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DOS: Evaluation of phonon density of states from nuclear
resonant inelastic absorption
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Theoretical background and specific features of the calculation of the phonon density of
states from energy spectra of nuclear resonant inelastic absorption of synchrotron radiation
are presented. Double Fourier transformation is used to deconvolute data and an instrumental
function and to eliminate the multiphonon contributions. A computer program is developed
and an example of its work is shown.

1. Introduction

Inelastic scattering (absorption) of radiation with creation or annihilation of
phonons provides powerful techniques to study lattice dynamics. For example, neu-
tron, X-ray and light inelastic scattering have long been used to determine the phonon
dispersion law ωj(q), where ~ω is the energy and q is the wave vector. In conven-
tional Mössbauer spectroscopy lattice dynamics is probed only by the f -factor, the
probability of the occurrence of the Mössbauer effect. The progress in nuclear res-
onant scattering of synchrotron radiation [1] together with the development of high-
resolution X-ray monochromators [2] allowed one to measure energy spectra of nuclear
resonant inelastic absorption directly. A review of relevant experiments may be found
in [3].

A theory of nuclear inelastic absorption [4] was developed long before successful
experiments were performed. It was shown that the energy spectrum of nuclear inelas-
tic absorption may be decomposed into single-phonon and multiphonon contributions.
The single-phonon contribution is determined directly by the phonon density of states
(DOS) for single crystals with a cubic Bravais lattice. The same result is obtained for
polycrystalline samples, which are composed of only resonant atoms.

For more complicated single crystals the single-phonon contribution depends on
the orientation of the incident beam relative to the crystal lattice [5]. The theory of
inelastic nuclear absorption in single crystals was developed in [6] (see also [7]). It
was shown that inelastic absorption is not defined by the true DOS, but the function
which additionally contains a term dependent on the square modulus of the projection
of the phonon polarization vector for resonant atoms on the direction of the incident
beam. This function was called the projected density of states (PDOS) [6].
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The calculation of the PDOS from the energy spectra of nuclear resonant inelas-
tic absorption is performed in two steps. First, one has to separate the single-phonon
absorption term from multiphonon contributions. In a first approximation, the multi-
phonon contributions may be eliminated using recursive procedures [3]. However, the
PDOS obtained is not the true one, but convoluted with an instrumental function of the
monochromator. Thus, the second step deals with the deconvolution of the data and
the instrumental function. In fact, both problems may be addressed simultaneously
using the method of double Fourier transformation [6], which allows one to eliminate
the multiphonon contribution together with the deconvolution of the data.

This work is devoted to a detailed description of computational aspects of ex-
tracting PDOS from the measured spectra of inelastic nuclear absorption. First, the
theory in the case of an incident monochromatic wave is reviewed briefly. Then the
deconvolution of the data and the instrumental function as well as the problem of noise
dumping is discussed. Finally, the principles of the computer implementation and the
program structure are shown together with an example of the program performance.

2. The theory of nuclear inelastic absorption

A general expression for the X-ray absorption cross-section per nucleus in terms
of a time integral was obtained by Singwi and Sjölander [4]. We use this expression
without derivation. We assume that the phonon energy is much larger than a possible
hyperfine splitting of the nuclear levels. Therefore, the hyperfine structure can be
neglected. We consider in an explicit form a crystal with a complex unit cell, which may
contain several different atoms as well as several identical atoms at various positions.
However, we will not distinguish resonant nuclei in the unit cell, because this is
impossible in an experiment, and assume that there is only one resonant nucleus inside
the unit cell. If this is not the case the average value is considered.

We introduce a normalized probability of absorption W (E) per unit energy in-
terval at the energy E. Equation (2) of the article of Singwi and Sjölander can be
rewritten as

W (E) =

∫
dτ
2π

exp

(
−iEτ − Γ

2
|τ |
)
F (k, τ ), (2.1)

where τ = t/~, t is the time, Γ is the natural width of the excited nuclear state, E is
the difference between the energy of the γ-ray and the resonance energy of the nuclear
transition, k is the wave vector of the incident γ-ray. The function

F (k, τ ) =
〈

exp
(
−iku(0)

)
exp
(
iku(τ )

)〉
(2.2)

is the time-dependent correlation function, which describes the correlation between the
displacement u of the nucleus at two different moments of time separated by the time
interval t = ~τ . In a single crystal this function has a translational symmetry.

In order to deal with this function, Singwi and Sjölander introduced the Van Hove
space–time correlation function Gs(r, t) in a spherically symmetrical approximation,
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which is valid for polycrystals and crystals with a cubic Bravais lattice. In this way the
dependence on the direction of the photon beam is lost. However, it is not necessary
to consider the space–time correlation function Gs(r, t) for the calculation of F (k, τ ).
As shown by Van Hove [8] (see eq. (51) of his article), this function can be presented
in the general case of an anisotropic crystal as

F (k, τ ) = exp
(
−Z(k)

)
exp
(
M (k, τ )

)
, (2.3)

where

Z(k) = M (k, 0) =
ER

N

∑
qj

|s · ej(q)|2
~ωj(q)

(
2nqj + 1

)
, (2.4)

M (k, τ ) =
ER

N

∑
qj

|s · ej(q)|2
~ωj(q)

[(
nqj + 1

)
exp
(
i~ωj(q)τ

)
+ nqj exp

(
−i~ωj(q)τ

)]
.

(2.5)
Equations (2.3)–(2.5) extend the Van Hove formulas to the general case of a noncubic
Bravais crystal lattice. The derivation is similar to that given by Van Hove and we
omit it here. In formulas (2.4), (2.5), ER = ~2k2/2M is the recoil energy; M is the
mass of a nucleus; N is the number of unit cells per unit volume of the crystal; ωj(q)
is the phonon dispersion relation for the branch j; ej(q) is the polarization vector of
the vibrations for the resonant atom in the mode {qj}; s = k/k;

nqj =
[

exp
{
β~ωj(q)

}
− 1
]−1

(2.6)

is the Bose–Einstein distribution function, β = (kBT )−1; kB is the Boltzmann constant,
and T is the temperature. We note that exp(−Z(k)) ≡ fLM(k) is the angle-dependent
Lamb–Mössbauer factor.

In order to calculate the integral in eq. (2.1), we expand the exponent
exp(M (k, τ )) in a power series and arrive at the expansion W (E) =

∑∞
n=0Wn(E),

where each term Wn(E) corresponds to photon absorption accompanied by creation
or annihilation of n phonons.

The zero term of this expansion describes elastic nuclear absorption without
phonon creation or annihilation. It can be calculated directly using∫

dτ
2π

exp

(
−iEτ − Γ

2
|τ |
)

=
1

2π
Γ

(E2 + Γ2/4)
= δΓ(E) (2.7)

as

W0(E) = δΓ(E)fLM(k), lim
Γ→0

δΓ(E) = δ(E), (2.8)

where δ(E) is the Dirac δ-function.
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The first term describes a single-phonon nuclear inelastic absorption. It is calcu-
lated by the same integral (2.7), however, the result has a more complicated form:

W1(E) =
ER

N
fLM(k)

∑
qj

|s · ej(q)|2
~ωj(q)

×
[(
nqj + 1

)
δΓ
(
E − ~ωj(q)

)
+ nqj δΓ

(
E + ~ωj(q)

)]
. (2.9)

After replacement of δΓ(E) by δ(E) and taking into account that nqj depends only on
~ωj(q) (see eq. (2.6)), expression (2.9) becomes

W1(E) = fLM(k)S(1)(E, k), S(1)(E, k) =
ERg(|E|s)

E(1 − exp(−βE))
. (2.10)

The form of this expression is similar to that used by Singwi and Sjölander [4].
However, the dependence of the absorption probability on the direction of the incident
photon beam relative to the crystal lattice is obtained in an explicit form:

g(E, s) = V0

∑
j

∫
dq

(2π)3 δ
(
E − ~ωj(q)

)∣∣s · ej(q)
∣∣2

=
V0

(2π)3

∑
j

∫
dq1 dq2

|gradq~ωj(q)|
∣∣s · ej(q)

∣∣2. (2.11)

Here V0 = 1/N is the volume of the unit cell. We have passed from a sum to
an integral according to the usual technique. The integral is taken over the surface
of constant energy ~ωj(q) = E in the q-space within the first Brillouin zone. The
coordinates q1 and q2 are the axes of the local Cartesian system of reference. These
lie on the surface of constant energy E. The third axis q3 of the Cartesian system is
directed along the vector gradq~ωj(q).

The function g(E, s) coincides with the conventional phonon density of states
(DOS) for single crystals with a cubic Bravais lattice. The same result may be obtained
for polycrystalline samples, which are composed of only resonant atoms. In this case
averaging over all directions of the incident beam and summing over atoms leads to
the expression

g(E) =
1

3nc
V0

∑
j

∫
dq

(2π)3 δ
(
E − ~ωj(q)

)
, (2.12)

where nc is the number of atoms inside the unit cell. However, in the general case
of a single crystal the function g(E, s) does not coincide with the DOS. In contrast
to the DOS, it contains contributions of phonons weighted by the projection of their
polarization vectors for resonant atoms on the direction of the X-ray beam. Therefore,
we will call this function the projected density of states (PDOS). As shown below, this
function is normalized to unity for any direction of s.
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Considering the higher-order terms of the multiphonon expansion, we omit the
energy width Γ of the nuclear levels, which is negligible compared to the phonon
energy, and rewrite eq. (2.1),

Wn(E) = fLM(k)S(n)(E, k), (2.13)

where

S(n)(E, k) =

∫
dτ
2π

exp(−iEτ )
M (k, τ )

n

(M (k, τ ))n−1

(n− 1)!
. (2.14)

The integral in eq. (2.14) is the Fourier image of the product of two functions. It
can be represented as the convolution of the Fourier images of these functions. This
leads to the recursive relation

S(n)(E, k) =
1
n

∫
dE′S(1)(E′, k

)
S(n−1)(E −E′, k

)
, (2.15)

which permits the calculation of the multiphonon scattering cross-section from the
single-phonon term.

As a result we obtain the expression for the probability of nuclear absorption in
a form similar to the formula obtained by Singwi and Sjölander:

W (E, k) = fLM(k)

(
δΓ(E) +

∞∑
n=1

S(n)(E, k)

)
. (2.16)

In our case, however, the explicit dependence of nuclear absorption on the direction k
of the photon propagation relative to the crystal lattice is revealed through the projected
density of the phonon state g(E, s).

In order to calculate the Lamb–Mössbauer factor we note that

S(1)(E, k) =

∫
dτ
2π

exp(−iEτ )M (k, τ ). (2.17)

Therefore

M (k, τ ) =

∫
dE exp(iEτ )S(1)(E, k). (2.18)

Now from (2.4) and (2.10) we obtain the Lamb–Mössbauer factor as

fLM(k) = exp

(
−ER

∫ ∞
0

dE g(E, s)E−1 1 + exp(−βE)
1− exp(−βE)

)
. (2.19)

We see that the Lamb–Mössbauer factor in an anisotropic crystal is completely deter-
mined by the PDOS.

3. Lipkin’s sum rules

The sum rules given by Lipkin [9] have proved to be a useful tool to treat the
data on inelastic nuclear absorption, because they simplify the normalization of the
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experimental spectra. Therefore, it is worthwhile to derive them in the general case of
an anisotropic single crystal. We rewrite eq. (2.1) as

W (E) =

∫
dτ
2π

exp(−iEτ )Φ(τ ) =
1
En

∫
dτ
2π

exp(−iEτ )

(
dnΦ(τ )
in dτn

)
, (3.1)

where

Φ(τ ) = exp

(
−Γ

2
|τ |
)
F (k, τ ) (3.2)

is the Fourier image of the energy spectrum of the absorption probability. The right-
hand side of eq. (3.1) is obtained by integration by parts taking into account that Φ(τ )
and its derivatives go to zero as |τ | → ∞.

We shall use the notation 〈En〉A =
∫∞
−∞ dE A(E)En for the nth moment of the

function A(E). The zero moment of the absorption probability is〈
E0〉

W
=

∫
dEW (E) = Φ(0) = 1, (3.3)

which follows immediately from the left-hand sides of eqs. (3.1) and (2.3). This proves
the correct normalization of the absorption probability in eq. (2.1).

The first moment can be easily calculated from the right-hand side of eq. (3.1)
for n = 1, namely,〈

E1〉
W

=

∫
dEW (E)E =

(
dΦ(τ )
i dτ

)
τ=0

=

(
dM (k,τ )

i dτ

)
τ=0

. (3.4)

Substitution of eq. (2.5) gives〈
E1〉

W
=
ER

N

∑
qj

|s · ej(q)|2
i~ωj(q)

[
i~ωj(q)

(
nqj + 1

)
− i~ωj(q)nqj

]
=
ER

N

∑
qj

∣∣s · ej(q)
∣∣2 = ER. (3.5)

Thus, we obtain Lipkin’s sum rule: the first energy moment of the probability of
nuclear absorption is equal to the recoil energy ER of a free nucleus.

The higher-order energy moments can be calculated similarly. For example, the
second energy moment of the absorption probability is〈

E2〉
W

=

∫
dEW (E)E2 =

(
−d2Φ(τ )

dτ 2

)
τ=0

. (3.6)

We note that this moment diverges if the integral is taken over an infinite energy
interval. The divergence results from the property of the function δΓ(E), which is
not exactly the δ-function but behaves like E−2 in the tails. However, in practice
we handle data taken over the finite energy range of 2Emax, where Emax is larger
than the phonon energy but much smaller than 〈E2〉/Γ. This allows us to neglect the
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tails, performing the integration and treat δΓ(E) as the exact δ-function for all energies
considered. In this approximation we obtain〈

E2〉
W

=E2
R +

ER

N

∑
qj

∣∣s · ej(q)
∣∣2~ωj(q)(2nqj + 1)

=E2
R +ER

∫ ∞
0

dE g(E, s)E
1 + exp(−βE)
1− exp(−βE)

. (3.7)

In order to obtain this expression we multiplied the right-hand side by unity in the
form

∫∞
0 dE δ(E − ~ωj(q)) and performed the integration. We note that eq. (3.7) can

be rewritten as

〈E2〉W −E2
R

4ER
=

1
2

∫ ∞
0

dE E g(E, s)

[
n(E) +

1
2

]
=
〈
T (s)

〉
, (3.8)

where 〈T (s)〉 is the mean kinetic energy per phonon along the direction s, as shown
by Lipkin [9].

Using the same approximation, one may consider the higher energy moments.
For example, 〈

E3〉
W

= 3ER
〈
E2〉

W
− 2E3

R +ER

∫ ∞
0

dE g(E, s)E2. (3.9)

This value determines the mean force constant 〈F 〉 according to Lipkin [9]:

M

~2ER

[〈
E3〉

W
− 3ER

〈
E2〉

W
+ 2E3

R

]
=
M

~2

∫ ∞
0

dE g(E, s)E2 = 〈F 〉. (3.10)

We note that the probability of elastic nuclear absorption W0(E) as determined by
eq. (2.8) leads to the zero moment 〈E0〉W0 = fLM(k), whereas all other moments are
zero. Therefore, relations (3.5), (3.7) and (3.9) hold for the inelastic part of nuclear
absorption W (E)−W0(E) as well.

4. The method of PDOS calculation

4.1. General procedure

Here we consider the method of calculating PDOS from the experimental data.
PDOS is obtained from the single-phonon term of inelastic absorption. Therefore,
this term has to be separated from elastic and multiphonon contributions. Besides
that, the experimental data are influenced by the finite energy bandwidth of the X-ray
beam, whereas in the discussion above we have assumed monochromatic radiation.
Therefore, it is necessary to examine the application of Lipkin’s sum rules to the
experimental energy spectra and to consider the deconvolution of the data and the
instrumental function.

Let Pm(E) be the normalized energy distribution of the quanta in the X-ray
beam (instrumental function of the monochromator). We have to exclude the elastic
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part of the incoherent absorption spectrum from our analysis because in this case the
theory is not adequate for the experiment. The reason is that the theory does not
take into account a possible strong coherent channel of scattering that may lead to a
faster decay of the synchrotron pulse. However, the experiment is performed with a
well collimated beam and the coherent elastic forward scattering is really strong and
influences the wave field significantly. Therefore, we consider only the inelastic part
of the absorption, Winel(E) = W (E) −W0(E). The experimental energy spectrum
I(E, k) can be represented as follows:

I(E, k) = I0

∫
dE′P

(
E′
)
Winel

(
E −E′, k

)
= I0fLM(k)

∫
dτ
2π

exp

(
−iEτ − Γ

2
|τ |
)
Q(τ )

[
exp(M (k, τ )− 1

]
. (4.1)

Here I0 is a scaling factor and Q(τ ) is the Fourier image of P (E) = Pm(−E). It
is evident that Q(τ ) =

∫
dE exp(iEτ )P (E) has a peak with a characteristic width w

which satisfies the inequality w � Γ. For example, if P (E) is a Gaussian with the
standard deviation (root mean square – rms) σ, then Q(τ ) is also a Gaussian with the
rms σ−1:

P (E) =
1

σ
√

2π
exp

(
− E

2

2σ2

)
,

(4.2)

Q(τ ) =

∫
dE exp(iEτ )P (E) = exp

(
− τ 2

2σ−2

)
.

Therefore, we may again consider the limit Γ→ 0 and omit the term containing Γ.
The contribution of single-phonon absorption to the experimental data is

I1(E, k) = I0fLM(k)
∫

dE′P
(
E′
)
S1
(
E −E′, k

)
,

(4.3)

S1(E, k) =
ER g(|E|, s)

E(1 − exp(−βE))
.

We may assume here that the function E−1(1−exp(−βE))−1 varies slowly within the
energy band selected by the monochromator. This leads to the approximate formula

I1(E, k) = I0fLM(k)
ERg(|E|, s)

E(1 − exp(−βE))
, (4.4)

where

g(E, s) =

∫
dE′P

(
E′
)
g
(
E −E′, s

)
= V0

∑
j

∫
dq

(2π)3P
(
E − ~ωj(q)

)∣∣s · ej(q)
∣∣2. (4.5)
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This function is a smoothed PDOS, where the δ-function is replaced by the energy
spectrum of the monochromator. This smoothing may be destructive because the
function g(E, s), in general, is not a slowly varying function. It may contain sharp
peaks if the phonon dispersion branches have plane areas on the surface ωj(q) in
q space with a small value of |gradq~ωj(q)|. In these cases the deconvolution procedure
is desirable.

Considering the higher-order terms, we note that the recursive relation (2.15),
which was obtained for the multiphonon contributions to the absorption probability
S(n)(E, k), is not valid for In(E, k). Therefore, procedures which use relation (2.15)
in order to eliminate the multiphonon terms from the experimental data are, in general,
not exact. Our program uses a quite different approach, which allows one to sepa-
rate the single-phonon term from multiphonon contributions simultaneously with the
deconvolution of the data and the instrumental function.

In the first step, we determine the scaling factor I0. For this purpose we apply
the sum rules. The zero and first moments of the experimental energy spectrum are
given by 〈

E0〉
I

=

∫
dE I(E, k) = I0

(
1− fLM(k)

)
, (4.6)〈

E1〉
I

=

∫
dE I(E, k)E =

〈
E0〉

I

〈
E1〉

P
+ I0 ER. (4.7)

Here we use 〈E0〉P = Q(0) =
∫

dE P (E) = 1, because the instrumental function is
normalized. It can, however, be asymmetric, and then the first moment of P (E) differs
from zero. From eqs. (4.6), (4.7) we obtain I0 and fLM(k):

I0 =
(〈E1〉I − 〈E0〉I〈E1〉P )

ER
, fLM(k) = 1− 〈E

0〉I
I0

. (4.8)

In the next step, we calculate the function M (k, τ ) directly from the experimental
energy spectrum using a Fourier transformation:

M (k, τ ) = ln
(
1 + J(k, τ )

)
, (4.9)

J(k, τ ) =

∫
dE exp(iEτ )I(E, k)
I0fLM(k)Q(τ )

. (4.10)

Finally, we perform the reverse Fourier transformation and obtain the projected density
of phonon states:

D(E, s) =
E

ER

(
1− exp(−βE)

) ∫ dτ
2π

exp(−iEτ )M (k, τ ),
(4.11)

g(E, s) =D(E, s), E > 0.

We note that eq. (4.9) allows one to calculate the single-phonon term (without the
multiphonon processes) simply as the logarithm of 1 + J(k, τ ) after deconvolution of
the data and the instrumental function according to eq. (4.10).
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In addition, we may verify the reliability of the experimental data and check
the procedure of their treatment. For this purpose we derive several relations, which
connect the various energy moments of the experimental data with those of the DOS.
It is convenient to write them as conditions for the function

Gn(s) =

∫ ∞
0

dE g(E, s)En
1 + Cn(E)
1− Cn(E)

, Cn(E) =
1− (−1)n

2
exp(−βE). (4.12)

From the equations obtained above we have

G−1(s) =
1
ER

ln

(
1

fLM(k)

)
, G0(s) =

∫ ∞
0

dE g(E, s) =1, (4.13)

G1(s) = E−1
R

〈
E2〉

W
−ER, G2(s) = E−1

R

〈
E3〉

W
− 3
〈
E2〉

W
+ 2E2

R, (4.14)

where the moments of the probability density are connected with the measured data as〈
E2〉

W
= I−1

0

(〈
E2〉

I
−
〈
E2〉

P

〈
E0〉

I

)
− 2
〈
E1〉

P
ER, (4.15)〈

E3〉
W

= I−1
0

(〈
E3〉

I
−
〈
E3〉

P

〈
E0〉

I

)
− 3
〈
E1〉

P

〈
E2〉

W
− 3
〈
E2〉

P
ER. (4.16)

Conditions (4.13) and (4.14) can be used for the verification of the experimental results.
In particular, eq. (4.13) compares the Lamb–Mössbauer factor obtained from the area of
the inelastic part of the normalized experimental energy spectrum with that calculated
from the retrieved PDOS and verifies the normalization of PDOS.

Another possibility to examine the reliability of the experimental data is to com-
pare D(E, s) (eq. (4.11)) for positive and negative values of E. The part with E > 0
describes the DOS that is determined from the processes of phonon absorption, while
the part with E < 0 describes the DOS from the processes of phonon creation. Both
parts must be equal, D(−E, s) = D(E, s). In fact, it is more accurate to calculate the
density of phonon states from the positive part, because the phonon absorption has a
higher statistical accuracy.

4.2. Computer realization

4.2.1. Correction of the experimental data
In order to check the sensitivity of the data to possible experimental errors, the

initial experimental spectrum I (i)
t (E) may be corrected in the program using

It(E) = I (i)
t (E)[1 +ApE]. (4.17)

Here Ap is a parameter of the program. Conventionally, Ap should be set to zero.

4.2.2. Noise dumping
The procedure of extracting the instrumental function by means of a Fourier

transformation is very sensitive to noise in the experimental data. A crucial condition is
that the amplitudes of the high frequency components of the spectrum must be smaller
than those of the instrumental function. This condition may be violated in practice,
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because both the experimental spectrum and the instrumental function contain random
deviations of the measured values from the real ones due to the finite statistics of the
measurements. Moreover, usually the experimental spectrum has a statistical accuracy
less than that of the instrumental function.

Therefore, the computer program, in general, cannot work with the raw data
because the noise may give false peaks in the PDOS. An additional problem is that
noise masks the small real peaks of the experimental spectra which correspond to
significant peaks of PDOS. In order to solve this problem, there must be a special
filter in the program that allows one to eliminate the noise. This procedure cannot
work automatically, because it depends significantly on the quality of the data.

The filter consists of the procedures described below. In the first step, the data are
condensed from groups of channels to one channel. The number of summed channels
is different in various parts of the spectrum. The initial number of channels is set by
the parameter Nsi. However, if the maximum deviation of the value for each channel
from the mean value for the channels under consideration exceeds the parameter P irms,
this number is reduced to satisfy that condition. In the regions of strong changes of
the curve, the number of channels to be summed may be reduced to 1 (no summation).
The same procedure for the instrumental function uses a parameter Pmrms while the
parameter Nsi is the same.

In the next step, the data are interpolated to a constant step array for Fast Fourier
Transformation (FFT). In order to avoid large deviations, a linear interpolation is
used. The FFT procedure uses the finite energy region −Eb < E < Eb, where Eb
is a parameter of the program. The number of channels for FFT must be N = 2n

(n integer). This number is also a parameter of the program. The user may choose
between N = 2048, 4096 and 8192. The experimental data do not cover the total
energy region for FFT. Therefore, the tails of the experimental curve are linearly
extrapolated to zero within an interval of Nb channels, where Nb is a parameter of the
program.

Finally, in order to smooth the data, the values of all channels are replaced by
new values, each of them calculated as the mean value for neighbouring Nm channels.
Nm is a parameter of the program.

4.2.3. Subtraction of the central peak of elastic scattering
The scheme described above cannot be used directly for a computer calcula-

tion. The first problem is the subtraction of the elastic part from the total spec-
trum:

It(E, k) = I0

∫
dE′P

(
E′
)
W0
(
E −E′, k

)
+ I(E, k). (4.18)

For this purpose we calculate all energy moments of the total intensity It as well as
the energy moments of the instrumental function. Then the normalization constant I0

is calculated from the first moment using the corresponding sum rule for the total
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intensity:

I0 =
〈E1〉It − 〈E0〉It〈E1〉P

ER
. (4.19)

Here the instrumental function is assumed to be normalized. After that, the spectrum
is divided by I0. The normalized energy moments of the instrumental function and
the moments of the inelastic spectrum together with the constant I0 are saved in the
file dos.log.

In order to subtract the elastic scattering, we consider the central part of the
experimental spectrum between the first minimum points on the left and on the right.
Let these points have energies E1 = −|E1| and E2 and intensities I1 and I2. The central
part of the spectrum contains the elastic peak together with the inelastic contribution
Iin(E). The latter must be approximated by a linear function at energy near E = 0.
Therefore, at zero point E = 0 we may use a next approximation for Iin(0):

Iin(0) = I2 −
I2 − I1

E2 −E1
E2. (4.20)

After that the central elastic peak is subtracted according to

I(E) = It(E)− αP (E), (4.21)

where the constant α is determined by the condition I(0) = Iin(0),

α =
It(0)− Iin(0)

P (0)
. (4.22)

Such a procedure allows one to subtract the elastic part and to maintain the contribution
of inelastic scattering in the central part of the spectrum. However, this procedure often
leads to significant fluctuations in the central part of the inelastic spectrum. In order
to smooth the spectrum in the central part, an additional procedure may be performed.
It replaces the central part by a polynominal of third degree that has the same values
and the same first derivatives as the true spectrum at the points E1 and E2:

I(E) = I1 + C1(E −E1) + C2(E −E1)2 + C3(E −E1)3, E1 < E < E2, (4.23)

where

C1 = I ′1, C2 =
3F −GE21

E2
21

, C3 =
GE21 − 2F

E3
21

, E21 = E2 −E1, (4.24)

F = I2 − I1 − I ′1E21, G = I ′2 − I ′1, I ′1 =

(
dI
dE

)
E=E1

, I ′2 =

(
dI
dE

)
E=E2

(4.25)

This procedure is performed if the parameter Key = 1. Note that such a procedure
slightly changes the initial value of Iin(0), which leads to a new value of the Lamb–
Mössbauer factor.
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4.2.4. Lamb–Mössbauer factor
After subtraction of the elastic scattering contribution, the new normalization

constant I0 and the Lamb–Mössbauer factor fLM are calculated using eqs. (4.8).

4.2.5. Practical implementation of deconvolution of the data and the instrumental
function
In order to eliminate the multiple-phonon processes together with the instrumental

function, Fourier images are calculated using FFT:

Q(τ ) =

∫
dE exp(iEτ )P (E); J0(k, τ ) =

∫
dE exp(iEτ )I(E, k). (4.26)

Equation (4.10) cannot be used directly in a computer calculation, because the tails of
the function Q(τ ) have very small values (zero value at the points near the boundaries
of the region). Therefore, the program uses the function 1/Q0(τ ) instead of the function
1/Q(τ ), where

1
Q0(τ )

=
1 + Pif

Q(τ ) + Pif
. (4.27)

Here the real value Pif is a parameter of the program. The function Q(τ ) reaches
a maximum at zero argument Q(0) = 1, because the instrumental function P (E) is
normalized to unity. One may see that if a user chooses Pif = 0.1 the instrumental
function will be almost completely deconvoluted by the program. On the other hand, if
a user chooses Pif = 100 the procedure will eliminate the multiple-phonon scattering
but will not deconvolute the instrumental function because Q0(τ ) = 1 with good
accuracy. As a result, the function J(k, τ ) is calculated as

J(k, τ ) =
J0(k, τ )

I0fLM(k)Q0(τ )
. (4.28)

4.2.6. Intermediate arrays
To check the computing process, it is convenient to save the arrays used in the

FFT procedures and to show them graphically. Since the total number of dots in
the arrays is very large, the program stores only the central parts of the arrays and
omits some intermediate dots. The results are written in the files dos.h1, dos.h2,
dos.h3. The file dos.h1 contains three functions: I(E), P (E) and It(E). P (E) and
It(E) are normalized to unity, while I(E) is multiplied by the constant Cs (a parameter
of the program) before storing so that the tails of the spectrum are clearly shown. The
parameters Mr and Ms give half of the number (radius) of dots to be stored and the
step between dots (n = 1, 2 or more, the number of intermediate dots to be omitted in
the initial table is n− 1). The file has four columns (the first one contains the number
of dots in the initial table as an argument of the functions).

The file dos.h2 has five columns: the first one is the same as in the preceding
file, the second column contains (1/4) Re[Q(τ )], the third column contains Im[Q(τ )],
the fourth column Re[M (τ )] and the fifth column Im[M (τ )]. These functions are results
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of the forward FFT projection. In order to distinguish them in the figure, we note that
their imaginary parts are zero in the central point, and the instrumental function has
a more smooth behaviour. The parameters Kr and Ks have the same meaning as the
parameters Mr and Ms, but now for the file dos.h2.

The file dos.h3 contains the results of the backward FFT projection. It has two
columns: the first is the same as in dos.h1, the second contains the real function
D(E) = (E/ER)(1 − exp(−βE))

∫
(dτ/2π) exp(−iEτ )M (τ ) (see eq. (4.11)). It uses

the same parameters as the file dos.h1.

4.2.7. Sum rules
The function PDOS is calculated from the table of the D(E) function. The output

table is written in the file dos.dat. It has two columns: the energy E in meV and
the DOS g(E) in 1/meV. The first value of E is always zero. The last (maximal)
value of E is a parameter of the program named Egm. The number of dots in the
array Ng is also a parameter. The output values are obtained by linear interpolation
of the D(E) table. The output table is used for the calculation of the values of G(d)

n

using eq. (4.12). On the other hand, the same values G(m)
n are calculated from the

righthand sides of the formulas (4.13) and (4.14) taking into account eqs. (4.15), (4.16).
The ratio sn = G(d)

n /G
(m)
n is written in the file dos.log to check the mathematical

accuracy of the procedure. Ideally, all values of sn must be unity. However, since
the instrumental function is not completely eliminated from the DOS, the values sn
are usually slightly different from unity. Finally, the mean kinetic energy (in meV)
is calculated as G(m)

1 /4, and the mean force constant (in N/m) as 0.003833MG(m)
2 ,

where M is the mass of the nucleus (in atomic units). M and ER are parameters of
the program.

5. The structure of the computer program

The UNIX version of the program at the beamline ID-18 at the ESRF has been
developed as a command batch-file dos which contains 5 lines (commands):

dtpad dos.par
dos.exe < dos.par
vkps
ghostview -a4 -magstep -1 dos.ps
dtpad dos.log

The first line runs the text editor dtpad for preparing the text file dos.par of the
input data for the calculating part of the program dos.exe. Only the left-hand parts
of the first five lines are essential. All other parts may be used for comments. The file
may contain many different sets of input data. The program takes only the first set.
Below the structure of the input data is described: The first line contains an arbitrary
text in apostrophes. For example:

‘Example 1: Fe polycrystalline sample’.
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Figure 1. Example of a figure created by the program. Here the initial data (energy spectrum of inelastic
nuclear absorption in iron, top), are shown together with calculated data (density of phonon states,
bottom). The program also shows the following comment: Lamb–Mössbauer factor = 0.7777, mean
kinetic energy = 15.762 meV; mean force constant = 146.37 n/m. Case 1: Fe polycristalline sample.

The text may contain up to 128 symbols. This text is a title of the examples, and it is
shown at the bottom line of the output figure (see figure 1).

The second line contains the two names of the files with the data for the in-
strumental function and for the intensity of inelastic absorption. The names must be
inputted with apostrophes. For example:

‘mon17.dat’ ‘fer17.dat’
It is assumed that the files are located in the same directory.

The third line contains numerical values of two parameters in arbitrary format:

Egm and Ng

(see definitions above).
The fourth line contains

T Ap Pif .

Here T is the temperature (in K), while Ap and Pif are described above.
The fifth line contains the parameters

Nsi Pmrms P irms Nb Nm

as described above.
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There is another file of input data, dos.hc, which contains the additional con-
stants used permanently without changes. They may be changed separately by calling
the editor dtpad. It contains three lines with the parameters

ER Mn

N Eb

Mr Ms Kr Ks Key Cs.

All parameters are described above.
After saving the data and closing the editor window, the second line of the

command batch-file runs the program dos.exe which takes the data from the files
dos.hc and dos.par. The program calculates the results and saves them in the files
dos.dat, dos.h1, dos.h2, dos.h3 and the text file dos.log. The program
also writes the file vkps.par which is used by the program vkps for preparing the
PostScript file of the figure showing the results in graphical form (figure 1). Also,
the files dos.dc1, dos.dc2 and dos.vkp are written in the current directory.
These files may later be shown graphically with the command batch-file dosh. The
command file dos does not show them.

The third command of the batch-file runs the program vkps. This program is
a PostScript generator that makes PostScript files and allows one to create figures of
different kinds using a set of simple instructions and data files of different kinds. The
PostScript file has the name dos.ps. It may be used for printing figures as well as
for looking for the results on the terminal’s monitor using the program ghostview.

The fourth command of the batch file runs ghostview to see the output page
on a screen.

The fifth command of the batch file runs dtpad with the file dos.log to see
the validity of the sum rules and some additional information.

In order to control the procedure of data filtering for forward and backward
Fourier transformation, one can consult the intermediate arrays, written in the files
dos.h1, dos.h2, dos.h3 (figure 2). The figure is not shown automatically. In
order to see the figure one has to run the command batch-file dosh.

Appendix. An example of input and output data

Here we give an example to illustrate the performance of the program. The file
dos.par has the following content:

‘Example 1: Fe polycrystalline sample’.
‘mon17.dat’ ‘fer17.dat’
60. 501
295. 0. 0.1
7 100. 70. 100 8

The program dos creates and shows a PostScript file shown in figure 1. This output
shows the experimental data and the calculated DOS, as well as some parameters
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Figure 2. Intermediate arrays, which may be shown by the program dosh. The top, middle and bottom
figures show the data of the files dos.h1, dos.h2 and dos.h3, respectively (see text for the structure

of these files).

derived from DOS. The intermediate arrays may be consulted using the program dosh.
The resulting figure created by this program is shown in figure 2.
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[4] K.S. Singwi and A. Sjölander, Phys. Rev. 120 (1960) 1093.
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