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Spin-polarized tunnel current in magnetic-layer systems and its relation
to the interlayer exchange interaction

C. Heide and R. J. Elliott
University of Oxford, Department of Physics, Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom

Ned S. Wingreen
NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540

~Received 24 July 1998!

The spin-polarized tunnel current and its connection to the interlayer exchange interaction is studied in
ferromagnet-insulator-ferromagnet thin-film planar junctions out of equilibrium. Building on the nonequilib-
rium Keldysh formalism, it is possible to systematically include a contact interaction between localized spins
and conduction electrons and extend previous treatments on spin currents and exchange interaction. In par-
ticular, a Landauer-type formula is derived for the spin current that explains the result found earlier@Schwabe,
Wingreen, and Elliott, Phys. Rev. B54, 12 953~1996!# that the exchange interaction between the ferromag-
netic slabs increases in proportion to the slab width. Furthermore, switching is shown to occur between parallel
and antiparallel coupling of the slabs for different applied biases under feasible experimental conditions.
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I. INTRODUCTION

The discovery of antiferromagnetic coupling in Fe/Cr s
perlattices by Gru¨nberget al.1 has led to a renewed intere
in magnetic layer systems, partly due to the possibility
applying these structures as magnetoresistive sensors, fo
stance, in magnetic reading heads2 or as magnetoresistanc
random access memories.3 Prior to this, Julliere already ex
perimented on tunneling in ferromagnet-insulato
ferromagnet trilayer thin-film planar junctions that show
the interesting magnetoresistive effect that tunneling depe
on the angle between the moments of the ferromagne4

However, the tunnel magnetoresistance was not very larg
the early stages of experiments.5–7 Only recently consider-
able tunnel magnetoresistance was observed by se
groups in trilayer structures8–10 that led to suggestions tha
spin-dependent tunnel junctions offer another opportunity
building random access nonvolatile memories with high i
pedance and low interlayer coupling.11

The work of Tedrow and Meservey, who measured
tunnel conductance of superconductor-insulator-ferromag
films, is crucial in understanding magnetic trilayer junction
They showed that tunneling out of a ferromagnetic electr
is spin polarized.12 Using this result, Julliere performed h
pioneering work on tunneling between two ferromagnets i
Fe/Ge/Co trilayer where for zero bias he observed anoma
with different resistances for parallel and antiparallel alig
ment of the magnetizations of the ferromagnets. He put
ward a simple model that explains this magnetoresistive
fect in terms of the spin-dependent density of states at
Fermi level in each ferromagnet. The model was extended
Slonczewski who matched wave functions for spin-up a
spin-down conduction electrons between magnetic and in
lating layers, where the insulator was approximated b
square barrier potential of low transmission.13 According to
his theory, spin tunneling across the interfaces is sign
cantly influenced by the barrier height. Both pictures roug
PRB 590163-1829/99/59~6!/4287~18!/$15.00
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predict the qualitative behavior of the magnetoresistance
ferromagnetic tunnel junctions. However, they leave op
details in the interpretation of the decrease in magnetore
tance for increasing bias across the junction.

Another aspect of spin-dependent transport was poin
out by Aronov who suggested that spin injection arises wh
a current flows from a ferromagnetic metal into a nonma
netic one.14 Later, Johnson and Silsbee could veri
Aronov’s theory with their spin injection experiment15 and
introduced the concept of interfacial charge-spin coupling16

Spin injection and tunnel magnetoresistance are differ
aspects of spin-dependent transport. To analyze both asp
we derive in this paper a Landauer-type formula for the sp
polarized current of the biased junction based on a mo
that takes the spin dependence of the band structure
account similar to the treatment of Slonczewski.13 The model
builds on the nonequilibrium theories for tunnel systems
Caroli17–20 and Feuchtwang.21–23

Related to spin-dependent transport is the exchange in
action between ferromagnetic films across a spacer. Testi
considerable range of thicknesses of metallic spacers, Pa
et al. observed oscillations in the giant magnetoresistanc24

Referring to Yafet, who calculated the range function of t
interaction between two magnetic monolayers,25 they argued
that these oscillations mirror the changes between ferrom
netic and antiferromagnetic coupling of the layers. Unli
the semiclassical model by Julliere for spin currents, the
change coupling is a true quantum-mechanical effect. T
interaction between the magnetic moments in the ferrom
nets is mediated by polarized conduction electrons, a
known as the Ruderman-Kittel-Kasuya-Yosida~RKKY ! in-
teraction. This approach has been extended by Baltenspe
and Helman26 as well as Bruno and Chappert27 to calculate a
more realistic model for the exchange coupling between
romagnetic layers across a metallic spacer by direct app
tion of the RKKY theory to the specific geometries of th
system. The coupling arises then from the polarization
4287 ©1999 The American Physical Society
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4288 PRB 59C. HEIDE, R. J. ELLIOTT, AND NED S. WINGREEN
magnetic carriers in the spacer metal analogous to the u
RKKY theory. Edwards et al. developed a differen
approach.28,29 They argued that oscillations in the couplin
result from quantum interference effects of spin-depend
electron waves inside the well formed between the ferrom
netic layers. This intuitive picture of the interlayer couplin
leads to the comparison of a magnetic double layer with
optical resonator, like a Fabry-Pe´rot interferometer.30,31 The
RKKY-like interaction was shown to be the limit to th
quantum-well model for weak exchange interaction ins
the ferromagnets by d’Albuquerque e Castroet al.32 and later
by Bruno.33 Apart from oscillations due to the metalli
spacer thickness, oscillations were observed which cha
with the thickness of the ferromagnets34 as predicted by nu-
merical calculations of Barnas.35 Bruno gave an intuitive ex-
planation of this effect31 by writing the interlayer exchang
coupling in terms of reflection and transmission coefficien

Whereas most of the work has been done on meta
spacer materials, ferromagnetic and antiferromagnetic c
pling has also been found across semiconductor interla
by Toscanoet al.36 and Fullertonet al.37 This coupling is
much weaker than the one across metallic spacers as lon
the system is in equilibrium. Recently, Schwabe, Wingre
and Elliott investigated the interaction between conduct
electrons and magnetic moments of the ferromagnets
trilayer junction.38 They calculated the exchange interacti
between the ferromagnets that is also of the RKKY type. T
coupling depends not only on the height of the barrier
also on the thickness of the insulator and ferromagnets.
ther, the presence of a nonequilibrium bias across the ju
tion significantly alters the range of the coupling such t
there is a component of the interaction energy between
ferromagnets proportional to their thickness and therefor
appears to act as an uniform magnetic field. To investig
the origins of this unexpected coupling behavior, we stu
another form of the spin-polarized tunnel current of the
ased junction in a model that is analogous to that used
calculating the exchange interaction. Again, a Landauer-t
formula is derived from the nonequilibrium theories for tu
nel systems by Caroli and Feuchtwang that includes, in
dition, a contact interaction between localized spins and c
duction electrons.

The spin dependence in both Landauer-type formulas
rives from different approximations to thes-d exchange
Hamiltonian. The first model is a mean field approximati
that relates to the treatments of Julliere,4 Aronov,14

Slonczewski13 and, in particular, to that of Tsymbal an
Pettifor.39 It gives a good account of spin-dependent tunn
ing when ferromagnetism is strong and the layers not
thin. The second model is a perturbation treatment tha
common to RKKY-like studies of the interlayer exchan
interaction. This description is microscopically more satis
ing and in particular takes the finite-size effects of the fer
magnets into account. We find that the spin current depe
on spin-dependent scattering of conduction electrons ad
electrons that are assumed to be localized. A nonequilibr
spin polarization is caused by the interference of incid
spin-independent conduction electron waves and s
dependent reflected waves. For both models we derive
pressions for the spin current and the interlayer coup
where all quantities are expressed in terms of simple tra
al
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mission and reflection amplitudes. They lead to the sa
results under the limiting conditions of semi-infinite ferr
magnets and weak band splitting. Using parameters from
cent experiments we calculate spin current and the interla
exchange as a function of applied bias numerically.

The remainder of the paper is structured as follows. S
tion II introduces the two models for ferromagnet-insulato
ferromagnet planar junctions out of equilibrium. Section
is devoted to a general comparison between spin-polar
tunnel current and interlayer exchange interaction. In Sec
the relevant definitions of the theories by Caroliet al. and
Feuchtwang are introduced in order to derive expressions
the spin currents in Sec. V and exchange coupling in Sec.
Then, Sec. VII deals with numeric examples for both sp
current and exchange interaction as functions of the app
voltage. Section VIII discusses the results of the presen
theory for electron transfer in magnetic layered structures
relation to recent experiments. In conclusion, we summa
our results and point out further directions of studying ma
netic trilayer systems in Sec. IX.

II. MODEL OF MAGNETIC-LAYER SYSTEM

The present paper addresses perpendicular transpor
interlayer exchange interaction in a trilayer structure.
shown in Fig. 1, the trilayer structure consists of two plan
ferromagnetic layers of lengthl L and l R , respectively, sepa
rated at the interfacesL,R by a nonmagnetic insulator o
thicknessR-L. This gives a quasi-one-dimensional model
a tunnel junction. Typical examples for the constituents
the ferromagnet-insulator-ferromagnet junction are C
CoCr, CoFe, Fe, and NiFe for ferromagnets and Al2O3 and
MgO for insulating nonmagnetic barriers.8,9

The magnetic order of band ferromagnets like Fe, Ni, a
Co can to a large extent be traced back to electron correla
effects in relatively narrow 3d subbands, which only weakly
hybridize with the 4s and 4p bands.40 Due to the strong
confinement of their atomic electron orbitals, we assume
the direct contribution of electrons ind subbands to transpor
across the barrier can be neglected. Although this is a g
simplification of the physical situation, it agrees with wh
was found by Tsymbal and Pettifor on the basis of ba

FIG. 1. Schematic representation of the ferromagnet-barr
ferromagnet tunnel junction described in the text. The excha
interaction between thed electrons within a single ferromagne
causes a splitting of their band bottoms into two different spin s
bands, indicated by the two punctuated lines on either side of
barrier. Thes-d exchange coupling between the as-now localiz
regardedd electrons and itinerants electrons spin polarizes a cur
rent driven through the system upon biasing the junction byV.
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structure calculations.39 They showed that the bonding be
tween 3d metals and the oxide orbitals of the tunnel barr
must be very weak so that thed-electron contribution to
tunneling is negligible regardless of their high density
states at the Fermi surface. The exchange coupling betw
the two ferromagnets across the barrier and the spin cur
are therefore assumed to originate from the interaction of
conduction electrons on the system of uncompensated m
netic moments ofd electrons. This leads us to the approx
mation that neglects direct exchange interaction betweed
electrons and only takes the exchange interactions betwes
and d electrons into account such that the width of thed
subbands is chosen to be zero and the effective mass od
electron infinite, corresponding to complete localization.

The Hamiltonian of the system in Fig. 1 is written
terms of an unperturbed partH0 and a part describing th
exchange interactionHs-d ,

H5H01Hs-d . ~1!

Due to the translational invariance of our model in the dir
tions perpendicular to the current flow, the analysis is
now restricted to one dimension only and results will
extended later to three dimensions by Fourier transform.
unperturbed Hamiltonian with noninteracting conducti
electrons with spina in a single band is given by

H05(
a

E dx Ca
†~x!F p2

2m
1V~x!GCa~x!, ~2!

wherep2/2m is the kinetic energy of electrons with uniform
effective massm, and the operatorsCa

†(x) and Ca(x) are
field operators that create and destroy a conduction elec
with spin a at point x, respectively. The Hamiltonian~2!
includes the potential structureV(x) of the junction as
shown in Fig. 1. The band structure of the junction is d
continuous and changes by the amountV0 at the
ferromagnet-insulator interfaces. In equilibrium the barrie
considered to be flat on top, while upon biasing the junct
the potential of the barrier acquires a slope and the chem
potential mR in the right lead undergoes a shifteV with
respect to the chemical potentialmL in the left lead. Simul-
taneously, the conduction-band bottomVR in the right lead
shifts byeV with respect to the conduction-band bottomVL

in the left lead. The corresponding single-particle poten
can then be written as

V~x!5FV02eV
x2L
R2LGQ~x2L!Q~R2x!2eVQ~x2R!.

~3!

The dispersion law for conduction electrons is taken in
effective-mass approximation aseL(R)5\2qL(R)

2 /2m for the
left and right lead, respectively, whereqL(R)

5A2m(\v2VL(R))/\ andm is the effective mass.
Expressing the localized character of the exchange in

action betweens and d electrons by a delta function, w
write the interacting part of the Hamiltonian as

Hs-d52
J

2 (
p;a,b

sab•SpE dx Ca
†~x!d~x2xp!Cb~x!,

~4!
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whereJ is the coupling constant with units J md and d the
dimension of the system. In Eq.~4! it is summed over all
spinsSp in the system;sab is the vector of Pauli matrices
used to represent the spin of the conduction electrons
couple to the local momentsSp . The indicesa andb label
the two spin projections:a,bP$↑,↓%. To obtain the effec-
tive indirect interaction between uncompensated magn
moments ofd electrons, we averageHs-d in the subspace o
conduction electrons and replace the conduction electron
erators by ac number,

Heff52
J

2 (
p;a,b

sab•Sp^Ca
†~xp!Cb~xp!&. ~5!

Since we are only interested in the relative orientation of
magnetized ferromagnets that are well below their criti
point, we introduce a further approximation and substit
sab•Sp in Heff by sa^Sp

z& so that

Heff52
J

2(p
^Sp

z&Dr~xp!, ~6!

whereDr(xp)5(asa^Ca
†(xp)Cb(xp)& is the net spin po-

larization of the conduction electrons. In the following, w
derive two approximations of the model: the mean-field a
proximation and the perturbation expansion.

A. Mean-field model

The mean-field approximation of the exchange interact
in Eq. ~5! allows comparison to the theories by Julliere4 and
Slonzewski.13 The magnetization of thed-electron system
removes the spin degeneracy in the system of conduc
electrons and this leads to a shift in the energy levels for
different spin projections similar to that induced by an ext
nal field in the Pauli theory of paramagnetism. If we consid
semi-infinite ferromagnets, we can include the mean-fi
contribution to the magnetization of conduction electrons
an isotropic dispersion law for the two leads,

ea
L~R!5eL~R!2m0ha

L~R! , ~7!

whereha
L(R)5sah0

L(R) . The internal magnetic mean field i
the respective lead ish0

L(R)5^SL(R)
z &JrL(R)/2m0 , wherem0

5e\/2m is the Bohr magneton,rL(R) the spin density, and
^SL(R)

z & depends on the spin orientation of each ferromagn
To avoid ambiguities in the definitions, we assume that^SL

z&
is fixed to be positive, so thats↑51 for majority spins and
s↓521 for minority spins in the left ferromagnet. Within
the mean-field approximation the fluctuations arising inHeff
are omitted and thus the interacting part of the Hamilton
is replaced by including relation~7! in the potentialV(x) in
Eq. ~2!, so thatH0 turns into a two-band Hamiltonian

Va~x!5m0ha
LQ~L2x!1FV02eV

x2L
R2LG

3Q~x2L!Q~R2x!1@m0ha
R2eV#Q~x2R!.

~8!

The mean-field model holds in cases of strong ferrom
netism but neglects finite-size effects here, arising from
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finite length of the ferromagnetic layers. This will be signi
cant when we want to calculate the exchange interaction
of equilibrium.

B. Perturbation model

As opposed to calculations in the mean-field model wh
the ordering in the ferromagnets is incorporateda priori via
the dispersion relation~7!, calculations in the perturbatio
model first take into account the interaction between the
dividual pairs of spins in the different ferromagnets and
cludes their ordering within the ferromagnets afterwards
integrating over all spins of the individual ferromagnets.
obtain explicit expressions for the spin current and the in
layer exchange in this model, we expand perturbatively
averagê Ca

†(xp)Cb(xp)& in Eq. ~5!. As long as the coupling
constantJ betweens andd electrons is small compared to th
Fermi energy in the respective lead, which is the case fo
wide range of weak ferromagnetism, the perturbation mo
can certainly be regarded as valid.

The electronic band structure, described byV(x) in Eq.
~3! in the perturbation model orVa(x) in Eq. ~8! in the
mean-field model, varies at the barrier on length scales
are short compared to the mean free path of the conduc
electrons. Further, it is strongly influenced by the bias wh
measuring electronic properties of the structure so that
assumption that the system is close to equilibrium canno
maintained in general. In order to establish a theoretical
scription of spin currents and interlayer exchange from fi
principles, we employ the Keldysh nonequilibrium perturb
tion formalism41 along with a coupling procedure for struc
tured systems developed by Caroliet al.17–20 and
Feuchtwang,21–23 leading to a proper nonequilibrium fiel
theoretic description. Since the treatments by Caroli a
Feuchtwang are proper many-body formalisms, their ap
cation to the present problem would also provide the ba
for the inclusion of further many-body effects such
carrier-carrier or carrier-magnon interactions to the proble

III. RELATION BETWEEN SPIN-POLARIZED
TUNNEL CURRENT AND INTERLAYER

MAGNETIC-EXCHANGE COUPLING

Emphasizing the physical arguments, we outline in t
section the relation between the spin-polarized tunnel cur
and the interlayer exchange coupling. Initially, we need
clarify what is meant exactly by interlayer exchange co
pling and spin-polarized tunnel current. In our model t
interlayer exchange coupling is the energy difference w
two ferromagnetic slabs have parallel or antiparallel alig
ment with respect to each other. When the junction is bia
out of equilibrium, a current of spin-polarized electrons tu
nels through the barrier with characteristics that depend
the relative orientation of the ferromagnets. While interlay
exchange coupling occurs already in equilibrium, the sp
polarized tunnel current is a purely nonequilibrium effe
However, out of equilibrium the interlayer exchange co
pling has terms related to the spin-polarized tunnel curr
that can dominate the coupling behavior under cert
conditions.38

As pointed out before, the interaction between the loc
ized moments of the different ferromagnets is mediated
ut
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spin-polarized conduction electrons. Thus, the exchange
teraction is similar to the usual RKKY interaction where t
interaction arises because a single spin impurity polarizes
conduction electrons around it, leading to a net spin po
ization Dr5r↑2r↓ . Because the system has a finite Fer
surface, the perturbation will oscillate with distance from t
spin impurity with declining intensity similar to charge de
sity oscillations of an electron gas. Accordingly, the orien
tion between slabs of spins varies between parallel and a
parallel alignment with a characteristic oscillation th
depends on the Fermi wave vector and the distance betw
the slabs.

If a bias is applied across the junction, as is shown in F
1, the electron spin polarization is altered by the nonequi
rium current of spin-polarized electrons. This contribution
the spin polarization is reflected in the difference betwe
the current for spin-up and the current for spin-down co
duction electrons that tunnel through the barrier,

^Ispt&5^I↑&2^I↓&. ~9!

It is therefore referred to as spin-polarized tunnel curre
which arises from the perturbation of the conduction el
trons by localized moments in each ferromagnet individ
ally, and is proportional to a current of magnetization,

^IM&5
m0

e
^Ispt&. ~10!

We would like to point out that for a spin current to flow
single ferromagnet would be sufficient. On the other hand
in the equilibrium case, each ferromagnet is perturbed by
spin current of the other ferromagnet thereby leading to
additional, spin-current-dependent contribution in the eff
tive interaction between the two ferromagnets.

This connection between spin current and exchange in
action, whose detailed calculations we present in the follo
ing, is the origin of the unexpected effect, found by Schwa
et al., that the presence of a nonequilibrium bias acros
junction significantly alters the range of exchange interact
such that the interaction energy between two slabs of spin
proportional to their thickness.38 In other words, the energy
arising from this RKKY-like interaction between the diffe
ent slabs does not converge to a finite limit forl L(R)→` and
therefore appears to act as an uniform magnetic field.

IV. NONEQUILIBRIUM FORMALISM

In order to calculate perpendicular transport and excha
interaction in a ferromagnet insulator ferromagnet from fi
principles, we have to apply proper nonequilibrium theor
since for tunnel junctions the assumption that the system
close to equilibrium does generally not hold. By applyin
Keldysh’s nonequilibrium perturbation formalism, Caro
et al.17–20 and Feuchtwang21–23 devised a theory that joins
initially uncoupled subsystems through appropriate trans
terms to a single nonequilibrium steady-state system
only depends on the electron occupation numbers of
reservoirs.42 Here we extend the formalism to include th
electron spin. Furthermore, we rewrite the unperturb
Keldysh Green’s functionsG,/. in terms of a superposition
of spectral functions.
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Keldysh’s nonequilibrium perturbation theory is based
a time-loop integral with two separate branches: oneforward
in time and the otherbackwardthat replace the normal-tim
integral in regular perturbation theory. This has the adv
tage that theS-matrix expansion starts and ends with t
same known state. The Green’s functions within this form
ism can be defined similarly to the usual ones, with the m
difference that the concept of contour ordering replaces
usual time ordering. Depending on the relative positions
the time variables on the contour, four independent type
Green’s functions are obtained,

Gab
, ~x,t;x8,t8!5 i ^Cb

†~x8,t8!Ca~x,t !&, ~11!

Gab
. ~x,t;x8,t8!52 i ^Ca~x,t !Cb

†~x8,t8!&, ~12!

Gab
r ~x,t;x8,t8!52 iQ~ t !^$Cb

†~x8,t8!,Ca~x,t !%&,
~13!

Gab
a ~x,t;x8,t8!5 iQ~2t !^$Cb

†~x8,t8!,Ca~x,t !%&,
~14!

where the information of the system on its statistical prop
ties is given by the Keldysh Green’s functionsG,/. and on
its dynamical behavior by the usual retarded and advan
Green’s functionsGr /a. The curly braces in Eqs.~13! and
~14! denote the anticommutator for fermions.

In steady state the time-loopS-matrix expansion translate
into an operational rule for Keldysh operators,

~AB!,/.5A,/.Ba1ArB,/., ~15!

where the part with the retarded Green’s function relate
the forward time branch and the part with the advanc
Green’s function to thebackwardone. Out of equilibrium
the two branches give different results. Because of
steady-state character of our system, we Fourier transfor
the following all Green’s functions into the frequency d
main.

To employ the nonequilibrium theories of Caroliet al.
and Feuchtwang, it appears from Fig. 1 that a partition
into three subsystems seems to be most appropriate: two
romagnets, which form the leads that are connected to
reservoirs with the chemical potentialsmL(R) and the inter-
mediate region of the barrier. Accordingly, the Hamiltoni
H0 ~2! is written as a sum of three independent parts,

H0~x!5Q~L2x!HL~x!1Q~x2L!Q~R2x!HI~x!

1Q~x2R!HR~x!, ~16!

to yield the following inhomogeneous Schro¨dinger equation:

@v2H0~x!#Ga~x,x8;v!5d~x2x8! ~17!

for the full system whereas the inhomogeneous Schro¨dinger
equation for the subsystem can be written as

@v2Hp~x!#gp,a~x,x8;v!5d~x2x8!, ~18!

for the several uncoupled subparts of the systemp
P$L,I ,R%, wherex, x8 lie within the appropriate region de
termined by the choice ofp. To keep our notation consisten
-

l-
in
e
f

of

r-

ed

to

e
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g
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he

we do not drop the spin index for the uncoupled Gree
function of the intermediate region, although in our mod
gI ,↑5gI ,↓ .

To join the subsystems, we use the Feuchtwang appro
since it has the advantage that properties of the continu
coupled system can be obtained in a mathematically strai
forward manner by using Green’s theorem. This method
analogous to solving the problem of diffraction of an ele
tromagnetic wave on a dielectric material. According
Green’s theorem, the Green’s functions in Eqs.~17! and~18!
have to satisfy appropriate boundary conditions at
electrode-barrier interfacesR and L. The requirement for
these Green’s functions to fulfill boundary conditions
similar to the requirement to match wave functions in me
with interfaces. For simplicity, we choose Dirichlet cond
tions so that the Green’s functions vanish if they are tak
with one of their arguments on the respective interfacesR or
L. In the particular case of our quasi-one-dimensional s
tem these lead to simple algebraic equations. The un
turbed two-band Green’s functionsGa read as

Ga~xPL,x8!5u~L2x8!gL,a~x,x8!1xL,a~x,L!Ga~L,x8!,
~19!

Ga~x,x8PL !5u~L2x!gL,a~x,x8!1Ga~x,L!xL,a~L,x8!,
~20!

Ga~xPR,x8!5u~x82R!gR,a~x,x8!

2xR,a~x,R!Ga~R,x8!, ~21!

Ga~x,x8PR!5u~x2R!gR,a~x,x8!2Ga~x,R!xR,a~R,x8!,
~22!

where the frequency argument has been omitted,x,x8 are
defined in the full system, if not stated otherwise, and

xp,a~P,x8!5
\2

2m
]x1

gp,a~x1 ,x8!ux15P ,

xp,a~x,P!5
\2

2m
]x1

gp,a~x,x1!ux15P , ~23!

where pP$L,R%, PP$L,R%, and the appropriate spatia
limit is taken in approachingL andR for functions defined
in the respective subregions. In simple cases wherex,x8
P$L,R%, the full Green’s function can be written as

S Ga~L,L! Ga~L,R!

Ga~R,L! Ga~R,R!
D

5
2m

\2

1

Da
S gR,a~R,R!1g I ,a~R,R! g I ,a~L,R!

g I ,a~R,L! gL,a~L,L!1g I ,a~L,L!
D ,

~24!

where

Da5@gR,a~R,R!1g I ,a~R,R!#@gL,a~L,L!1g I ,a~L,L!#

2g I ,a~L,R!g I ,a~R,L! ~25!

and
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gp,a~P,Q!52
\2

2m
]x]x8gp,a~x,x8;v!ux5P,x85Q , ~26!

wherepP$L,I ,R%,P,QP$L,R%. Analytical continuationv
→ limd→01(v6 id) transforms the above Green’s functio
into retarded or advanced versions. The coupling proced
has enabled us to express the infinite open system in term
the three subsystems where the information of the lead
contained in gL(R),a . The denominatorDa contains the
terms proportional to a self-energy that arises from the c
pling of the system to reservoirs.

The Keldysh Green’s functionsG,/. describe the statis
tical properties of the system. Since the decoupled reg
are in equilibrium, they have well-defined electron occup
tions nF

p , pP$L,I ,R%, and therefore the Keldysh Green
function for the subpartsgp,a

,/. can be expressed as

gp,a
, ~x,x8!5nF

p@gp,a
a ~x,x8!2gp,a

r ~x,x8!#, ~27!

gp,a
. ~x,x8!5@nF

p21#@gp,a
a ~x,x8!2gp,a

r ~x,x8!#. ~28!

According to Ref. 42, the system ceases to depend on
occupation number of the intermediate region so that
unperturbed Green’s functionGa

, is given as a superpositio
of terms that depend only on the properties of one or ot
grand canonical ensemble for the reservoirs where the
spective electron occupationsnF

L(R) are associated with cor
responding spectral functions defined byAL(R),a . We can
therefore write the Green’s functionGa

, with help of the
space representation of the spectral functions as

Ga
,~x,x8!5nF

LAL,a~x,x8!1nF
RAR,a~x,x8!. ~29!

The spectral functionsAL(R),a tell us about the nature o
allowed electron states regardless of whether these state
occupied or not; on the other hand, the Green’s functionGa

,

tells us how many of these states are occupied. In the
where the argumentsx,x8 are at the interfacesP,Q
P$L,R%,

AL,a~P,Q!5 i\vL,aGa
r ~P,L!Ga

a~L,Q!, ~30!

AR,a~P,Q!5 i\vR,aGa
r ~P,R!Ga

a~R,Q!, ~31!

where

vL~R!,a52
i\

2m
~ g̃L~R!,a

a 2g̃L~R!,a
r !, ~32!

are the electron velocities and g̃L(R),a
r

5gL(R),a
r @L(R),L(R)#. A similar case holds forGa

. ,
which describes how many states of the system are em
To obtain the corresponding expressions forGa

. , nF
L(R) has

to be replaced bynF
L(R)21 according to Eq.~28!.

V. SPIN-POLARIZED TUNNEL CURRENT

The formulations by Landauer and Bu¨ttiker for currents
through a finite region of noninteracting electrons have c
tributed significantly to the clear understanding of mes
copic transport as long as it is coherent across the devic
one uses phenomenological approaches to calculate
re
of
is

-
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transmission functions, the Landauer-Bu¨ttiker formalism is
particularly simple, and Bauer uses this method to calcu
the perpendicular transport in metallic magne
multilayers.43 The quantum version of the Landauer forma
ism was used by Barnas´ and Fert to describe coherent tran
port across a single interface between a ferromagnet a
nonmagnetic metal.44 In this section, we will show that ou
results for the spin current can also be understood within
framework of the Landauer-Bu¨ttiker formalism. In order to
derive the spin current, we first calculate the ensemb
averaged spin-dependent current operator in second qu
zation by means of Keldysh’s nonequilibrium perturbati
theory.

The spin-dependent current operator for the conduc
electrons in second quantization reads as

Iab5
ie\

2m
@~¹Cb

† !Ca2Cb
†~¹Ca!#, ~33!

so that we obtain for the ensemble-averaged spin-depen
current

^Iab&5 lim
r8,t8→r ,t

F ie\

2m
~¹ r82¹ r !G^Cb

†~r 8,t8!Ca~r ,t !&.

~34!

The averagêCb
†(r 8,t8)Ca(r ,t)& can be written in terms of

the Keldysh Green’s function~11!. Due to the stationary
state character of the present problem the continuity equa
¹^Iab&50 holds, which allows us to calculate the current
an arbitrary point in the system. For one-dimensional ca
it is possible to write Eq.~34! as

^Iab&5
e\2

2mE
2`

` dv

2p
lim

x8→x

~]x82]x!Gab
, ~x,x8;v!, ~35!

where we took the Fourier transform into the frequency d
main and expressed the average^Cb

†(x8)Ca(x)& by the
Keldysh Green’s functionG,. Because our system is quas
one-dimensional, the extensions to higher dimensions
achieved by means of Fourier transforms of the coordina
parallel to the barrier so that

Ga~x,x8;ki ;v!5E
2`

`

d2x eiki•xGa~r ,r 8;v!, ~36!

wherer is the three-dimensional coordinate,x5r i2r i8 is the
two-dimensional relative position vector parallel to the b
rier, andki denotes the two-dimensional electron wave ve
tor parallel to the barrier. Similarly, Eq.~34! becomes

^I ab
3D&5

e\2r3D

2m E
2`

` d2ki

~2p!2E2`

` dv

2p
lim

x8→x

~]x82]x!

3Gab
,3D~x,x8;ki ;v!, ~37!

where the spins in the ferromagnet are assumed to be dis
uted uniformly and to have the same spin orientation s
that r3D represents the density of localized spins.

The extension to three dimensions leaves the spatial
pendence of the Hamiltonian unaffected in the direction p
pendicular to the barrier and only leads to a change in
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frequency arguments of the corresponding Green’s funct
~cf. Sec. IV!. Therefore, we focus initially on the one
dimensional case and extend this to full three-dimensio
version only at the end. Furthermore, since spin-flip p
cesses are neglected throughout, the tensor^Iaa&5^Ia& is
diagonal. In the following, by applying the nonequilibriu
coupling theory of Feuchtwang, we reexpress the spin c
rent in terms of local quantities to obtain Landauer-type f
mulas for the mean-field and perturbation model.

A. Spin-polarized tunnel current in mean-field model

In the mean-field model the full Green’s function in E
~35! is replaced by the single-particle Green’s function of t
Hamiltonian~2! with the spin-dependent potentialVa(x) ~8!
and inserted into Eq.~9!,

^I spt
MF&5

e\2

2m(
a

saE
2`

` dv

2p
lim

x8→x

~]x82]x!Ga
,~x,x8!,

~38!

where the frequency argument is dropped for convenie
from now on and the superscript~MF! denotes that the spin
current is calculated within the mean-field approximatio
Here, the nonequilibrium bias of the system is contained
plicitly in the expression forGa

, . We need to incorporate th
properties of the system, such as information about the
rier and leads coupled to different reservoirs, directly into
calculation.

Using Ga
a2Ga

r 5Ga
,2Ga

. @cf. Eqs. ~29! and ~B1!#, dif-
ferentiating, and taking the limit at the partitionL, for ex-
ample, we transform the spin current~35! into

^I spt
MF&5

e\2

2m(
a

saE
2`

` dv

2p
@Ga

,~L,L!g̃L,a
.

2Ga
.~L,L!g̃L,a

, #. ~39!

Inserting the expressions forGa
,/.(L,L) into Eq. ~39!, and

replacingg̃L,a
, and g̃L,a

. with the corresponding expression
in terms of their retarded and advanced Green’s function
using the differentiated versions of Eqs.~27! and ~28!, we
obtain

^I spt
MF&52e\2(

a
saE

2`

` dv

2p
~nF

L2nF
R!

3Ga
a~L,R!Ga

r ~R,L!vL,avR,a , ~40!

where nF
L(R)5$exp@b(\v2mL(R))#11%21 are the occupation

numbers of the reservoirs with chemical potentialsmL(R).
Although the spin-up and spin-down electrons are
coupled in this model, it is possible to assume thatmL(R) are
independent of spin and are set by the reservoirs that
implied to be in direct contact with the semi-infinite ferr
magnetic slabs.42 Since in the mean-field model fluctuation
of individual spins are neglected so that their only contrib
tion is a macroscopic change of the band structure, the n
equilibrium result~40! is analogous to a linear response e
pression derived previously by Tsymbal and Pettifor ba
on the Kubo-Greenwood formula.39
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The term\2 Ga
a(L,R)Ga

r (R,L)vL,avR,a corresponds to
the spin-dependent transmission coefficient through the
termediate regionTa(v) derived in Appendix A and with
this identification takes the form of

^I spt
MF&52e(

a
saE

2`

` dv

2p
~nF

L2nF
R!Ta . ~41!

From this we see that calculating the spin current in
infinite open system is reduced to obtaining the sp
dependent transmission coefficientTa(v). The statistical
properties of the system are solely reflected in the differe
of occupation numbers of the reservoirs represented
grand-canonical ensembles. The number of current-carry
states is different in the reservoirs to that in the structure
this requires a redistribution of the spin current among
states at the interface and thus leads to a spin-depen
interface resistance.

As pointed out before, the three-dimensional case d
not introduce any new complications, so that the curren
zero temperature is given as

^I spt
3D, MF&52

e

\

mn2D

~2p\!2(a sa F E
2m0ha

L

m

de~m2e!

2E
2m0ha

R
2eV

m2eV

de~m2eV2e!G Ta , ~42!

wherem5mL andn2D is the surface area of the junction. Th
magnetic mean field of the ferromagnets now includes
three-dimensional spin density instead, so thath0

L(R)

5^SL(R)
z &JrL(R)

3D /(2m0).

B. Spin-polarized tunnel current in perturbation model

Turning to the perturbation model and thus neglecting
spin splitting of the bands in the dispersion relation~7!, the
transmission coefficients will be the same for different sp
orientations and consequently Eq.~41! vanishes. However
we examine what happens if we include the expansion of
interacting part of the HamiltonianHeff instead. Thus, we
have to expandGab

,/. of the full interacting system in term
of the Green’s functionG,/. of the unperturbed single-ban
HamiltonianH0 . Using Eq.~15!, we calculate the Green’s
function G,/. to first order inHeff ~5!,

G ~1!a b
,/. ~x,x8;v!5G,/.~x,x8;v!dab2

J

2(p
^Sp•sba&

3@G,/.~x,xp ;v!Ga~xp ,x8;v!

1Gr~x,xp ;v!G,/.~xp ,x8;v!#. ~43!

Dropping the frequency argument and neglecting spin fl
tuations, this gives the first-order perturbation expression
the spin current̂Ispt& in Eq. ~9!,

^I spt
Per&52

e\2J

2m (
p

^Sp
z&E

2`

` dv

2p
CPer~xp!, ~44!

where the superscript~Per! denotes the perturbation trea
ment of the problem and
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CPer~xp!5 lim
x8→x

~]x82]x!@G,~x,xp!Ga~xp ,x8!

1Gr~x,xp!G,~xp ,x8!#. ~45!

In the present case of a continuous system, we replace
sum over all spins on either side of the barrier in Eq.~44! by
a spatial integration,

^I spt
Per&5^I spt,L

Per &1^I spt,R
Per &, ~46!

where

^I spt,L~R!
Per &52

e\2JrL~R!

2m
^SL~R!

z &E
L2 l L

L S E
R

R1 l RD dxL~R!

3E
2`

` dv

2p
CPer~xL~R!!; ~47!

as before^SL(R)
z & depends on the spin orientation of ea

ferromagnet, andrL(R) is its density of localized spins. A
position within the left ferromagnet is indicated byxL and
within the right one byxR , respectively. The contribution
^I spt

Per& to the spin current depends on two terms: one or
nating from the left ferromagnet and another from the rig
ferromagnet.

Again reexpressing the Green’s functionsG in terms of
their local expressions, the basic principles used for^I spt

MF&
are repeated for the evaluation of^I spt

Per&. Inserting Eqs.
~19!–~22! into Eq.~45!, usingGa

a2Ga
r 5Ga

,2Ga
. as above,

differentiating and taking the limit at the partitionL or R,
we can write the integrand of the spin current~45! in the
following form, depending on the location of the spin o
either the left or right side of the systemL,R,

CPer~xp!5
2m

\2
@ x̃p

,G.~P,P!2x̃p
.G,~P,P!#

2@ g̃p
,G.~P,P!2g̃p

.G,~P,P!#@ x̃p
aGa~P,P!

1x̃p
r Gr~P,P!#, ~48!

wherex̃p5xp(xp ,P)xp(P,xp), with pP$L,R%, PP$L,R%.
Writing G,/. with help of Eq.~29! and x̃,/.,g̃,/. by dif-
ferentiating Eqs.~27! and ~28!, we transformCPer(xp) into

CPer~xp!52
2m

\2
~nF

L2nF
R!T H FGa~P,P!2

i

\vp
G x̃p

a1c.c.J ,

~49!

where we replaced\2 Ga(L,R)Gr(R,L)vLvR by the trans-
mission coefficientT(v) through the intermediate regio
~A5!. In Eq. ~49! the quantityi /(\vp) is the amplitude of the
unperturbed single-particle Green’s function, where
Ga(P,P) with PP$L,R% relates to the amplitude of the fu
Green’s function at the interface. Next, we spatially integr
over the ferromagnets. Becausex̃L(R) is the only term de-
pending on the integration variablexL(R) , we define~cf. Ap-
pendix C!

j̃L~R!
r /a 5

2mvL~R!

\ E
L2 l L

L S E
R

R1 l RD dxL~R!x̃L~R!
r /a , ~50!
he
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e

which is oscillatory and varies with the thickness of the fe
romagnet. Finally, we can express the contributions to
spin current̂ I spt, p

Per &,pP$L,R%, in terms of local quantities
only:

^I spt,p
Per &522eE

2`

` dv

2p
~nF

L2nF
R! TNp. ~51!

The difference between the usual Landauer formula and
~51! lies in the dimensionless quantity

Np5
m0h0

p

2ep
Im@rP

r j̃p
r #, ~52!

which reflects the amount of spin polarization from each f
romagnet. The first term in Eq.~52! m0h0

p/ep also arises in
the theory of Pauli paramagnetism for one dimension. Ho
ever, the magnetic fieldh0

p5^Sp
z&Jrp/2m0 originates now

from the spin order in the respective ferromagnet. The s
ond term Im@rP

r j̃p
r #, whererP

r 512 i\vpGr(P,P) is a reflec-
tion amplitude ~cf. Appendix A!, arises due to spin-
dependent reflection of conduction-electron waves at
respective barrier interfacePP$L,R% back into the ferro-
magnet. It can vary only between21 and 1 and become
constant when the thickness of the ferromagnets is la
since liml p→`(2 i j̃p

r )51. Thus, the oscillatory behavior o
the spin polarization is due to the finite size of the ferroma
nets and is similar to the fluctuations caused by an individ
spin.

The spin polarization, which arises from the reflection o
the barrier, is a quantum interference effect and can in
itively be understood from this calculation. In the model it
assumed that the Fermi energy in a particular lead is unifo
upon biasing the junction so that the main effect of the b
is a net particle drift within that lead. We now probe the le
ferromagnet with an electron incident from the left that i
teracts, depending on its spin orientation, with a localiz
spin so that it is either transmitted or reflected. If the elect
is reflected its wave function interferes with the incomi
unscattered wave of another electron in a way that depe
on the reflection off the localized spin. From Eq.~33! it can
be seen that a current is proportional to the difference in
probabilities of particle densities traveling in opposite dire
tions. Because there are many spins in each ferromagne
oscillatory part j̃L(R) in Eq. ~52! is a superposition of all
waves from each individual scattering event and its am
tude depends on the reflection off the respective barrier
terface. The contributionŝI spt,p

Per & to the spin current are
proportional to the relative density of spin-polarized ele
trons reflected off of the respective side of the barrier, i
the difference between the densities for the reflected spin
and spin-down conduction electrons. Consequently, the
fect of the reflection off an interface leads to uniform sp
polarizationNp(v) or in other words to a spin-depende
interface resistance for the itinerants electrons that interac
with the localizedd electrons. This leads to an interestin
relation between the charge current and the spin curr
whereas the charge current depends only on the transmis



o
t

m
rm

rg

r
,
on
om
er

fo
er

ro
n
m
th
e

s.
in
e
a

lin
a

th
a

c-
f t
l-

e

gnet
ion
de
act
ed
ins

two

hin
en-

n,

er-

act
r

um
m a

Y
p

in

in

PRB 59 4295SPIN-POLARIZED TUNNEL CURRENT IN MAGNETIC- . . .
coefficientT(v), the spin current depends on the product
reflection amplituderP

r (v) and transmission coefficien
T(v).

Finally, for weak bias and low temperatures we assu
thatT(v) is approximately constant so that we can transfo
Eq. ~51! into

^I spt,p
Per &'2

2e

h
~mL2mR! T~eF!hp5hp^Ie&, ~53!

where^Ie& is the usual Landauer expression for the cha
current and

hp5
1

eVEm2eV

m

de Np, ~54!

the efficiency of polarizing conduction electron spins whe
we have setmL5m and mR5m2eV, as before. Thus
hp(eF) is equivalent to the phenomenological polarizati
constant that describes the efficiency of spin injection fr
ferromagnetic into superconducting metals in the exp
ments by Tedrow and Meservey45 or from ferromagnetic into
normal metals by Johnson and Silsbee.15

The three-dimensional case is treated similarly as be
in the mean-field model so that the current is given at z
temperature as

^I spt
3D, Per&52

2e

\

mn2D

~2p\!2F E0

m

de~m2e!

2E
2eV

m2eV

de~m2eV2e!GT ~NL1NR!.

~55!

VI. NONEQUILIBRIUM INTERLAYER
MAGNETIC-EXCHANGE COUPLING

The interaction between the localized moments in fer
magnets is mediated by polarized conduction electro
Schwabeet al. found that the presence of a nonequilibriu
bias across a junction significantly alters the range of
RKKY-like interaction such that the interaction energy b
tween two slabs of spins is proportional to their thicknes38

Here, we relate this unexpected proportionality to the sp
polarized tunnel current of the perturbation model introduc
in the previous section. Furthermore, we will point out th
in the mean-field model there also exist terms in the coup
energy proportional tôSL

z&^SR
z & that are equally related to

spin current.
The spin order in electronic systems is mainly due to

exchange interaction energy of electrons. For two ferrom
netic slabs this energy may be represented as

Eex52A^SL
z&^SR

z &, ~56!

whereA is a parameter with units of energy which is a fun
tion that depends on the barrier properties and the size o
slabs, and̂ Sp

z& is the average spin polarization of the loca
ized d electrons in the respective ferromagnet. IfA.0 then
f

e

e
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the minimum ofEex corresponds to parallel orientation of th
slabs sincêSL

z&^SR
z & is positive; otherwiseA,0 leads to an

antiparallel alignment.
In Heff as defined in Eq.~6! the localized spins in the two

ferromagnets are treated separately. In the right ferroma
the localized spins interact with the polarized conduct
spin density arising from localized spins on the left si
whereas in the left ferromagnet the localized spins inter
with the polarized conduction spin density due to localiz
spins on the right side. The total exchange energy for sp
on different sides of the barrier is thus the sum of these
contributions, from alln and m spins in the left and right
ferromagnet, respectively.

Eex52
J

2 (
a

p5Ln ,Rm

sa$^SL
z&^Ca

†~xp!Cb~xp!&%ex, ~57!

where the sum is over all spin states and$ %ex denotes that
only contributions between the ferromagnets but not wit
each of them are included. The spin-dependent particle d
sity is expressed in terms of the Keldysh Green’s functio

^Cb
†~xp!Ca~xp!&52 i\E

2`

` dv

2p
Gab

, ~xp ,xp ;v!. ~58!

Again we discriminate between the mean field and the p
turbation models.

A. Interlayer exchange in perturbation model

In the perturbation model considered in Ref. 38 the ex
Green’s functionGab

, in Eq. ~58! is replaced by its first-orde
approximation~43!, so thatEex in Eq. ~57! gives

Eex
Per5J2 (

p5Ln ,q5Rm

^Sp
z&^Sq

z& ImE
2`

` dv

2p
G,~xp ,xq ;v!

3@Ga~xq ,xp ;v!1Gr~xq ,xp ;v!#. ~59!

For a single spin on each side of the barrier and equilibri
Eex

Per goes over into an expression that can be derived fro
closed-loop Feynman diagram in conventionalS-matrix
theory,46 such that

G,~xL ,xR!@Ga~xR ,xL!1Gr~xR ,xL!#

522 nF Im@Ga
r ~xL ,xR!#2.

This leads to a well-known expression for the RKK
interaction.47 In other words, in equilibrium the Keldysh loo
leads to the same results as conventionalS-matrix theory as
it should.

The expressions for the local Green’s function, given
Sec. IV, replace the Green’s functionsG in Eq. ~59!, so that
after carrying out similar manipulations to those for the sp
current, and realizing thatGa(P,Q)2Gr(P,Q)5AR(P,Q)
1AL(P,Q) ~see Appendix B!, we obtain Eex

Per5Eex
Per(O)

1Eex
Per(I ) , where

Eex
Per~O!5

m0
2

4\
h0

Lh0
R ImE

2`

` dv

2p
~nF

L1nF
R!~\t r !2

j̃R
r

eR
r

j̃L
r

eL
r

,

~60!
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Eex
Per~ I !52m0E

2`

` dv

2p
~nF

L2nF
R!TFh0

L
jL

0

vL
NR2h0

R
jR

0

vR
NLG ,

~61!

and

jL~R!
0 5E

L2 l L

L S E
R

R1 l RD dxL~R! xL~R!
r @xL~R! ,L~R!#

3xL~R!
a @L~R!,xL~R!#, ~62!

which varies for\v>VL(R) asl L(R) with the thickness of the
respective ferromagnet unlikej̃p

r /a in Eq. ~50! and is expo-
nentially damped for\v,0 ~cf. Appendix C!. The dimen-
sionless quantitiesNp from Eq. ~52! describe spin polariza
tion from the ferromagnets and the transmission amplit
t r52 i\AvLvR Gr(L,R) is derived in Appendix A. The re-
lation between transmission amplitude and transmission
efficient is given byT(v)5ut r(v)u2. For\v>Vp, Eex

Per(O) is
purely oscillatory inl p , because in the case of our simplifie
model j̃p

r 52 i @exp(2iqp lp)21#. This contribution to the ex-
change energy is also present in the equilibrium case sinc
Eq. ~60! nF

L1nF
R52nF . The second contribution to the ex

change energyEex
Per(I ) is proportional to the length of the

ferromagnets, sincejp
05 l p , and thus is responsible for th

unexpected behavior found in Ref. 38. Further, it vanishe
equilibrium, i.e.,nF

L2nF
R50, so that it represents the non

equilibrium polarization effect caused by the current of sp
polarized conduction electrons, as pointed out in Sec. III
the remaining part of this section we want to discuss the t
Eex

Per(I ) in more detail. Before, we add the three-dimensio
case of the interlayer exchange at zero temperature,

Eex
3D, Per~O!5

mn2D

~2p\!2F E0

m

de~m2e!

1E
2eV

m2eV

de~m2eV2e!G
3H m0

2 h0
Lh0

R

4
ImF ~ t r !2

j̃R
r

eR
r

j̃L
r

eL
r G J , ~63!

Eex
3D, Per~ I !5

mn2D

~2p\!2F E0

m

de~m2e!2E
2eV

m2eV

de~m2eV2e!G
3H 2m0

\
TFh0

L
jL

0

vL
NR2h0

R
jR

0

vR
NLG J , ~64!

where the magnetic mean field of the ferromagnets inclu
again the three-dimensional spin density.

In the quasi-one-dimensional system we are study
here, the important contributions to the exchange interac
are close to the Fermi surface of the respective lead, so
the electron velocitiesvp can be replaced by their Ferm
velocitiesvp

F and Eq.~61! approximated by

ERK
Per~ I !'m0~hspt

L N l R^SR
z &2hspt

R N l L^SL
z&!, ~65!
e

o-

in

in

-
n
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s
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where the contributions from each ferromagnet to the sp
polarized tunnel current~51! define a magnetic field that i
transported by spin-polarized conduction electrons,

hspt
p 5

m

e2
^I spt,p

Per &. ~66!

Further, we have introduced new dimensionless quantitie

N l p5
Jrpl p

\vF
p

5pJg~eF
p ! nd

p , ~67!

wherend
p5rpl p gives the number of spins in the slabs a

g(eF)5(p\)21Am/2eF is the one-dimensional density o
states at the equilibrium Fermi energy of the respective le
The dimensionless productJg5J/p\v, which is used to
quantify the coupling constantJ for the s-d interaction, can
often be estimated from the Kondo temperature.48 For the
three-dimensional case we have to replace in Eq.~66!
^I spt,p

Per & by the expression~55!, the number of localized

spins nd
p by ñd

p5rp
3Dl pn2D, and g(eF) by the quasi-one-

dimensional density of statesg̃(eF)5(n2Dp\)21Am/2eF.
Since in a steady-state situation the spin current is in

pendent of position, it carries information of local spin p
larizations throughout the entire system and thus represe
nonlocal quantity. This property of the spin current shou
also be reflected in the exchange energy. Upon biasing
junction its symmetry is broken, so that a charge curren
driven through the system, resulting in the occurrence o
‘‘current’’ term Eex

Per(I ) out of equilibrium. This term depend
on the transmission coefficient, the spin polarization by
ferromagnets and the difference of the electron occupatio
the reservoirs. We have shown in Eq.~66! that in correspon-
dence to the different branches in the Keldysh loop, the
change interaction in this term is related to aforward spin
current from the left side of the barrier acting on spins on
right side and abackwardspin current from the right side o
the barrier acting on the spins on the left side. According
Eq. ~10!, this is the same as saying thatEex

Per(I ) occurs via the
interaction of the ferromagnet on the right side of the barr
with the nonequilibrium current of magnetization^IM

L & in-
jected from the left ferromagnet and the interaction of the
ferromagnet with the nonequilibrium current of magnetiz
tion ^IM

R & injected from the right ferromagnet. Thus, for th
exchange interaction the field effect of the spin currents fr
different sides of the barrier subtracts rather than adds
occurs for the overall spin current in Eq.~46!.

This fundamental difference is due to the fact that t
exchange interaction depends on the induced spin dens
while the spin current involves the difference in densit
times velocities. Because the global direction of the cha
current is defined from left to right, i.e.,mL.mR , we find
that the nonequilibrium effect on the interaction inEex

Per(b) is
proportional to^Ispt,L&2^Ispt,R& if we assume identical fer-
romagnets and a constant Fermi velocity in Eq.~65!. This
result is different from that found for the spin current of th
full system ~46! that is ^Ispt,L&1^Ispt,R& for parallel align-
ment of the ferromagnets. It is only in the case of antipara
alignment that the results are proportional. Later in Sec.
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TABLE I. Parameters for the ferromagnet-barrier-ferromagnet tunnel junction described in the tex
ferromagnetic materials consist of either Ni or Fe and an insulator material of either Al2O3 or MgO. The
exchange interaction between thed electrons within a single ferromagnet causes a splitting of their b
bottoms into two different spin subbands that is proportional toJr/m.

Insulator f ~eV! s ~Å! Ferromagnet m ~eV! kF (Å 21) Jr/m l ~Å! V0 ~eV! V0 /m

MgO 0.9 21 Fe 5.0 1.26 0.32 80–250 5.9 1.18
Al2O3 1.8–3.5 12–18 Ni 5.0 1.26 0.58 80–250 6.8–8.5 1.36–1
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we will present numerical examples to demonstrate this c
nection between spin current and exchange coupling.

Thus, we can now give the following explanation of th
ferromagnetic slab size dependence in the exchange inte
tion found in Ref. 38. Upon biasing the system out of eq
librium, a steady-state current is driven across the junction
that in the ferromagnetic slabs conduction electrons inte
with localized moments and become spin polarized. This c
ates an uniform magnetic fieldhspt

p ~66! carried by the spin-
polarized current~51!. Because the spin current is unifor
throughout the system, the uniform magnetic field acts on
localized spins in the ferromagnet of the other side of
barrier. A uniform magnetic field acting on a spin system
proportional to the number of spins involved and thus
exchange interaction is also.

B. Interlayer exchange in mean-field model

In the mean-field model,Eex in Eq. ~57! derives from the
interaction between localized spins and conduction electr
in different spin subbands, so that the unperturbed Gre
function Ga differs for ferromagnetic and antiferromagnet
interlayer coupling. The nonlocal terms describing the
change coupling across the barrier are already contained
plicitly within the unperturbed Green’s functionGa that re-
places the exact Green’s functionGab

, in Eq. ~58!, leading to

Eex
MF52

J

2 (
a

p5Ln ,Rm

saH ^Sp
z& ImE

2`

` dv

2p
Ga

,~xp ,xp ;v!J
ex

.

~68!

The sum in Eq.~68! is over an infinite number of spins sinc
we assumed semi-infinite slabs in the mean-field model
this case, the resulting total spin moments per unit area
not strictly defined and we therefore assume thatl L(R) is
finite but large such that the mean-field approximation s
holds well.

Replacing the sum over all spins in both ferromagnets
a spatial integration as in Eq.~50!, we rewrite Eq.~68! en-
tirely in terms of local functions as was done similarly in t
previous cases,Eex

MF5Eex
MF(O)1Eex

MF(I ) , where

Eex
MF~O!5m0 (

a
p5L,R

H ha
pE

2`

` dv

2p
nF

p ImF \

2ep,a
r

~12rP,a
r !G J

ex

~69!
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Eex
MF~ I !5m0(

a
E

2`

` dv

2p
~nF

L2nF
R!

3H Ta Fha
L

jL,a
0

vL,a
2ha

R
jR,a

0

vR,a
G J

ex

, ~70!

and for consistency the limit for large ferromagnets w
taken such that2 i j̃p,a

r 51 in Eex
MF(O) . Now the electron ve-

locity, transmission coefficient, mean magnetic field, and
flection amplituderP,a

r 512 i\vp,aGa
r (P,P), which arise

from a wave being scattered off the respective barrier, are
spin dependent.

Because the exchange energy depends on the relative
orientation of the two ferromagnets, we furthermore want
show thatEex

MF(I ) has terms in̂ SL
z&^SR

z &. For this we assume
a small band splitting relative to the Fermi energy in ea
ferromagnet, so thatvp,a'vp(12m0ha

p/2ep), and a thick
barrier, such that its main contribution is an exponen
damping. The spin current in the mean-field model~41! is
thus approximated by

^Ispt,p
MF &'22eE

2`

` dv

2p
~nF

L2nF
R! T

m0h0
p

2 ep
. ~71!

This form of the spin current is rather intuitive since it
expressed as the probability of spin-polarized electrons
neling through the barrier. The properties of the barrier
contained in the transmission coefficientT whereas the
amount of spin polarization is determined by the Pauli fac
m0h0

p/2ep . Inserting Eq.~71! into Eq. ~66!, we obtain Eq.
~65! for the nonequilibrium contributionEex

MF(I ) in analogy to
the perturbation result. All terms in Eq.~65! are of second
order in the coupling constantJ and proportional to
^SL

z&^SR
z &. The difference between this approximation a

the perturbation result, where we used Eq.~51! instead of Eq.
~71!, lies in the assumption of very large ferromagne
2 i j̃p

r '1, and thick barriers,rP
r '1. The three-dimensiona

case at zero temperature follows in analogy to Eq.~42!.

VII. NUMERICAL RESULTS

In order to make quantitative predictions for comparis
with possible experiments, we implement our calculatio
with model parameters for the geometry of the trilayer jun
tion similar to those studied by Mooderaet al.8 and for sim-
plicity take the same ferromagnetic materials on either s
of the barrier. The parameters for Ni and Fe are taken fr
Mukasaet al.49 in order to obtain a rough estimate for th
conduction-band splitting. The values are collected in Ta
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I, where the value for the Fermi wave vector in equilibriu
kF implies an effective electron mass ofm/me51.20. We
always take the zero-temperature limit and, according to
model in Fig. 1, express the barrier Green’s functions
terms of Airy functions~cf. Appendix D!.

It is convenient to define the dimensionless interact
range function, which represents the variation of the inter
tion between ferromagnetic slabs, in the form

F~ l !52S p\

m0
D 2 p Eex

3D~ l !

h0
Lh0

R m n2D
. ~72!

This depends on the width of the slabs, which for simplic
is assumed to be the same for bothl 5 l L5 l R , on the form of
the barrier and also on the bias. The change in the coup
behavior of the ferromagnets is shown as a function of
plied bias eV/m for the perturbation model, Fig. 2, an
mean-field model, Fig. 3, respectively. For both models

FIG. 2. Range functionF in the perturbation model vs applie
bias across the junction for different ferromagnetic slab thicknes
l 515, 80, 120 Å . The barrier thickness is assumeds512 Å and
the ratio of barrier height to Fermi energyV0 /m51.2 for MgO and
V0 /m51.5 for Al2O3 , respectively.
ur
n

n
c-

g
-

e

range function is calculated for barriers with thicknesss
5R2L512 Å for two different barrier materials, MgO
and Al2O3 , i.e., for two different initial ratios of the barrie
height to the equilibrium Fermi energyV0 /m51.2 and
V0 /m51.5, respectively. Additionally, we varied the leng
of the ferromagnets between a very thin slabl 515 Å and
what was achieved in recent experiments by vacu
evaporation8 or sputtering techniques10 l 580, 120 Å .

In Fig. 2 the range function shows oscillatory behavior
the bias is varied. For very thin barrier thicknessl 515 Å the
period of the oscillations is very long and, in the range pl
ted, exhibits only one full oscillation whose amplitude grow
stronger and period shorter as the bias is turned up. For
two different barrier materials the oscillations show simi
qualitative but different detailed behavior. This is mainly d
to a stronger exponential damping for the higher barrier t
reduces not only the coupling strength but also the rela

es FIG. 3. Range functionF in the mean-field model vs applie
bias across the junction for different ferromagnetic materials Fe
with slab thicknessesl 515 Å . The barrier thickness is assume
s512 Å and the ratio of barrier height to Fermi energyV0 /m
51.2 for MgO andV0 /m51.5 for Al2O3 , respectively.
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strength of the oscillations. The proportional increase of
cillation strength with increase of bias can be understo
from the fact that for greater bias the spin current becom
stronger so that the interaction between the slabs is lar
influenced by the effect of the spin current according to E
~65!. Furthermore, the decrease of the oscillation period
also connected to the spin current. The two cutoffs of
frequency integration in Eq.~61! lead approximately to a
wave vectorqeV5A2m eV/\, since VL2VR5eV, which
contains the bias implicitly. This wave vector is responsi
for the principal oscillation out of equilibrium. For a detaile
discussion we refer to Ref. 38. The oscillations that do
vanish in equilibrium are considerably weaker and are
visible on the scale used in the figures.

Increasing the thickness of the ferromagnetic slabs,
find for MgO that the behavior described above becom
more pronounced forl 580 Å beyond which two types o
oscillations start to occur, i.e., forl 5120 Å : a strong
‘‘slow’’ oscillation and a weaker ‘‘fast’’ one. For Al2O3 the
separation into slow and fast oscillations is already visible
l 580 Å . The fast oscillations grow more rapid for bo
MgO and Al2O3 since the exchange interaction is a functi
of the slab lengthl. Further, the faster the oscillations th
stronger their destructive interference so that in the Al2O3

barrier they appear to be very strongly damped and fol
5120 Å have almost vanished completely. Finally, t
strength of the slow oscillations increases for largerl, since

in Eq. ~61! the termj̃0 is proportional tol, which is another
indication that the term proportional to the spin current
deed dominates the nonequilibrium exchange interaction
explain them in more detail, we point out that for Al2O3 and
l 5120 Å the parameters lie within the range of the me
field model where we can assume that semi-infinite slabs
a good approximation of the ferromagnets in the junction

Thus, we turn to Fig. 3 and find that here the fast osci
tions disappeared and the curves can be roughly viewe
envelopes to those in the perturbation model. However, th
are two fundamental differences. Since Ni and Fe have
ferent band splitting, the transmission through the barrie
altered for the different materials, leading to stronger c
pling for Fe whose mean field is approximately twice
strong as that of Ni. Further, here the coupling strength
the barrier thicknessl 515 Å is already as strong as forl
5120 Å in the perturbation model. The reason is that
calculating the exchange in the mean-field model~68! we
assumed that one of the slabs was semi-infinite and tha
interaction was taken into account to all orders, becaus
the unperturbed Hamiltonian~2! we replaced the single par
ticle potential V(x) ~3! by the spin-dependent potenti
Va(x) ~8!.

What is common to both models is the general behav
of the interaction switching from a ferromagnetic coupling
an antiferromagnetic one at an applied voltage
;0.38eV/m in the case of the MgO barrier. This switchin
behavior is absent for the higher Al2O3 barrier at this bias.
Without showing a graph, we note that a switching nevert
less occurs at much higher bias of;0.8eV/m. In a sense the
behavior of the Al2O3 barrier shows the same general co
pling behavior as the lower MgO one; only it is, first, mu
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stronger damped and, second, its general features vary o
wider range of applied voltages.

In reference to the analytical results discussed in S
VI A, we would like to demonstrate how the switching
reflected in the spin current. We turn to Fig. 4, where
introduced the normalized function

C~ l !52
~2p\!2

2m m0h0n2D
^I spt

3D, Per&, ~73!

which has the dimension@A#, and assumedh05uh0
Lu5uh0

Ru
and l 5 l L5 l R . Figure 4 shows the spin-current-voltage b
havior for ferromagnetic and antiferromagnetic alignment
the slabs. As in the case of the exchange interaction,
length of the ferromagnets is varied betweenl 515 Å and
l 5120 Å . The barrier again isl 512 Å wide and consists
of either MgO or Al2O3 .

FIG. 4. Normalized spin current-voltage functionC@A# in the
perturbation model for parallel@ferromagnetic~FM!# and antiparal-
lel @antiferromagnetic~AFM!# alignment of the ferromagnets. Th
thicknesses of the ferromagnets arel 515 and 80 Å and of the
barrier s512 Å . The ratio of barrier height to Fermi energy a
V0 /m51.2 for MgO andV0 /m51.5 for Al2O3 , respectively.
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The switching from parallel to antiparallel alignment
the exchange interaction reappears at a slightly lower bia
the form of switching of the spin current from a negative
a positive spin current in the antiferromagnetic set up of
junction. For slabsl 515 Å exists a switching for both bar
rier materials, whereas for slabsl 580 Å the switching oc-
curs only for the MgO barrier, similar to the exchange int
action in Fig. 2. This demonstrates the proportiona
between exchange interaction and spin current in the ant
romagnetic configuration of the junction as pointed out
Sec. VI A. In real systems other contributions such as
various anisotropy energies have to be included where
most experiments the tunnel magnetoresistance is contro
by an external magnetic field. A quantitative estimate w
an account of these additional contributions will be given
a subsequent publication.

Looking at both graphs, we observe that oscillations p
marily show in the antiparallel ordered structure whereas
the parallel one they are almost completely damped. To
plain this behavior, we examine Eq.~46!. The two spin con-
tributions ^Ispt,L(R)&, are different in their behavior. Th
contribution to the spin current arising from the left of th
barrier ^Ispt,L& comes from the region of higher chemic
potentialm. Therefore,̂ Ispt,L& predominantly shows char
acteristic tunneling behavior where oscillations are stron
damped. On the other hand, in the right region of low
chemical potentialm2eV the spin current mainly flows into
the right reservoir away from the junction so that there i
higher sensitivity to interferences in̂Ispt,R&, arising from
scattering of localized spins and reflection of the barrier
the two contributions are added, as it is the case for a fe
magnetically aligned structure, the oscillations are relativ
small compared to the overall spin current. On the contra
if the two contributions are subtracted, as is the case fo
antiferromagnetically aligned structure, the oscillations c
become large relative to the overall spin current.

VIII. DISCUSSION

Some comparison is possible between the results der
for a simple model in the previous section and recent exp
ments on tunneling in ferromagnet-insulator-ferromag
trilayer thin-film planar junctions. Most experimental me
surements in trilayer junctions are concerned with the cha
in resistance as a function of an applied external magn
field. According to a model by Julliere,4 it is argued that due
to an uneven spin distribution of conduction electrons in
ferromagnets the probability of tunneling through the insu
tor depends on the relative orientation of the ferromagn
In the parallel configuration, there is a maximum match
tween the number of the occupied states in one lead
available states in the other, giving a maximum in the tun
current and a minimum in the tunnel resistance. On the o
hand, in the antiparallel configuration, tunneling is betwe
majority states in the one lead and minority states in
other that leads to the inverse of this behavior. This argum
holds as long as the barriers are relatively high and thick
the ferromagnetic slabs long so that the conditions for
~71! hold. Numerous experiments have validated that t
model roughly predicts the behavior of the measured mag
in
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toresistance curves. Further, Slonczewski13 pointed out that
the interlayer exchange coupling in a trilayer junction c
become negative, depending on the barrier height of the
sulating potential. In magnetoresistance curves for
2Fe/Al2O3/Co junctions Miyazakiet al. found an additional
step that they related to a negative interlayer exchange
pling, i.e., an antiferromagnetic one.50 They stressed that th
coupling also depends on the junction area. If the junction
not too small, edge effects can be neglected so that our th
dimensional expressions for the coupling and spin curr
give a proper account of the effect of the junction area on
coupling strength.

One of the most surprising experimental observatio
concerns the strong decrease of magnetoresistivity as the
is increased. Mooderaet al. reported for their junctions tha
the change in magnetoresistance is small for dc biases u
0.1V beyond which it decreased much faster.8 In addition,
MgO barriers showed more decrease as compared to A2O3
barriers. Finally, the decrease of the magnetoresistance
bias was larger when the magnetoresistance at low bias
smaller. Although the behavior might be different on a d
tailed level, our model incorporates qualitatively all the ph
nomena described above. Turning once again to Figs. 2
3 describing the interlayer exchange coupling, we find t
the initial region is rather flat thereafter the influence of t
bias is strongly increased. In particular, strong nonlin
current-voltage behavior occurs at lower bias, if the barr
height and the Pauli factor, i.e., the band splitting, a
smaller, in correspondence to the experimental results.
ther, in agreement with the experiments by Parkinet al. on
metallic superlattices,24 where the oscillations in the magne
toresistance could be related to the oscillations in the
change coupling by measuring the saturation field, we fi
that a voltage-induced rise in the ferromagnetic coupl
strength is related to a decrease in the tunnel magnetor
tance. Detailed calculations of the strength and nonlinea
of the increase of the ferromagnetic coupling appear to
compatible with the significant decrease of magnetore
tance observed. This work will be reported in detail els
where.

IX. CONCLUSION

In this paper, we have studied tunneling in ferromagn
insulator-ferromagnet thin-film planar junctions out of equ
librium. Using a proper field theoretic description for such
system, which is based on the nonequilibrium Keldysh f
malism, it was possible to extend previous treatments of
spin current and exchange interaction. In particular, we
rived a Landauer-type formula for both our models and co
explain the spin-coupled interface resistance, first discus
by Johnson and Silsbee15,16,51and further developed by Vale
and Fert.52 Because our models describe coherent transp
the spin accumulation occurs throughout each ferromag
only depending on the barrier properties, the differences
the chemical potentials in the two reservoirs, and, in case
the perturbation model, on the thicknesses of the ferrom
nets.

Terms in the nonequilibrium exchange interaction, whi
are proportional to the length of the ferromagnetic sla
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were related to spin currents arising from ans-d interaction
in each slab. This leads to an approximate, physically in
tive formula for the nonconvergent behavior of the exchan
interaction out of equilibrium forl p→`, i.e., this contribu-
tion to the interaction appears to act as an uniform magn
field. In addition, the numerical results show an interest
switching behavior between parallel and antiparallel c
pling between the slabs for different applied biases un
feasible experimental conditions. In particular, this leads
an explanation of the strong decrease of the tunnel ma
toresistance observed with increasing bias.

By using two different models, the mean-field model a
perturbation model, different aspects of the trilayer junct
were captured and shown to be related, i.e., the perturba
treatment is the natural approach for calculating the
change interaction as it has been done for the RKKY in
action, whereas the mean-field approach is the more obv
one for treating the spin-polarized current. Under certain l
iting conditions these two models lead to the same resu
Naturally, it seems desirable to unify both models in a w
that there is a possibility of treating strong coupling co
stants for finite ferromagnets. This can be done within
mean-field model, if the assumptions of semi-infinite fer
magnets is dropped and the potential structure is extende
cover the full ferromagnet-barrier-ferromagnet trilayer jun
tion in the intermediate region instead.

To obtain a better quantitative picture of tunneling in
trilayer structure, one would like to include effects such
barrier nonuniformity, spin-flip processes, and carrier-car
and carrier-magnon interactions. Although our element
trilayer model omits these generally important complic
tions, we believe that the nonequilibrium Green’s functi
method is adaptable to include them. For example, the
rier nonuniformity could be treated within a coherent pote
tial approximation to the lateral modulation of the barr
thickness between the ferromagnets and the insulator
particular importance are also the effects caused by spin
citations. In this context we note the recent work by Zha
et al.53 who could explain the quenching of magnetores
tance for the zero bias anomaly observed by Julliere
would be interesting to extend the treatment of spin exc
tions to the nonequilibrium case. Another aspect we are
vestigating at present are the spin-wave dynamics of
junctions as pointed out by Zilberman.54
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APPENDIX A: COMPARISON TO TRANSFER MATRIX

To make a closer connection between scattering the
and the nonequilibrium Green’s function approach, it is u
ful to derive relations between Green’s functions and
scattering or transfer matrix. A significant aspect of the sc
i-
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tering theory is that it allows for a separation between
initial conditions, which can be adapted to the requiremen
any particular problem, and a scattering or transfer ma
that depends only on the nature of the dynamics, the for
and the frequency. Since all aspects in this section only d
with single electron quantities, we drop the spin index
clarity.

The scattering formalism describes the electrons in te
of in- and out-scattering states of the conductor that are
lated by the scattering matrix

S aout

bout
D 5SS ain

bin
D , ~A1!

whereS is a unitary matrix due to current conservation th
has the block structure

S5S sLL sLR

sRL sRR
D . ~A2!

Another equivalent description is via the transfer matrix. T
scattering and transfer matrices are equivalent descript
for transmission through the intermediate, disordered reg
of the system. A convenient property of the transfer matrix
the multiplicative composition rule: the transfer matrix of
number of disordered regions in series separated by i
leads is the product of the individual transfer matrices. T
scattering matrix, in contrast, has a more complicated co
position rule.

To be more explicit consider again the local, sing
particle potentialV(x) in H0 ~2!. The potential is continuous
and it is assumed that the fundamental set of solutions of
Schrödinger equation in the appropriate subspa
$v1

p(x),v2
p(x)%, pP$L,I ,R% is known. Therefore, the trans

fer matrix for transporting the wave function consists of
linear combination of eigenfunctions with appropriate co
ficientsap , bp , and their derivatives in the interval@L,R#.
A free wavev1

L(x)5exp(iqLx) incident from the left is scat-
tered off the potential and partly transmitted to the rig
v1

R(x)5exp(iqRx), which leads to the following equation fo
the transfer matrix:

S aR

bR
D 5TS aL

bL
D , ~A3!

where we identifyaL5ain , bL5aout , aR5bout , bR5bin ,
and
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T5S v1
R~R! v2

R~R!

v18
R~R! v28

R~R!
D 21S v1

I ~R! v2
I ~R!

v18
I~R! v28

I~R!
D S v1

I ~L! v2
I ~L!

v18
I~R! v28

I~L!
D 21S v1

L~L! v2
L~L!

v18
L~L! v28

L~L!
D

[2
1

2iAqRqLW
S 2 iqRe2 iqRR 2e2 iqRR

2 iqReiqRR eiqRR D S GL 2L

V GR
D S eiqLL e2 iqLL

iqLeiqLL 2 iqLe2 iqLLD .

The conservation of probability density in stationary state implies that detT51. From the transmission matrix the transmissi
coefficient through the system can be calculated:

T~v!5
uaRu2

uaLu2
5

1

uT22u2
5

4W2qLqR

~V1qLqRL!21~qLGR1qRGL!2
. ~A4!

The transfer matrix, on the other hand, can also be written in terms of Green’s functions

T52
1

2iAqRqLW
S DrLei ~qLL2qRR! 2DaL@12 i\vRGr~R,R!#e2 i ~qLL1qRR!

DaL@12 i\vLGr~L,L !#ei ~qLL1qRR! 2DaLe2 i ~qLL2qRR! D .

Therefore, the product\2Ga(L,R)Gr(R,L)vLvR amounts to

\2Ga~L,R!Gr~R,L!vLvR5
4qLqR

uDu2
g I

a~L,R!g I
r~R,L!5

4W2qLqR

~V1qLqRL!21~qLGR1qRGL!2
, ~A5!

which equalsT(v) ~see also Ref. 55!. Further, there exists a one-to-one relation between the transfer matrix and the sca
matrix

S5S 2T21/T22 1/T22

21/T22 2T12/T22
D , ~A6!

with which a relation between the scattering matrix and the Green’s functions of the system can be established,

S5S @12 i\vLGr~L,L!#e2iqLL 2 i\AvLvRGr~R,L!ei ~qLL2qRR!

2 i\AvLvRGr~R,L!ei ~qLL2qRR! @12 i\vRGr~R,R!#e22iqRR D .

The diagonal elements of the scattering matrix describe reflection off the respective interface, whereas the off-
elements are the transmission through the system. The elements of the scattering matrix amplitude can thus writt
compact notation55

spq
r 5dpq2 i\AvpvqGa

r ~P,Q!, ~A7!

where p,qP$L,R% andP,QP$L,R%. Therefore, the reflection amplitudes at the interfaces are given byrP
r [spp

r and the
transmission amplitude through the intermediate region byt r[sLR

r .

APPENDIX B: SPECTRAL RELATIONS

The following identity can intuitively be seen in direct connection to the spectral relation:

Ga~P,Q!2Gr~P,Q!5AL~P,Q!1AR~P,Q!, ~B1!

where$P,Q%P$L,R%. The proof given in Ref. 42 allows for the reasoning that the fully coupled system in nonequilib
steady state only depends on the occupation properties of the reservoirs in the asymptotic regions of the left and rig
This behavior shows in a mathematical form in the functional relations (GLGR2W2)d(L)50 andLd(L)50, for example.
They prove the fact that the imaginary parts of Green’s functions in the intermediate regiong I cancel.42 This restates that ther
is no dependence on the occupation of the intermediate region.

APPENDIX C: GREEN’S FUNCTIONS OF THE LEAD AND SPATIAL INTEGRATION

Within the single effective mass approximation for a barrier system as shown in Fig. 1 the Green’s functions
decoupled leads are found to be

gL~R!,a
r /a ~x,x8!51~2 !

2m

\2qL~R!,a
r /a H sin$qL~R!,a

r /a @x2L~R!#%e7~6 !iqL~R!,a
r /a [x82L~R!] , x.~, !x8

sin$qL~R!,a
r /a @x82L~R!#%e7~6 !iqL~R!,a

r /a [x2L~R!] , x8.~, !x,
~C1!
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whereqL(R),a
r /a 5A2m(\v2Va

L(R)6 id)/\2, the upper/lower signs are associated with the superscriptsr /a, respectively, and
Va

L(R) is the bottom of the conduction band in the corresponding side of the junction as before. Furthermore, the
frequency and wave-vector dependence was omitted for brevity. Thus, from Eq.~C1! follows

xL~R!,a
r /a ~L~R!,xL~R!!5xL~R!,a

r /a @xL~R! ,L~R!#51~2 !exp$7~6 !iqL~R!,a
r /a @xL~R!2L~R!#%. ~C2!

The spatial integrations yield

j̃L~R!,a
r /a 52qL~R!,a

r /a E
L2 l L

L S E
R

R1 l RD dxL~R! x̃L~R!
r /a 57 i @exp~62iqL~R!,a

r /a l L~R!!21#, ~C3!

and

jL~R!
0 5E

L2 l L

L S E
R

R1 l RD dxL~R! xL~R!
r @xL~R! ,L~R!#xL~R!

a @L~R!,xL~R!#5
exp@ i ~qL~R!,a

r 2qL~R!,a
a !l L~R!#21

i ~qL~R!,a
r 2qL~R!,a

a !
, ~C4!

wherejL(R)
0 produces a term ofl L(R) for energies above the band bottom in the respective lead, i.e.,\v>VL(R).

APPENDIX D: GREEN’S FUNCTIONS FOR THE SLOPING BARRIER

A sloping potential leads to the following inhomogeneous Schro¨dinger equation in

@]x
22k3x# f ~x!5z, ~D1!

with the parametersk52A3 2meV/@\2(R2L)# andz52m(V02eV/22v)/\2. Two independent solutions are found in term
of Airy functions,56

v1~x!5Ai ~kx1z/h2!,

v2~x!5Bi~kx1z/h2!. ~D2!

The Green’s functiongI for the sloping barrier is then obtained by insertingv1 andv2 into

gI~x,x8!5
2m

\2

1

WL H Q~x!K~x8!, x.x8

K~x!Q~x8!, x,x8,
~D3!

where

Q~x!5v1~x!v2~R!2v2~x!v1~R!,

K~x!5v1~x!v2~L!2v2~x!v1~L!,

L5v1~L!v2~R!2v2~L!v1~R!,

andW5v1v282v2v18 the Wronskian. In equilibrium, one can show thatgI(x,x8) simplifies to

gI~x,x8!5
2m

\2 H sinh@k~x2L!#sinh@k~x82R!#

k sinh@k~R2L!#
, x,x8

sinh@k~x82L!#sinh@k~x2R!#

k sinh@k~R2L!#
, x8.x,

~D4!

wherek5A2m(V02\v)/\. Note that Eq.~D4! holds for allv, i.e., including the case whenV02v,0, for which the sinh
functions in Eq.~D4! go over to corresponding sin functions.
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