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Abstract

Magneto-optical Kerr effect (MOKE) of BCC Fe is calculated beyond the visible-light energy up to 27 eV by means of
the full-potential linear augmented plane wave (FLAPW) method within the local spin-density approximation. Cal-
culated MOKE spectra are in good agreement especially for the high-energy region with recently reported experimental
results, which have shown a qualitative discrepancy with previous augmented-spherical-wave results. A new peak in the
MOKE spectra is found around 18 eV. Convergence properties of several parameters included in our FLAPW scheme
are also studied. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Local spin-density-approximation (LSDA) cal-
culations of the magneto-optical Kerr effect
(MOKE) have been extensively carried out in last
decade for various kinds of ferromagnetic materials
such as transition metals [1-3], transition-metal
compounds [4-10] and multilayers [11-14], and
rare-earth and actinide compounds [15-17]. All of
the calculations are based on the Kubo formula of
the optical conductivity proposed by Wang and
Callaway [18,19]. It is now well recognized that the
LSDA calculation provides not only a very power-
ful tool to investigate the microscopic origins of
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MOKE from first principles but also a rigorous
evaluation of the one-electron approximation and
numerical techniques involved in direct compari-
son with experiment.

In the MOKE calculations so far reported, linear
muffin-tin orbital (LMTO) and augmented spheri-
cal wave (ASW) methods were used to obtain
one-electron eigenvalues and eigenfunctions. The
LMTO and ASW methods are known to be very
efficient because of using a minimal basis set, com-
pared with plane-wave base methods. The cal-
culated MOKE results indeed indicate that the
LMTO and ASW methods are highly efficient and
accurate to calculate MOKE for a wide range of
ferromagnetic materials within the visible-light en-
ergy range.

Very recently, MOKE spectra have been mea-
sured for BCC Fe in a photon energy up to 10eV
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by using a synchrotron radiation source [20] and
shown a qualitatively different result from the pre-
vious ASW calculations. It is not clear whether the
discrepancy arises from LSDA or other numerical
methods such as ASW. To answer this is one of
our aims in the present paper. We have
formulated the optical conductivity by means of
the full-potential linear augmented plane wave
(FLAPW) method and calculated MOKE for BCC
Fe in the photon energy up to 27 eV. The calculated
spectra are in good agreement with the recent
MOKE data, indicating the importance of repres-
entation for nearly free-electron-like unoccupied
states in evaluating MOKE in a higher energy than
the visible light. Furthermore, it has also been ob-
served that the MOKE spectra show an orientation
dependence in the (0 0 1)- and (1 1 0)-plane-grown
films [20]. We have studied the dependence by
changing the magnetization axis from the [0 0 1] to
[1 1 0] direction.

2. Methods

Within LSDA, one-electron Kohn—Sham equa-
tions are solved self-consistently by using the
FLAPW method [21-23]. We employ particularly
the basis-set construction and iterative algorithm
proposed by Soler and Williams [24-26].

A spin—orbit coupling (SOC), #,, which is ne-
glected in scalar-relativistic LSDA calculations
[27], is essential to obtain the orbital magnetic
moment and consequently the magneto-optical ef-
fects. The SOC term may be incorporated as a sec-
ond variation in the LSDA calculation. The
relativistic wave functions ¥ ,(k, r) can be expanded
with unperturbed wave functions y{(k, r) as

lI/n(ks l') = Z lp;r(ks r)cia,n(k)' (1)
The expansion coefficients C, (k) are deter-

mined by solving one-electron equations:

[%0 + yfso] 'I’n(kﬁ I‘) = Sn(k)qln(ka l"), (2)

with the corresponding relativistic eigenvalues &,(k).
The existence of the magnetic moment with SOC
results in certain difference in the phase shift of

reflectance or absorption between left and right-
circularly polarized lights which are called mag-
neto-optical effects. In particular, MOKE is the
magneto-optical effect appearing in the reflectance
spectra and used widely as a reading method in
magneto-optical devices. In order to evaluate
MOKE from first principles, the transition prob-
ability of electrons excited by a photon should be
calculated. The optical conductivity tensor due to
the interband transition can be obtained by ap-
plying the Kubo formula of the linear response
theory [18] as

r0) = — 205 5 (‘” s

k nn’

Re [n::n(k)ngn(k)]

1
+1i Im[ﬂﬁnf(k)ﬂffn(kz)]> w2, (k) — (0 + i/0)%

G)

where 7 is the relaxation time of the excited elec-
tron. Assuming an appropriate value for 7, the real
and imarginary parts of ,4(w) are derived directly
from Eq. (3). m, (k) is the matrix element of the
o component of a momentum operator p = —ihV:

szn(k) = J‘dr ']/:(k, r)ﬁaq’n’(ka l") (4)

and w,, is the energy difference between occupied
(n) and unoccupied (n’') states

hay (k) = &,(k) — &,(k). ©)

According to our choice of the FLAPW basis set,
the wave functions of Eq. (1) can be expressed as

lpj(ka l") = 'ﬁj(ka l')

+ Z ix [lllv/mj(ka rv) - 'ij/mj(ka rv)]a (6)

v /m
where ‘f’j(k, r) and 'ﬁf’vfmj(k, r,) are the plane-wave
(Fourier) part defined in the whole space and its
spherical-wave (/m) expansion inside a sphere
around atom v, respectively, and ¥,,,,;(k, r,) is the
spherical-wave part defined inside the sphere with
the cutoff of /max In Eq. (6), Y/ stands for

(6), the matnx element in Eq. (4) may be given by
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the following three terms:

T (k) = M) + T + 1), ()
r

Tt = |dr T35, )

f Cmax {max
nil%ll = drz Z Z [q/:/mni)lllv/’m’n’

J v /m ('m’
- Tl:/mnﬁflv/’m’n’], (9)
f ¢ max 0 - -

Ttil::l)' = drz Z Z ('Ilw"’m’nla['}lv/mn’ - q/v/mn’]
J v o/m 'm (> max)
+ [qjv/’mn - q’jv/mn]*i)qjv/’/m/n/)' (10)

Since the dipole transition may be allowed only
between the spherical waves with |/ — /'| = 1, the
matrix elements for / = £, and /' = {0 + 1 re-
main in Eq. (10). Furthermore, it is expected that
the ©'3) term may be much smaller than the other
two terms because ¥, — Py/me has a very small
magnitude due to the continuity conditions near
the sphere boundary where ¥,,,,, has a maximum.
Therefore, we neglect the ©'3) term in the present
calculation. To check this, the convergence with
respect to /. Will be examined in detail in the
following section. The matrix element of a mo-
mentum operator becomes Hermitian because

n'l) is Hermitian obviously and ©'2) is Hermitian by
Vlrtue of the continuation condition between
¥, ,me and ¥,,,.. at the muffin-tin sphere surface.

Finally, the Kerr rotation angle Og(w) and its
ellipticity ng(w) are defined as

()
T @)/ 1 + i(dn/w)o (o)

in the case of the magnetization axis and the inci-
dent light parallel to the z direction.

Besides the interband term described above, the
intraband contribution to the conductivity must be
included in metallic cases and may be additionally
treated within a phenomenological expression by
Drude. However, since an empirical plasma energy
introduces another ambiguity into the shape of the
spectrum especially in low-energy regions and its
effects on the spectrum have been already investi-
gated in the case of BCC Fe [1], the intraband

O (@) + in(w) = —

(11)

contribution will not be considered in the present
study.

In order to compute the optical conductivity
accurately, the k integration must be greatly taken
care of. We adopt the improved tetrahedron
method [28] and investigate the accuracy by
changing the number of k points N, up to
18 x 18 x 18 = 5832 in the full Brillouin zone. One
can get the spin magnetic moment within 0.01 pp
and the Kerr rotation angle and ellipticity up to
1 Ry within a few hundredth degrees with N, =
14 x 14 x 14 = 2744.

Next we have checked the convergence about the
number of states included in the second variation in
Eq. (1). It is found that 10 states per spin are enough
to describe the spectra up to 1.0 Ry while 15 states
are needed for high-energy spectra up to 2 Ry. This
fast convergence may be because of the weakness of
the perturbation J#, in comparison to the energy
difference between the electron states in the high-
er-energy region where electrons behave like nearly
free electron.

3. A test of the spherical-wave expansion

In this section, we examine the convergence in
the optical conductivity and the Kerr spectra with
respect to the maximum angular momentum in
the spherical-wave expansion 7,,,, in Eq. (6). In the
present test for BCC Fe, we commonly use the
lattice constant of a = 2.87 A the muffin-tin radius
of 1.1 A the relaxation-rate parameter hd = h/t =
0.04 Ry, the cutoff energy of 15 Ry for the basis
functions (the corresponding cutoff of 60 Ry for the
charge density and potential functions) and
N, =18x 18 x 18 = 5832.

Figs. 1 and 2 show the optical conductivity and
Kerr spectra calculated for BCC Fe by changing
{ max from 2—4. It is seen in Figs. 1 and 2 that the
difference between /.. =3 and 4 is negligibly
small and that /,,,,, = 2 may be almost sufficient for
qualitative discussions of the Kerr spectra though
the optical conductivity shows somewhat large (at
most 20%) difference between /,,,, = 2 and 3. The
negligible difference between /., = 3 and 4 indi-
cates that the / > 3 states are well expressed by
the plane waves and the ©l}) term in the matrix
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Fig. 1. Calculated optical conductivity of BCC Fe: (a) the real part of o,,, (b) the imaginary part of g, (c) the real part of wo,, and (d) the
imaginary part of wa,, with /,,,, = 2 (dash—dotted line), /., = 3 (solid line) and /,,, = 4 (dotted line). An intraband contribution is not

included.

elements can be neglected. The difference between
/max = 2 and 3 is mostly due to an error caused by
the neglect of ©'3), assuming the / = 3 states are
well represented by the plane waves. In the case of
{ max = 2, important d—f or f—d transitions should be

given by the n}} term, because the plane-wave

representation of the 7/ = 2 states are definitely in-
sufficient.

Concerning the description of the electronic
states, the conventional FLAPW method requires
a high /., value to connect the wave functions
smoothly at the muffin-tin sphere. For example,
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Fig. 2. Calculated spectra of (a) Kerr rotation angle and (b) Kerr ellipticity of BCC Fe with /,,,, = 2 (dash—dotted line), /., = 3 (solid
line) and /,,,,x = 4 (dotted line). An intraband contribution is not included.

Hathaway et al. [29] adopted /,,,, = 8 for BCC Fe.
This is because that discontinuity in the wave func-
tions and the charge density may lead to an inac-
curate solution in the self-consistent procedure. In
our formulation, 7,,,,, = 2 is enough to get the accu-
rate electronic states since states with / larger than
/ max are expressed by the plane waves.

This feature of our FLAPW basis functions pro-
vides another advantage to represent wave func-
tions properly in high-energy regions where the
linear method may break down within a single-
energy window [21,22]. Electronic states in the
high-energy region are basically nearly free-elec-
tron like. The states with £ > /., inside the muf-
fin-tin sphere are not restricted by the linear
method in our formulation since they can be ex-
pressed by the plane-wave functions penetrating
into the sphere. The states with / < /,,,, are ex-
pected to have very small amplitudes within the
muffin-tin sphere in the high-energy region. The
present linear method is suitable to express
the electronic states precisely and efficiently in the
high-energy region.

The spherical-wave expansion must depend on
the sphere radius assumed and the results shown

above may change by choosing another radius. Fig.
3 shows the Kerr spectra calculated with the sphere
radius of 1.24 A, which corresponds to the inscribed
sphere radius of the present BCC lattice. No defi-
nite difference can be seen in Fig. 3 except for minor
ones around 10 eV. It is, therefore, concluded that
the present FLAPW scheme for calculating the
Kerr spectra is robust in the sense that the cal-
culated results are independent of the parameters
involved within their physically reasonable and
computationally efficient range.

4. Results and discussions

Theoretical and experimental Kerr spectra are
shown in Fig. 4 for comparison. It can be found
that general features of the observed spectra are
well reproduced by the present FLAPW calcu-
lation. In the Kerr spectrum, peaks at 4.5 and
6.0 eV coincide with Katayama’s data. A shoulder
near 7.4 eV is slightly shifted to a higher energy
region by 0.7 ¢V in this work. As shown in Fig. 4,
the ASW spectrum reveals a deviation above 6 eV.
It is seen that qualitative agreement of the
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Fig 3. Calculated spectra of (a) Kerr rotation angle and (b) Kerr ellipticity of BCC Fe with the muffin-tin radii of 1.24 A (dotted line) and

1.1 A (solid line). An intraband contribution is not included.
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Fig. 4. Calculated (thin solid line) spectra of (a) Kerr rotation angle and (b) Kerr ellipticity of BCC Fe with experimental results by
Katayama (dotted line) [20] and by Krinchik (dashed line) [38]. Thick solid lines denote calculated Kerr spectra with °the correction by
the virtual refractive-index method along the experimental film structure (Au capping layer [20 A]/Fe film [1000 A]/Au substrate).
A previous ASW result [1] is also plotted by a dash—dotted line. In the theoretical spectra, an intraband contribution in Fe is not
included while that in Au is considered.
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present FLAPW results with the experimental
spectra above 6 eV is much better than in the case
of the ASW result, in which the position of the
shoulder is shifted by 1.7 eV. However, compared
with Katayama’s data, the absolute values of our
calculated spectra are almost rigidly shifted by
about 200 m degrees to a positive side in the
Kerr ellipticity and to a negative side in the Kerr
rotation angle. We examined effects of the capping
layer and the substrate of Au used in the experi-
ment by the virtual refractive-index method and
found certain improvement by at most 100 m de-
grees towards the experimental spectra, as shown in
Fig. 4.

Calculated MOKE spectra in a wide energy
range up to 27 eV are shown in Fig. 5. Since the
shallowest 3p core states are situated far below it,
transitions from the core states do not affect
the MOKE spectra in this survey. In Fig. 5, the
Kerr spectrum of Fe can be classified into two
regions based on the character of its final states
by inspecting the matrix elements [30]. The
low-energy region of the spectrum less than about
7eV is characterized by the final states with d
symmetry, and by those with s, p and f symmetry
as tails of the neighboring d states. On the other
hand, the high-energy region above 7eV has
those characterized only by the free-electron-like
states.

Fig. 5 indicates three remarkable peaks in the
high-energy region, which have never been dis-
cussed so far. The largest peak is situated around
18 eV. This peak can be assigned to the optical
transition around H and N points in the Brillouin
zone, where flat energy bands exist near 17-18 eV
above the Fermi energy [30]. Two other small
peaks are located around 8 and 25eV. The peak
around 8§ eV has been observed in Katayama’s ex-
periment as shown in Fig. 4. This peak may be
attributed to the transitions around N points be-
cause there exist flat bands near 7-8 eV above the
Fermi energy at N points. The peak around 25 eV
also corresponds to the transitions around
N points because of flat bands near 24-25 eV above
the Fermi energy at N points.

Like these features, there must exist fruitful struc-
tures in the ultra-violet region in the other mate-
rials and such surveys are now undertaken. This

complex structure of the MOKE spectrum, or the
off-diagonal part of the optical conductivity in the
wide-energy range provides us opportunity to
study the excited states in metallic systems. In addi-
tion, we can evaluate the approximation involved
in the first-principles calculation by comparing
with experiment directly. Thus it is strongly desired
to measure the MOKE spectrum in a wide-energy
range.

Katayama reported the orientation dependence
of the MOKE spectra between the [00 1] and
[110] directions [20]. However, almost no ori-
entation dependence has been found. This should
be due to weak #, and the isotropic nature of the
crystal field of BCC Fe. This kind of poor orienta-
tion dependence has been already reported for
FCC Co theoretically [3] and experimentally [31].
Symmetry breaking by a lattice distortion may be
important for describing the variation observed in
film-grown samples.

The main difficulty to calculate the MOKE for
metallic systems comes from the existence of the
free-electron-like response accompanied by the
Fermi surface. Generally this response, the in-
traband transition, is approximated by the Drude
term with one parameter, the plasma energy or the
optical mass. However, the optical mass should be
k dependent in nature as derived by Wang and
Callaway [18]. In addition to this, the Drude
term affects MOKE spectra non-linearly in the
low-energy region with large amount, for
example under 3 eV in BCC Fe. Thus unless we
obtain accurate values for the diagonal elements of
the optical conductivity, the Drude term may
trick us even in the case of qualitative estimation
of the spectra. As well known, the LSDA limits
accurate descriptions of the excited states. One
example is the reflectance spectra of Cu, Ag and Au.
Theory underestimates the plasma resonance en-
ergy lower by 0.3-0.8 eV as compared with experi-
ment [32]. This error comes from the fact that
LSDA estimates the d-band position shallower
than the experimental one [33]. Another example
can be seen in the overestimation of the d-band
width of transition metals [34]. To overcome these
problems arising from LSDA, one has to evaluate
the self-energy, for instance, by using the GW
method [35-37].
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Fig. 5. Calculated Kerr spectra and optical conductivity spectra of BCC Fe up to 27 eV: (a) Kerr rotation angle (solid line) and Kerr
ellipticity (dotted line), (b) the real part of o, (solid line) and the imaginary part of g, (dotted line), and (c) the real part of wa,, (solid

line) and the imaginary part of wo,, (dotted line). An intraband contribution is not included.

5. Summary

We have developed a precise and efficient scheme
for calculating MOKE by adopting FLAPW
method within LSDA. We have checked our
method by applying it to BCC Fe. Firstly, the

convergence properties with respect to both
k points and second-variation states are well con-
firmed. Secondly, as for the convergence for the
spherical-wave expansion, /., = 2 is enough to
obtain the accurate electronic states in our formu-
lation. We need, however, /,,,, = 3 when neglecting



H. Miyazawa, T. Oguchi | Journal of Magnetism and Magnetic Materials 192 (1999) 325-333 333

n¥) in the matrix elements since the optical

transitions for BCC Fe include the significant con-
tribution of d—f transitions. It has also been found
that the muffin-tin radius dependence is negligible.

We have well reproduced the MOKE spectra in
the visible-light region. Another MOKE peak
around 18 eV is found by our wide-energy survey.
The reported orientation dependence of the
MOKE spectra between [0 0 1]and [1 1 0] has not
been found in our calculation.

The FLAPW method is one of the most precise
techniques to calculate the electronic states espe-
cially for low-symmetry systems. Thus the MOKE
calculation by adopting the FLAPW method will
be a powerful tool for surface, thin layer and less-
dense material systems. Applications of the present
scheme to metallic multilayers such as Co/Pt,
Fe/Au and Fe/Pt are now underway. Since there
are many possibilities of new MOKE peaks at
a high-energy region as we found in BCC Fe,
a combination of high-energy experiments with
synchrotron radiation lights and precise first-prin-
ciples methods enables us to gain profound know-
ledge about microscopic relations between the
electronic structure and MOKE.
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