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Theory of nuclear resonant scattering of synchrotron radiation in the presence
of diffusive motion of nuclei. II.

V. G. Kohn and G. V. Smirnov
Russian Research Centre ‘‘Kurchatov Institute,’’ 123182, Moscow, Russia

~Received 12 March 1997!

A general theory of the time dependence of nuclear resonant forward scattering of synchrotron radiation in
the presence of diffusive motion of nuclei is further developed. The scattering problem is solved for the two
characteristic cases of diffusive motion. The first one is the continuous isotropic localized diffusion of a
particle within a cage formed by a drift potential. The second case is the jump anisotropic unlimited diffusion
of nuclei on a crystalline lattice. In both cases the frequency dependence of nuclear susceptibility has a
complicated shape described by a superposition of Lorentzian functions having different weights and widths.
Correspondingly several stages appear in the time evolution of the nuclear forward scattering which are
characterized by different decay rates. In the thick absorber case the target can exhibit successively different
partial thicknesses in the time evolution of forward scattering.@S0163-1829~98!03709-6#
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I. INTRODUCTION

It is well known that Mössbauer spectroscopy provides
unique possibility to explore the dynamics of very slo
atomic motions owing to its extremely high-energy reso
tion. First of all, it is applicable to a diffusive motion o
atomic particles which occurs in liquids and solids~for a
review see Refs. 1–4!. The analysis of Mo¨ssbauer spectra
affected by diffusion was done by Singwi and Sjo¨lander5 in
terms of the Van Hove correlation functionG(r ,t). This
function describes a probability for finding the nucleus in
matter at a positionr at timet, if it was at the origin at time
t50. The phase shift ofg rays scattered by the nucleus
related to the shift of the mean positionr (t) of the nucleus. It
depends on the time interval between the moments of e
tation and deexcitation. The explicit form of the Van Ho
function is different in each particular case of diffusive m
tion. In any case a diffusion manifests itself in the profile
the Mössbauer absorption spectra through the broade
and the change in shape of resonance lines.

Recently a powerful technique for studying nuclearg
resonance was developed with the use of nuclear reso
scattering of synchrotron radiation~SR!. This technique is
based on measuring the time dependence of intensity ree
ted by nuclei after an excitation of the nuclear system
very short pulse of synchrotron radiation. The observed
herent reemission into the forward direction allows us
claim a formation of excitation distributed coherently ov
the entire nuclear system, called a nuclear exciton, which
an unusual~nonexponential! character of decay. The cohe
ent decay of the nuclear exciton is characterized by
speed-up effect accompanied by quantum and dynam
beats of intensity.6,7 Many nuclear and solid-state paramete
can be explored by studying the time dependences of
nuclear exciton decay.8

A general theory of time-dependent nuclear resonant
ward scattering of SR pulse by a system of nuclei mov
diffusively has been developed earlier.9 It was shown that
similarly to the approach developed in Ref. 10, the time
570163-1829/98/57~10!/5788~10!/$15.00
-

i-

f
g

nt

it-
y
-

as

a
al

e

r-
g

-

pendence of radiation field can be calculated through a
resentation of SR pulse as a homogeneous coherent sup
sition of monochromatic waves and a subsequent evalua
of the response of the nuclear ensemble to each monoc
matic wave as a scattering amplitude. The latter depend
the diffusive motion of nuclei represented by the double
mensional~momentum and frequency! Fourier image of the
Van Hove function. In contrast to the absorption spec
where the diffusion influences only an absorption coefficie
the forward scattering time dependence is influenced by
fusion in a more complicated way. In Ref. 9 only a case
free continuous diffusion was analyzed. Here we develop
theory further to include the continuous localized diffusi
and the jump unlimited diffusion. In the next section both t
main ideas and results of the general theory9 are shortly sum-
marized.

II. GENERAL FORMULAS

A short pulse of synchrotron radiation can be decompo
into a continuous set of coherent monochromatic wa
within the frequency intervalDv centered at the resonanc
frequency and well exceeding the width of resonance ran
With a good accuracy one can consider all monochrom
components to be equivalent in weight. To calculate the f
ward transmitted wave packet one should integrate all
ward transmitted monochromatic components. As it w
shown9 the result can be written as follows:

E~ t,z!5E0~z!E dv

2p
exp~2 ivt ! expS i

K

2
g ~n!~v!zD .

~1!

Here E(t,z) is a time-dependent electric-field amplitude
synchrotron radiation transmitted through a nuclear targe
thickness z. The function E0(z) has the modulus
(I 0 /Dv)1/2 exp(2mez/2) with me5Kx9 being the electron
absorption coefficient andI 0 being the intensity of SR within
the frequency bandDv as determined by a monochromat
system. The wave numberK52p/l5v/c.
5788 © 1998 The American Physical Society
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57 5789THEORY OF NUCLEAR RESONANT . . .
The nuclear part of the susceptibility of the targetg(n) is
closely related to the scattering amplitude and can be re
sented as

g~n!~k,v!5 i
G0

2\(
ge

Bgew~k,v2veg!, ~2!

where the value

Bge5
8p f LM~k!

v2V0~2I g11!G0

u^gu ĵ ~k!ue&u2 ~3!

characterizes the strength of nuclear response at the
nance frequencyveg . Here the indexesg ande numerate the
hyperfine sublevels of the ground and excited states o
nucleus,G0 is the natural width of the excited level,f LM(k)
is the Lamb-Mo¨ssbauer factor,I g is the nuclear spin in the
ground state,V0 is the target volume corresponding to o
nucleus, and̂ gu ĵ (k)ue& is the matrix element of the scala
component of the nuclear current density operator along
polarization vector of the incident wave. In particular, t
latter parameter equals zero if the transition is forbidden
a given multipolarity of radiation.

The frequency dependence of susceptibility near the re
nance is determined entirely by the universal resonance f
tion w(k,v) which takes into account the diffusive motion.
is described by the formula

w~k,v!5E
2`

t

dt8 exp$ i ~v1 iG0/2\!~ t2t8!%Fs~k,t2t8!,

~4!

where the correlation function in momentum representa
is introduced. Such a representation naturally correspond
a scattering problem. We term the functionFs(k,t) as a
momentum-time~MT! correlation function. It is tightly re-
lated to the space-time~Van Hove! correlation function,
G(r ,t), via the Fourier transformation

Fs~k,t !5E dr exp~2 ikr …G~r ,t !. ~5!

For the convenience of the following calculation, we sh
use below a more direct representation for the funct
w(k,v) which is obtained by changing the variable, name

w~k,v!5E
0

`

dt exp~ ivt2G0t/2\!Fs~k,t ! ~6!

A derivation of formulas~1!–~6! is given in the first part
of this work.9 Here we emphasize once again that we rest
ourselves by the cases when polarization mixing is absen
the coherent forward scattering. For example, this takes p
for the M1 transition of 57Fe nuclei. On the other hand, w
consider the cases where the fast thermal motion of nu
near a temporal equilibrium site and the slow motion of
equilibrium site itself are factorized and enter in differe
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ways into the scattering amplitude. The first one ent
through the well-known Lamb-Mo¨ssbauer factorf LM , while
the second one is described by the universal resonance f
tion in a more complicated form. Mathematically this proc
dure can be done in all cases by simply introducing
Lamb-Mössbauer factor in the explicit form and consideri
the total dephasing function without the Lamb-Mo¨ssbauer
factor. We note that the Lamb-Mo¨ssbauer factor has differen
behavior in solids and liquids.

The most frequent application of SR in the nuclear re
nance spectroscopy is a measurement of the time depend
of the forward scattering intensity.

I f s~ t,z!5uE~ t,z!u2. ~7!

It is of interest to compare the time dependence with
frequency dependence of intensity, which is ordinarily inve
tigated in the Mo¨ssbauer absorption spectroscopy. Withou
source convolution it is as follows:

I a~v,z!5uE~v,z!u25uE0~z!u2 exp„2Kz Img ~n!~v!….
~8!

One can see that the shape of the absorption spectra i
rectly determined by the real part of the universal resona
function w(k,v) . As for the time dependence of the radi
tion field, it is calculated through the frequency represen
tion, Eqs.~1!–~3!, where the entire universal function shou
be used.

On the other hand, this frequency-dependent function
determined by the time dependence of the two proces
shown in Eq.~4!, namely, by the decay of individual excite
nucleus and by the diffusive motion~represented by the MT
correlation function!.

The MT correlation function~5! represents the mea
value of the phase factor over a whole volume of the targ
Being a function of time this averaged phase factor reflec
diffusive motion of nuclei. By its nature the correlation fun
tion is very similar to the Lamb-Mo¨ssbauer factor which de
scribes a damping of the scattering amplitude owing to
thermal motion. The difference between them is only in t
time scales which are characteristic of the motions involv

The evident property of the Van Hove functio
G(r ,0)5d(r … gives the property of the MT correlation func
tion Fs(k,0)51. Without a diffusive motion of nuclei in the
target, this initial value stays constant. Correspondingly
resonance function takes the ordinary for
w(k,v)5 i /(v1 iG0/2). However, in a presence of diffusiv
motion the correlation function can drop down at a tim
comparable with the lifetime of the nucleus. As a cons
quence, the coherence time in the forward scattered w
packet becomes shorter, while the spectral width of radia
becomes broader.

It is useful to consider the case of small thicknessz of the
target where one can expand the exponential function in
~1! in a power series. Then considering only the first term
the expansion, one easily arrives at the following express
for the scattering intensity:
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5790 57V. G. KOHN AND G. V. SMIRNOV
I ~ t,z!5
I 0

DvS KzG0

4\ D 2

exp~2mez2G0t !uFs~k,t !u2

3U(
ge

Bgeexp~2 ivegt !U2

, t.0. ~9!

The time-dependent square modulus of the MT correla
function enters here as a multiplier, i.e., directly influence
decay of the coherent signal. The approximation~9! is usu-
ally called a kinematical approximation in which only a sc
tering of one photon by one nucleus is taken into accoun

As it was shown in Eq.~10! the universal resonance func
tion w(k,v) can be found by averaging the resonance fac

w~k,v!5E dṽ

2p
Fs~k,ṽ !

i

v2ṽ1 iG0/2\
, ~10!

where Fs(k,v) represents the spectral density of t
momentum-time correlation functionFs(k,t). This expres-
sion can be interpreted as an average value of standard
tering amplitude over Doppler shifts of the resonance f
quency caused by diffusive motion of nuclei.

III. LOCALIZED DIFFUSION IN GENERAL CASE

In the first part of our work9 the case of free diffusion ha
been analyzed as an example of an application of the gen
theory. The free diffusion is understood as the unlimited
space, continuous motion of particles in a medium tha
described by the diffusion coefficient only. The develop
theory can be easily extended to more complicated regi
of diffusive motion. Indeed, the main problem here is to fi
an explicit form of the Van Hove correlation function. W
note that the same problem should be solved in the Mo¨ss-
bauer absorption spectroscopy. Following the first consid
ation given by Singwi and Sjo¨lander5 one can distinguish
two limiting cases: a continuous motion of large particles
a medium and a jump motion of nuclei between the sites
the crystal lattice. The first motion can be limited in spa
under the influence of a drift potential. The second mot
generally is unlimited in space, however there are ca
where it also can be limited.11–14

Here we consider the localized diffusion which represe
the case of spacially restricted diffusive motion of a parti
under the influence of a drift potentialU(r ). It is known
~see, for example, Refs. 15,16! that in this case the Van Hov
correlation function is a solution of the Fokker-Planck equ
tion

]G~r ,t !

]t
52L̂G~r ,t !, L̂52D¹22B~¹U~r !!¹

~11!

where L̂ is the Fokker-Planck operator describing t
Brownian motion in the drift potentialU(r ) with the diffu-
sion coefficientD and the drift coefficientB5D/T. HereT
is the absolute temperature in energy units. This equation
a formal solutionG(r ,t)5exp(2L̂t)G(r ,0) whereG(r ,0) can
be taken in the formG(r ,0)5exp(ikr )w(r ), wherew(r ) is
the standard Boltzmann distribution function
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w~r !5Z21exp„2U~r !/T…, Z5E drexp„2U~r !/T….

~12!

The substitution of this formal solution in Eq.~5! and then in
Eq. ~4! yields

w~k,v!5 i E dr exp~2 ikr !@v1 iG0/2\1 i L̂ #21

3exp~ ikr !w~r !. ~13!

It was shown16 that it is convenient to consider a Hermi
ian formĤ of the Fokker-Planck operatorL̂ which is defined
by the relation

Ĥ5exp~U/2T!L̂ exp~2U/2T!5D@2¹21V~r !#,
~14!

where

V~r !5~2T!22
„¹U~r !…22~2T!21¹2U~r !. ~15!

One can easily see thatL̂w(r )5c0Ĥc0 if

c05Z21/2 exp„2U~r !/2T…, ~16!

and the resonance functionw(k,v) can be found as a
quantum-mechanical average of the Hermitian operator
resenting the resonance interaction

w~k,v!5 i ^0u exp~2 ikr !@v1 iG0/2\1 iĤ #21

3exp~ ikr !u0&. ~17!

By employing the total set of eigenfunctions of the He
mitian operatorĤ, Eq. ~17! can be transformed with the hel
of the relation

^0uAHBu0&5(
n

^0uAun&^nuHun&^nuBu0&, ~18!

to the equation

w~k,v!5 i(
n

^c0uexp~2 ikr !ucn&^cnu exp~ ikr !uc0&
v1 iG0/2\1 iD«n

,

~19!

whereD«n is the eigenvalue of the operatorĤ correspond-
ing to the eigenfunctioncn . The sum overn denotes the
summation over all eigensolutions. When the operatorĤ has
both the discrete and the continuous parts of spectrum
this sum must be added by the integral.

The last formula allows us to reveal some general pr
erties of localized diffusion. We rewrite it in a more compa
form

w~k,v!5 i(
n

An~k…

v1 iG0/2\1 iD«n
, ~20!

with

An(k)5U E dr exp~2 ikr !c0* ~r !cn~r !U 2

, (
n

An~k…51.

~21!
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57 5791THEORY OF NUCLEAR RESONANT . . .
It is easy to verify thatĤc050. This means that the eigen
value of the ground state is«050 independently on the ex
plicit form of the drift potential. The ground state represe
the partial state of a nucleus where it does not move di
sively and preserves its average position unchanged du
all time. The corresponding resonance has the natural w
as for a static nucleus in isolation. The weight of this state
defined by the coefficientA0 . This coefficient has a propert
which is essential for the retrieval of the drift potential. A
cording to Eqs.~12!, ~16!, and~21! one can write

A0~k!5U f ~k!

f ~0!
U 2

, f ~k!5E dr exp„2 ikr 2U~r !/T….

~22!

Thus the weight of the ground stateA0(k) is directly asso-
ciated with the drift potential profileU(r ) through the Fou-
rier transformation. In the case of nuclear resonance sca
ing the modulus ofk is fixed, therefore one cannot probe th
potential at different magnitudes ofk. However, the mea-
surements at different directions ofk can give information
about the symmetry of the potential. In addition, the te
perature dependence ofA0 can provide the potential strength
In particular, whenA0 does not depend onT a specific case
of localized diffusion is realized—a continuous diffusion i
side a strictly restricted volume. This type of diffusion w
shall refer to as the bounded diffusion within a cage.

Finally we conclude that in the case of localized diffusi
the problem is reduced to finding the total set of eigenso
tions of the Hermitian operatorĤ with a specific potential
obtained by the transformation of a drift potential@see Eq.
~15!#. The momentum-time correlation function in this a
proach takes the form originating from Eq.~6! as follows:

Fs~k,t !5(
n

An~k!exp~2D«nt !. ~23!

We note that this expression has a clear physical sense.
can expect different rates of diffusive movement which le
to different speeds of dephasing the coherently scattered
diation ~similar to dephasing due to thermal vibrations d
scribed by the Lamb-Mo¨ssbauer factor!. The weights of
these movements depend on the propagation vectork ~both a
magnitude and a direction! and on the form of the drift po-
tential.

IV. BOUNDED DIFFUSION WITHIN A CAGE

Until now the drift potential was assumed to be a fin
one having an arbitrary profile. In this section we regard
particular case where the potential equals zero inside a fi
volume, called a cage, and is infinite outside. It can be sho
that if the size of the cage tends to infinity then one arrive
the case of free diffusion. Let us consider this limit case
view of the general theory described above.

The potentialsU(r ) and V(r ) are equal to zero in al
space~actually in a volumeV with a size being much large
than the wavelength of radiation!. In this case a full set of
eigenfunctions can be chosen in the form of plane wa
cp(r )5V21/2 exp(ipr ) corresponding to eigenvalue
«p5p2. The ground state isc05const5V21/2. However,
this state is not realized becauseA050 for kÞ0. This can be
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easily deduced from Eq.~22! for the potential considered
Moreover, the only one state withp5k has a nonzero coef
ficientAp51. Thus, in the limit of an infinitely large cage w
arrive once again at the universal resonance function cha
teristic for a free diffusion9

w~k,v!5
i

v1 iG0/2\1 iDk2
. ~24!

The most simple case of bounded diffusion within a ca
is realized when the cage has the form of a rectangular
with dimensionsX,Y,Z in the directionsx,y,z, correspond-
ingly. This illustrative example might be also of a practic
interest in the view of future experiments because it can
realized artificially with the control of parameters such as
diffusion coefficient or the size of the cage.17 Owing to the
fact that the cages are oriented randomly in different part
a real sample the task is spherically symmetrical. Tha
why, perhaps, in Ref. 17 the accurate solution of the Fokk
Planck equation with a spherical cavity of radiusr as a hole
in the Swiss cheese18 has been considered to analyze t
experimental results. Nevertheless, it is useful to cons
and analyze in detail the task of the rectangular cavity.

We take the potentialU(r ) to be equal to zero inside th
box and infinity outside of it. The potentialV(r ) is also equal
to zero inside the box but it has a singularity on the b
walls. Unlike the similar task of quantum mechanics we ha
to find now the eigensolutionscn(r ) which obey the bound-
ary conditions (n¹c)B50 wheren is a normal to the box
boundaries~see Ref. 16 for details!. The eigensolutions for a
particle diffusing inside the box with the coordinate
0,x,X, 0,y,Y, 0,z,Z are found in the form

chkl~x,y,z!5 f h~x! f k~y! f l~z!, «hkl5p2S h2

X2
1

k2

Y2
1

l 2

Z2D ,

~25!

where h,k,l 50,1,2, . . . . Below we introduce the notation
j 5h,k,l , s5x,y,z, S5X,Y,Z. The solution is factorized
into the functions independently describing the motion alo
each of the three main axes. A particular function is as f
lows:

f j~s!521/2~CjS!21/2) cos~p js/S!. ~26!

HereCj51 for all j .0 andCj52 for j 50.
One can readily find the weights of different diffusio

states in accord with Eq.~21!. These also consist of thre
independent factors

Ahkl~kx ,ky ,kz!5ah~kx!ak~ky!al~kz!, ~27!

with

aj~ks!5
1

2Cj
F j 0S ksS2p j

2 D1~21! j j 0S ksS1p j

2 D G2

,

~28!

wherej 0(z)5sinz/z is a zero-order spherical Bessel functio
It is easy to verify that this formula gives the relatio
aj (0)5d j 0. On the other hand,a0(ks)5 j 0

2(ksS/2). Therefore
the ground state«000 is now really existing.
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5792 57V. G. KOHN AND G. V. SMIRNOV
In the model considered a dependence arises on the
entation of the cage with respect to theg ray propagation
direction. Let us take the orientation for whichkx5ky50. In
this case the radiation can probe only a diffusive mot
along thez direction. Then the general formula~20! trans-
forms to

w~kz ,v!5(
l 50

`

w l~kz ,v!5 i(
l 50

`
al~kz!

v1 iqlG0/2\
, ~29!

where the weightsal(kz) and the relative widthsql(Z) of the
partial resonances are determined by

al~kz!54Cl
21~kzZ!2

@11~21! l 11cos~kzZ!#

@~ lp!22~kzZ!2#2
,

ql5112Dt0

~ lp!2

Z2
, ~30!

wheret05\/G0 is the natural lifetime of the excited nucleu
The formula for the weights follows directly from Eq.~28!.
The maximum value of each term in the sum~29! equals
w l(kz,0)52t0al(kz)ql

21 , i.e., it is determined by both th
weight and the width of each Lorentzian contribution.

Let us analyze the shape of thew function as a function of
the box sizeZ. The coefficientsal as the functions ofZ are
shown in Fig. 1 for the case of the57Fe nucleus with
kz52p/l573 nm21. Each coefficient has a pronounce
main maximum and side maxima which are of much low
height. The main maxima for different coefficients are d
tributed over theZ axis rather regularly. After the initial fas
drop down within the interval 0.Z.l the heights of the
next maxima are reducing very slowly farther on. It is clea
seen in the figure that at any value ofZ there are only a few
~one, two, or a maximum three! significant coefficients while
all others are very small. Hence only a few Lorentzians c
tribute essentially to the universal resonance function at
box size. Thel indexes of the contributing Lorentzians in
crease with a rise of the size. Thel value which correspond
to the main contribution, equals approximate
l 05kzZ/p52Z/l. The relative width of this contribution is

FIG. 1. The weightsal of the Lorentzian functions contributing
into the universal resonance function in the case of bounded d
sion ~29! in dependence on the size of the one-dimensional cagZ;
a0 is the weight of the partial resonance having the natural wi
G0.
ri-

n

r
-

-
y

ql 0
5112Dkz

2t0. Thus, we see that the widths of the Loren

zians contributing in thew function are dependent onZ only
very softly whenZ.2l.

Figure 1 shows that the behavior similar to that of fr
diffusion should appear already for not so large a box s
namely, aboutZ.2l where the coefficienta0 becomes
close to zero. The existence of a zero term having a nat
resonance width makes the situation quite different. Th
one should have a significant change of the resonance s
only within the transition region 0,Z,2l. Studying this
transition region is most informative with respect to the p
tential parameters.

The absorption spectral function f a(v,Z)
52Rew(kz ,v)/2t0 is displayed in Fig. 2 for this transition
range ofZ50,0.01, . . . ,0.2 nm. For abetter view each nex
curve is shifted up on 0.05 relative to the previous one. T
calculation has been made for57Fe with l50.086 nm and
D510214 m2/s. In this case G f d /G0'16 where
G f d5G012\Dkz

2 is the resonance width in the case of fr
diffusion. As it follows from the calculation, an appare
decrease of the resonance dips of the functionf a(v,Z) oc-
curs there accompanied by a significant broadening of
resonance. The resonance shape close to that in the regim
free diffusion is approached already atZ5l where the
weight of the unbroadened partial resonance drops to z
~the curve 9!. Afterwards the coefficienta0 increases again a
aboutZ51.4l that results in a narrowing of the resonan
for this range which is well seen in the figure~the curves
12–15!.

We turn now to the time response of the nuclear e
semble. The analysis is the most simple in the case of a
single line target. Here the intensity is proportional toz2,
while the time dependence is determined by the follow
forward scattering function:

u-

h

FIG. 2. The shape of the real part of the universal resona
function, describing the absorption ability of the nuclear target
different sizes of the one-dimensional cageZ50,0.01, . . . ,0.2 nm.
Each next curve is shifted up on 0.05 relative to the previous o
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f f s~ t,Z!5exp~2t/t0!U(
l 50

`

al~kz!exp~2 l 2p2Dt/Z2!U2

,

t.0. ~31!

The entire time dependence of the forward scattering
tensity is the sum of exponents where each term is cha
terized by its own decay region t,t l where
t l5t0(112Dt0Z22p2l 2)21. So the number of contributing
terms decreases when the delay time increases. Finally
the term having the natural decay time becomes domin
Therefore the contribution of this term given by the coe
cient a0 can be well separated in the time dependence.
function f f s(t,Z) is shown in Fig. 3 for box sizes in the rang
Z50,0.01, . . . ,0.1 nm. The uppermost curve corresponds
a rigidly bounded nucleus. It is described by only a zero te
with a051 and q051, i.e., it exhibits the natural decay
With the increase of the box size the diffusion is activa
and the next terms related to the broader resonances st
contribute. This results in a faster decay of the scatter
intensity observed within the initial time interval. Howeve
until the zero term has a noticeable magnitude~the range
0,Z,0.06 nm in Fig. 1!, the natural decay rate is reache
It is manifested by the straight segments of the curves
served at later times in the logarithmic scale~the curves 127
in Fig. 3!. In this range of box sizes the coefficient a0 can be
determined directly by extrapolating the straight segment
the curves to zero time.

The coefficienta0 drops down sharply with the increas
of Z, reaches its minimum and then slightly oscillates~Fig.
1!. This behavior is reflected in the nonmonotonous trans
mation of the time dependences aroundZ50.09 nm ~the
curves 8211 in Fig. 3!.

To illustrate the role of bounded diffusion in a scatteri
from a thicker nuclear target we consider the time respo
in the case of a single line sample having an effective re
nance thicknessmnz510, wheremn5K(geBge @see ~3!#.
The results of the computer calculation are shown in Fig
for the same range of box sizes. The time dependence
tains now the dynamical beats of intensity which are cau

FIG. 3. The time dependence of nuclear forward scattering
synchrotron radiation in the limit of the thin target~31! in the case
of bounded diffusion at different sizes of the one-dimensional c
Z50,0.01, . . . ,0.1 nm.
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by multiple scattering of radiation by nuclei in the target.
is of interest that the dynamical beat pattern appears to
highly sensitive to the box size. With increasing the size
beat minima are shifting towards later times. Then they d
appear completely in the observation time window~curves 1
25 in Fig. 4!. This effect is related to a redistribution o
weights of contributing Lorentzians, particularly to the dro
ping down of the coefficienta0 which represents the rigidly
bound state of the nucleus. The latter leads to decreasing
effective thickness of the target similar to that due to the
down of the recoilless factor. We shall discuss this effect
more detail in the next section. The time evolution for t
intermediate range ofZ ~curves 6–8 in Fig. 4! is similar to
that for a thin target. The nonmonotonous transformation
seen again later on~curves 9–11 in Fig. 4!. However, under
conditions close to the free diffusion regime, i.e., for the w
size large compared to the wavelength of radiation, the
namical beat pattern specific for the full effective thickne
of the target is restored.

The initial slope of all curves seems to be somewhat u
versal. This slope can be easily obtained analytically us
the asymptotic behavior of thew function. It is known that
the asymptotic behavior of the universal resonance func
at far tails of resonance allows us to estimate the temp
nuclear response at the initial time. We obtain directly fro
Eq. ~29! in the case of largeuvu that

lim
uvu→`

w~kz ,v!5
i

vS 12 i
G f d

2\v
1••• D , G f d5G012\Dkz

2 .

~32!

Here G f d just corresponds to the free diffusion case~see
above!. To derive this result one has to take into account
relations

(
l 50

`

al~kz!51, (
l 50

`

al~kz!« l5kz
2 . ~33!

The first relation follows from the general theory@see Eq.
~21!#. The second one is the consequence of the fact
inside the volume of the cage we have the same equatio

f

e

FIG. 4. The time dependence of nuclear forward scattering
synchrotron radiation by the thick target in the case of boun
diffusion at different sizes of the one dimensional cageZ50, 0.01,
. . . , 0.1 nm. Theeffective thickness of targetmnz510.
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in the case of free diffusion~the potential is absent!. There-
fore « lc l(z)52d2c l(z)/dz2 and the relation is obtained b
inserting this formula into the integral~21! which defines
generally the coefficientsal(kz) and then integrating by
parts.

From Eqs.~1!, ~2!, and~32! we obtain after expanding th
exponent in the Taylor series and using the residue theo

lim
t→0

I f s~ t,z!5uE0~z!u2S mnz

4t0
D 2

3S 12tF 1

t0
12Dkz

21
mnz

4t0
G1••• D . ~34!

In accordance with this formula the initial slope is dete
mined by three physical reasons~represented by the thre
terms in the straight brackets!, namely, by natural decay o
the excited state, by diffusive motion of nuclei, and by c
herent speedup of decay. TheZ dependence of the initia
slope is absent. Usually the term related to a diffusion bri
the main contribution and this determines the behavior of
curves in Figs. 3, 4.The time dependence of intensity in t
case of limited diffusion cannot be faster than in the case
free diffusion.

This fact has a clear physical sense. In the limit of sm
delay time only displacements of nuclei which are sma
than the cage size are essential. Therefore the walls of
cage cannot influence the time behavior. In the opposite l
of very large delay time, the picture of nuclear motion
influenced essentially by the reflections from walls. On a
erage, the coherent nuclear scattering is related to the m
position of a nucleus, as if it is at rest. The strength of t
scattering channel is described by the coefficienta0 which
plays the same role as the Lamb-Mo¨ssbauer factor which
takes into account the thermal motion. Obviously when
mean displacement of the nucleusZ/2 becomes comparabl
with the wavelength of the radiationl the coefficienta0
tends to zero due to a dephasing of the scattered wa
When the coefficienta0 is not too small one can find in th
case of the thin target a characteristic intermediate t
range~about 80–120 ns in Fig. 3! where the transition from
the free diffusion regime to the natural nuclear decay occ
The time of transition can be estimated
t tr' ln(1/a0)/2Dkz

2'10 ln(1/a0) ns in the case considere
(57Fe, andD510214 m2/s!. It depends significantly on the
size of cageZ through the coefficienta0, on the diffusion
coefficientD as well as on the wavelength of the radiatio

The real sample may contain different cages with diff
ent sizes and orientation. Therefore the mean value has t
calculated. This procedure is essential in fitting the exp
mental data. However the general properties of the t
spectra considered here will be unchanged.

V. JUMP DIFFUSION

The theory developed for the quasielastic Mo¨ssbauer
spectroscopy5,19 describes a jump diffusion on simple Bra
vais lattices where all crystal sites are equivalent. The ex
sion of the theory to the case of non-Bravais crystal latt
was done in Refs. 20,21. Here we shall use the results of
21 where the correlation functionFs(k,t) has been calcu
m
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lated in the more general case. This function can be writ
in a form similar to Eq.~23!, namely,

Fs~k,t !5(
l

al~k!exp[2« l~k!t/2t0],

al5U(
i 51

m

Acib i lU2

, (
l

al51, ~35!

where t05\/G0 is the nuclear lifetime as above,i is the
index of inequivalent sites inside the primitive unit cell
the crystal lattice. This site has thei th local symmetry. The
relative l th decay rate« l(k… and the vectorb i l (k) are the
eigenvalue and orthonormalized eigenvector of the proba
ity jump matrix, which is a Hermitian one

Ai j ~k!5
2t0

Aci
Fd i j (

q

1

t iq
2

1

nji t j i
(

n
exp~ ikR i j

~n!!GAcj .

~36!

Here and above,ci is the probability of the occupation of th
i th sublattice,nji is the number of sites of thei th sublattice
which surround the site of thej th sublattice,t i j

21 is the jump
rate from the site of symmetryi to any nearest-neighbor sit
of symmetry j , Ri j

(n) is the nth vector distance of the set o
distances between nearest-neighbor sites of thei th and j th
sublattices. Detailed balance demands that

ci

ni j t i j
5

cj

nji t j i
. ~37!

If t i j 5t j i thencj5const51/m andal5m21u( ib i l u2.
Expression~35! leads immediately to the following ex

pression for the universal resonance function:

w~k,v!5 i(
n

al~k…

v1 iql~k!G0/2\
, ql~k!511« l~k….

~38!

This formula implies that each resonance becomes a su
position of several resonances having the same position
different widths, i.e., like in the case of bounded diffusio
Eqs.~23! and ~32!.

As an example, we consider in detail the case of ju
diffusion in the alloy Fe3Si which was investigated recentl
using the nuclear forward scattering of synchrotr
radiation.22 The time dependences of the forward scatter
along the@113# crystal direction were measured. Single cry
tals of Fe3Si have a cubic superstructure consisting of fo
sublattices. In the entirely ordered crystals the three sub
tices are occupied by iron atoms while the fourth one
occupied by Si atoms. The diffusion mechanism of iron
this structure was studied.20 It was proven that in accordanc
with earlier suggestions iron atoms jump between three i
sublattices only and avoid the fourth silicon sublattic
Therefore the matrixAi j takes the form

Â5S 2n 2En 2E* n

2E* n n 0

2En 0 n
D , n5

2t0

t
, ~39!

where
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E5cos~kxd!cos~kyd!cos~kzd!1 isin~kxd!sin~kyd!sin~kzd!
~40!

with

~kx ,ky ,kz!5~1,1,3!K/A11, d5a/4 . ~41!

HereK52p/l5v/c is the wave number of incident radia
tion ~which fits the nuclear resonance transition in57Fe in
our case!, a is a crystal lattice constant of Fe3Si.

Taking into account the specific valuesK572.98 nm21,
a50.571 nm one obtains thatkxd53.1411, i.e., very close to
p. Therefore approximatelyE5E* 521 and with definite
accuracy the jump matrix~39! has the following analytica
eigensolutions

ql5 3n n 0 ,

b l5
1

A6S 2

1

1
D 1

A2S 0

1

21
D 1

A3S 21

1

1
D ,

al5 8/9 0 1/9. ~42!

It follows from Eq. ~42! that only two resonance contribu
tions have nonzero weight, one having the natural width
another broadened. Correspondingly the universal reson
function takes the form having only one parameter

w~k,v!5
i

9S 8

v1 iq/2t0
1

1

v1 i /2t0
D , q5116t0 /t.

~43!

In the range of high temperatures where diffusion ta
place the hyperfine splitting of the nuclear levels is abs
and the time-dependent electric field of the scattered wav
described by the following equation:

E~ t,z!5E~z!E dv

2p
expS 2 ivt2

mnz

4t0
w~k,v2v0! D ,

~44!

wherev0 is a resonance frequency,z is a crystal plate thick-
ness, andmn5Ns0h f LM is an absorption coefficient at reso
nance withN being a number of iron atoms in the unit vo
ume,s0 being a nuclear cross section at resonance,h being
an enrichment by resonant isotope57Fe andf LM being the
Lamb-Mössbauer factor.

We compare the time-dependent forward scattering in
sity for different diffusion rates, respectively, differentq fac-
tors. The time dependences for the two effective thicknes
of targetmnz53 and 21.5 are displayed in Figs. 5,6. In a th
target limit using approximation~9! one can readily find tha
the time response is described by the sum of two expone
functions, one of which exhibits the natural decay of t
nuclear excitation while another shows the accelerated
cay. With an increase of theq factor the acceleration o
decay is well seen within an initial time interval in Fig. 5.
the limit q@1 the two exponential functions turned out to
well separated in time and the two stages of the decay
clearly observed.

The time dependences for the thicker sample have a m
complicated character. The initial stage of decay mostly
d
ce

s
t
is

n-

es

ial

e-

re

re
l-

lows the same law described above but at a later time
dynamical beats appear within the natural lifetime of nucl
excitation. It is of interest to note that a position of the be
minimum is sensitive to a diffusion rate~like in the case of
bounded diffusion where it is sensitive to the cage size,
Fig. 4!. The minimum is shifting towards the later times wi
an increase of the diffusion coefficient. Such a behavio
different from that predicted9 for the case of free continuou
diffusion where the beat pattern position is unchanged. T
difference is tightly related to the difference in form of th
resonance universal function. In the case of free diffusio
is a single Lorentzian having variable width. Here and in t
case of bounded diffusion it is the sum of several Loren
ians having different weights and widths.

The split of the universal resonance function into seve
terms leads to the fragmentation of the effective resona
thickness of a target into relevant partial thicknesses wh
are almnz. The contributing Lorentzians turn out to dete
mine essentially the decay of the nuclear exciton within d

FIG. 5. The time dependence of nuclear forward scattering
synchrotron radiation from Fe3Si crystal in the direction@113# in
the presence of jump diffusion at differentq factors ~see text!.
Curves 1–4 correspond toq52.2, 5.1, 11.5, and 36, respectivel
The effective thickness of targetmnz53.

FIG. 6. The time dependence of nuclear forward scattering
synchrotron radiation from the Fe3Si crystal in the direction@113#
in the presence of jump diffusion at differentq factors. Curves 1–4
correspond toq52.2, 5.1, 11.5, and 36, respectively. The effecti
thickness of targetmnz521.5.
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ferent time intervals in dependence on the Lorentzian wid
This leads, roughly saying, to the fact that the target exhi
its different partial thicknesses in different parts of the tim
dependence of the forward scattering. In general, the ef
of the thickness split is revealed for any relation between
weights and widths of contributing Lorentzians. Obvious
the dynamical beat pattern should be sensitive to this r
tionship. This is actually the physical reason for the shift
the beat minima with the change of both the potential w
size and the diffusion rate.

In our example in the limit of large-q factor q@1, where
two contributing Lorentzians have essentially differe
widths, one can distinguish two characteristic stages in
entire time dependence. At an early stage of decay the
of the resonance are essential and one can consider onl
broadened contribution. Making use of the result obtained
Ref. 9 for the case of one broadened resonance one ob

I ~ t,z!5
I 0

Dv

T1t0

4t
expS 2mez2

qt

2t0
D J1

2~AT1t/t0!,

t,t0 /q, ~45!

where J1(x) is a Bessel function of first order an
T158mnz/9. In this time interval the evolution of the for
ward scattered intensity is similar to the case of free dif
sion, and via parameterq one can determine the diffusio
coefficientD5a2/32t.

At later times, on the contrary, the region near the cen
of the resonance is essential in the integral~44!. Therefore
one can neglectv in the first term of Eq.~43! and consider
approximately the case with one resonance of natural wi
As a result the time evolution takes the form

I ~ t,z!5
I 0

Dv

T2t0

4t
expS 2Fme1

8mn

9q Gz2
t

2t0
D

3 J1
2~AT2t/t0!, t.t0 /q, ~46!

whereT25mnz/9. We note that similar to the case of boun
diffusion the broad resonance effectively provides an abs
tion in addition to the electronic absorption, while the effe
tive thickness of the target turned out to be less in acc
with the weight of the resonance of the natural width. Th
one and the same target exhibits, in this case, behavior o
target with the effective thicknessT1 at an early stage an
with T2 at a later stage of decay.

Finally we want to note that the consideration presen
above deals with the pure diffusion process, while the rel
ation process is assumed to be the same as in the case
out diffusion.

VI. CONCLUSION

The response of the nuclear ensemble in the presenc
diffusive motion of nuclei is described by the universal res
nance functionw(k,v) which is related to the Van Hove
space-time correlation functionG(r ,t). While considering a
scattering problem it is natural to use the momentum-ti
correlation functionF(k,t) which enters directly into the
time dependence of nuclear exciton decay in the limit o
s.
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thin target for any regime of diffusion. The spectral dens
of this functionF(k,v) is found by the Fourier transforma
tion of F(k,t). Actually the universal resonance functio
w(k,v) represents the averaging of the standard resona
amplitude describing the scattering process by a st
nucleus over the spectral density functionF(k,v) which re-
flects the motion of particles in the nuclear ensemble ow
to the Doppler effect.

The analytical solution for time dependences of the coh
ent forward scattering of SR can be obtained only for
case of free diffusion where the universal resonance func
has Lorentzian shape. The additional width of the resona
line is simply proportional to the diffusion coefficient in th
case. Respectively, an additional exponential factor app
in the time response, the decrement of which contains
diffusion coefficient. This yields an accelerated decay of
coherent signal. As to the dynamical beat structure it d
not depend on the resonance broadening.

In contrast to the regime of free diffusion in the case
bounded diffusion inside a potential well, and in the case
jump diffusion between different sites~vacancies in solids!
the universal resonance function has a more complica
shape represented in general by the coherent superpositi
the Lorentzian functions where the weight and the width o
separate Lorentzian are determined by the specific chara
of the diffusion process. The main physical parameters
fecting the shape of the universal function are the diffus
coefficient, temperature, the drift potential profile, and t
jump rate.

Such a shape of the universal function corresponds
more complicated behavior of the time response. In gene
there are several stages of the decay which are characte
by the different decay rates. The initial stage reveals a fa
monotonous decay which is more accelerated the larger
fusion coefficient and the size of the potential well are.
later times the decay rate becomes slower and the dynam
beats appear in the case of the thick target. The dynam
beat pattern is transformed drastically~in contrast to the free
diffusion regime! depending either on the size of the pote
tial well in the case of bounded diffusion or on the tempe
ture in the case of jump diffusion. When both parameters
rising, the transition to a beat pattern characteristic fo
thinner target occurs.

The physical reason for this result is in the split of t
universal resonance function into several terms. It leads
fragmentation of the effective resonance thickness of the
get into relevant partial thicknesses. When the contribut
Lorentzians have essentially different widths the target
hibits its partial thicknesses in the time dependence wit
different time intervals. Hence a time-variable thickness
characteristic for the nuclear exciton decay in these ca
rather than a unique thickness. In general, the effect of
thickness split is revealed for an arbitrary relation betwe
the weights and widths of contributing Lorentzians. The d
namical beat pattern is sensitive to this relationship. Ho
ever, under conditions close to the free diffusion regime, i
for the well size large compared to the wavelength of
radiation in the case of bounded diffusion, or for high te
peratures in the case of jump diffusion, the dynamical b
pattern is restored to the full effective thickness of the targ
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The time evolution of the coherent forward scattering
synchrotron radiation is thus transformed not only quant
tively but also qualitatively in contrast to the relevant Mo¨ss-
bauer spectra. This higher sensitivity of measurement is
cause an interference technique~forward scattering! reveals
y
er

t-

l
H

f
-

e-

complex amplitudes of oscillations of the electromagne
field, while a spectroscopic method~resonance absorption!
exhibits only their strengths~see Ref. 8!. This makes forward
scattering of synchrotron radiation to be a perspect
method for the studies of diffusion.
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