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The computer program MOTIF calculates time dependences for nuclear forward scat-
tering (NFS) of synchrotron radiation and allows fully automatic fits of experimental data.
A multiple scattering technique of calculations directly in space and time is used. The source
code of MOTIF is written in Fortran 77. It has been worked out since 1993 and tested on
several Unix platforms by fitting the NFS time spectra of 57Fe, 119Sn, 151Eu, 161Dy, and 181Ta
nuclei in various compounds with different time-independent and time-dependent hyperfine
interactions.
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1. Introduction

Time spectroscopy of nuclear resonant scattering by using synchrotron radi-
ation as a source was introduced by Gerdau et al. [1] in Bragg diffraction ex-
periments using YIG single crystals. The outstanding features of the source, such
as high brilliance, high degree of polarization, pulse structure, and practically
zero width of the radiation pulse in time, define its great potential. With the ad-
vent of meV-monochromators experiments in forward scattering geometry with syn-
chrotron radiation and, in particular, measurements of nuclear forward scattering
(NFS) time spectra became feasible [2]. NFS opens many new possibilities as it is
not limited to single crystal samples. The advent of the meV-monochromators also
made feasible time spectroscopy at grazing incidence [3], and small-angle scatter-
ing [4].

Bragg, forward, small-angle, and grazing incidence scattering processes are spa-
tially coherent. Therefore, interference effects play a significant role, providing, in
general, more physical information about the samples, making, however, the “reading”
of the time spectra also more complicated. Generally speaking, the time spectra of
nuclear resonant scattering are not as evident as their counterpart, the energy spec-
tra. Even the qualitative interpretation of the time spectra, perhaps with the exception
of the single-resonance case, is practically impossible without computer calculations.
Availability of computer programs for the evaluation and interpretation of the exper-
imental time spectra as well as for theoretical modelling is absolutely necessary. The
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computer program may even be so powerful as allowing not only to fit the data but
also to simulate experiments.

MOTIF is one such program destined for the evaluation of NFS time spectra.
MOTIF calculates time spectra for NFS of synchrotron radiation in thin and thick
samples with polarization mixing and provides, if required, automatic fits to experi-
mental spectra. The source code of MOTIF is written in Fortran 77. It has been worked
out since 1993 and tested on different Unix platforms like LINUX, IRIX, AIX, etc., by
fitting the NFS time spectra of 57Fe, 119Sn, 151Eu, 161Dy, and 181Ta nuclei in different
compounds with different hyperfine interactions.

One of the distinguishing features of MOTIF is its technique of calculation, which
is performed directly in time and space [5]. It does not require the initial knowledge of
the corresponding frequency spectral function of NFS, which is necessary in the more
widespread frequency–time Fourier transformation technique [6–11]. Clearly, both di-
rect and Fourier transformation techniques applied to the same problems should give
the same results. The direct procedure implemented in MOTIF is attractive in cases
where the calculation of the NFS frequency spectral function of the scatterer is not
straightforward. Actually, this task is relatively simple only for problems with time-
independent hyperfine interactions, or for problems which can be formally reduced to
them, like some models of diffusion. In all other cases, which include dynamics, e.g.,
time-dependent motion of nuclei (thermal vibrations, diffusion, external perturbations)
or time-dependent hyperfine interactions (relaxation phenomena, external perturba-
tions), the NFS frequency spectrum cannot be calculated directly.

Generally speaking, with the Fourier transformation technique three preparatory
calculation steps are required, as described below. As a result the calculation of the
time spectrum together with the frequency–time, Fourier transformation requires four
calculation steps. In the first step the nuclear double-time self-correlation function
Kss̃(t, t̃ ) should be calculated. Kss̃(t, t̃ ) describes the time dependence of the single-
scattering coherent response of the nuclear system in the forward direction at time t
to the excitation at time t̃ [5]. The upper indices s̃ and s denote orthogonal polar-
ization components of the incident and scattered radiation. Kss̃(t, t̃ ) reflects coherent
scattering properties of a single nucleus and bears information on the spatial motions
of nuclei and nuclear hyperfine interactions averaged over the whole nuclear ensem-
ble. In the second step the double-frequency Fourier image Kss̃(ω, ω̃) is calculated.
The ω-dependence in Kss̃(ω, ω̃) gives the frequency spectrum of NFS in the single-
scattering approximation of the nuclear system exposed to the incident monochromatic
radiation of frequency ω̃. In the third step, the optical multiple scattering problem is
solved for the given Kss̃(ω, ω̃) in the frequency domain by using the classical Maxwell
wave equations or the equations of quantum electrodynamics, which leads to the NFS
frequency spectrum Sss̃(ω, ω̃). Only in the fourth step the time spectrum of NFS is
calculated from Sss̃(ω, ω̃) by using the double frequency–time Fourier transformation
for the given frequency spectrum of the incident radiation.

By contrast, in the direct procedure implemented in MOTIF the first step, i.e., the
calculation of the nuclear double-time self-correlation function Kss̃(t, t̃ ) is followed
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by only one more step of solving the optical multiple scattering problem directly in
time and space, which results in the desired time spectrum of NFS. This procedure is
independent of the particular form of Kss̃(t, t̃ ) and is based on the general multiple
scattering solution of the NFS wave equation with Kss̃(t, t̃ ) as its kernel. The deriva-
tion of the NFS wave equation, its multiple scattering solution, and examples of the
nuclear self-correlation functions for particular cases of spatial motions and hyperfine
interactions are given in [5] and are briefly outlined in section 2.

This paper describes how this procedure implemented in MOTIF works in partic-
ular cases of hyperfine interactions and nuclear spatial motions. Cases presented are:
time-independent hyperfine interactions – section 3.1, time-dependent hyperfine inter-
actions due to switching of the magnetic hyperfine field – section 3.2. In sections 3.3
and 3.4, suggestions are made, how to apply MOTIF for the evaluation of time spectra
affected by diffusion of atoms and the atomic spin relaxation is suggested.

2. Theoretical background

The time spectrum S(t) of NFS is proportional to the square modulus of the
vector amplitude E(L, t) of the coherent radiation field which emerges from the back
of the sample in the direction of the primary beam:

S(t) ∝
∣∣E(L, t)

∣∣2 =
∑
s

∣∣Es(L, t)
∣∣2. (2.1)

The upper index s corresponds to any of two orthogonal polarization components of
the radiation, given by the polarization vectors es. L is the sample thickness.

The solution of the NFS wave equation for the vector amplitude of the radi-
ation field E(L, t) can be presented as a power series of a dimensionless thickness
parameter ξ [5]:

E(L, t) =
∞∑
p=0

(−ξ)p

p!
E(p)(t). (2.2)

The quantities E(p)(t) in eq. (2.2) are the multiple scattering amplitudes of order p.
The dimensionless thickness parameter ξ = σRN0L/4γ scales with the effective

resonance thickness TR = σRN0L
1 known from Mössbauer spectroscopy, with σR the

total cross-section of the nuclear resonance absorption, N0 is the number of resonant
nuclei per unit volume, and γ is the sine of the incidence angle.

The zeroth term E(0)(t) in eq. (2.2) is defined as the time dependence E(t) of the
incident radiation pulse:

E(0)(t) = E(t). (2.3)

1 Sometimes the Lamb–Mössbauer factor f of recoilless emission–absorption is also included in the
definition of the effective thickness: T ′R = σRN0Lf .
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To describe experiments with very short synchrotron radiation pulses, E(0)(t) can be
taken proportional to the δ(t)-function. The other terms, E(p)(t), are obtained by the
recursion relation

E(p)(t) =
Γ0

~

∫ t

−∞
K̂
(
t, t̃
)
E(p−1)(t̃ ) dt̃. (2.4)

Here K̂(t, t̃ ) is a 2× 2 matrix with elements Kss̃(t, t̃ ), which are double-time nuclear
self-correlation functions. The upper indices s̃ and s denote orthogonal polarization
components of the incident and scattered radiation, respectively. As one can see from
eq. (2.4) the self-correlation function Kss̃(t, t̃ ) describes the coherent single-scattering
response of the nuclear system in the forward direction at time t after excitation at
time t̃.

In general, the nuclear self-correlation function is represented as

Kss̃
(
t, t̃
)

=
∑
β

Lss̃β
(
t, t̃
)
Mβ

(
t, t̃
)
, (2.5)

where the summation is performed over different types β of nuclear sites in the sam-
ple [5]. Index β tags the groups of resonant nuclei possessing different interactions
with the environment and (or) spatial motion. The function Mβ(t, t̃ ) gives information
on the spatial motion of nuclei, while Lss̃β (t, t̃ ) gives information on the hyperfine and
intranuclear interactions of the nuclei belonging to a group β.

The correlation function has the property

Kss̃(t, t) = δss̃. (2.6)

The solution given by eqs. (2.2)–(2.4) is general and independent of the explicit
form of the hyperfine interactions and nuclear spatial motion, which are hidden in the
nuclear self-correlation function Kss̃(t, t̃ ). The self-correlation function Kss̃(t, t̃ ) is
calculated once. To calculate the vector amplitude E(ξ, t) of the NFS time spectrum
and the time spectrum (2.1) the multiple scattering procedure is applied, based on the
recursion relation (2.4).

3. Examples

This section presents examples of evaluations of the NFS time spectra by using
different nuclear self-correlation functions.

3.1. Time-independent hyperfine interactions

The double-time self-correlation function Kss̃(t, t̃ ) in the case of time-
independent hyperfine interactions takes the form [5]

Kss̃
(
t, t̃
)

= Kss̃
(
t− t̃

)
, (3.1)
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which is typical for elastic coherent scattering. Only the difference t− t̃ between the
excitation and emission times is important in this case. By virtue of this we substitute
t− t̃ by t in the following formulae of this section. According to [5] Kss̃(t) is given
by a sum of time exponential functions:

Kss̃(t) = η(t)
∑

`≡{β,βg,βe}

Ass̃` exp

[
− i
~

(
Ω`~−

i
2

∆Γβ
)
t

]
, (3.2)

η(t) = exp

{
i
~

[
~ω̃ −E0 +

i
2

(Γ0 + ∆Γ0)

]
t

}
θ(t). (3.3)

Here E0 is the energy of the nuclear transition between the unsplit ground and the
unsplit excited states, Γ0 is the natural energy width of the nuclear excited state. The
carrier frequency ω̃ of the incident radiation pulse is assumed to be close to the nuclear
resonance frequency E0/~. To describe experiments with pulsed synchrotron radiation
one can put ω̃ = E0/~ without loss of generality. θ(t) is the unit step function.

Hyperfine interactions split the nuclear ground and excited states. The summation
in eq. (3.2) is performed over index `, which is a joint index numbering both different
types of nuclear sites β in the sample and the transitions 〈βg| ⇔ |βe〉 between the
ground and excited nuclear states. Here |βλ〉 are the eigenvectors with energies εβλ
of the time-independent hyperfine interaction Hamiltonian in the ground (λ = g) or
excited (λ = e) states, respectively. Because of the splitting the nuclear transition
energies become E0 +~Ω`, where Ω` = (εβe − εβg)/~ are the frequencies entering the
time exponential functions in eq. (3.2).

The amplitude

Ass̃` = Xβfβ(k)jsβgβe
(k)js̃βeβg

(−k) (3.4)

of the transition ` is proportional to the product of the absorption js̃βeβg
(−k) and the

emission jsβgβe
(k) matrix elements of the nuclear current density. The motional part

of the self-correlation function Mβ(t) is replaced here by the time-independent Lamb–
Mössbauer factors of recoilless resonant emission–absorption fβ(k).2 This is correct
for the typical times of hyperfine interactions t > 10−10 s; however, not in general [5].
The factor

Xβ =
4ω̃

c3(2Je + 1)Γγ
wβ (3.5)

includes the relative weight wβ of the group β, the full radiative width Γγ of the
nuclear transition e⇒ g, and the nuclear spin Je of the excited state.

MOTIF calculates A`, Ω` and the self-correlation function itself by using input
parameters which define the nuclear Hamiltonian, the Lamb–Mössbauer factors, the
weights of the nuclear sites, etc.

2 As the motional part of the self-correlation function Mβ(t) is replaced here by the time-independent
Lamb–Mössbauer factors, the equality Kss̃(t, t̃ ) = δss̃ is no longer valid. Instead, Kss̃(t, t̃ ) =
δss̃
∑

β
fβ(k)wβ is applied.
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MOTIF offers possibilities of taking line-broadening into account. E.g., an in-
homogeneous broadening which is the same for all the nuclear transitions may be
taken into account simultaneously by an additional damping constant ∆Γ0, as shown
in eq. (3.3). Inhomogeneous broadening of the transitions due to relaxation, diffusion,
etc., belonging to the nuclei in a particular group β may be described by ∆Γβ, as in
eq. (3.2).

MOTIF also provides possibilities of taking into account distributions of hyper-
fine parameters like a distribution of magnetic hyperfine fields at the nuclear sites
(see section 3.1.3 and [12]), a distribution of isomer shifts (see section 3.1.1), and a
distribution of electric field gradients.

3.1.1. Single resonance, or the resolution of time domain spectroscopy
The simplest case which can be demonstrated theoretically is a single resonance.

It occurs, e.g., in the absence of hyperfine interactions, i.e., when the ground and ex-
cited nuclear states are not split, and in the absence of motional broadening due to ther-
mal motion. In this case β = 1, Ω` = 0,

∑
`Ass̃` = fδss̃, as a result Kss̃(t) = fη(t)δss̃

and one can obtain the analytical solution for the NFS time spectrum. Speeded-up de-
cay and dynamical-beat modulation of the NFS signal are typical features of the single
resonance solution [6]. They originate from multiple nuclear scattering (see, e.g., [5,13]
for a more detailed discussion).

In practice, however, a single resonance is not easy to realize. Hyperfine in-
teractions and motion are always present to a certain extent. It is only the ques-
tion of how small their influence is and how well the single resonance approxima-
tion describes the present case. An apparent single resonance spectrum is thus al-
ways a test of the low-frequency resolution limit of the spectroscopy technique in
use.

The length of the time interval in which one can measure the nuclear decay
defines the low-frequency resolution limit in time-domain spectroscopy. The wider the
time window, the finer the details of the nuclear resonance that can be resolved. The
only limiting factor is the statistical accuracy of measurements (number of counts per
channel). This statement is demonstrated by the example of the 14.4 keV resonance
in 57Fe nuclei in stainless steel.

From Mössbauer spectroscopy in the energy domain it is well known that 57Fe
nuclei in stainless steel reveal an apparent single nuclear resonance with a small ad-
ditional broadening of about 1Γ0. To resolve its fine structure and thus to understand
the nature of the broadening is difficult with a Mössbauer source because it has an
energy width of about the same magnitude. To the knowledge of the author the nature
of the broadening in stainless steel is not yet fully understood. Let us see if by time
spectroscopy we can gain more insight into this problem.

Stainless steel foils of the composition Fe55Cr25Ni20, enriched to 95% in 57Fe,
were used in the studies reported. Mössbauer energy spectra measured with one of
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Figure 1. Time spectrum of nuclear forward scattering from a stainless steel foil ' 12 µm thick. The lines
are fits with MOTIF. The effective nuclear resonance thickness was averaged in the range T ′R = 85± 11.
The dashed line is a simulation of the NFS time spectrum with an unbroadened single resonance. Dotted
line: single resonance with an additional Lorentzian broadening of ∆Γ0 = 0.62Γ0. Solid line: NFS
time spectrum calculated with the same Lorentzian broadening; however, truncated beyond the bounds
of ±2Γ0. The dashed-dotted line is ∝ exp(−Γ0t)/t3/2, which approximates the average decay rate of
the resonant nuclear ensemble in the forward direction for t > 50 ns [6]. The inset shows the energy
spectrum of NFS (corresponding to the solid-line time spectrum) with a double-hump structure typical

for a thick single resonance scatterer.

these samples with the help of CEMS3 have shown an additional line broadening of
0.62Γ0.

The time spectra of NFS measured in a time window of 700 ns in foils of different
thicknesses, measured by the author at HASYLAB/F4, are shown in [13, figure 2].
The time spectrum of NFS of a sample of the same origin measured by the Nuclear
Diffraction Group (ESRF) at ID18/ESRF [14] with improved statistics is shown in
figure 1. The spectrum was measured in 4.6 h in a time window of 0.04–2.7 µs in the
single bunch mode of the ESRF storage ring with an average current of 10 mA. To
exclude any possible influence of nuclear resonance small-angle scattering [4] on the
NFS time spectrum a Si(1 1 1) channel-cut crystal analyser was installed downstream
of the foil. We shall discuss the evaluation of this spectrum in some detail.

3 Conversion electron Mössbauer spectroscopy (CEMS) measurements performed by Eva Giesse, Univer-
sität Erlangen, and Olaf Leupold, Universität Hamburg, have shown that the line width of the nuclear
resonance in our stainless steel samples is 0.06 mm/s broader than in a sample of α-Fe, believed to
have unbroadened lines. I.e., the resonance width in our samples of stainless steel is 62% broader than
the natural width of the 14.4 keV resonance in 57Fe nuclei, which is equal to 0.097 mm/s.
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The spectrum reveals dynamic beats. The response is speeded-up and follows on
the average the exp(−Γ0t)/t3/2 time dependence [6]. Both effects are due to coherent
multiple resonance scattering taking place in thick samples.

The dashed line is the time spectrum calculated by MOTIF for a single resonance
of natural width Γ0. The dotted line shows the time spectrum calculated with an
additional Lorentzian broadening of ∆Γ0 = 0.62Γ0, as in eqs. (3.2)–(3.3). Surprisingly,
the additional broadening as suggested by the measured CEMS Mössbauer spectrum,
gives a much worse fit.

Another model was tested: the additional broadening is assumed to be due to a
small magnetic splitting caused by a weak magnetic hyperfine field at the nuclear sites
(the case with a large magnetic splitting is discussed in section 3.1.2). E.g., a field
of B = 0.2 T should produce the required broadening of 0.6Γ0. However, the time
spectrum evaluated with such a magnetic field shows practically no difference from
that calculated for a true single line (dashed line). But the time spectrum calculated
with a field of 0.52 T fits very well to the experimental data (solid line). However,
the CEMS energy spectrum calculated with such a magnetic field gives a double-peak
structure with 3Γ0 total width and this seems to discard this model.

One more model was tested, based on the fact that stainless steel is an unordered
alloy with a finite number of nonequivalent nuclear sites. In these sites the nuclear
resonance may experience different isomer (chemical) shifts. The distribution of the
isomer shifts, however, should be limited. The solid line in figure 3 is the time
spectrum evaluated for a set of single resonance lines with a Lorentzian distribution
of isomer shifts. This distribution was 0.6Γ0 broad, but it was truncated beyond the
bounds ±2Γ0. Such a bounded distribution gives both the required broadening in
the CEMS energy spectrum and the time spectrum which fits well the experimental
points. Thus the model of the bounded isomer shift distribution gives predictions
which agree both with the results obtained by the time- and energy-domain nuclear
resonance spectroscopies.

This example demonstrates that there is no “better” spectroscopic technique.
The complementary information supplied by both energy- and time-domain techniques
helps to find the best model.

3.1.2. Magnetic splitting
The evaluation of the NFS time spectrum in a nuclear system with magnetically

split sublevels in the ground and excited states is presented in this section. The nuclear
ensemble consists of 57Fe nuclei in a ferromagnetic α-Fe foil.

The time spectrum shown in figure 2 was measured with a 1 µm thick α-Fe foil
enriched to 95% in 57Fe. The measurements were performed at F4/HASYLAB [12].
The foil was magnetized by a magnetic field applied in the plane of the foil and per-
pendicular to the synchrotron radiation beam so that only the two me−mg = ∆m = 0
nuclear transitions were excited. Here me,mg are the magnetic quantum numbers in
the nuclear excited and ground states, respectively. The interference of the two differ-
ent monochromatic components originating from the two excited nuclear transitions
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Figure 2. Measured (circles) and MOTIF-fitted (solid lines) NFS time spectra from a 1 µm thick
magnetized α-Fe foil with ∆m = ±1 transitions excited [12]. The corresponding calculated energy
spectrum of NFS is shown in the inset. The positions of the excited nuclear transitions are marked by

the vertical lines in the upper part of the inset.

(the vertical lines in the inset of figure 2) leads in the time spectrum to the periodic
modulation called quantum beat [1,7]. The two excited transitions yield a quantum beat
with a single period of 2π~/δE, which is defined by their separation δE = 63.3Γ0.
Because of the large sample thickness (T ′R = 7.8), the initial decay is about three times
faster than natural and the first minimum of the dynamical beat occurs at '270 ns.
The solid line is the fit with MOTIF. The inset in figure 2 shows the corresponding
calculated energy spectrum of NFS with the characteristic double-hump structure.

The time spectrum in figure 3 (open circles) was measured with a thicker α-Fe
foil of 10.6 µm thickness of the same enrichment. In this case the foil was magnetized
in such a way that another four, in this case ∆m = ±1, nuclear transitions were
excited (as before, an external magnetic field is applied in the plane of the foil and
perpendicular to the synchrotron radiation beam). The measurements were performed
by the Nuclear Resonance Group (ESRF) at ID18/ESRF [14]. The spectrum in figure 3
was measured for 9.5 h in the time window 0.04–2.7 µs in the single bunch mode of
the ESRF storage ring with an average current of 10 mA. To exclude any influence of
nuclear resonance small-angle scattering [4] on the time spectrum a Si(1 1 1) channel-
cut crystal analyser was installed downstream of the Fe foil.

The solid line in figure 3 shows the fit of the time spectrum with MOTIF by
using expressions (3.2)–(3.3) for the nuclear self-correlation function and the multiple
scattering (2.2)–(2.4). One nuclear site was used (β = 1) with 〈βλ| = 〈mλ| and
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Figure 3. Time spectrum of nuclear forward scattering from a magnetized α-Fe foil '10.6 µm thick
with ∆m = ±1 transitions excited. The solid line is the fit with MOTIF. The dashed-dotted line is
∝ exp(−Γ0t)/t3/2, which approximates the average decay rate of the resonant nuclear ensemble in the
forward direction for t > 50 ns [6]. The corresponding calculated energy spectrum of NFS with a
double-hump structure which is typical for thick samples is shown in the inset. The positions of the

excited nuclear transitions are marked by the vertical lines in the upper part of the inset.

εmλ = −µλmλB/Jλ. Here µλ are the nuclear magnetic moments and B is the
magnetic hyperfine field at the nuclear site.

The fit procedure yielded an effective thickness T ′R = 174± 16. The value ±16
gives the range of averaging of the time spectrum over the inhomogeneous sample
thickness resulting from the fit. Multiple scattering events of up to 40th order con-
tribute to the NFS spectrum of the sample with such an effective thickness and in the
1200 ns time window of evaluation. In other words, 40 terms in the sum of eq. (2.2)
must be taken into account to calculate such a spectrum.4 The agreement between
the calculated and the measured time spectra is nearly perfect in the time window,

4 The calculation time for such a spectrum is '5 s with MOTIF.27 running under LINUX by using a
100 MHz 486PC with 32 MB RAM.
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which is as large as 8.2 natural lifetimes τ0 = ~/Γ0 = 141.1 ns of the 14.4 keV
excited state of 57Fe nuclei and in the count rate range which spreads over 6 orders
of magnitude.

The fit procedure, which runs automatically, allows one to obtain the values of
the magnetic field B at the nuclear site and the ratio µe/µg of the nuclear magnetic
moments in the excited and ground states with a relative accuracy of 30 ppm. With the
magnetic moment in the ground state, µg = 0.09044(7)µN [15], the field was found
to be B = 32.623(1) T. The ratio of the nuclear magnetic moments was found to be
µe/µg = −1.71105(6). For comparison, the values of the ratio given by other authors
are: µe/µg = −1.7127(6) [15] and µe/µg = −1.7142(4) [16].

The apparent quantum beat frequency arises in the first place from the frequency
difference of the outer nuclear transitions. However, the frequency and beat amplitude
are not constant. The envelope of the beat amplitude and the modulation of the beat
frequency originate from the combined influence of the multiple scattering effects in
thick samples and the presence of another two inner nuclear transitions. For com-
parison, the time spectrum of a much thinner α-Fe foil, measured under very similar
conditions, as presented in [12,17], shows a very different envelope and frequency
modulation.

Other examples of using MOTIF for evaluation and fitting of NFS time spectra
under conditions of time-independent hyperfine interactions are presented, e.g., in [12,
13,17,18].

3.1.3. Distribution of the hyperfine parameters
Nuclear resonance spectra measured in alloys, amorphous materials, etc., often

reveal variation of magnetic hyperfine fields, electric field gradients, and isomer shifts,
which the resonant nuclei experience in different sites. This situation can be fairly well
described by introducing distributions of the hyperfine parameters. The distribution of
the isomer shifts was already used in the evaluation of the time spectrum in stainless
steel in section 3.1.1. The following example, in figure 4, demonstrates how the
magnetic field distribution can be used to evaluate with MOTIF NFS time spectra in
magnetic alloys. At this point it is helpful to recollect for contrast the time spectrum
shown in figure 2, from a nuclear ensemble experiencing equal magnetic hyperfine
fields at all nuclear sites.

An invar alloy of composition Fe65Ni35, enriched to 95% in 57Fe, was used as a
sample material with a static magnetic hyperfine field distribution. The time evolution
of NFS by an invar foil of thickness 1.2 µm placed in a vertical magnetic field [12]
is shown in figure 4. Only the two transitions with ∆m = 0 were excited. The
effective resonance thickness T ′R = 5.6 of the invar foil is slightly less than that of
the iron foil in figure 2. Although the effective thickness is less the decay of the NFS
signal is much faster. It is approximately exponential with a decay constant 6.5τ0. The
reason for such a fast decay is the inhomogeneous broadening of the nuclear resonance
due to the distribution of magnetic hyperfine fields at nuclear sites. The appropriate
distribution was modelled by the superposition of three Gaussians. The distribution
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Figure 4. Measured (circles) and MOTIF-fitted (solid lines) NFS time spectra from a 1.2 µm thick
magnetized invar foil with ∆m = ±1 transitions excited [12]. The corresponding calculated energy
spectrum of NFS is shown in the inset. The graph on the right shows the distribution of the magnetic

hyperfine fields used to fit the time spectrum.

used to fit the time spectrum is shown on the graph to the right. The distribution is
asymmetric. By using this distribution profile it was possible to fit time spectra of
samples with different thicknesses [12]. The asymmetric distribution leads to hybrid
beat phenomena, as discussed in [12,17].

3.2. Magnetic hyperfine field switching

As was argued in section 1, the method of direct calculation in time as used
in MOTIF is especially attractive if the frequency spectrum of NFS is not known
or not easily calculated. This is the case of time-dependent hyperfine interactions,
e.g., caused by external perturbation. If the perturbations are synchronized with the
time of nuclear excitation, they will result in inelastic coherent scattering, and thus
will allow one to manipulate the spectrum, the intensity, and the polarization state of
the reemitted radiation. Effects of manipulation of the coherent radiation caused by
an instantaneous switching of the magnetic hyperfine field were extensively studied
during the last decade (see, e.g., [19] and references therein). The fast switching of the
hyperfine field was accomplished by abruptly changing the direction of the external
magnetic field.

In the formal language of the NFS theory [5], switching of the magnetic hyperfine
field direction means switching between different nuclear self-correlation functions.
Indeed, as is easy to realize, before switching the directions of the hyperfine fields
are constant, the hyperfine interactions are time-independent and the self-correlation
function of the nuclear ensemble is given by eqs. (3.2)–(3.3). After instantaneously
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Figure 5. Measured (circles) and MOTIF-fitted (solid lines) NFS time spectra from a 57FeBO3 single
crystal (a) with constant direction of the hyperfine fields, as indicated in the figure; and (b) with the
magnetic hyperfine fields rotated by 90◦ in the easy magnetization plane of the 57FeBO3 crystal at
t′ = 18 ns after excitation by the synchrotron radiation pulse [19]. The attached schemes of nuclear
energy levels show the transitions at which the nuclei radiate after their excitation (a) and the transitions

at which they radiate after switching (b).

changing the magnetic hyperfine field directions at each nucleus in the ensemble,
at t = t′, the hyperfine interactions are again time-independent. The nuclear self-
correlation function is formally given by the same expression (3.2)–(3.3), however,
with new transition frequencies Ω`′ , and different amplitudes A`′(χ, t′− t̃ ). As before,
the amplitudes of the new transitions `′ are (cf. eq. (3.4)) products of the excitation and
de-excitation transition currents; however, the excitation currents are now a coherent
linear superposition of the initially excited transition currents. The coefficients which
define this superposition depend on the angle of switching χ and the time difference
t′− t̃ between excitation at t̃ and switching at t′, cf. [5, eqs. (84)–(86)]. This gives the
possibility to manipulate the coherent radiation in a deliberate way by a proper choice
of switching angle and switching time.

Figure 5 shows an example of switching from the ∆m = 0 to the ∆m = ±1
spectrum with the help of an instantaneous 90◦ rotation of the magnetic hyperfine field
direction at the nuclei. The measurements of the NFS time spectrum from a 57FeBO3
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single crystal and the evaluation with MOTIF are shown (a) without switching and
(b) with a 90◦-rotation of the magnetic hyperfine fields in the easy magnetization
plane at t′ = 18 ns after excitation by the synchrotron radiation pulse [19]. Without
switching – figure 5(a) – or before switching – figure 5(b) – for t < 18 ns the nuclear
system radiates with the ∆m = 0 transitions. Abrupt 90◦-switching forces the nuclear
system to radiate with the ∆m′ = ±1 transitions, as shown in the nuclear transition
schemes of figure 5. This leads to a different NFS time spectrum, which resembles
the “usual” ∆m = ±1 time spectrum as shown, e.g., in figure 3. The use of primed
magnetic quantum numbers m′ is due to the new quantum axis after switching.

Further examples for the influence of the magnetic hyperfine field switching on
the NFS time spectra and the results of their evaluation with MOTIF are given in [19].

3.3. Diffusion

The influence of the diffusive motion of the nuclei on the NFS time spectra is
described with the help of the motional part of the nuclear self-correlation function
Mβ(t, t̃ ). Actually Mβ(t, t̃ ) contains all forms of motion and not only diffusion.
However, if a diffusion process can be thought of as independent of the thermal
vibrations, etc., then Mβ(t, t̃ ) factorizes with the diffusional self-correlation function as
an independent factor. As diffusion does not correlate with the time instants of photon
absorption or emission, only its elastic part contributes to the coherent NFS scattering.
Therefore, in this case Mβ(t, t̃ ) = Mβ(t − t̃ ). The self-correlation functions for
different models of diffusion, e.g., continuous free diffusion [21], continuous localized
diffusion [22], and free jump diffusion [23] have the same form:

M(t) =
∑
α

aα exp

(
−γα

2~
t

)
. (3.6)

The physical meaning of the coefficients aα, γα depends on the model. Different
diffusion models in connection with NFS were recently reviewed in [9].

Mathematically the diffusion self-correlation functions (3.6) and that of the time-
independent hyperfine interactions (3.2) are equivalent. Thus, the same version of
MOTIF can also be applied for evaluations of the NFS time spectra influenced by
diffusive motions of nuclei.

3.4. Relaxation

Since the spins of atoms to which resonant nuclei belong fluctuate in time, the
hyperfine interactions, as seen by the nuclei, are generally speaking time dependent.
This time dependence reveals itself in the nuclear resonance time and energy spectra
provided the fluctuation (relaxation) times are comparable with the nuclear lifetime.
To describe time spectra influenced by relaxation effects is a complicated problem.
However, the method which is implemented in MOTIF allows us to handle such a
problem formally in the same way as all other cases described previously. The same
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rule is valid here: define the self-correlation function of the problem, and for the
rest apply the standard multiple scattering procedure. Thus the problem of evaluation
of the NFS time spectra in the presence of atomic spin relaxation is the problem of
evaluation of the corresponding nuclear self-correlation function.

As has been pointed out already in the very first theoretical paper [24] in which the
influence of atomic spin relaxation on the hyperfine structure of the nuclear resonance
was discussed, the time correlation function is given by an expression mathematically
equivalent to eq. (3.2). However, in this case the space of nuclear eigenstates |β〉 should
be extended to the unified space of the eigenstates of atomic and nuclear spins. The
summation in eq. (3.2) should thus be performed not only over the nuclear variables,
but over electron spin variables as well.

4. How to obtain the program?

Executable files of MOTIF precompiled on different Unix platforms are avail-
able from the anonymous ftp://i2aix04.desy.de/pub/motif/ as part of a
distribution package. The newest and also previous versions of MOTIF are available.
Different versions and their distribution packages are distinguishable through appended
numbers, like MOTIF.23, MOTIF.27, etc.

The distribution package of each version also contains a detailed User’s Guide
supplied as a file MOTIF VERSION.PS in postscript format. In subdirectories of the
distribution also examples for fitting real time spectra are provided.
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