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Indirect couplings between magnetic layers in a metallic
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Abstract

For an ideal and degenerate electron gas con"ned to a half-space, indirect couplings between two parallel ferromag-
netic layers or slabs are derived. ( 1999 Elsevier Science B.V. All rights reserved.
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1. The homogeneous case

This paper derives the indirect interaction between
ferromagnetic "lms in a half-space. To this end we recall
the formulas which apply to the homogeneous metal.
Consider a spin-dependent point interaction
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where the coupling constant c has the dimension en-
ergy]volume, and where r is the position and p/2 the
dimensionless spin operators of an electron, while I is the
direction of an ion spin at position a. Eq. (1) is often used
to represent the exchange interaction of an ion spin with
conduction electrons. When a homogeneous, degenerate
and ideal electron gas is acted upon by H

10*/5
, a spin

density (angular momentum per unit volume) [1] known
as Ruderman}Kittel}Kasuya}Yosida (RKKY) polariza-
tion P(x)"IAR(u) appears:
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Here u"2k
F
Dx!aD is the distance to the position a mea-

sured in units 1/(2k
F
), where k

F
is the Fermi wave number

of the degenerate electron gas. When another ion spin is
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at position b with coupling constant c@ and spin direction
I@, it interacts with the polarization at b and is therefore
indirectly coupled to the ion at a with ion}ion coupling
energy

!c@AI ) I@R(2k
F
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This procedure is valid in lowest-order perturbation the-
ory, which is a very good approximation in metals where
ck3

F
(+2k2

F
/(2m).

As a next step, we consider the indirect interaction
between parallel "lms in an in"nite metal. The action of
a ferromagnetic plane with x-coordinate a and spin direc-
tion I on the conduction electrons has the form
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where the coupling constant b has dimension en-
ergy]length. If there are l point couplings, Eq. (1), per
unit surface, then b"lc. The resulting interaction energy
per unit surface between two parallel planes separated by
a distance Da!bD is obtained by integrating R(Da!bD)
with "xed a over all positions b in the second "lm [2,3]:
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with
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This is the minimum work required to bring the fer-
romagnetic magnetizations into the con"guration de-
scribed by I and I@ with constant Fermi energy. The
integration describes ion spins which are homogeneously
distributed in the plane. The actual positions of "nite
ions may lead to deviations.

In this linear theory, the interaction of a plane at x"a
with a ferromagnetic half-space for x values from b('a)
toRis obtained by an integration of G(v) for v from 2k

F
b

toR:
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Here
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where k@ is the number of point couplings c@ per unit
volume. a and b have the same dimension:
energy]length. The label of C

1a
indicates that the "rst

ferromagnet is a plane.
If the second ferromagnet is a slab of "nite thickness,
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A further integration of Eq. (12) gives the coupling
between two ferromagnetic half-spaces separated by
a spacer of thickness Db!aD:
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The functions are related by
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They are "nite at the origin:
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Fig. 1 shows their space dependence.
A ferromagnetic slab with x values in the interval

a
1
(x(a

2
interacts with a half-space, x'b, where

Fig. 1. The dimensionless functions, which describe the depen-
dence of the interactions of two ferromagnets in an in"nite metal
on the spacer thickness: (full line) G(u), for two planes, (dashed
line) G

1
(u), for a plane and semi-space, (dotted line) G

2
(u), for two

semi-spaces.
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If there are two slabs for x values a
1
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2
and b
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2
,

their interaction is given by
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2. The half-space

The spin polarization P
h
(x, y, z) of an electron gas in

a half-space, x'0, induced by a point coupling, Eq. (1),
has been calculated in Ref. [4]. It can be expressed with
Eq. (2) using the distances o

~
to the acting point
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In the half-space, R(u) in Eq. (2) is replaced by
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To obtain the interaction between two ferromagnetic
planes with x-coordinates a and b, respectively, the ex-
pression, Eq. (23), is to be integrated over the variables
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Fig. 2. Dimensionless coupling g
h
(a, b)/C of two magnetic planes

in a metallic half space x'0: (full line) for a "xed position
2k

F
b"23 of one plane as a function of the position 2k

F
a of the

other plane, (dashed line) for a "xed spacing 2k
F
(b!a)"3

between the planes as a function of the thickness 2k
F
a of the

covering spacer. The second term of Eq. (23) then oscillates with
period p. In this graph this only deforms the usual oscillations
with period 2p.

y and z with x"b. For the "rst two terms in Eq. (23) this
is exactly the passage from Eq. (2) to Eq. (9). This is also
true for the last term, since w"o

~
#o

`
varies with

t"(y!a
y
)2#(z!a

z
)2 as Rw/Rt"(o

~
#o

`
)/(2o

~
o
`
).

So the two planes couple as [5].
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Thus, the coupling between two ferromagnetic layers
in a half-space can be expressed by that in free space: it is
as if the plane which is more distant to the boundary were
coupled to the other plane in its normal position, plus to
that plane in its mirror position, minus twice to that
plane at the boundary of the half space. Fig. 2 shows this
interaction for a "xed position b as a function of a for
0(a(b, where the surface of the half-space is at x"0,
and also for a "xed separation b!a of the ferromagnetic
planes as a function of the thickness a of the spacer cover.

As in the homogeneous case, if one or both of the
ferromagnets have "nite thickness or even "ll a half-
space, the resulting interactions can be obtained by inte-
grations over a or/and b. Since the way how a and b enter
the three terms of g

h
depends on which is larger, we shall

in the following assume:
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The coupling of a ferromagnetic plane at a with a fer-
romagnetic half-space, x'b, becomes with Eq. (12)
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Therefore, the interaction of ferromagnetic plane at x"a
with a slab in the interval b

1
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becomes
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Integrating Eq. (24) over a gives the coupling of a slab in
the interval a

1
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2
with a plane at b:
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The index of C
1b

indicates that the second ferromagnet is
a plane. The last term of Eq. (28) contains the function
de"ned in Eq. (9). Eq. (28) is quite di!erent from Eq. (27),
since with b'a the last term in Eq. (24) depends on
b only.
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A last constellation consists of a ferromagnetic slab at
a
1
(x(a

2
interacting with a half-space x'b

1
. This is

the previous case, Eq. (30), for b
2
"R, i.e.,
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