is turned on, the two groun
state configurations~domains! on the two sides of the do
main wall are expected to adjust to those of Fig. 5 at so
characteristic time intervalt0 . During the transient period
t&t0 , precession effects are strong and the wall behave
a complicated manner. However, fort.t0 , the two sides
have adjusted to the new static domains one of which
higher energy density. We thus expect the whole spin c
figuration to reach a terminal state where the domain w
the lower energy expands perpetually at the expense of
other; whence the motion of the domain wall with a const
terminal velocityv5v(h).

The qualitative picture described above can be confirm
by a straightforward numerical calculation in the discre
spin model. We solve the initial-value problem for Eq.~3.2!
for our standard choice of parameters («51022, r515d)
together with a typical dissipation constantsg51022 or l
52. Simulations were performed for a number of values
the rationalized fieldh, using as an initial condition the stati
Bloch wall calculated numerically in Sec. II at vanishin
field.

Explicit results forh51/2 are given in Figs. 6 and 7. Th
wall motion was monitored by tracking the point where t
first component ofn vanishes, using linear interpolation t
locate its actual position between two lattice sites. The c
responding velocity is plotted in Fig. 6~a! and displays a
transient period after which it quickly approaches a termi
valuev50.214 that should be accurate to all three signific
figures. Figure 6~b! illustrates the time evolution of the
ground-state configurations away from the wall center c
centrating on the third component ofm whose initial (t
50) asymptotic (j56`) values are those of Eq.~2.9!. Af-
ter the same transient periodm3 approaches the termina
valuem35sind50.007 499 39 far to the left of the wall an
the valuem352sind8520.002 501 08 far to the right
which are in excellent agreement with the accurate roots
the algebraic equations~4.3! and ~4.4! and in good agree-
ment with the approximate roots~4.6!. Finally Fig. 7 dis-
plays the terminal state of the wall with numerical data
the spin presented using the technique discussed in Sec.
connection with Fig. 3.

A simple comparison of Figs. 3 and 7 reveals that t
terminal state has acquired a significant Ne´el component
(n2Þ0) and is thus appreciably different from the origin
Bloch wall. In particular, the terminal state of the drive
Bloch wall has no resemblance to the freely moving Blo
wall of Eqs. ~3.34!–~3.36!. To push this picture further we
repeated the calculation for a stronger field (h53/2) which
was expected to lead to a stronger Bloch-Ne´el hybridization.
The results of Fig. 8 came as a surprise in that the orig
Bloch wall (n250) had turned completely into a Ne´el wall
(n350). Incidentally we note that we are now in the fie
regimeh.d, becauseh53/2 andd51, where the vectorm
points in the field direction on both sides, as was anticipa
by the discussion of Fig. 5 and is evident in Fig. 8~b!. How-
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55 12 301DYNAMICS OF DOMAIN WALLS IN WEAK FERROMAGNETS
ever the mild crossover ath5d is not the important issue in
Fig. 8. Rather this calculation suggests the existence o
genuine critical fieldhc above which a driven Bloch wall is
always converted into a Ne´el wall. The critical fieldhc need
not coincide with the crossover valueh5d.

A detailed investigation of this important issue based o
on numerical simulations would be tedious. Hence we re
at this point the continuum model which will prove to be
very powerful tool. For instance, the continuum model m
be used to provide a simple explanation for the existenc
a critical field which will also yield a rough estimate of i
actual value. The important issue is again inequality~3.42!
that governs the relative stability of Bloch and Ne´el walls.
Suppose that Eq.~3.42! is indeed satisfied and thus Ne´el or
~12! walls are relatively unstable to Bloch or~13! walls. A
simple inspection of Eq.~3.14! applied for d5de2 and h
5he3 suggests that the presence of an applied field m

FIG. 6. Dynamical response of the static Bloch wall of Fig. 3
an applied fieldh51/2, calculated numerically within the discre
spin model.~a! The wall velocity approaches a terminal valuev
50.214 after a transient periodt0'5. ~b! Response of the groun
state monitored by the values ofm3 far to the left of the wall~upper
curve! and far to its right~lower curve!. The corresponding termina
values are given in the text.
a

y
ll

y
of

y

change the situation because the effective anisotropies a
the second and third axes now appear with coefficientsd2

1r2 and 11h2. At low fields, where the inequalityd2

1r2.11h2 is still satisfied,~13! walls continue to be stable
but may develop a small~12! component due to the applie
field. However, at a sufficiently strong field where the i
equality is reversed,~13! walls become relatively unstable t
~12! walls and a complete dynamical conversion takes pl
in the terminal state. The critical field is then estimated fro
d21r2;11h2 or

hc;Ad21r221, ~4.7!

in units specified by Eq.~3.4!, and is clearly not related to
the crossover valueh5d discussed in connection with Fig
5. Now, applied ford515r, the above estimate yieldshc
;1 which explains the Bloch-Ne´el hybridization observed in
Fig. 7 for h51/2 as well as the complete dynamical conve
sion of a driven Bloch wall ath53/2 shown in Fig. 8. The
picture is completed in three steps described in the follow
three subsections.

FIG. 7. The terminal state of the Bloch wall of Fig. 3 driven b
a field h51/2, calculated numerically within the discrete sp
model. Note a significant Bloch-Ne´el hybridization (n2Þ0).
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A. Virial theorem and mobility

A driven domain wall that has reached a terminal st
with constant velocityv is described by a fieldn of the form

n5n~j2vt!. ~4.8!

Time derivatives may then be replaced byṅ52vn8 where
the prime denotes differentiation with respect to eitherj or
the entire argumentj2vt. This distinction will not be made
explicit in the following but one must remember that t
argument of all fields isj2vt. Equation~3.13! becomes

lv~n3n8!5n3f, ~4.9!

where the effective fieldf takes the reduced form

f52~12v2!n922v~h3n8!1~h3d!

1~n•h!h1~n•d!d1r2n2e21n3e3 ~4.10!

FIG. 8. The terminal state of the Bloch wall of Fig. 3 driven b
a field h53/2, calculated numerically within the discrete sp
model. This state is very accurately reproduced by the continu
solution for a driven Ne´el wall given by Eqs.~4.43! and~4.44! and
indicates a complete dynamical conversion of the initial Bloch w
e

and the problem is accordingly reduced to the solution
ordinary differential equations. In this subsection we sh
not attempt to find explicit solutions of the above equatio
Instead we will derive a general virial relation that can
used for a direct calculation of the mobility. The method
an elementary adaptation of related work in the theory
magnetic bubbles.16

An equivalent form of Eq.~4.9! is obtained by taking the
cross product of both sides withn and using the constrain
n251:

lvn85f2~ f•n!n. ~4.11!

Next we contract both sides with the vectorn8 and use the
identity (n•n8)50 which is also a consequence of the co
straint:

lvn825~ f•n8!. ~4.12!

The right-hand side of Eq.~4.12! may be written as

~ f•n8!5s8, ~4.13!

which is indeed an identity iff is taken from Eq.~4.10! and
s is given by

s5
1

2
@2~12v2!n8212~h3d!•n

1~n•h!21~n•d!21r2n2
21n3

2#. ~4.14!

Equation~4.12! is then written as

lvn825s8, ~4.15!

whose advantage is that the right-hand side is a total der
tive.

The virial theorem is obtained simply by integrating bo
sides of Eq.~4.15! over all space,

lvE n82dj5s~`!2s~2`!, ~4.16!

wheres(6`) are the boundary values ofs. Inspection of
Eq. ~4.14! taking into account thatd5de2 andh5he3 , to-
gether with the fact that only the first component ofn sur-
vives at large distances, yields

lvE n82dj52hd@n1~`!2n1~2`!#. ~4.17!

One may also recall the kink number introduced in Sec.

k5
1

2
@n1~`!2n1~2`!#, ~4.18!

to write the virial relation in the final form

lvE
2`

`

n82dj522kdh. ~4.19!

It is important to note that the only contribution on the righ
hand side of this relation originates in the crossed (h3d)
term discussed earlier, which now proves to be crucial
the very existence of driven domain walls in a terminal sta
for, otherwise, the right-hand side of Eq.~4.19! would vanish
leading to an obvious contradiction. Therefore, if the L

m

l.
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55 12 303DYNAMICS OF DOMAIN WALLS IN WEAK FERROMAGNETS
grangian of Eq.~2.30! in Ref. 4 is taken at face value, drive
domain walls in a terminal state would not exist for an an
symmetric DM interaction. Relation~4.19! also contradicts
the existence of static (v50) walls in the presence of a
applied field (hÞ0) as well as the existence of a rigid
moving wall (vÞ0) at vanishing dissipation (l50) and a
nonvanishing field (hÞ0).

Virial relation ~4.19! will be used in two ways. First, as
check of consistency of both numerical and analytical
sults. For example, the numerical calculation presented
Figs. 6 and 7 must be consistent with Eq.~4.19!. Indeed
using the input parametersl52, d51, k521, and h
51/2, the calculated terminal velocityv50.214 of Fig. 6~a!
and the fieldn of Fig. 7~a! to compute the integral in Eq
~4.19! numerically, the virial relation is satisfied to at lea
three significant figures.

A second more tangible application of the virial theore
is an exact calculation of the wall mobility. Equation~4.19!
is consistent with alinear mobility relation at low fields
where

v'mh,
1

m
52

l

2kd E
2`

`

n82dj, ~4.20!

supplemented by the stipulation that the integral be evalu
using as input the profile of the initialstaticdomain wall, as
is appropriate in the limit of the vanishing field where t
velocity also vanishes. The sign of the mobilitym is not
definite because Eq.~4.20! yields information on both the
direction and the magnitude of the wall velocity. One sho
add that the above result is insensitive to the dimeriza
ambiguity discussed earlier because Eq.~4.19! is invariant
under transformation~3.33!.

We must now distinguish two cases depending
whether the initial wall is Bloch or Ne´el. For a Bloch wall
we may use the static solution~3.30! in Eq. ~4.20! to obtain

v'm1h, m152
kd

l
, ~4.21!

whereas the Ne´el mobility is calculated from Eqs~3.40! and
~4.20!:

v'm2h, m252
k

l

d

Ad21r2
. ~4.22!

We also consider the dimensionless ratio

m1

m2
5Ad21r2 ~4.23!

and relate it to the inequality~3.42! discussed in connectio
with the potential instability of Ne´el walls. When this in-
equality is satisfied Ne´el walls are relatively unstable t
Bloch walls and their mobility is smaller (m1.m2). The
measured17,18 mobility ratio in YFeO3 is m1 /m251.06. In
DyFeO3 below 150 K, the inequality~3.42! is reversed,~13!
walls become unstable, and their mobility is predicted to
smaller than the mobility of~12! walls (m1,m2).

One can also relate the mobility ratio to the experime
tally observed magnon activation frequencies in the abse
of the external field. The simplest way to calculate the f
-

-
in

ed

d
n

n

e

-
ce
-

quencies is to consider the Lagrangian~3.17! at vanishing
field (h50) expressed in terms of the spherical variab
~3.24!:

L5
1

2
@~Q̇21sin2QḞ2!2~Q821sin2QF82!

2~d21r2!sin2Q sin2F2cos2Q#. ~4.24!

Small fluctuations around the ground stateQ5p/2 andF
50 or p are calculated by insertingQ5p/21u andF5f
or p1f in Eq. ~4.24! and keeping terms that are at mo
quadratic inu andf. The resulting quadratic Lagrangian

L'
1

2
@ u̇22u822u2#1

1

2
@ḟ22f822~d21r2!f2#

~4.25!

describes two uncoupled free fields with dispersions

V1~k!5Av1
21k2, V2~k!5Av2

21k2, ~4.26!

wherev1 andv2 are the magnon activation frequencies

v151, v25Ad21r2, ~4.27!

expressed in the rationalized units employed throughout
paper.

For the moment we consider the dimensionless ra
v2 /v1 and compare it to the right-hand side of Eq.~4.23! to
obtain the parameter-free theoretical prediction

m1

m2
5

v2

v1
. ~4.28!

On the other hand, Ref. 10 gives the valuesv1511 cm21

andv2517 cm21 ~or v2 /v151.55! for the frequencies ac
tually observed in YFeO3, while Ref. 4 adopts values in th
rangev15(11–13) cm21 andv25(15–20) cm21 ~or 1.15
,v2 /v1,1.82!. These values are not terribly inconsiste
with the measured mobility ratiom1 /m251.06, in view of
the simplicity of the classical spin model and the fact th
anharmonic corrections to the calculated frequencies~4.27!
have been neglected.

This subsection is concluded by translating some of
quantities calculated above in ordinary units. The definit
of the dimensionless time variablet in Eq. ~3.10! implies
that the magnon activation frequencies of Eq.~4.27! are mea-
sured in units of 2«sJ. Hence

v152sJAg3
J
, v252sJASDJ D 21 g2

J
. ~4.29!

These results could also be derived by calculating the m
non spectrum of the 1D discrete spin model of Sec. II us
standard spin-wave techniques. The corresponding freq
cies in the 3D model were calculated in Refs. 10 and
within the harmonic approximation and read in current no
tion

v152sJAzg3
2J

, v252sJAz

2
Az

2 SDJ D 21 g2
J
,

~4.30!
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12 304 55N. PAPANICOLAOU
where z56 is the coordination number of the 3D lattic
while settingz52 reproduces the 1D results of Eq.~4.29!.
These are further examples of correspondence between
microscopic parameters of the 1D and 3D models; see
~3.19!. We also take this opportunity to mention that t
positivity condition ong2 may be relaxed to some extent,
long as the arguments in the square roots of Eqs.~4.29! and
~4.30! remain positive.

Finally we translate the mobilities~4.21! and ~4.22! in
ordinary units recalling that velocity is measured in units
the limiting velocityc of Eq. ~3.18!. Then

m152
kc

2sg

g0m0

2sJ

D

J Fg3J G21/2

,

m252
kc

2sg

g0m0

2sJ

D

J F SDJ D 21 g2
J G21/2

. ~4.31!

We shall not attempt to generalize the above formulas to
arbitrary coordination number except to state that
parameter-free prediction~4.28! remains true in any dimen
sion.

Perhaps the earliest theoretical calculation of thev(h)
curves is that of Gyorgy and Hagedorn20 who arrived at two
formulas of type~1.1!, one for each kind of wall. This early
attempt suffers from two drawbacks. First, the calcula
mobilities appear to be proportional to the exchange ra
than the DM constant, which is obviously false on physi
grounds because the driving issue is the DM interaction. S
ond, as we shall see shortly, a description in terms of
completely independentv(h) curves is also false. The situa
tion was improved in more recent publications21,22 but sev-
eral issues remained unclear.

B. Analytical solution for Néel walls

One must now consider the case of a field of arbitr
strength and possibly make contact with the semiempir
relation ~1.1!. Although the numerical simulation is still a
option, one might also hope to derive analytical solutio
within the continuum model. Such a hope is partially fu
filled in the present subsection.

Thus we return to Eq.~4.11! where the effective fieldf of
Eq. ~4.10! is again derived from a variational argument
the form ~3.22! by generalizing the energy functionalF of
Eq. ~3.23! to

F5
1

2 E @~12v2!n8212vh•~n3n8!12~h3d!•n

1~n•h!21~n•d!21r2n2
21n3

2#dj. ~4.32!

Expressed in terms of the spherical variables the above f
tional reads

F5
1

2 E @~12v2!~Q821sin2QF82!12vh sin2QF8

22hd sinQ cosF1~d21r2!sin2Q sin2F

1~11h2!cos2Q#dj. ~4.33!

One may now use the general form of the effective fielf
from Eq. ~3.22! in Eq. ~4.11! and a repeated application o
the
q.

f

n
e

d
er
l
c-
o

y
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c-

the chain rule to derive the two independent equations

lvQ85
dF
dQ

, lv sin2QF85
dF
dF

, ~4.34!

whose explicit forms read

lvQ852~12v2!Q92hd cosQ cosF

1@~12v2!F8212vhF81~d21r2!sin2F

212h2#cosQ sinQ ~4.35!

and

lv sin2QF852~12v2!~sin2QF8!82vh~sin2Q!8

1hdsinQ sinF1~d21r2!

3sin2Q cosF sinF. ~4.36!

This is a rather complicated system of nonlinear differen
equations and its analytical solution appears to be hopel

Nevertheless the system simplifies enormously when
restrict attention to strictly Ne´el walls, i.e.,

Q5
p

2
, ~4.37!

for which the first equation is trivially satisfied and the se
ond reduces to

2~12v2!F91~d21r2!cosF sinF

5lvF82hd sinF. ~4.38!

We now attempt to solve simultaneously the two equatio

~12v2!F95~d21r2!cosF sinF,

lvF85hd sinF, ~4.39!

in the sense that every solution of Eqs.~4.39! will be a so-
lution of Eq. ~4.38!. The first equation gives

cosF5k tanhw, sinF5
n

coshw
, ~4.40!

wherek andn are the kink number and polarity discussed
Sec. III andw is the argument of Eq.~3.44!. The important
observation is that the angleF of Eq. ~4.40! also satisfies the
second equation in Eq.~4.39! provided that the parameter
are related by

v

A12v2
5m2h, ~4.41!

wherem2 is precisely the mobility of a Ne´el wall calculated
previously in Eq.~4.22!. The relativisticlike relation~4.41!
may then be written as

v5
m2h

A11~m2h!2
~4.42!

and thus reproduces Eq.~1.1! applied with a mobilitym
5m2 appropriate for a Ne´el wall. The lack of a limiting
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55 12 305DYNAMICS OF DOMAIN WALLS IN WEAK FERROMAGNETS
velocityc in Eq. ~4.42! is, of course, due to the current use
rationalized physical units where the limiting velocity
equal to one.

To complete the solution we calculate the fieldn, from
Eqs.~4.37! and ~4.40!,

n15k tanhw, n25
n

coshw
, n350, ~4.43!

and the fieldm from the general relation~3.12!:

m152
«

2
Ad21r2

12v2
k

cosh2w
,

m25
«

2
Ad21r2

12v2
n tanhw

coshw
,

m35
«

2 FAd21r2

12v2
knv
coshw

1kd tanhw1hG . ~4.44!

A notable feature of this result is that a driven Ne´el wall
differs from the freely moving Ne´el wall of Eq. ~3.45! only
by an additive field dependent constant inm3 and the fact
that the velocity is now a definite function of the applie
field given by Eq.~4.42!. As a check of consistency one ca
verify explicitly that the above solution satisfies the viri
relation ~4.19!.

The seeds for the analytical solution presented in this s
section may be found in the paper of Zvezdin21 but its pre-
cise form and physical content remained unclear. In part
lar, no distinction was made between Bloch and Ne´el walls.
Nevertheless the above work also contains the seeds fo
crossed term (h3d) discussed earlier in the present pap
But the formalism of Ref. 21 is unwieldy and was clearly n
adopted in more recent publications.4

C. Dynamical conversion of Bloch walls

We now resume the study of driven Bloch walls initiat
by the numerical simulation presented in the beginning of
main section. It would be natural to expect that the cor
spondingv(h) curve is analogous to Eq.~4.42!, namely,

v5
m1h

A11~m1h!2
~ false!, ~4.45!

wherem1 is now the Bloch mobility of Eq.~4.21!. In fact,
this appears to be the implicit assumption made in all ear
treatments.4 However, the numerical results presented
Figs. 6, 7, and 8 already disprove such an assumption.

For example, the accurate terminal velocityv50.214 cal-
culated numerically forh51/2 @see Fig. 6~a!# clearly dis-
agrees with the valuev50.224 obtained from Eq.~4.45!
applied withm151/2; here the Bloch mobilitym1 was cal-
culated from Eq.~4.21! for our standard choice of paramete
d515r, l52, andk521. A more impressive statemen
can be made ath53/2 where the numerically calculated te
minal velocity (v50.468) again disagrees with Eq.~4.45!
but is, instead, very accurately predicted by Eq.~4.42! ap-
plied with aNéel mobility m251/2& given by Eq.~4.22!.
This is a concrete confirmation of our earlier statement th
critical field hc exists above which a driven Bloch wall i
b-

-

he
.
t

e
-

r

a

converted completely into a Ne´el wall. A definitive confir-
mation is achieved by noting that the numerically calcula
detailed profile of a driven Bloch wall given in Fig. 8 forh
53/2 is reproduced very precisely by the analytical solut
for a driven Néel wall given in Eqs.~4.43! and ~4.44!.

Yet the results forh51/2 presented in Figs. 6 and 7 in
dicate that there exists a field regime (h,hc) where the
terminal state of a driven Bloch wall is hybridized and t
velocity is not predicted by either Eq.~4.42! or ~4.45!; except
for very low fields wherev'm1h, in accord with our results
in subsection A. In other words, the mobility curves for t
two types of domain walls coincide forh.hc and are both
given by the relativistic formula~4.42! applied with a Ne´el
mobility m2 . Belowhc a bifurcation takes place whereby th
two curves split and eventually reach the~low-field! linear
regime at different slopes;v'm1h and v'm2h for Bloch
and Néel walls, respectively. Although we have been una
to obtain an analytical solution of Eqs.~4.35! and~4.36! for
driven Bloch walls in the regionh,hc , the bifurcation de-
scribed above was unambiguously established by repea
the numerical calculation for a number of field values in t
range 0,h,3/2. The results are summarized in Fig.
which is more or less self-explanatory.

Our inability to obtain a complete analytical solution
due to the nontrivial Bloch-Ne´el hybridization that takes
place in the regionh,hc ~see Fig. 7!. A related technical
reason is that the contribution of the nonrelativistic te
2(h3ṅ) is now crucial, while it had droped out of Eq.~4.38!
describing driven Ne´el walls. The same fact explains th
relativistic nature of the Ne´el mobility formula~4.42! and is
the reason why the corresponding expression for Bloch w
given by Eq.~4.45! is false. At any rate, the picture obtaine
by the combination of analytical and numerical results d
rived so far is essentially complete and we now turn to
discussion of its implications.

First we return to the rough estimate of the critical fie
given by Eq. ~4.7! which yields hc;1 for our standard
choice of parameters, while the numerical results of Fig
indicate a valuehc'0.8. Such a discrepancy is not surpri
ing because the argument leading to Eq.~4.7! ignores more
subtle effects from the remaining terms in Eq.~3.14!. As a
consequence, Eq.~4.7! is, at best, a rough overestimate of th
true critical field. Nevertheless Eq.~4.7! provides a useful
guide especially when it is expressed in terms of the mobi
ratio ~4.23! to yield

hc;A~m1 /m2!
221. ~4.46!

In a typical orthoferrite such as YFeO3 inequality ~3.42! is
satisfied as evidenced by the measured mobility ra
m1 /m251.06. Therefore, two distinct mobility curves~v
'm1h andv'm2h! emanate from the low-field region tha
must join up at a critical value of the driving field and ther
after follow a single curve given by the relativistic Ne´el for-
mula ~4.42!. In view of the small mobility ratio the bifurca-
tion region is expected to be narrow and may easily h
been missed in the analysis of existing experimental d
especially because other complications are present suc
magnetoelastic anomalies.4 However our detailed theoretica
results for both the mobility curves and the profiles of driv
domain walls may help to reassess the experimental si
tion.
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12 306 55N. PAPANICOLAOU
When inequality~3.42! is saturated the critical field van
ishes and the bifurcation region shrinks to zero. Putting
differently, the terminal state is always a~12! wall and the
mobility curve is that of Eq.~4.42! irrespective of the nature
of the initial state. This simplified picture remainsa fortiori
correct when inequality~3.42! is reversed and may describ
the dynamics of domain walls in DyFeO3 below 150 K.

In contrast, the observed great disparity between Bl
and Néel walls in rhombohedron weak ferromagnets sho
be expected to enhance the bifurcation regime and make
dominant feature in the analog of Fig. 9. As a consequen
the mobility curve for Bloch walls will depart significantl
from the relativistic result of Eq.~1.1! for most field values
of practical interest. Of course, a detailed calculation in t
case will require a modification of the Hamiltonian to i
clude a sixth-order single-ion anisotropy in the basal pla
and possibly alternative forms of the dissipative term.4

We also comment on the domain of validity of the co
tinuum model in the presence of an applied field. The c
dition «h!1 of Eq.~3.5! is well satisfied in Fig. 9 where the
maximum displayed value ish510 for which«h50.1. For
greater field values the continuum approximation begins
deteriorate and eventually breaks down when«h;1. An-
other way for stating the same fact is that the wall veloc

FIG. 9. Mobility curves for driven Bloch and Ne´el walls. The
Néel curve~solid line! is given by the analytical expression~4.42!
applied with a mobilitym2 calculated from Eq.~4.22!; m251/2&
for our standard choice of parametersk521, d515r, and l
52. The Bloch curve~dashed line! was obtained by a numerica
simulation in the discrete spin model and takes off with a slo
m1 at low fields (v'm1h) wherem151/2 is the Bloch mobility
calculated from Eq.~4.21!. The two curves join up at a critical field
hc'0.8 and thereafter both follow the analytical Ne´el result of Eq.
~4.42!. The inset demonstrates the bifurcation regime in greater
tail, with numerical data for the Bloch curve represented by o
circles and a dotted straight line indicating the initial slopem1

51/2.
it

h
d
t a
e,

s

e

-

o

approaches the relativistic limiting velocityc and the wall
width reduces to a few lattice spacings. Under such extre
conditions one must again resort to the discrete spin mo
of Sec. II. However a new element arises when Fig. 5
pushed to extreme field values. The second ground s
now described by the third row of Fig. 5, ceases to be a lo
minimum and becomes a saddle point of the energy~4.2! at
a new critical fieldhc8; f (d)/« where f (d) is some function
of d that can be determined numerically. In our standa
numerical examplehc8'190. Therefore, when a field with
strength abovehc8 is turned on, the imbalance between t
two sides of the wall becomes catastrophic and the mo
looks more like an avalanche rather than a steady term
state. In this respect, the fieldhc8 may be interpreted as th
analog of the critical Walker field in ordinary ferromagne
and seems to be the main preoccupation of Ref. 21. No
theless such a field regime does not appear to be of g
practical value because the corresponding wall veloci
have practically reached the limiting velocityc.

Finally, we mention that the general subject of dynami
conversion of domain walls was discussed previously in d
ferent physical contexts. For instance, mutual conversion
xy and yz kinks was studied in Ref. 23 for an easy-pla
antiferromagnetic chain immersed in an in-plane magn
field. Although the above work addresses the question
freely moving ~instead of driven! kinks in the absence o
dissipation, a field-dependent critical velocity was found
ter which dynamical conversion takes place. The closest
ample to our current work is discussed in Ref. 24 whi
considers the effect of a small ‘‘symmetric’’ correction to th
antisymmetric DM interaction. Freely moving domain wa
in the absence of both dissipation and an applied field w
then shown to undergo dynamical conversion at some crit
velocity. On the other hand, we have established thatdriven
Bloch walls in the presence of dissipation are dynamica
converted forh.hc even in the absence of a ‘‘symmetric
DM interaction; including the latter in our model will only
lead to a compounded effect. Therefore the results of Ref
need to be reanalyzed in the light of our current conclusio

V. CONCLUDING REMARKS

We believe to have presented a complete study of
domain-wall dynamics within the limits of the simplest no
trivial model of a weak ferromagnet which may serve as
prototype for more realistic calculations. From a purely th
oretical point of view the new elements that are likely
survive the specific model are~a! a clear analysis of the
dimerization ambiguity inherent in all physical systems
volving antiferromagnetic interactions,~b! a related deriva-
tion of a parity-breaking gradient term in the magnetizati
m, and~c! the identification of a crossed (h3d) term in the
nonlinears model that governs the dynamics of the fie
n. These elements are important for a correct understan
of both structural and dynamical properties of WFM doma
walls and were for the most part absent in earlier treatmen4

At a more practical level we have presented a comp
calculation of driven domain walls whose main features
~a! a virial theorem that underlies the existence of a termi
state and allows a simple calculation of the low-field mob
ties, ~b! a critical fieldhc above which Bloch walls are dy
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namically converted into Ne´el walls, and~c! a related bifur-
cation process that leads to a new and interesting pictur
the mobility curves. These features should be present als
realistic weak ferromagnets and could be established exp
mentally.

A closer look at orthoferrites should entail a more detai
justification of our main results within the proper 3D crys
environment. Such a study would remove some uncerta
concerning the correspondence between microscopic pa
eters and those appearing in the continuum model. Incid
tally the original determination of parameters carried out
Treves25 was based on the assumption of a uniaxial sing
ion anisotropy (g25g3) and a calculation of susceptibilitie
within the leading~classical! approximation. It turns out tha
the classical susceptibilities are not especially sensitive to
precise value ofg2 , as long as inequalities~3.1! are en-
forced, which must then be determined by independent m
surements such as the magnon activation frequencies10 or the
mobility ratio.17,18 Because of the crudeness of the theore
cal models used to describe a rather complex physical s
tion, and a corresponding uncertainty in actual experime
it is probably fair to say that a precise knowledge of t
microscopic parameters is not available at this point.

Although the emphasis in the main text was placed
orthoferrites, the 1D discrete spin model developed in t
paper may prove to be more faithful to the description
rhombohedron weak ferromagnets such as MnCO3 or
FeBO3 ~iron borate!. For such a purpose one must comple
the model by a proper~sixth-order! single-ion anisotropy in
the basal plane and then repeat the calculations of the pre
paper. As mentioned already, we anticipate that the mob
of
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curve for driven Bloch walls will share with Eq.~1.1! some
broad characteristics, such as a low-field linear regime an
high-field limiting velocityc, but will differ from Eq. ~1.1!
in its important details for most field values of practical i
terest.

Finally, there is some room for theoretical improvemen
even within the strict limits of the model considered he
For instance, our inability to obtain an analytical solution f
driven Bloch walls in the subcritical (h,hc) regime forced
us to complete the picture in Fig. 9 by a direct numeric
simulation. It may prove possible to study the neighborho
of the bifurcation point (h;hc) analytically and replace the
rough estimate of the critical field given in Eq.~4.7! by a
more accurate value. Inclusion in our basic model of
magnetoelastic couplings mentioned in the Introduction
also a subject for further investigation.
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APPENDIX: THE CONTINUUM LIMIT

In this appendix we provide some of the algebraic deta
necessary for the derivation of the extended nonlineas
model of Sec. III. As a first step we insert the Taylor expa
sions~3.8! in Eqs.~3.6! to obtain
er
]A

]t
1gSA3

]A

]t D5A3@22J~B2«B81«2B9!12D3~B2«B81«2B9!2g1A1e12g2A2e22g3A3e31g0m0H#,

]B

]t
1gSB3

]B

]t D5B3@22J~A1«A81«2A9!22D3~A1«A81«2A9!2g1B1e12g2B2e22g3B3e31g0m0H#. ~A1!

This system of equations is not yet fully consistent because it appears to mix different powers of the small paramet«. To
obtain a consistent system we proceed as in Ref. 7. An equivalent form of Eq.~A1! expressed in terms of the fieldsm and
n of Eq. ~3.9! and rationalized parameters is given by

ṁ1
1

2
«l~m3ṁ1n3ṅ!52~m3n!82«~m3m82n3n8!81@n3~d3m!2m3~d3n!#1«@n3~d3n8!2m3~d3m8!#

1«2@n3~d3m9!2m3~d3n9!#2
1

2
«r2@m2~m3e2!1n2~n3e2!#

2
1

2
«@m3~m3e3!1n3~n3e3!#1~m3h!,

«ṅ1
1

2
«2l~m3ṅ1n3ṁ!52~m3n!1«~m3m82n3n8!1«@m3~d3m!2n3~d3n!#2«2~n3m92m3n9!

2«2@n3~d3m8!2m3~d3n8!#1«3@m3~d3m9!2n3~d3n9!#

2
1

2
«2r2@m2~n3e2!1n2~m3e2!#2

1

2
«2@m3~n3e3!1n3~m3e3!#1«~n3h!. ~A2!
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Here the dot stands for differentiation with respect to
rationalized time variablet of Eq. ~3.10! and the prime with
respect to the space variablej of Eq. ~2.17!. Simple inspec-
tion of the above equations suggests that consistency is
tained ifm is of order«. The second equation in Eq.~A2!
then becomes, to leading order,

«ṅ52~m3n!2«~n3n8!2«@n3~d3n!#1«~n3h!
~A3!

and the constraints reduce to those of Eq.~3.11! to within
l

-
n

c
a

r i

D.
e

b-

terms of order«2. Taking the cross product of both sides
Eq. ~A3! with n and using the reduced constraints yields

m5
«

2
@2n81~n3ṅ!1~n3d!2n3~n3h!#, ~A4!

which coincides with the expression for the auxiliary fie
given in Eq.~3.12!. Finally, ~A4! is inserted in the first equa
tion ~A2! to yield, after lengthy but rewarding algebra, th
extended nonlinears model ~3.13! and ~3.14! which is also
correct to within terms of order«2.
v.
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