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Spin-polarized tunnel current in magnetic-layer systems and its relation
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The spin-polarized tunnel current and its connection to the interlayer exchange interaction is studied in
ferromagnet-insulator-ferromagnet thin-film planar junctions out of equilibrium. Building on the nonequilib-
rium Keldysh formalism, it is possible to systematically include a contact interaction between localized spins
and conduction electrons and extend previous treatments on spin currents and exchange interaction. In par-
ticular, a Landauer-type formula is derived for the spin current that explains the result found[Safieabe,
Wingreen, and Elliott, Phys. Rev. B4, 12 953(1996] that the exchange interaction between the ferromag-
netic slabs increases in proportion to the slab width. Furthermore, switching is shown to occur between parallel
and antiparallel coupling of the slabs for different applied biases under feasible experimental conditions.
[S0163-182699)08705-9

I. INTRODUCTION predict the qualitative behavior of the magnetoresistance in
ferromagnetic tunnel junctions. However, they leave open
The discovery of antiferromagnetic coupling in Fe/Cr su-details in the interpretation of the decrease in magnetoresis-
perlattices by Graberget al has led to a renewed interest tance for increasing bias across the junction.
in magnetic layer systems, partly due to the possibility of Another aspect of spin-dependent transport was pointed
applying these structures as magnetoresistive sensors, for inut by Aronov who suggested that spin injection arises when
stance, in magnetic reading heads as magnetoresistance a current flows from a ferromagnetic metal into a nonmag-
random access memorig®rior to this, Julliere already ex- netic one'* Later, Johnson and Silsbee could verify
perimented on tunneling in ferromagnet-insulator-Aronov’s theory with their spin injection experimén@and
ferromagnet trilayer thin-film planar junctions that showedintroduced the concept of interfacial charge-spin couptthg.
the interesting magnetoresistive effect that tunneling depends Spin injection and tunnel magnetoresistance are different
on the angle between the moments of the ferromagnetsaspects of spin-dependent transport. To analyze both aspects,
However, the tunnel magnetoresistance was not very large iwe derive in this paper a Landauer-type formula for the spin-
the early stages of experimenrts.Only recently consider- polarized current of the biased junction based on a model
able tunnel magnetoresistance was observed by severtiat takes the spin dependence of the band structure into
groups in trilayer structurés'® that led to suggestions that account similar to the treatment of SlonczewskThe model
spin-dependent tunnel junctions offer another opportunity fobuilds on the nonequilibrium theories for tunnel systems by
building random access nonvolatile memories with high im-Carol*’~?°and Feuchtwang:~%
pedance and low interlayer couplift. Related to spin-dependent transport is the exchange inter-
The work of Tedrow and Meservey, who measured theaction between ferromagnetic films across a spacer. Testing a
tunnel conductance of superconductor-insulator-ferromagnetonsiderable range of thicknesses of metallic spacers, Parkin
films, is crucial in understanding magnetic trilayer junctions.et al. observed oscillations in the giant magnetoresistafce.
They showed that tunneling out of a ferromagnetic electrodd&keferring to Yafet, who calculated the range function of the
is spin polarized? Using this result, Julliere performed his interaction between two magnetic monolay&rthey argued
pioneering work on tunneling between two ferromagnets in ahat these oscillations mirror the changes between ferromag-
Fe/Ge/Co trilayer where for zero bias he observed anomaliesetic and antiferromagnetic coupling of the layers. Unlike
with different resistances for parallel and antiparallel align-the semiclassical model by Julliere for spin currents, the ex-
ment of the magnetizations of the ferromagnets. He put forehange coupling is a true quantum-mechanical effect. The
ward a simple model that explains this magnetoresistive efinteraction between the magnetic moments in the ferromag-
fect in terms of the spin-dependent density of states at theets is mediated by polarized conduction electrons, also
Fermi level in each ferromagnet. The model was extended bknown as the Ruderman-Kittel-Kasuya-YositRKKY) in-
Slonczewski who matched wave functions for spin-up anderaction. This approach has been extended by Baltensperger
spin-down conduction electrons between magnetic and instand Helmaf® as well as Bruno and Chapp®rto calculate a
lating layers, where the insulator was approximated by anore realistic model for the exchange coupling between fer-
square barrier potential of low transmissionAccording to  romagnetic layers across a metallic spacer by direct applica-
his theory, spin tunneling across the interfaces is signifition of the RKKY theory to the specific geometries of the
cantly influenced by the barrier height. Both pictures roughlysystem. The coupling arises then from the polarization of
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magnetic carriers in the spacer metal analogous to the usui %
RKKY theory. Edwards etal. developed a different By oo
approactt®?® They argued that oscillations in the coupling VeV

result from quantum interference effects of spin-dependent M ol heugev
electron waves inside the well formed between the ferromag- © —+————
netic layers. This intuitive picture of the interlayer coupling - 0 (R ——— 100
leads to the comparison of a magnetic double Ia(t)yselr with an —
optical resonator, Il_ke a Fabry-ra mterferometef. _ The —_ L H
RKKY-like interaction was shown to be the limit to the L R

guantum-well model for weak exchange interaction inside

the ferromagnets by d’Albuquerque e Casttal3? and later
by Bruno3® Apart from oscillations due to the metallic
spacer thickness, oscillations were observed which chan
with the thickness of the ferromagn&tsis predicted by nu-
merical calculations of Barnas.Bruno gave an intuitive ex-
planation of this effeét by writing the interlayer exchange

FIG. 1. Schematic representation of the ferromagnet-barrier-
ferromagnet tunnel junction described in the text. The exchange
'gteraction between theé electrons within a single ferromagnet

auses a splitting of their band bottoms into two different spin sub-
bands, indicated by the two punctuated lines on either side of the
barrier. Thes-d exchange coupling between the as-now localized
o . L o regardedd electrons and itinerarg electrons spin polarizes a cur-
coupling in terms of reflection and transmission coefficients .o+ griven through the system upon biasing the junctioVby
Whereas most of the work has been done on metallic

spacer materials, ferromagnetic and antiferromagnetic cou-

pling has also been found across semiconductor interlayer@'ss'on and reflec.t|o.n- ampl|tu<_jgs. They Iee_lq t.o.the same
by Toscanoet al and Fullertonet al3” This coupling is results under the limiting conditions of semi-infinite ferro-

much weaker than the one across metallic spacers as long magnets and weak band splitting. Using parameters from re-

the system is in equilibrium. Recently, Schwabe Wingreencent experiments we calculate spin current and the interlayer

and Elliott investigated the interaction between conduc’[ioneXChalnge asa function of apph_ed bias numerically.
electrons and magnetic moments of the ferromagnets in a The. remainder of the paper is structured as foII.ows. Sec-
trilayer junction®® They calculated the exchange interaction 10" Il introduces thg tWO. models for ferr.qmggnet-msglator—
between the ferromagnets that is also of the RKKY type. The(erromagnet planar junctions out of equilibrium. Secﬂon .”I
coupling depends not only on the height of the barrier bu s devoted to a general comparison between spin-polarized

also on the thickness of the insulator and ferromagnets. Fu unnel current ar_ld_ i_nterlayer exchange interactior_l. In Sec. IV
9 he relevant definitions of the theories by Carelial and

ther, the presence of a nonequilibrium bias across the junc: . : . )
P q ] “[Feuchtwang are introduced in order to derive expressions for

tion significantly alters the range of the coupling such tha . tsin Sec. V and h ling in Sec. VI
there is a component of the interaction energy between th € Spin currents in Sec. V.and exchange coupling In Sec. Vi.
hen, Sec. VIl deals with numeric examples for both spin

ferromagnets proportional to their thickness and therefore i ¢ and h int i functi  th lied
appears to act as an uniform magnetic field. To investigat8urren and exchange Interaction as functions ot the applie

the origins of this unexpected coupling behavior, we stud){'ﬁltage]; Se::tlotn Vlt” d|sfcus_ses the I’t_eSLlﬂtS Ofdth? prtesent_ed
another form of the spin-polarized tunnel current of the bi- eory for €lectron transter in magnetic layered Structures in
relation to recent experiments. In conclusion, we summarize

ased junction in a model that is analogous to that used for It d point out further direct f studvi
calculating the exchange interaction. Again, a Landauer—typgur results and point out further directions ot studying mag-

formula is derived from the nonequilibrium theories for tun- hetic trilayer systems in Sec. IX.

nel systems by Caroli and Feuchtwang that includes, in ad-

ditio_n, a contact interaction between localized spins and con- Il. MODEL OF MAGNETIC-LAYER SYSTEM
duction electrons.

The spin dependence in both Landauer-type formulas de- The present paper addresses perpendicular transport and
rives from different approximations to the-d exchange interlayer exchange interaction in a trilayer structure. As
Hamiltonian. The first model is a mean field approximationshown in Fig. 1, the trilayer structure consists of two planar
that relates to the treatments of JulliéreAronov*  ferromagnetic layers of length andlg, respectively, sepa-
Slonczewsk?® and, in particular, to that of Tsymbal and rated at the interfaceg,R by a nonmagnetic insulator of
Pettifor3® It gives a good account of spin-dependent tunnelthicknessR-L£. This gives a quasi-one-dimensional model of
ing when ferromagnetism is strong and the layers not to@ tunnel junction. Typical examples for the constituents of
thin. The second model is a perturbation treatment that ithe ferromagnet-insulator-ferromagnet junction are Co,
common to RKKY-like studies of the interlayer exchange CoCr, CoFe, Fe, and NiFe for ferromagnets angOjland
interaction. This description is microscopically more satisfy-MgO for insulating nonmagnetic barriets.
ing and in particular takes the finite-size effects of the ferro- The magnetic order of band ferromagnets like Fe, Ni, and
magnets into account. We find that the spin current dependSo can to a large extent be traced back to electron correlation
on spin-dependent scattering of conduction electrond at effects in relatively narrow & subbands, which only weakly
electrons that are assumed to be localized. A nonequilibriurhybridize with the 4 and 40 bands!® Due to the strong
spin polarization is caused by the interference of incidentonfinement of their atomic electron orbitals, we assume that
spin-independent conduction electron waves and spinthe direct contribution of electrons thsubbands to transport
dependent reflected waves. For both models we derive exacross the barrier can be neglected. Although this is a gross
pressions for the spin current and the interlayer couplingsimplification of the physical situation, it agrees with what
where all quantities are expressed in terms of simple transwvas found by Tsymbal and Pettifor on the basis of band-
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structure calculation® They showed that the bonding be- whereJ is the coupling constant with units Jnand d the
tween 3 metals and the oxide orbitals of the tunnel barrierdimension of the system. In E@4) it is summed over all
must be very weak so that thé-electron contribution to spinsS, in the systemio,; is the vector of Pauli matrices,
tunneling is negligible regardless of their high density ofused to represent the spin of the conduction electrons that
states at the Fermi surface. The exchange coupling betwe@ouple to the local momeng,. The indicesa and g label

the two ferromagnets across the barrier and the spin curreitite two spin projectionse,8e{7,|}. To obtain the effec-

are therefore assumed to originate from the interaction of théve indirect interaction between uncompensated magnetic
conduction electrons on the system of uncompensated magaoments ofd electrons, we average, 4 in the subspace of
netic moments ofi electrons. This leads us to the approxi- conduction electrons and replace the conduction electron op-
mation that neglects direct exchange interaction between erators by a number,

electrons and only takes the exchange interactions betaeen ]

and d electrons into account such that the width of the +

subbands is chosen to be zero and the effective massiof a Her=— Ep§B Tap SV a(Xp) W 5(%p)). ®)
electron infinite, corresponding to complete localization.

The Hamiltonian of the system in Fig. 1 is written in Since we are only interested in the relative orientation of the
terms of an unperturbed patt, and a part describing the magnetized ferromagnets that are well below their critical
exchange interactiohl 4, point, we introduce a further approximation and substitute

0.5 S in Her by oa(Sf) so that
H=Hy+Hgg. (1)

Due to the translational invariance of our model in the direc- Hes=— iE (SHYAP(Xp), (6)
tions perpendicular to the current flow, the analysis is for 2%

now restricted to one dimension only and results will be
extended later to three dimensions by Fourier transform. Th
unperturbed Hamiltonian with noninteracting conduction
electrons with spinx in a single band is given by

Ho= 3 [ axwloo
The mean-field approximation of the exchange interaction

wherep?/2m is the kinetic energy of electrons with uniform Eq. (5) allows comparison to the theories by Jullitead
effective massm, and the operator®!(x) and ¥ ,(x) are  Slonzewski® The magnetization of the-electron system
field operators that create and destroy a conduction electraemoves the spin degeneracy in the system of conduction
with spin « at point x, respectively. The Hamiltonia2) electrons and this leads to a shift in the energy levels for the
includes the potential structurg(x) of the junction as different spin projections similar to that induced by an exter-
shown in Fig. 1. The band structure of the junction is dis-nal field in the Pauli theory of paramagnetism. If we consider
continuous and changes by the amouwf at the semi-infinite ferromagnets, we can include the mean-field
ferromagnet-insulator interfaces. In equilibrium the barrier iscontribution to the magnetization of conduction electrons in
considered to be flat on top, while upon biasing the junctioran isotropic dispersion law for the two leads,
the potential of the barrier acquires a slope and the chemical
potential uR in the right lead undergoes a shitv with e-R =R ht®) 7
respect to the chemical potentjat in the left lead. Simul- L(R) L(R) _ _ L
taneously, the conduction-band bottafft in the right lead ~Wheren; = =o.ng™. LTL‘e mtSrnaI mLagnetlc mean field in
shifts byeV with respect to the conduction-band bottafh  the respective lead igg® =(S] ) Ip" /240, where ug
in the left lead. The corresponding single-particle potential=€7/2m is the Bohr magnetorp™(®) the spin density, and
can then be written as (S{(r)) depends on the spin orientation of each ferromagnet.
To avoid ambiguities in the definitions, we assume it
is fixed to be positive, so that,=1 for majority spins and
O(Xx=L)B(R—x)~eVO(x—R). o, =—1 for minority spins in {he left ferromagnet. Within

(3)  the mean-field approximation the fluctuations arisindig

The dispersion law for conduction electrons is taken in theé™'® omitted and thus the interacting part of the Hamiltonian

o L (R)— 722 is replaced by including relatiof¥) in the potentiaV(x) in
effective mass approximation as . h =0l (gy/2m for the Eq. (2), so thatH turns into a two-band Hamiltonian
left and right lead, respectively, whereq (g

WhereAp(xp)zEaawﬂfl(xp)‘l'ﬁ(xp)) is the net spin po-
farization of the conduction electrons. In the following, we
derive two approximations of the model: the mean-field ap-
proximation and the perturbation expansion.

¥ (X), (2 A. Mean-field model

2
p
ﬁ +V(X)

X—L

Vo= R—L

Vo—eV

=\2m(hw—V-®)/% andmis the effective mass. -r
Expressing the localized character of the exchange inter- Va(X) = uoh5® (L—x) + Vo—eVy——
action betweers and d electrons by a delta function, we
write the interacting part of the Hamiltonian as XO(Xx—L)O(R—X)+[uohh—eV]O(x—R).

8

The mean-field model holds in cases of strong ferromag-
4) netism but neglects finite-size effects here, arising from the

J
Hog== 53 2 oS, | axwio0s0xxp w00,
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finite length of the ferromagnetic layers. This will be signifi- spin-polarized conduction electrons. Thus, the exchange in-
cant when we want to calculate the exchange interaction oueraction is similar to the usual RKKY interaction where the
of equilibrium. interaction arises because a single spin impurity polarizes the
conduction electrons around it, leading to a net spin polar-
B. Perturbation model izationAp=p;—p, . Because the system has a finite Fermi
éurface, the perturbation will oscillate with distance from the
O o T pin impurity with declining intensity similar to charge den-
the ardening in the ferromagnets Is incorporageflrion via sity oscillations of an electron gas. Accordingly, the orienta-

the dlspersmn rglanor@?), calculayons n the perturbatlon. tion between slabs of spins varies between parallel and anti-
model first take into account the interaction between the in-

L : s . . parallel alignment with a characteristic oscillation that
dividual pairs of SpIns in t_he different ferromagnets and In'depends on the Fermi wave vector and the distance between
cludes their ordering within the ferromagnets afterwards b%he slabs
integrating over all spins of the individual ferromagnets. To '

obtain explicit expressions for the spin current and the inter- If a bias is applied across the junction, as is shown in Fig.
P P P 1, the electron spin polarization is altered by the nonequilib-

layer exchange in this model, we expand perturbatively therium current of spin-polarized electrons. This contribution to

: : .
averageV ,(xp) ¥ 5(Xp)) in Eq. (5). As long as the coupling e snin polarization is reflected in the difference between
constant] betweers andd electrons is small compared to the the current for spin-up and the current for spin-down con-

Fermi energy in the respective lead, which is the case for §,ction electrons that tunnel through the barrier,
wide range of weak ferromagnetism, the perturbation mode
can certainly be regarded as valid. (Tepd={(T})—(T)). (9)
The electronic band structure, described\b{) in Eq.
(3) in the perturbation model o¥,(x) in Eq. (8) in the It is therefore referred to as spin-polarized tunnel current,
mean-field model, varies at the barrier on length scales thavhich arises from the perturbation of the conduction elec-
are short compared to the mean free path of the conductioiions by localized moments in each ferromagnet individu-
electrons. Further, it is strongly influenced by the bias wher@lly, and is proportional to a current of magnetization,
measuring electronic properties of the structure so that the
assumption that the system is close to equilibrium cannot be Mo
maintained in general. In order to establish a theoretical de- (Zm)= ngp‘)'
scription of spin currents and interlayer exchange from first
principles, we employ the Keldysh nonequilibrium perturba-We would like to point out that for a spin current to flow a
tion formalisnf! along with a coupling procedure for struc- single ferromagnet would be sufficient. On the other hand, as
tured systems developed by Caroletall’~? and in the equilibrium case, each ferromagnet is perturbed by the
Feuchtwand'~2® leading to a proper nonequilibrium field spin current of the other ferromagnet thereby leading to an
theoretic description. Since the treatments by Caroli anddditional, spin-current-dependent contribution in the effec-
Feuchtwang are proper many-body formalisms, their applitive interaction between the two ferromagnets.
cation to the present problem would also provide the basis This connection between spin current and exchange inter-
for the inclusion of further many-body effects such asaction, whose detailed calculations we present in the follow-

carrier-carrier or carrier-magnon interactions to the probleming. is the origin of the unexpected effect, found by Schwabe
et al, that the presence of a nonequilibrium bias across a

As opposed to calculations in the mean-field model wher

(10

IIl. RELATION BETWEEN SPIN-POLARIZED junction significantly alters the range of exchange interaction
TUNNEL CURRENT AND INTERLAYER such that the interaction energy between two slabs of spins is
MAGNETIC-EXCHANGE COUPLING proportional to their thicknes$.In other words, the energy

arising from this RKKY-like interaction between the differ-

Emphasizing the physical arguments, we outline in thisent slabs does not converge to a finite limit fogr)—c and
section the relation between the spin-polarized tunnel currertherefore appears to act as an uniform magnetic field.
and the interlayer exchange coupling. Initially, we need to
clarify what is meant exactly by interlayer exchange cou-
pling and spin-polarized tunnel current. In our model the
interlayer exchange coupling is the energy difference when In order to calculate perpendicular transport and exchange
two ferromagnetic slabs have parallel or antiparallel align4nteraction in a ferromagnet insulator ferromagnet from first
ment with respect to each other. When the junction is biasegrinciples, we have to apply proper nonequilibrium theories
out of equilibrium, a current of spin-polarized electrons tun-since for tunnel junctions the assumption that the system is
nels through the barrier with characteristics that depend onlose to equilibrium does generally not hold. By applying
the relative orientation of the ferromagnets. While interlayerKeldysh’s nonequilibrium perturbation formalism, Caroli
exchange coupling occurs already in equilibrium, the spinet al!’=?° and Feuchtwarfg~2* devised a theory that joins
polarized tunnel current is a purely nonequilibrium effect.initially uncoupled subsystems through appropriate transfer
However, out of equilibrium the interlayer exchange cou-terms to a single nonequilibrium steady-state system that
pling has terms related to the spin-polarized tunnel currenonly depends on the electron occupation numbers of the
that can dominate the coupling behavior under certaireservoirs? Here we extend the formalism to include the
conditions®® electron spin. Furthermore, we rewrite the unperturbed

As pointed out before, the interaction between the localKeldysh Green’s function&<'> in terms of a superposition
ized moments of the different ferromagnets is mediated byf spectral functions.

IV. NONEQUILIBRIUM FORMALISM
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Keldysh’s nonequilibrium perturbation theory is based onwe do not drop the spin index for the uncoupled Green’'s
a time-loop integral with two separate branches: fumeard  function of the intermediate region, although in our model
in time and the othebackwardthat replace the normal-time g, =g, |.
integral in regular perturbation theory. This has the advan- To join the subsystems, we use the Feuchtwang approach
tage that theS-matrix expansion starts and ends with thesince it has the advantage that properties of the continuous
same known state. The Green’s functions within this formal-coupled system can be obtained in a mathematically straight-
ism can be defined similarly to the usual ones, with the mairforward manner by using Green’s theorem. This method is
difference that the concept of contour ordering replaces thanalogous to solving the problem of diffraction of an elec-
usual time ordering. Depending on the relative positions otromagnetic wave on a dielectric material. According to
the time variables on the contour, four independent types oGreen’s theorem, the Green'’s functions in EdS) and(18)

Green'’s functions are obtained, have to satisfy appropriate boundary conditions at the
electrode-barrier interfaceR and £. The requirement for
Giﬁ(x,t;x’,t’)=i(\IfL(x’,t’)\I’a(x,t)>, 17 these Green’s functions to fulfill boundary conditions is

similar to the requirement to match wave functions in media
Giﬁ(x,t;x’,t’)=—i(\lfa(x,t)\p;(x',t'», (12) with interfaces. For simplicity, we choose Dirichlet condi-
tions so that the Green’s functions vanish if they are taken
G a(x,tix 1) = _i®(t)<{\p;(x/ ), W (X, D), with one of their arguments on the respective interfaees
(13) L. In the particular case of our quasi-one-dimensional sys-
tem these lead to simple algebraic equations. The unper-
iﬁ(x,t;x’,t’)=i®(—t)({llf;§(x’,t’),‘I’a(x,t)}>, turbed two-band Green’s functiois, read as

D G xeLx)=0(L-X)gLa(6X) + X0 a6 L) G LX),
where the information of the system on its statistical proper- (19
ties is given by the Keldysh Green’s functioBs”/~ and on
its dynamical behavior by the usual retarded and advanced®«(X.X" € L) = 0(L=X)gL o(X,X") + G (X, L) xL,a( £:X"),
Green’s functionsG'2. The curly braces in Eqg€13) and (20
(14) denote the anticommutator for fermions. , , ,
In steady state the time-logpmatrix expansion translates CoxeRX)=0(X" = R)Gr,o(X.X")

into an operational rule for Keldysh operators, “XRa( X R)GLRX'), (22)
(AB)="=AT"B+ A=, 19 G,(xx cR)= (X~ R)Gra(XX) ~Ca(X, R)XralRX),
(22

where the part with the retarded Green’s function relates to
the forward time branch and the part with the advancedwhere the frequency argument has been omitied, are
Green’s function to théoackwardone. Out of equilibrium  defined in the full system, if not stated otherwise, and
the two branches give different results. Because of the

steady-state character of our system, we Fourier transform in 2

the following all Green’s functions into the frequency do- Xp.a(P:X")= ﬁaxlgp,a(xl’xrﬂxlﬂ"
main.
To employ the nonequilibrium theories of Careit al ;2
and Feuchtwang, it appears from Fig. 1 that a partitioning Xp,a(X,P)= ﬁaxlgp,a(xixlﬂxlzp! (23)

into three subsystems seems to be most appropriate: two fer-

romagnets, which form the leads that are connected to th&here pe{L,R}, Pe{L,R}, and the appropriate spatial
reservoirs with the chemical potentigle(® and the inter-  limit is taken in approaching and R for functions defined
mediate region of the barrier. Accordingly, the Hamiltonianin the respective subregions. In simple cases where
Ho (2) is written as a sum of three independent parts, e{L,R}, the full Green’s function can be written as

Ho(xX)=0(L—X)H_(X)+O(Xx—L)O(R—X)H,(x) G(L,L) G LR)

+0(x—R)HR(X), (16) G(R,L) G,(R,R)
to yield the following inhomogeneous Schiinger equation: om 1 [ R (RR)+ v o(RR) % o(LR)
m ,a ) ,a ’ ,a ’
[w—Ho(X)]G (X, X ;@)= 8(Xx—X") (17 K2 D_a( Y o(RL) YL L L)+ o L,L) ’

for the full system whereas the inhomogeneous Stihger (24)
equation for the subsystem can be written as
where
—H XX ;w)=8(x—x"), 18
Lo Hp(018p,0 0 X50)=00XD, (A8 _[ye (RR)+ 9l R YLW(L.L)+ 7, £:L)]

for the several uncoupled subparts of the systgm _ 25
e{L,I,R}, wherex, x' lie within the appropriate region de- N.al £V, R L) @9
termined by the choice g¢f. To keep our notation consistent, and
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ﬁ2 transmission functions, the Landauertfiter formalism is
Yp.a(P Q)= = 5 —0xx Gp,a(XX" ) )x=px=g, (26)  particularly simple, and Bauer uses this method to calculate
the perpendicular transport in metallic magnetic
wherepe{L,I,R},P,Qe{L,R}. Analytical continuationn  multilayers*® The quantum version of the Landauer formal-
—lims_o+(w*id) transforms the above Green’s functions ism was used by Barnamd Fert to describe coherent trans-
into retarded or advanced versions. The coupling procedurngort across a single interface between a ferromagnet and a
has enabled us to express the infinite open system in terms nbnmagnetic metdf In this section, we will show that our
the three subsystems where the information of the leads isults for the spin current can also be understood within the
contained iny (g .- The denominatoD, contains the framework of the Landauer-Biiker formalism. In order to
terms proportional to a self-energy that arises from the couderive the spin current, we first calculate the ensemble-
pling of the system to reservoirs. averaged spin-dependent current operator in second quanti-
The Keldysh Green’s functiond~/> describe the statis- zation by means of Keldysh’s nonequilibrium perturbation
tical properties of the system. Since the decoupled regiontheory.
are in equilibrium, they have well-defined electron occupa- The spin-dependent current operator for the conduction
tions nf, pe{L,l,R}, and therefore the Keldysh Green's electrons in second quantization reads as
function for the subpartg<’> can be expressed as

7,

05 (X)) =NBLOR (XX ) —gh (X X)],  (2D) “~2m TPV VHT,)] 33

g;a(X,X’)=[nF—1][gg,a(X.X’)—gL,a(X,X’)]. (28) iﬁr:r;ﬁtt we obtain for the ensemble-averaged spin-dependent
According to Ref. 42, the system ceases to depend on the _
occupation number of the intermediate region so that the — @ _ Toer +r

, < - " (Zop)= lim (Vo= V) (W (r',t" )W o (r,1)).
unperturbed Green’s functid@,, is given as a superposition V.
of terms that depend only on the properties of one or other (39
grand canonical ensemble for the reservoirs where the re
spective electron occupanomdz(R’ are associated with cor-
responding spectral functions defined By .. We can
therefore write the Green’s functio®; with help of the
space representation of the spectral functions as

The averagé\lfﬁ(r )W, (r,t)) can be written in terms of
the Keldysh Green'’s functiorill). Due to the stationary
state character of the present problem the continuity equation
V(Z,p)=0 holds, which allows us to calculate the current at
an arbitrary point in the system. For one-dimensional cases,

Gi(x,x’)=n,';AL,a(X,X’)JrnEARya(x,x’). (29) it is possible to write Eq(34) as

The spectral function#\ (g, . tell us about the nature of )= f

allowed electron states regardless of whether these states are Lap 2m

occupied or not; on the other hand, the Green’s fundBgn

tells us how many of these states are occupied. In the cagghere we took the Fourier transform into the frequency do-

where the arguments,x’ are at the interfacesP,Q  main and expressed the averag@ﬁ(x Y. (X)) by the

e{L,R}, Keldysh Green’s functio . Because our system is quasi-
one-dimensional, the extensions to higher dimensions are

AL o(P,Q)=itv G (P,L)GE(L,Q), (30) achieved by means of Fourier transforms of the coordinates

parallel to the barrier so that

Ilm (&X/ x)Giﬁ(nyr;w)y (35)

AR,Q(P! Q):iﬁvR,aGra(P!R)Gz(R! Q)! (31)

where G (X, X" K| 0) = f_ d? €M *G(r,r";w),  (36)
v __ ﬁ@a _;r ) (32 wherer is the three-dimensional coordinate;r”—rH’ is the
LRe™ 2m TLRLa TLR)a two-dimensional relative position vector parallel to the bar-
p p

rier, andk; denotes the two-dimensional electron wave vec-

are  the electron  velociies  and Y .  tor parallel to the barrier. Similarly, Eq34) becomes

= YL(R).al £(R),L(R)]. A similar case holds forG,,

which describes how many states of the system are empty. . eh2pP (= deH do

To obtain the corresponding expressions & , n=(® has B = "om f (ZW)J 5 im (dyr = y)
L(R)_ - - x' —x

to be replaced by 1 according to Eq(28).

G B3 (X,X/;k”;w), (37

V. SPIN-POLARIZED TUNNEL CURRENT . L
where the spins in the ferromagnet are assumed to be distrib-

The formulations by Landauer and ilker for currents uted uniformly and to have the same spin orientation such

through a finite region of noninteracting electrons have conthat pP represents the density of localized spins.

tributed significantly to the clear understanding of mesos- The extension to three dimensions leaves the spatial de-
copic transport as long as it is coherent across the device. fendence of the Hamiltonian unaffected in the direction per-
one uses phenomenological approaches to calculate thpendicular to the barrier and only leads to a change in the
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frequency arguments of the corresponding Green'’s functions The term#2 G2(£,R)G(R,L)v| ,Ur . COrresponds to
(cf. Sec. V). Therefore, we focus initially on the one- the spin-dependent transmission coefficient through the in-
dimensional case and extend this to full three-dimensionalermediate regiorT ,(w) derived in Appendix A and with
version only at the end. Furthermore, since spin-flip pro-his identification takes the form of

cesses are neglected throughout, the teggg)=(Z,) is

diagonal. In the following, by applying the nonequilibrium ME »do | 5

coupling theory of Feuchtwang, we reexpress the spin cur- (Zspp= —eg ”aﬁwﬁ(nF_nF)Tw (41
rent in terms of local quantities to obtain Landauer-type for-

mulas for the mean-field and perturbation model. From this we see that calculating the spin current in the

infinite open system is reduced to obtaining the spin-

dependent transmission coefficiemt,(w). The statistical

] o properties of the system are solely reflected in the difference
(35) is replaced by the single-particle Green’s function of thegrand-canonical ensembles. The number of current-carrying
Hamiltonian(2) with the spin-dependent potenti},(x) (8)  states is different in the reservoirs to that in the structure and

A. Spin-polarized tunnel current in mean-field model

and inserted into Eq9), this requires a redistribution of the spin current among the
42 g states at the interface and thus leads to a spin-dependent
€ T interface resistance
Iy =— f —lim (9 — (XX’ n . : . .
(Zsp 2m§a“ Ta —% 2T, X(ﬁx 9x)Ga (XX"), As pointed out before, the three-dimensional case does

(38  hot introduce any new complications, so that the current at

zero temperature is given as
where the frequency argument is dropped for convenience

from now on and the superscriflF) denotes that the spin e my?P u

current is calculated within the mean-field approximation. (Igg{MFF—%—ZE Ual:f  de(u—e)
Here, the nonequilibrium bias of the system is contained im- (2mh) a ~Hog

plicitly in the expression foG; . We need to incorporate the u—ev

properties of the system, such as information about the bar- —f x de(u—eV—e)|T,, (42
rier and leads coupled to different reservoirs, directly into the N, eV

calcul_ation:a Lo _ whereu = u, and»?P is the surface area of the junction. The
Using G,—G,=G, — G [cf. Egs.(29 and (B1)], dif-  magnetic mean field of the ferromagnets now includes the
ferentiating, and taking the limit at the partitiafy for ex-  three-dimensional spin density instead, so thag®

ample, we transform the spin currgi35) into :<Sf(R)>‘]pEI(DR)/(21U“0)'
ef? » dw ~ . . . .
<I¥|rf = mz Uaj 2_[G§(£,/j) 7’L>a B. Spin-polarized tunnel current in perturbation model
a — 0 &TT !
Turning to the perturbation model and thus neglecting the
~G(L.L)Y ] (39)  spin splitting of the bands in the dispersion relati@h the

transmission coefficients will be the same for different spin
Inserting the expressions f@;'~(£,£) into Eq.(39), and  orientations and consequently E@1l) vanishes. However,
replacingy;,, andy; , with the corresponding expressions We examine what happens if we include the expansion of the
in terms of their retarded and advanced Green’s function byteracting part of the Hamiltoniaki e instead. Thus, we

using the differentiated versions of Eq@7) and (28), we  Nave to expan@_;” of the full interacting system in terms
obtain of the Green’s functios =/~ of the unperturbed single-band

HamiltonianH,. Using Eq.(15), we calculate the Green'’s

= de function G=/> to first order inH g (5),
(Tep :—eﬁzg aaﬁwﬂ(n'ﬁ—nﬁ) )

J
G 1 (0X10) =G~ (xX10) 85— 52 (Spr )

XGA(LR)GL(R, L)V oVR « > (40
where nE(P ={exf Bw—u®)]+1} 1 are the occupation X[G™7(X,Xp ;@) G¥(Xp X ;@)
- . . . R)
numbers of the reservoirs with chemical potentials®. +G’(x,xp;w)G<’>(xp,x’;w)]. (43)

Although the spin-up and spin-down electrons are not

coupled in this model, it is possible to assume fast® are  Dropping the frequency argument and neglecting spin fluc-
independent of spin and are set by the reservoirs that ateations, this gives the first-order perturbation expression of
implied to be in direct contact with the semi-infinite ferro- the spin curren{Z in Eq. (9),

magnetic slab4? Since in the mean-field model fluctuations

of individual spins are neglected so that their only contribu- Pen
tion is a macroscopic change of the band structure, the non- spD_ B
equilibrium result(40) is analogous to a linear response ex-

pression derived previously by Tsymbal and Pettifor basedvhere the superscripfPen denotes the perturbation treat-
on the Kubo-Greenwood formufd. ment of the problem and

eh?) = do
om % (Sp) Lﬂcpetxp), (44
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CPe(Xp) = lim (dx — d)[G=(X,Xp) G¥(Xp ,X")
x" =X

+G'(X,%p) G~ (X, x")]. (45)
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which is oscillatory and varies with the thickness of the fer-
romagnet. Finally, we can express the contributions to the
spin curren(ZEh ), pe{L,R}, in terms of local quantities
only:

In the present case of a continuous system, we replace the

sum over all spins on either side of the barrier in ) by
a spatial integration,

(Zepo=(Tp) T (Thir): (46)
where
en2JptR c R+1g
Per _ v4
<Ispt.L(R)>_ om <SL(R)>L|L fR dx (r)
= do oo
X 700—7TC (XL(R); (47)

<I§g[p):—2ef_ g(nk—nﬁ)TNp- (51)

The difference between the usual Landauer formula and Eq.
(52) lies in the dimensionless quantity

tohf

2€P

NP=

Im{r &5 ], (52

which reflects the amount of spin polarization from each fer-

as before(Sf(R)) depends on the spin orientation of eachromagnet. The first term in Eq52) uohb/€P also arises in

ferromagnet, ang-(R is its density of localized spins. A
position within the left ferromagnet is indicated By and
within the right one byxg, respectively. The contribution

the theory of Pauli paramagnetism for one dimension. How-
ever, the magnetic fielthh=(S;)JpP/2u, originates now
from the spin order in the respective ferromagnet. The sec-

(IZ’S{) to the spin current depends on two terms: one origi-ond term Inﬁr;;g;)], Wherer;):]_—iﬁvar(’P,’P) is a reflec-
nating from the left ferromagnet and another from the righttion amplitude (cf. Appendix A, arises due to spin-

ferromagnet.

Again reexpressing the Green’s functio@sin terms of
their local expressions, the basic principles used(Kﬁ”,)Ft)
are repeated for the evaluation ¢IZ5). Inserting Egs.
(19—(22) into Eq.(45), usingG2—G! =G; —G_ as above,
differentiating and taking the limit at the partitiof or R,
we can write the integrand of the spin currédb) in the
following form, depending on the location of the spin on
either the left or right side of the systeimR,

Per :2_m”< > _T>A<
C™(xp) ﬁz[xpG (P,P)=xp G=(P,P)]

~[5 G™(P,P)~ ¥, G=(P,P)I[X3G*(P.P)

+XpG' (P.P)], (48)

wherex,= xp(Xp . P) Xp(PXp), With pe {L,R}, Pe{L,R}.
Writing G=/> with help of Eq.(29) andx~'~,y~/> by dif-
ferentiating Eqs(27) and(28), we transformCPer(xp) into

(49
where we replaced? G¥(L,R)G'(R,L)v vg by the trans-
mission coefficientT(w) through the intermediate region
(A5). In Eq.(49) the quantityi/(%v,) is the amplitude of the
unperturbed single-particle Green’s function,

G?3(P,P) with Pe{L,R} relates to the amplitude of the full
Green'’s function at the interface. Next, we spatially integrat

over the ferromagnets. Becau:?@(R) is the only term de-
pending on the integration variabtg g, , we define(cf. Ap-

pendix Q
J‘R-HR
R

cPef(x):—z—m(nL—nR)T Ga(PP)—i—”a+cc
P p2 FTUF T R NPT

L

J

2mu L(R)
h

~rla

dXL(R)XL(R) )

Zrla _
L(R) ™

(50

7|L

wherea

€

dependent reflection of conduction-electron waves at the
respective barrier interfacPe{£,R} back into the ferro-
magnet. It can vary only betweenl and 1 and becomes
constant when the thickness of the ferromagnets is large

since lim _o(—i&)=1. Thus, the oscillatory behavior of
P p

the spin polarization is due to the finite size of the ferromag-
nets and is similar to the fluctuations caused by an individual
spin.

The spin polarization, which arises from the reflection off
the barrier, is a quantum interference effect and can intu-
itively be understood from this calculation. In the model it is
assumed that the Fermi energy in a particular lead is uniform
upon biasing the junction so that the main effect of the bias
is a net particle drift within that lead. We now probe the left
ferromagnet with an electron incident from the left that in-
teracts, depending on its spin orientation, with a localized
spin so that it is either transmitted or reflected. If the electron
is reflected its wave function interferes with the incoming
unscattered wave of another electron in a way that depends
on the reflection off the localized spin. From Eg3) it can
be seen that a current is proportional to the difference in the
probabilities of particle densities traveling in opposite direc-
tions. Because there are many spins in each ferromagnet, the
oscillatory partEL(R) in Eq. (52 is a superposition of all
waves from each individual scattering event and its ampli-
tude depends on the reflection off the respective barrier in-
terface. The contributionQISPS{p) to the spin current are

roportional to the relative density of spin-polarized elec-
rons reflected off of the respective side of the barrier, i.e.,
the difference between the densities for the reflected spin-up
and spin-down conduction electrons. Consequently, the ef-
fect of the reflection off an interface leads to uniform spin
polarizationNP(w) or in other words to a spin-dependent
interface resistance for the itineraselectrons that interact
with the localizedd electrons. This leads to an interesting
relation between the charge current and the spin current:
whereas the charge current depends only on the transmission
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coefficientT(w), the spin current depends on the product ofthe minimum ofE,, corresponds to parallel orientation of the
reflection amplituder(w) and transmission coefficient slabs sincd S7)(Sg) is positive; otherwis <0 leads to an
T(w). antiparallel alignment.

Finally, for weak bias and low temperatures we assume In H.4 as defined in Eq(6) the localized spins in the two
thatT(w) is approximately constant so that we can transformferromagnets are treated separately. In the right ferromagnet
Eq. (51 into the localized spins interact with the polarized conduction

spin density arising from localized spins on the left side
Per 2e o_ p whereas in the left ferromagnet the localized spins interact
(Zspp) =~ 7 (kL= rr) T(ep) 7°=7"Ze), (53 with the polarized conduction spin density due to localized
spins on the right side. The total exchange energy for spins
where(Z,) is the usual Landauer expression for the chargepn different sides of the barrier is thus the sum of these two
current and contributions, from alln and m spins in the left and right
ferromagnet, respectively.

1 (»

P=— deNP, 54 J
L] P 59 Eor—5 2 ol(SNVLV 00 e (57
p=L, Ry
the efficiency of polarizing conduction electron spins where @

we have setu,=u and ug=p—eV, as before. Thus, where the sum is over all spin states gnd, denotes that
nP(er) is equivalent to the phenomenological polarizationonly contributions between the ferromagnets but not within
constant that describes the efficiency of spin injection fromeach of them are included. The spin-dependent particle den-
ferromagnetic into superconducting metals in the experisity is expressed in terms of the Keldysh Green’s function,
ments by Tedrow and Mesen/&or fr%rg ferromagnetic into q
normal metals by Johnson and Silsbee. T _ [T Ge )

The three-dimensional case is treated similarly as before (W (X)W a(Xp)) = Ihj,xZﬂ- CapXpXp; ). (58)

in the mean-field model so that the current is given at zero . . h il h
temperature as Again we discriminate between the mean field and the per-

turbation models.
D

2
<I§'§{ Pe> - %e L J'M de(pm—e€) A. Interlayer exchange in perturbation model
2
(2mh)7 Jo In the perturbation model considered in Ref. 38 the exact
n—ev LR Green’s functiorGa<ﬁ in Eq. (598 is replaced by its first-order
- Jlev de(u—eV—e) | T(N-+N"). approximation(43), so thatE., in Eq. (57) gives
(55) Per_ 12 * do .
Ece=J szHE’:,FRm (SIS IM | 5— G (X Xqiw)
VI. NONEQUILIBRIUM INTERLAYER X[Ga(Xq ,Xp;w)+Gr(Xq,Xp;w)]. (59)

MAGNETIC-EXCHANGE COUPLING

The int tion bet the localized s in f For a single spin on each side of the barrier and equilibrium
€ Interaction between the localized Moments I 1emogper ,ho g gyer into an expression that can be derived from a

; ) ; . ox
magnets is mediated by polarized conduction e.h.aCt.ronSCIosed-loop Feynman diagram in conventior@matrix
Schwabeet al. found that the presence of a nonequilibrium 46

: . . e theory,” such that
bias across a junction significantly alters the range of the

RKKY-like interaction such that the interaction energy be- G (XL XR)[ G (XX ) + G (X, X)]
tween two slabs of spins is proportional to their thickn&ss.
Here, we relate this unexpected proportionality to the spin- =-2ngIm[G’(x_,xr) ]2

polarized tunnel current of the perturbation model introduced]_

in the previous section. Furthermore, we will point out that

in the mean-field model there also exist terms in the couplin

energy proportional t¢S; )(Sk) that are equally related to a

spin currem. . . . . The expressions for the local Green’s function, given in
The spin order in electronic systems is mainly due to theSe

exchange interaction energy of electrons. For two ferromag=. - IV, replace the Green'’s functiogsin Eq. (59), so that
nang ; gy : Yfter carrying out similar manipulations to those for the spin
netic slabs this energy may be represented as

current, and realizing thaB?(P,Q) — G'(P, Q) =Ar(P,Q)
+A(P,Q) (see Appendix B we obtain EZ®'=EZ©)
+ER¥0 | where

his leads to a well-known expression for the RKKY
interaction?’ In other words, in equilibrium the Keldysh loop
eads to the same results as conventidghalatrix theory as
it should.

Eex= _A<Si><SZR>1 (56)

whereA is a parameter with units of energy which is a func- 2 ~r
tion that depends on the barrier properties and the size of the pero)_ 0 R - @ L. Ry per25R EL
S _ o ex hghg Im (Ng+ng)(At")
slabs, anc{Sp) is the average spin polarization of the local- 4f o 27T €R €L
ized d electrons in the respective ferromagnetAlf0 then (60)

r

_r’
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* de & & where the contributions from each ferromagnet to the spin-
Esxe'(')=2/Lof E(nk—nE)T hg— NR—hE==Nt |, polarized tunnel current51) define a magnetic field that is
‘°° UL UR (61) transported by spin-polarized conduction electrons,
and m
hgpt:g<zspszp>' (66)
o c R+1R )
ELR)= JL_IL fR dX Ry XLR)XL(R) L(R)] Further, we have introduced new dimensionless quantities,
X XPR [L(R),XL(r) ], (62 Jp,|
" No=""20 — 3g(el) g, (67)
which varies foriw=V"(® asl| g, with the thickness of the hvg

respective ferromagnet unIilZﬁj’a in Eq. (50) and is expo-
nentially damped fofi w<O (cf. Appendix Q. The dimen-
sionless quantitiedlP from Eq. (52) describe spin polariza-
tion from the ferromagnets and the transmission amplitud
t'=—iAJu vrG'(L,R) is derived in Appendix A. The re-

lation between transmission amplitude and transmission COften be estimated from the Kondo temperaffr€or the
efficient is given b_VT(w):W(w)[Z- Forhw=VP, Esf_r(o) IS three-dimensional case we have to replace in E&§)
purely~oscnlatory|nlp, because in the case of our simplified <15§£p> by the expressior(55), the number of localized
modeI§L= —i[exp(dq,lp)—1]. This contribution to the ex- spins n} by ﬁd:pSDlpV2D7 and g(ep) by the quasi-one-
change energy is also present in the equilibrium case since in : . ~ oD N1 e

Eq. (60) nt+nf=2n;. The second contribution to the ex- dimensional density of stateger) = (v""m#) ~Vm/2ee.

h Per() : ional he | h of th Since in a steady-state situation the spin current is inde-
change energy,, " is proportional to the length of the pendent of position, it carries information of local spin po-

ferromagnets, smc_égzlp, and thus is responsible for the |arizations throughout the entire system and thus represents a
unexpected behavior found in Ref. 38. Further, it vanishes ilon|ocal quantity. This property of the spin current should
equilibrium, i.e.,nE—nE=0, so that it represents the non- aiso be reflected in the exchange energy. Upon biasing the
equilibrium polarization effect caused by the current of spin-junction its symmetry is broken, so that a charge current is
polarized conduction electrons, as pointed out in Sec. IIl. Ingriven through the system, resulting in the occurrence of a
the remaining part of this section we want to discuss the termeyrrent” term E2eO out of equilibrium. This term depends

P ; H H H . .. . . .
Ecc in more detail. Before, we add the three-dimensionaln the transmission coefficient, the spin polarization by the

wherengzpplp gives the number of spins in the slabs and
g(eg) = (wh) 1Yym/2¢r is the one-dimensional density of
states at the equilibrium Fermi energy of the respective lead.
She dimensionless produdtg=J/wfv, which is used to
quantify the coupling constadtfor the s-d interaction, can

case of the interlayer exchange at zero temperature, ferromagnets and the difference of the electron occupation in
the reservoirs. We have shown in E6) that in correspon-
mv2P [ (u dence to the different branches in the Keldysh loop, the ex-
E3D, PefO) — dE( _ E) h . . . h . I d d d .
ex 2ah)? Jo M change interaction In this term Is related tdaaward spin

current from the left side of the barrier acting on spins on the
right side and @ackwardspin current from the right side of
the barrier acting on the spins on the left side. According to
Eq. (10), this is the same as saying tHg"" occurs via the
2 [LWR FrOEr interaction of the ferromagnet on the right side of the barrier
[ o hoho { & §LH
Im —1t,

n—eVv
+J’ de(u—eV—e)

—eV

(th?2 (63  with the nonequilibrium current of magnetizati¢f,) in-
jected from the left ferromagnet and the interaction of the left
ferromagnet with the nonequilibrium current of magnetiza-

R
R

my2 [ (u p—eV tion (Z%) injected from the right ferromagnet. Thus, for the
30, Peth = 5 f de(pn—e)— f de(u—eV—e) exchange interaction the field effect of the spin currents from
(2mh)* Jo —ev different sides of the barrier subtracts rather than adds as
2440 £0 £ occurs for the overall spin current in E@L6).
x{ 220 hg_L NR— hg_R NL ] (64) This fundamental difference is due to the fact that the
h UL UR exchange interaction depends on the induced spin densities

: while the spin current involves the difference in densities
i the th di onal spin densi €fmes velocities. Because the global direction of the charge
again the three-dimensional spin density. current is defined from left to right, i.ey, >ugr, we find

In the quasi-one-dimensional system we are Stdyingo .o nonequilibrium effect on the interactionBf"™® is
here, the important contributions to the exchange interaction

are close to the Fermi surface of the respective lead, so th% %p;rgg?sagnoéI;P‘é'-gr;gé?tELr'fm\zviealgiit:m?n'?gg'c_?_lhfgr'
the electron velocities, can be replaced by their Fermi g y :

velocitiesu® and Eq.(61) approximated by result is different from that found for the spin current of the
P : full system (46) that is(Zspy ) +(Zspir) for parallel align-

Pexl) L e ez R ez ment of the ferromagnets. It is only in the case of antiparallel

Erk =~ to(hspV'R(SR) —hgp V' S))), (65  alignment that the results are proportional. Later in Sec. VI
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TABLE I. Parameters for the ferromagnet-barrier-ferromagnet tunnel junction described in the text. The
ferromagnetic materials consist of either Ni or Fe and an insulator material of eith®s At MgO. The
exchange interaction between tbeelectrons within a single ferromagnet causes a splitting of their band
bottoms into two different spin subbands that is proportionaldtu.

Insulator ¢ (€V) s(A) Ferromagnet u (eV) ke (A™YH Jp/iw 1(RA) Vo(&v) Volu

MgO 0.9 21 Fe 5.0 1.26 0.32 80-250 5.9 1.18
Al,0; 1.8-35 12-18 Ni 5.0 1.26 0.58 80-250 6.8-85 1.36-1.7

we will present numerical examples to demonstrate this con- © de
. . . EMF() — 2 nL_nR)
nection between spin current and exchange coupling. ex Mo —277( FNE
Thus, we can now give the following explanation of the « o

ferromagnetic slab size dependence in the exchange interac- & &
tion found in Ref. 38. Upon biasing the system out of equi- X[Ta e ] , (70)
librium, a steady-state current is driven across the junction so Ubia URal) ex

that in the ferromagnetic slabs conduction electrons interact : -
) . : . ; and for consistency the limit for large ferromagnets was
with localized moments and become spin polarized. This cre- ~ . CMF(O)
ates an uniform magnetic fielg,, (66) carried by the spin- taken such that-i&, ,=1 in Eg, ™. Now the electron ve-
polarized curren{51). Because the spin current is uniform IOC'tY’ transm!ssmn rcoefﬂmept, mearn magnetic _f|eld, qnd re-
throughout the system, the uniform magnetic field acts on th€ction amplituders, ,=1-ifvp .G,(P,P), which arise
localized spins in the ferromagnet of the other side of thdf0m awave being scattered off the respective barrier, are all
barrier. A uniform magnetic field acting on a spin system isSPin dependent. _ .
proportional to the number of spins involved and thus the Because the exchange energy depends on the relative spin
exchange interaction is also. orientation of the two ferromagnets, we furthermore want to
show thatEM™") has terms in(S7)(S%). For this we assume
a small band splitting relative to the Fermi energy in each
B. Interlayer exchange in mean-field model ferromagnet, so that p'ava(l—ﬂoh‘;/Zep), and a thick
barrier, such that its main contribution is an exponential

In the mean-field modeE,, in Eq. (57) derives from the . , . . .
interaction between localized spins and conduction electron amping. The spin current in the mean-field mog#) is
us approximated by

in different spin subbands, so that the unperturbed Green’

function G, differs for ferromagnetic and antiferromagnetic

interlayer ling. The nonlocal terms describing the ex- F *do | g Hohf

erlayer coupling. The nonlocal terms desc g the e <Ignmp>%_2€J —Et-n®) T _ (72)

change coupling across the barrier are already contained im- —w 2T 2 €,

plicitly within the unperturbed Green'’s functid@, that re- . . _ L . o

places the exact Green’s functi@j,, in Eq. (58), leading to This form of the spin current is rather intuitive since it is
b expressed as the probability of spin-polarized electrons tun-

neling through the barrier. The properties of the barrier are

J » dw contained in the transmission coefficiemt whereas the
EQ/IXF: -3 2 Ua|<3'23> |mf 2_Ga<(xp Xpi @) amount of spin polarization is determined by the Pauli factor
p=L, Ry —eem ex wmohb/2 €p. Inserting Eq.(71) into Eq. (66), we obtain Eq.

68 (69 for the nonequilibrium contributioE™™" in analogy to
the perturbation result. All terms in E¢65) are of second
order in the coupling constang and proportional to

The sum in Eq(68) is over an infinite number of spins since (S{)(Sk). The difference between this approximation and

we assumed semi-infinite slabs in the mean-field model. Inhe perturbation result, where we used Ex{) instead of Eq.

this case, the resulting total spin moments per unit area argr1), lies in the assumption of very large ferromagnets,
not strictly defined and we therefore assume tak IS  _{E <1, and thick barriers;l,~1. The three-dimensional

finite but large such that the mean-field approximation stillcgse at zero temperature follows in analogy to @@).
holds well.

Replacing the sum over all spins in both ferromagnets by

a spatial integration as in E¢50), we rewrite Eq.(68) en- VII. NUMERICAL RESULTS
tirely in terms Of,\|,|?:cal %’SS?O”SM%ﬁ)WaS done similarly inthe | order to make quantitative predictions for comparison
previous cased g, =Eg, '+ Eg ', where with possible experiments, we implement our calculations

with model parameters for the geometry of the trilayer junc-
tion similar to those studied by Moodeea al® and for sim-

ME(O) » d 3 . plicity take the same ferromagnetic materials on either side
Ete = wo 2 hZJl ﬁnﬁ Im et (1-rpa) of the barrier. The parameters for Ni and Fe are taken from
p=L.R €pa ex Mukasaet al*° in order to obtain a rough estimate for the

a

(69) conduction-band splitting. The values are collected in Table
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FIG. 2. Range functio in the perturbation model vs applied

bias across the junction for different ferromagnetic slab thicknesses FIG. 3. Range functior in the mean-field model vs applied

=15, 80, 120 A . The barrier thickness is assursedl2 A and  bias across the junction for different ferromagnetic materials Fe, Ni

the ratio of barrier height to Fermi enerlyy/u=1.2 for MgO and  with slab thicknesseb=15 A . The barrier thickness is assumed

Vo/un=1.5 for Al,O3, respectively. s=12 A and the ratio of barrier height to Fermi energy/u
=1.2 for MgO andV,/u=1.5 for Al,O5, respectively.

I, where the value for the Fermi wave vector in equilibrium

ke implies an effective electron mass of/me=1.20. We range function is calculated for barriers with thickness

always _take_ the zero-temperature I|_m|t and, a,ccordm_g to OUL " »_12 A for two different barrier materials, MgO
model in Fig. 1, express the barrier Green’s functions in

terms of Airy functions(cf. Appendix D and ALO3, i.e., for two different initial ratios of the barrier
i y 1u - APP LT . ._height to the equilibrium Fermi energy,/n=1.2 and
It is convenient to define the dimensionless interactio

range function, which represents the variation of the interac- o/n=1.5, respectively. Additionally, we varied the length
ang ’ pr . of the ferromagnets between a very thin slabl5 A and
tion between ferromagnetic slabs, in the form

what was achieved in recent experiments by vacuum
Sz D evaporatiof or sputtering techniquél =80, 120 A . _
D)= (W_) 7 Ee (1) _ (72) In Fig. 2 the range function shows oscillatory behavior as
Mo h'5h§ m 2P the bias is varied. For very thin barrier thicknéssl5 A the
period of the oscillations is very long and, in the range plot-
This depends on the width of the slabs, which for simplicityted, exhibits only one full oscillation whose amplitude grows
is assumed to be the same for bbthl =1, on the form of  stronger and period shorter as the bias is turned up. For the
the barrier and also on the bias. The change in the couplingwo different barrier materials the oscillations show similar
behavior of the ferromagnets is shown as a function of apgualitative but different detailed behavior. This is mainly due
plied biaseV/u for the perturbation model, Fig. 2, and to a stronger exponential damping for the higher barrier that
mean-field model, Fig. 3, respectively. For both models theeduces not only the coupling strength but also the relative
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strength of the oscillations. The proportional increase of os-
cillation strength with increase of bias can be understood
from the fact that for greater bias the spin current becomes , 5y 46|
stronger so that the interaction between the slabs is largely
influenced by the effect of the spin current according to Eq.
(65). Furthermore, the decrease of the oscillation period is
also connected to the spin current. The two cutoffs of the 1s5x10°}
frequency integration in Eq(61) lead approximately to a o
wave vectorgey=+2m eV#, since V-—VR=eV, which
contains the bias implicitly. This wave vector is responsible 5
for the principal oscillation out of equilibrium. For a detailed ~ 50X10" -
discussion we refer to Ref. 38. The oscillations that do not
vanish in equilibrium are considerably weaker and are not
visible on the scale used in the figures. 5x10” ‘ . .
Increasing the thickness of the ferromagnetic slabs, we 0.00 0.10 0.20 0.30 0.40
find for MgO that the behavior described above becomes eVin
more pronounced for=80 A beyond which two types of Vjp=15
oscillations start to occur, i.e., for=120 A: a strong ' ‘ ‘
“slow” oscillation and a weaker “fast” one. For AD; the ot s ARM M |
separation into slow and fast oscillations is already visible at ) a /
=80 A. The fast oscillations grow more rapid for both 80
MgO and ALO; since the exchange interaction is a function /
of the slab lengtH. Further, the faster the oscillations the 110710} P4 i
stronger their destructive interference so that in thgOAl o S/ )
barrier they appear to be very strongly damped andl for - /
=120 A have almost vanished completely. Finally, the g ,
strength of the slow oscillations increases for largesince r s s

in Eq. (61) the term&, is proportional td, which is another

indication that the term proportional to the spin current in-

deed dominates the nonequilibrium exchange interaction. To ;1 , ‘ ‘

explain them in more detail, we point out that for,@k and 0.00 0.10 0.20 0.30 0.40

=120 A the parameters lie within the range of the mean- Vi

field model where we can assume that semi-infinite slabs are F|G. 4. Normalized spin current-voltage functi@iA] in the

a good approximation of the ferromagnets in the junction. perturbation model for parall¢ferromagnetidFM)] and antiparal-
Thus, we turn to Fig. 3 and find that here the fast oscillaHel [antiferromagneti¢AFM)] alignment of the ferromagnets. The

tions disappeared and the curves can be roughly viewed dkicknesses of the ferromagnets drel5 and 80 A and of the

envelopes to those in the perturbation model. However, therarriers=12 A . The ratio of barrier height to Fermi energy are

are two fundamental differences. Since Ni and Fe have difYo/x#=1.2 for MgO andVo/u=1.5 for Al,O, respectively.

ferent band splitting, the transmission through the barrier is

altered for the different materials, leading to stronger coustronger damped and, second, its general features vary over a

pling for Fe whose mean field is approximately twice asWwider range of applied voltages.

strong as that of Ni. Further, here the coupling strength for In reference to the analytical results discussed in Sec.

the barrier thickness=15 A is already as strong as for VI A, we would like to demonstrate how the switching is

=120 A in the perturbation model. The reason is that in"éflected in the spin current. We turn to Fig. 4, where we

calculating the exchange in the mean-field moti8) we  Introduced the normalized function

assumed that one of the slabs was semi-infinite and that the

interaction was taken into account to all orders, because in

the unperturbed Hamiltoniaf2) we replaced the single par- (27h)?
ticle potential V(x) (3) by the spin-dependent potential C)=— ————(T"™, (73
Vo(x) (8). 2M tohov

What is common to both models is the general behavior
of the interaction switching from a ferromagnetic coupling to
an antiferromagnetic one at an applied voltage ofwhich has the dimensiopA], and assumetiy=|h§|=|h|
~0.38V/u in the case of the MgO barrier. This switching andl =1, =1g. Figure 4 shows the spin-current-voltage be-
behavior is absent for the higher /8l; barrier at this bias. havior for ferromagnetic and antiferromagnetic alignment of
Without showing a graph, we note that a switching neverthethe slabs. As in the case of the exchange interaction, the
less occurs at much higher bias-eD.8eV/ . In a sense the length of the ferromagnets is varied betwden15 A and
behavior of the AJO; barrier shows the same general cou-1=120 A . The barrier again is=12 A wide and consists
pling behavior as the lower MgO one; only it is, first, much of either MgO or ALO;.
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The switching from parallel to antiparallel alignment in toresistance curves. Further, Slonczewsgointed out that
the exchange interaction reappears at a slightly lower bias ithe interlayer exchange coupling in a trilayer junction can
the form of switching of the spin current from a negative tobecome negative, depending on the barrier height of the in-
a positive spin current in the antiferromagnetic set up of thesulating potential. In magnetoresistance curves for Ni
junction. For slab$=15 A exists a switching for both bar- — Fe/Al,O;/Co junctions Miyazaket al. found an additional
rier materials, whereas for slabs 80 A the switching oc-  step that they related to a negative interlayer exchange cou-
curs only for the MgO barrier, similar to the exchange inter-pling, i.e., an antiferromagnetic or&They stressed that the
action in Fig. 2. This demonstrates the proportionalitycoupling also depends on the junction area. If the junction is
between exchange interaction and spin current in the antifenot too small, edge effects can be neglected so that our three-
romagnetic configuration of the junction as pointed out indimensional expressions for the coupling and spin current
Sec. VI A. In real systems other contributions such as thejive a proper account of the effect of the junction area on the
various anisotropy energies have to be included where icoupling strength.
most experiments the tunnel magnetoresistance is controlled One of the most surprising experimental observations
by an external magnetic field. A quantitative estimate withconcerns the strong decrease of magnetoresistivity as the bias
an account of these additional contributions will be given inis increased. Mooderat al. reported for their junctions that
a subsequent publication. the change in magnetoresistance is small for dc biases up to
Looking at both graphs, we observe that oscillations pri-0.1V beyond which it decreased much fastdn addition,
marily show in the antiparallel ordered structure whereas foMgO barriers showed more decrease as compared A0;Al
the parallel one they are almost completely damped. To exbarriers. Finally, the decrease of the magnetoresistance with
plain this behavior, we examine E@6). The two spin con- bias was larger when the magnetoresistance at low bias was
tributions (Zs, (r)), are different in their behavior. The smaller. Although the behavior might be different on a de-
contribution to the spin current arising from the left of the tailed level, our model incorporates qualitatively all the phe-
barrier (Zs,, ) comes from the region of higher chemical nomena described above. Turning once again to Figs. 2 and
potential u.. Therefore,(Zs,, ) predominantly shows char- 3 describing the interlayer exchange coupling, we find that
acteristic tunneling behavior where oscillations are stronglythe initial region is rather flat thereafter the influence of the
damped. On the other hand, in the right region of lowerbias is strongly increased. In particular, strong nonlinear
chemical potentiak — eV the spin current mainly flows into current-voltage behavior occurs at lower bias, if the barrier
the right reservoir away from the junction so that there is aheight and the Pauli factor, i.e., the band splitting, are
higher sensitivity to interferences Ky g), arising from  smaller, in correspondence to the experimental results. Fur-
scattering of localized spins and reflection of the barrier. Ifther, in agreement with the experiments by Pawdral. on
the two contributions are added, as it is the case for a ferrometallic superlattice$’ where the oscillations in the magne-
magnetically aligned structure, the oscillations are relativelytoresistance could be related to the oscillations in the ex-
small compared to the overall spin current. On the contrarychange coupling by measuring the saturation field, we find
if the two contributions are subtracted, as is the case for athat a voltage-induced rise in the ferromagnetic coupling
antiferromagnetically aligned structure, the oscillations carstrength is related to a decrease in the tunnel magnetoresis-
become large relative to the overall spin current. tance. Detailed calculations of the strength and nonlinearity
of the increase of the ferromagnetic coupling appear to be
compatible with the significant decrease of magnetoresis-
VIII. DISCUSSION tance observed. This work will be reported in detail else-
where.

Some comparison is possible between the results derived
for a simple model in the previous section and recent experi-
ments on tunneling in ferromagnet-insulator-ferromagnet
trilayer thin-film planar junctions. Most experimental mea-
surements in trilayer junctions are concerned with the change In this paper, we have studied tunneling in ferromagnet-
in resistance as a function of an applied external magnetimsulator-ferromagnet thin-film planar junctions out of equi-
field. According to a model by Julliefkit is argued that due librium. Using a proper field theoretic description for such a
to an uneven spin distribution of conduction electrons in thesystem, which is based on the nonequilibrium Keldysh for-
ferromagnets the probability of tunneling through the insula-malism, it was possible to extend previous treatments of the
tor depends on the relative orientation of the ferromagnetsspin current and exchange interaction. In particular, we de-
In the parallel configuration, there is a maximum match befived a Landauer-type formula for both our models and could
tween the number of the occupied states in one lead anexplain the spin-coupled interface resistance, first discussed
available states in the other, giving a maximum in the tunneby Johnson and Silsb&e"51and further developed by Valet
current and a minimum in the tunnel resistance. On the otheand Fert? Because our models describe coherent transport,
hand, in the antiparallel configuration, tunneling is betweerthe spin accumulation occurs throughout each ferromagnet,
majority states in the one lead and minority states in theonly depending on the barrier properties, the differences in
other that leads to the inverse of this behavior. This argumerthe chemical potentials in the two reservoirs, and, in case of
holds as long as the barriers are relatively high and thick anthe perturbation model, on the thicknesses of the ferromag-
the ferromagnetic slabs long so that the conditions for Egnets.

(71) hold. Numerous experiments have validated that this Terms in the nonequilibrium exchange interaction, which
model roughly predicts the behavior of the measured magneare proportional to the length of the ferromagnetic slabs,

IX. CONCLUSION
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were related to spin currents arising from s interaction  tering theory is that it allows for a separation between the
in each slab. This leads to an approximate, physically intuiinitial conditions, which can be adapted to the requirement of
tive formula for the nonconvergent behavior of the exchang@ny particular problem, and a scattering or transfer matrix
interaction out of equilibrium fot,—, i.e., this contribu- ~that depends only on the nature of the dynamics, the forces,
tion to the interaction appears to act as an uniform magnetiand the frequency. Since all aspects in this section only deal
field. In addition, the numerical results show an interestingvith single electron quantities, we drop the spin index for
switching behavior between parallel and antiparallel couclarity.
pling between the slabs for different applied biases under The scattering formalism describes the electrons in terms
feasible experimental conditions. In particular, this leads tdf in- and out-scattering states of the conductor that are re-
an explanation of the strong decrease of the tunnel magnéated by the scattering matrix
toresistance observed with increasing bias.
By using two different models, the mean-field model and
perturbation model, different aspects of the trilayer junction
were captured and shown to be related, i.e., the perturbation Aoyt
treatment is the natural approach for calculating the ex- (b )=
change interaction as it has been done for the RKKY inter- out
action, whereas the mean-field approach is the more obvious
one for treating the spin-polarized current. Under certain lim-
iting conditions these two models lead to the same reSUItSv'vhereS is a unitary matrix due to current conservation that
Naturally, it seems desirable to unify both models in a WaY, o< the block struc):/ture
that there is a possibility of treating strong coupling con-
stants for finite ferromagnets. This can be done within the
mean-field model, if the assumptions of semi-infinite ferro-
magnets is dropped and the potential structure is extended to
cover the full ferromagnet-barrier-ferromagnet trilayer junc- StL Sir
tion in the intermediate region instead. ( ) (A2)
To obtain a better quantitative picture of tunneling in a
trilayer structure, one would like to include effects such as
barrier nonuniformity, spin-flip processes, and carrier-carrier
and carrier-magnon interactions. Although our elementanp\nother equivalent description is via the transfer matrix. The
trilayer model omits these generally important complica-scattering and transfer matrices are equivalent descriptions
tions, we believe that the nonequilibrium Green’s functionfor transmission through the intermediate, disordered region
method is adaptable to include them. For example, the basf the system. A convenient property of the transfer matrix is
rier nonuniformity could be treated within a coherent poten+the multiplicative composition rule: the transfer matrix of a
tial approximation to the lateral modulation of the barrier nymber of disordered regions in series separated by ideal
thickness between the ferromagnets and the insulator. Qéads is the product of the individual transfer matrices. The
particular importance are also the effects caused by spin exgcattering matrix, in contrast, has a more complicated com-
citations. In this context we note the recent work by Zhangyosition rule.
et al®® who could explain the quenching of magnetoresis- To be more explicit consider again the local, single-
tance for the zero bias anomaly observed by Julliere. Iharticle potentia/(x) in Hq (2). The potential is continuous
would be interesting to extend the treatment of Spin excitaand it is assumed that the fundamental set of solutions of the
tions to the nonequilibrium case. Another aspect we are ingchrglinger equation in the appropriate subspace
yestigating at present are the spin-wave dynamics of th?vi’(x),vg(x)}, pe{L,I,R} is known. Therefore, the trans-
junctions as pointed out by Zilbermdh. fer matrix for transporting the wave function consists of a
linear combination of eigenfunctions with appropriate coef-
ficientsa,, b,, and their derivatives in the interval, R ].
A free wavevk(x) =exp(q,x) incident from the left is scat-
ACKNOWLEDGMENTS tered off the potential and partly transmitted to the right,
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APPENDIX A: COMPARISON TO TRANSFER MATRIX R L
To make a closer connection between scattering theory
and the nonequilibrium Green’s function approach, it is use-
ful to derive relations between Green’s functions and thevhere we identifya, =a;,, by =ayut, 8r=bout, Pr=Dbin
scattering or transfer matrix. A significant aspect of the scatand
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<v?<R> v?(R>)‘1(v'1<R> vL(R))(v'l(c) v'2<£>)‘1(v&<£> v5<c>)
viRR) vRR)) iR v R\ vi'(R) vL)] \vivL) viL)
1 (_iqReiqRR _efiqRR

Ly —A\[ eut e 1At
_2| \/qRqLW ( Q 1_‘R )(iqLeiQL£ _iqLeiqLL‘).
The conservation of probability density in stationary state implies thak ddt. From the transmission matrix the transmission
coefficient through the system can be calculated:

_iqReiqRR eiqRR

lagl? 1 4W?q, g
(w)=—1>= 5= 5 5 (A4)
lag|® |Td* (Q+ggrA)*+ (g lr+0RIL)
The transfer matrix, on the other hand, can also be written in terms of Green’s functions
1 [D'Agl(@t aR) ~DPA[1-i#vgG(R,R)]e AL+ aRR)
T . ' .
2i Jgrq W\ D?A[1—i%v G'(L,L)]€(@EHaRR) - —Dap e (AL~ IRR)
Therefore, the produdt®G3(£,R)G'(R,L)v vk amounts to
4 4W?
H2GA(L,R)G (R L) vp=— R y2(£,R) y](R, L) = b TLL - (A5)
|D| (Q+9.9rA)“+ (g T'r+arlC)

which equalsT (w) (see also Ref. §5Further, there exists a one-to-one relation between the transfer matrix and the scattering
matrix

S= - T21/T22 1/T22 (A6)
- 1/T22 - T12/T22 ,

with which a relation between the scattering matrix and the Green'’s functions of the system can be established,
[1-ifv G"(L,L)]e? L~ —ifi\u vRG (R, L)€ (L~ aRR)
S= . ,
—ifiJu vRG(R,L)€'WEHR)  [1-ihvgG'(R,R)]e” #IR%

The diagonal elements of the scattering matrix describe reflection off the respective interface, whereas the off-diagonal
elements are the transmission through the system. The elements of the scattering matrix amplitude can thus written in the
compact notatiot?

Sh= Opg— 17\0 0 GL(P, Q), (A7)

wherep,qe{L,R} and P,Qe{L,R}. Therefore, the reflection amplitudes at the interfaces are giverl,8s,, and the
transmission amplitude through the intermediate region' 5ys| & .

APPENDIX B: SPECTRAL RELATIONS

The following identity can intuitively be seen in direct connection to the spectral relation:

GA(P,Q)—G'(P,Q)=AL(P,Q) +Ar(P,Q), (B1)

where{P,Q} e {L,R}. The proof given in Ref. 42 allows for the reasoning that the fully coupled system in nonequilibrium
steady state only depends on the occupation properties of the reservoirs in the asymptotic regions of the left and right leads.
This behavior shows in a mathematical form in the functional relatibhd’g—W?) 5(A)=0 andA 8(A)=0, for example.

They prove the fact that the imaginary parts of Green’s functions in the intermediate sggiancel* This restates that there

is no dependence on the occupation of the intermediate region.

APPENDIX C: GREEN'S FUNCTIONS OF THE LEAD AND SPATIAL INTEGRATION

Within the single effective mass approximation for a barrier system as shown in Fig. 1 the Green’s functions of the
decoupled leads are found to be

2m Sin{qu_/(aR)’a[X—L(R)]}e:(t)iqlr_/g?),alx'—L(R)], x> (<)X’
rla I —
IR, XX )=+ (=) 7 o ot , (CD
hoAL(R),« Sln{q[("’}e)’a[x’—L(R)]}e+(—)'qL(R),a[X‘L(RH, X' > (<)X,
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whereq[’(aR)’a: \/Zm(hw—VL‘y(R)iié)/ﬁz, the upper/lower signs are associated with the superseriptsrespectively, and

VE(R) is the bottom of the conduction band in the corresponding side of the junction as before. Furthermore, the explicit
frequency and wave-vector dependence was omitted for brevity. Thus, froeCEqgfollows

XUy, LIR) XLR) = XU (R, ol XL L(R)]= + (=) eXp{F (2)ia{ Ry o[ XLr) — L(R) T} (C2)
The spatial integrations yield

- L R+IR - . _
er/&),a:quLQaR),aJ'LIL( fR )de(R) Xl = Tilexp = 2ial%) ol Lr)—1], (C3)
and
c Rilg extli (A Ry« — iRy Lr]—1
fE(R):J f dx () XLRXL(R) LR IXE (R)LL(R) XL (R)]= — a ; (C4)
-1\ Jr (AL (R),a— AL(R)a)
wheregE(R) produces a term df_ (g, for energies above the band bottom in the respective lead? ez V-(R).
APPENDIX D: GREEN'S FUNCTIONS FOR THE SLOPING BARRIER
A sloping potential leads to the following inhomogeneous Sdimger equation in
[o2—3X]F(x)=¢, (D1)

with the parameters= —3/2meV[#2(R— £)] andZ=2m(V,—eV/2— w)/%#2. Two independent solutions are found in terms
of Airy functions>®

v1(X) = Ai(kx+ ¢l 7°),
v(X)=Bi(kx+ I 7%). (D2)
The Green'’s functiomy, for the sloping barrier is then obtained by insertinganduv, into

2m 1 [ Q(X)K(x"), x>x'

9 XD =5 WA | K(x)Q(x'),  x<x’ (D3)

where
Q(X)=v1(X)v2(R) —v2X)v1(R),
K(X)=v1(X)v2(L) —va(X)v1(L),
A=v1(L)vo(R)—v2(L)v1(R),
andW=v,v,—v,v; the Wronskian. In equilibrium, one can show tlg¢x,x’) simplifies to

sinf k(x—L)]sinfk(x'—R)]

2m KSinHk(R—L)] '
gi(x,x )_ﬁ sint{k(x" — £) ]sint{ k(x—=R)] X' >x -

ksinfk(R—L)] ’ ’

wherek=y2m(Vy—#fw)/%. Note that Eq(D4) holds for allw, i.e., including the case wheW,— v <0, for which the sinh
functions in Eq.(D4) go over to corresponding sin functions.
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