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CONUSS and PHOENIX:
Evaluation of nuclear resonant scattering data

W. Sturhahn
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA

Evaluation methods for data obtained by nuclear resonant scattering techniques are dis-
cussed. The CONUSS software package for the interpretation of time or energy spectra
from coherent elastic nuclear resonant scattering, i.e., forward scattering and Bragg/Laue
scattering, is presented. The analysis of phonon spectra obtained by incoherent nuclear
resonant scattering is demonstrated using the PHOENIX software.

1. Introduction

The combination of nuclear resonant scattering (NRS) and synchrotron radiation
prompted novel techniques for the study of condensed matter. The most remarkable
developments may be synchrotron Mössbauer spectroscopy and phonon spectroscopy
employing incoherent NRS. Ample examples supporting this assessment can be found
in the present book [1]. In this contribution, software packages are described that
offer substantial help in the analysis of typical spectra of either method. The first part
of the paper explains how the CONUSS (COherent NUclear resonant Scattering by
Single crystals) programs permit derivation of hyperfine parameters from time spectra
of nuclear forward scattering (NFS), nuclear Bragg scattering, or nuclear Laue scatter-
ing. The emphasis will be on NFS, because of its broader range of applications. The
CONUSS program package grew simultaneously with experimental studies of coherent
elastic NRS. Such experiments were initially performed on single crystals, e.g., Gerdau
et al. [2,3] using YIG, Faigel et al. [4] using Fe2O3, and van Bürck et al. [5] using
FeBO3, to name a few. CONUSS also served to evaluate data of the first experiment
to use NFS; van Bürck et al. [6] combined a nuclear Bragg reflection of FeBO3 with
Invar absorbers. The spectroscopic capabilities of coherent elastic NRS were greatly
enhanced after technical difficulties related to NFS were overcome by the high-energy
resolution monochromators of Hastings et al. [7] and the avalanche photodiode detec-
tors of Kishimoto [8]. The high brightness of third-generation synchrotron radiation
sources promoted NFS to a viable spectroscopy. Using high-brightness synchrotron ra-
diation sources, Toellner et al. [9] and Siddons et al. [10] could show that polarization
filtering can be advantageously combined with NFS. In this case, Alp et al. [11] point
out that one observes the optical activity of the sample around the nuclear resonance
and benefits from the considerable suppression of the nonresonant counting rate. The
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CONUSS programs and other evaluation software [12] now play important roles in
the parameterization of experimental data. A brief description of CONUSS given by
Sturhahn [13] was followed up by Sturhahn and Gerdau in a paper about the theoretical
basis of the software [14].

In the second part of this paper, the PHOENIX (PHOnon Excitation by Nuclear
Inelastic scattering of X-rays) software is introduced. The use of this program facil-
itates the derivation of the phonon density of states from the typical incoherent NRS
spectrum along with several parameters pertinent to the local dynamics of the lattice.
The application of incoherent NRS as a tool for investigations of lattice vibrations
was only recently introduced by Seto et al. [15], Sturhahn et al. [16], and Chumakov
et al. [17]. The present status of the method is explained elsewhere in this book. Both
software packages, CONUSS and PHOENIX, are freely available from the author.

2. The CONUSS software

The data from experiments involving coherent elastic NRS usually consist of
time spectra. The time spectrum is a collection of events, each of which registers
the time span between arrival of the synchrotron radiation pulses and arrival of a
scattered photon. Here the sample contains nuclei with a Mössbauer resonance, and
hence the decay time of scattering contributions from the nuclei is dictated by the
nuclear lifetime. In addition, oscillations are observed that originate in nuclear level
splitting. Also quite common is the thickness-dependent acceleration of nuclear decay
or “speed-up”. The combination of both effects may render complicated shapes for the
time spectra. In this scenario, the purpose of the CONUSS programs can be defined
as follows:

– Calculation of time and energy spectra for given properties of sample and incident
radiation.

– Comparison of calculated spectra with measured data including the automatic ad-
justment of parameters with the objective to obtain the best agreement of theory
and data.

The above topics will be addressed individually. In the appendix, calculations of
integrated delayed counting rates for various NFS scenarios are presented. These data
provide valuable information for the design of NFS experiments.

2.1. Calculation of time and energy spectra

A microscopic model for NRS is needed to prepare suitable procedures. Hannon
and Trammell [18] treated NRS as a quantum-electrodynamical scattering process of a
weak photon field incorporating the particular properties of nuclear resonances. This
picture has the advantage of being microscopic, i.e., one can build a program “from
the inside out”. In CONUSS, the basic nuclear properties and the basic properties
of the crystal structure are defined by the parameters listed in table 1. Next, the
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Table 1
List of parameters describing basic nuclear properties and basic crystal properties.

Symbol Parameter

M Mass of the resonant isotope.
I , I ′ Spin numbers of nuclear ground and excited states.
g, g′ g-factors of nuclear ground and excited states.
Q,Q′ Quadrupole moments of nuclear ground and excited states.
t1/2 Half life time of the nuclear excited state.
α′ Internal conversion factor.
E0 Nuclear transition energy.
L,λ Multipolarity and parity of the nuclear transition.
β Interference coefficient of the nuclear transition.
Z Charge of the nucleus.
A Isotopic abundance.

a, b, c Lengths of base vectors of the unit cell.
∠(b, c),∠(a, c),∠(a, b), Angles between base vectors of the unit cell.
TD Debye temperature of the material.
T Actual temperature of the material.

interaction between the nucleus and its environment is considered. CONUSS offers a
choice between static hyperfine interactions and randomly fluctuating hyperfine fields
as described by Blume and Tjon [19]. A set of hyperfine parameters together with the
coordinates of the Mössbauer atoms in the unit cell constitute a site. The maximum
number of sites that may be defined is not limited in principle, i.e., the value will depend
on computing resources only. It is possible to combine sites with fluctuating and static
hyperfine interactions as needed. A site with static hyperfine fields is characterized by
a list of parameters that is provided in table 2. The notions of isomer shift, magnetic
hyperfine field, quadrupole splitting, and asymmetry parameter of the electric field
gradient (EFG) tensor are commonly known. The Euler angles rotate the main axes
system of the EFG tensor, which can be obtained by diagonalization, into a basis
that is determined by the crystal lattice. The direction of the magnetic hyperfine
field is defined with respect to the direction of the external magnetic field and an
additional orthogonal reference vector using the angular coordinates θ and ϕ. The
related geometry is displayed in figure 1. One also encounters situations where the
magnitude of the hyperfine field depends on its direction. Such cases are included by
defining asymmetry parameters of the magnetic hyperfine field as follows. Assume
the magnitude of the magnetic hyperfine field is written as

B =
√
B2
x cos2 γx +B2

y cos2 γy +B2
z cos2 γz , (1)

where Bx,y,z are the main values with regard to the local symmetry axes, which are
identical to the main axes of the EFG. γx,y,z are the angles of the magnetic hyperfine
field with respect to the local symmetry axes. Bx,y,z may be replaced by the isotropic
field value B0, polar asymmetry ξp, and azimuthal asymmetry ξa. The relationships
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Table 2
Hyperfine interaction parameters that define a particular site.

Symbol Parameter

δE0 Isomer shift.
eQ′Vzz/2 Quadrupole splitting of excited nuclear state.
η Asymmetry parameter of EFG tensor.
α, β, γ Euler angles of EFG main axes.
B0 Magnetic hyperfine field, isotropic part.
ξp Polar asymmetry of magnetic hyperfine field according to eq. (2).
ξa Azimuthal asymmetry of magnetic hyperfine field according to eq. (2).
θ, ϕ Polar and azimuthal angles of magnetic hyperfine field (see figure 1).
{xj , yj , zj} Positions of Mössbauer atoms in the unit cell.

Figure 1. Direction of the magnetic hyperfine field B. The angles θ and ϕ are used as input parameters
in CONUSS. The reference system is constructed from the direction of the external magnetic field Bext

and the cross product of surface normal and Bext as displayed above. If the external field points along
the surface normal the projection of a unit cell base vector onto the surface replaces the cross product as

reference vector for the angle ϕ.

are

B0 =

√
1
3

(
B2
x +B2

y +B2
z

)
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6B2
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(
2B2

z −B2
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ξa =
B2
y −B2

x

B2
y +B2

x

.

The values of the asymmetries are restricted to the ranges ξp ∈ [−0.5, 1] and ξa ∈
[−1, 1]. The angular dependence of the magnetic hyperfine field is now given by

B(θB,φB) = B0

√
1 + ξp

(
3 cos2 θB − 1

)
+ ξa(ξp − 1) sin2 θB cos 2φB, (3)

where B0, θB,φB are the polar coordinates with respect to the main axes of the EFG.
The angles are calculated internally from the direction of the hyperfine field and the
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Figure 2. Forward scattering geometry. The incident radiation with wave vector k is parallel to the
surface normal. The angles ϑext and ϕext provide the direction of the external magnetic field Bext. The
projection of a unit cell base vector a onto the surface and k serve as reference vectors. The polarization
vector σ is defined perpendicular to k and Bext. If the external field points along the wave vector k the

polarization vector σ is defined perpendicular to k and unit cell base vector a.

Figure 3. Geometry for symmetric Bragg scattering. The normal of the reflecting netplanes is parallel to
the surface normal. The direction of the incident wave vector kin is determined by the angle ϕin and the
Bragg condition. a is a unit cell base vector. The angles ϑext and ϕext provide the direction of the external
magnetic field Bext. The projection of kin onto the surface and the surface normal serve as reference
vectors. The polarization vector σ is perpendicular to the scattering plane that is defined by kin and the

reflected wave vector kout.

orientation of the EFG main axes that are specified by the Euler angles. The com-
mon magnetic dipole field results from an approximation of the previous equation for
|ξp| � 1, ξa = 0, i.e., Bdip = ξpB0. An isotropic magnetic hyperfine field results from
ξp = ξa = 0. The external field is given relative to the crystal basis and wave vectors
of incident and scattered radiation depending of the scattering scenario. In figure 2,
the situation is displayed for cases of forward scattering. Figures 3 and 4 explain the
relationships for symmetric and asymmetric Bragg scattering. Direction and magnitude
of the external magnetic field are defined by parameters given in table 3. The nuclear
level splitting and the corresponding eigenvectors are obtained by numerically solving
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Figure 4. Geometry for asymmetric Bragg scattering. The normals of the reflecting netplanes and the
surface are not parallel to each other. The direction of the incident wave vector kin is determined by
the angle ϕin as shown and the Bragg condition. The angles ϑext and ϕext provide the direction of the
external magnetic field Bext. The projection of kin onto the surface and the cross product of netplane
normal and surface normal serve as reference vectors. The polarization vector σ is perpendicular to the

scattering plane that is defined by kin and the reflected wave vector kout.

Table 3
Miscellaneous parameters used by the CONUSS software.

Symbol Parameter

s1, s2, s3 Components of the surface normal.
Bext Magnitude of external magnetic field.
ϕext Angle between the incident wave vector and external magnetic

field, in each case projected onto the surface (see also figures 2–4).
ϑext Angle between external magnetic field and surface normal (see figures 2–4).

h, k, l Miller indices of the reflection.
ϕin Angle between the incident wave vector projected onto the surface

and a reference vector (see figures 2–4).
D Thickness of the crystal.
[E1,E2] Energy interval around the unsplit and unshifted nuclear

resonance used in the calculation.
[θ1, θ2] Angle interval around the direction of the incident wave vector

that satisfies the Bragg condition.
Zj Nuclear charges of the nonresonant atoms.
{xj , yj , zj} Positions of nonresonant atoms in the unit cell.

the diagonalization problem∑
mm′

φjmHmm′ φm′j′ = Ej δjj′ (4)

for nuclear ground and excited states. If one chooses the main axes system of the EFG
for reference, the matrix elements of the Hamiltonian for the excited nuclear state take
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the form

(−1)m−m
′
Hmm′ =−µNg′B′

C(I ′I ′1;mm′)
C(I ′I ′1; I ′I ′)

D(1)
m−m′

(
0,β′, γ′

)
+

1
2
eQ′Vzz

C(I ′I ′2;mm′)
2C(I ′I ′2; I ′I ′)

{
δmm′ +

η

6
δ2,|m−m′|

}
, (5)

where the angles β′ and γ′ give the direction of the magnetic hyperfine field in the EFG
system and B′ = |B + Bext| is the effective magnetic field at the nucleus. C(. . .) and
D are Clebsch–Gordan coefficients and rotation matrices, respectively, in the notation
of Rose [20]. µN denotes the nuclear magneton.

Fluctuating hyperfine fields are treated by providing a set of hyperfine parameters
{δE0, eQ′Vzz/2, η,B, ξp, ξa, θ,ϕ} together with a matrix of transition rates describing
the random jumps between the different hyperfine parameters. The main axes system
of the EFG defined by the Euler angles α, β, γ is assumed static. The eigenvalue
problem now takes the form∑

mm′MM ′ρσ

Lµρjj′mm′A
ρσ
mm′MM ′R

σν
MM ′ll′ = Ωµ

jj′δµνδjlδj′l′ , (6)

where L, R are left and right eigenvectors and Ω are the new (complex) eigenvalues.
The matrix A is constructed with the matrix elements given in eq. (5) and the transition
matrix (λρσ):

Aρσmm′MM ′ = iλρσδmMδm′M ′ +H
′ρ
m′M ′δmMδρσ −H

ρ
mMδm′M ′δρσ. (7)

In this expression, Hρ
mM = 〈Im|Ĥρ|IM〉 and H

′ρ
m′M ′ = 〈I ′m′|Ĥρ|I ′M ′〉 are matrix

elements of the Hamiltonian Ĥρ using spin eigenvectors for nuclear excited and ground
states. The index ρ labels a particular set of hyperfine parameters. The transition matrix
satisfies

∑
σ λ

ρσ = 0.
The solutions of the eigenvalue problem defined either by eq. (4) or by eq. (6) will

serve to calculate the coherent elastic scattering amplitude from a thin platelet. The
formulas were explicitly given by Sturhahn and Gerdau [14] for the static case. The
calculation of energy, angle and polarization-dependent transmission or reflectivity
functions can be completed with information about scattering geometry, calculation
ranges, and nonresonant atoms in the material. The needed parameters are listed in
table 3. The program uses linear polarization vectors as a basis for the transmission
or reflectivity matrices. When Bragg/Laue cases are calculated, σ-polarization for
incident and diffracted radiation is defined perpendicular to the scattering plane as
illustrated in figures 3 and 4. For cases of forward scattering, figure 2 shows that
σ-polarization is defined perpendicular to the plane common to the incident wave
vector and the external magnetic field. The π-polarization vectors are obtained from
vector products of the σ-polarization vector with the corresponding wave vector.

At this point the energy, angle and polarization-dependent transmission or re-
flectivity functions for a particular material in a particular scattering geometry are
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Table 4
Parameters characterizing polarization properties of incident radiation

and the polarization sensivity of the detection system.

Symbol Parameter

P Degree of polarization of the incident radiation.
θM Mixing angle of the incident radiation.
θC Canting angle of the incident radiation.
P ′ Filter efficiency of the detection system.
θ′M Mixing angle of the filtered detected radiation.
θ′C Canting angle of the filtered detected radiation.

completely defined. The program offers the flexibility to combine scatterers character-
ized in this way, i.e., the transmission or reflectivity matrices are multiplied according
to the spatial arrangement of the corresponding samples. A time spectrum is now ob-
tained by a Fourier transformation of the energy-dependent transmission or reflectivity
functions. Such a time spectrum describes the response of the ensemble of nuclear
resonant scatterers to a very short pulse of radiation. However, if the user wishes
to calculate energy spectra, this step may be omitted and one obtains the response
to monochromatic radiation. Therefore CONUSS can handle the calculation of con-
ventional energy spectra as well as time spectra obtained with synchrotron radiation.
Amplitude as well as phase of the scattered field are calculated and thus the full infor-
mation is retained. The most relevant derived quantity is the intensity, which can be
compared to results from usual experiments. At this point the polarization properties
of incident synchrotron radiation and the polarization sensivity of the detection system
must be defined. The CONUSS software uses the parameters listed in table 4. Assume
the transmission function T was calculated for a particular energy or time in the basis
of linear polarization vectors as described above. The intensity is then

I = Trace
{

DT†F T
}

, (8)

where D is the density matrix describing the polarization of the incident radiation,
and F encompasses the polarization sensivity of the detector. These matrices can be
expressed in a linear polarization basis as follows:

D =
1
2

(
1 + P cos θM cos θC P (sin θC cos θM − i sin θM )

P (sin θC cos θM + i sin θM ) 1− P cos θM cos θC

)
,

(9)

F =
1
2

(
2− P ′(1− cos θ′M cos θ′C) P ′(sin θ′C cos θ′M − i sin θ′M )

P ′(sin θ′C cos θ′M + i sin θ′M ) 2− P ′(1 + cos θ′M cos θ′C)

)
,

where the parameters are defined in table 4. This system offers great flexibility in prob-
ing the polarization dependence of NRS. Left- or right-circularly polarized radiation,
e.g., is defined by θM = ±π/2, and θM = 0 gives linear polarization. Intermediate
values correspond to elliptically polarized states. The degree of polarization can be
continuously adjusted between completely polarized, P = 1, to unpolarized P = 0.
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The canting angles lead to a rotation of the base vectors and accommodate situations
with varying directions of hyperfine fields relative to the polarization of the radiation.

2.2. Comparison to data

In the previous section, the calculation of a time spectrum starting from a collec-
tion of parameters that describe sample properties as well as geometrical constraints
and ending with an intensity function was explained. Optionally one may also obtain
energy spectra under identical conditions. It is practical to allow certain averaging pro-
cedures before the intensity function is directly compared to the measured data. The
program permits convolution of the intensity function with either Gaussian (optionally
asymmetric) and Lorentzian shape functions. Therefore a time spectrum can incorpo-
rate the detector resolution function, and an energy spectrum may be combined with
the spectral function of a single line Mössbauer source. If Bragg or Laue reflections
are studied, one can apply the convolutions to the angle coordinate, thus simulating
the divergence of the incident radiation. In the case of forward scattering, such an
averaging may be performed over the thickness parameter, thus simulating samples
of varying thicknesses in the cross-section of the incident radiation. The calculation
of the time spectrum assumes that the incident radiation consists of a single short
pulse. The experimental data are often obtained under different conditions, i.e., syn-
chrotron radiation is a periodic sequence of uncorrelated pulses. The user of CONUSS
can define the pulse sequence, which is then used to construct an improved simula-
tion from the intensity function. This is particularly important if the separation of the
synchrotron radiation pulses is comparable to or even less than the lifetime of the nu-
clear resonance. The theoretical simulation that has been prepared in this way is then
compared to measured data. Scaling factor and background are adjusted automatically
to minimize the mean square deviation. This procedure constitutes the minimum of
parameter adjustments that can take place. In general, the CONUSS software allows
the automatic adjustment of every numerical input parameter including those specified
in tables 1–4 with the aim to minimize the mean square deviation of calculation from
measurement. More complex situations are accommodated by grouping of fit parame-
ters, i.e., several parameters are simultaneously varied while keeping their relationship
intact. Examples are variation of one quadrupole interaction in a system with many
different magnetic hyperfine fields, or the variation of weights of different sites that
should be kept normalized. The users of the CONUSS program are therefore offered
great flexibility in the evaluation of data from samples important to their objectives.

2.3. Example evaluations

In the past years, the CONUSS software has been used by several scientists to
evaluate a variety of time spectra. Some examples concerning nuclear resonant Bragg
reflections were given earlier by Sturhahn and Gerdau [14]. Recently NFS received
more attention, and therefore examples of evaluation of such time spectra obtained
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Figure 5. Time spectrum of an α-iron foil. The scattering geometry is shown as an inset. The incident
synchrotron radiation is σ-polarized. The line was calculated using the CONUSS software. The data

were taken from [21].

Figure 6. Time spectrum of an α-iron foil including polarization filtering. The scattering geometry is
shown as an inset. The incident synchrotron radiation is σ-polarized and only the π-component of the
transmitted radiation is detected. The line was calculated using the CONUSS software. The data were

taken from [9].

with synchrotron radiation sources are presented. In addition, an evaluation of a
conventional energy spectrum demonstrates the flexibility of the CONUSS software.

In figure 5, the time spectrum of an α-iron foil and the simulation obtained with
CONUSS are shown. The data were taken from [21]. The measurement was performed
under ambient conditions, and the scattering geometry is outlined in figure 5. With
the procedure explained in the previous section, the magnetic field at the location
of the nucleus and the effective thickness of the sample were adjusted. The results
are B = 32.7(2) T and d = 14.9(15), where the value of B includes the applied
external magnetic field of 0.13 T. Figure 6 shows the time spectrum of a different
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Figure 7. Time spectrum of a single crystal of Fe3BO6 at a temperature of 414.7 K. The line represents
the calculation using the CONUSS software with hyperfine parameters supplied in table 5. The scattering
geometry and the orientation of the magnetic hyperfine fields above and below the Morin transition are

indicated. The data were provided by Jäschke et al. [22].

Table 5
Hyperfine parameters used to simulate a time spectrum of Fe3BO6 as
shown in figure 7. The indices L and H indicate the magnetic structures
as found below and above the Morin transition temperature. In the present
data, one obtains for the ratio of the phases H : L = 1 : 0.39(1). The

effective thickness of the crystal was adjusted to 81(4).

Parameter 8d sites 4c sites

δE0 (mm/s) 0 0.025
eQ′Vzz/2 (mm/s) 0.49 −0.91
η 0.93 0.83
α (deg.) 150 204 204 150 55 95
βL (deg.) 28(5) 100(40)
βH (deg.) 22(3) 20(3)
γ (deg.) 90 90
B (T) 32.2(2) 35.9(2)
θL (deg.) 90 90 270 270 90 270
θH (deg.) 0 0 180 180 0 180
ϕ (deg.) 0 0

α-iron foil measured with a polarizer–analyzer setup [9]. The time spectrum reflects
the optical activity around the nuclear resonance and contains similar information
about the hyperfine interactions as in the previous example. The calculation provides
B = 32.9(2) T and d = 167(9).

However, the hyperfine parameters of α-iron are well known, and we proceed
to more complicated cases. Using NFS, Jäschke et al. [22] investigated the Morin
transition in single crystals of Fe3BO6. Time spectra were taken at several temper-
atures in the transition region around 414 K where the directions of the magnetic
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Figure 8. Time spectrum of an INVAR foil, Fe65Ni35. The line represents the calculation using the
CONUSS software with the distribution function for the magnetic hyperfine fields shown in the right-hand
graph. The scattering geometry is shown as an inset. The incident synchrotron radiation is σ-polarized.

The data were taken from [21].

hyperfine fields change. The unit cell of Fe3BO6 contains four formula units and
provides six sites with different hyperfine interactions for the iron nuclei. In the vicinity
of the Morin transition, the time spectrum has to be simulated using 12 nuclear sites,
i.e., six sites each for high and low temperature phases. The time spectrum in figure 7
is a sample from a series of more than 100 spectra. The hyperfine parameters shown
in table 5 were used to reproduce the data with excellent quality. Errors are given
for values that were adjusted by CONUSS using only this spectrum. The other values
were obtained by Jäschke et al. from evaluation of all available time spectra. In the
previous examples, the hyperfine fields were constant throughout the probed sample
volume. Materials may show distributions of hyperfine fields, however. The CONUSS
program accommodates such distributions if the sample is homogeneous within the
coherent volume of the incident radiation. For many samples, this condition is satis-
fied. Figure 8 shows a time spectrum of an INVAR foil, Fe65Ni35, and the probability
density of the magnetic hyperfine field that was used to produce the solid line. The data
were provided by Shvyd’ko et al. [21]. In their paper, Shvyd’ko et al. used the MO-
TIF software [12] to evaluate the same data using an asymmetric magnetic hyperfine
field distribution composed of three Gaussians. The field distribution in figure 8 was
constructed from an asymmetric Lorentzian and a symmetric Gaussian. The quality
of the data is not sufficient to determine the shape of the distribution function more
accurately.

The last example of data evaluation with the CONUSS software is shown in
figure 9. A foil of Fe3Al alloy was investigated by NFS in combination with the
polarizer–analyzer technique as well as with a conventional conversion electron Möss-
bauer spectroscopy (CEMS) setup. In both cases, the distribution of the magnetic
hyperfine fields was determined. We find sharp peaks around 21.4 T and 30 T that
correspond to Wyckoff 8c and 4b sites in the DO3 structure of crystalline Fe3Al. The
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Figure 9. Time spectrum and CEMS spectrum of a Fe3Al alloy. The time spectrum was obtained with
a polarization filtering technique similar to the data in figure 6. The scattering geometry is shown as an
inset. For both types of spectra, the line represents the calculation using the CONUSS software. The

corresponding distribution functions of the magnetic hyperfine fields are shown on the right.

remaining features in the field distribution arise from residual disorder in the sample,
probably due to the manufacturing process.1 The discrepancies in hyperfine field
distributions obtained from the different types of spectra reflect differences in surface
(probed in CEMS) and volume properties of the sample.

The last example comprises a calculation of time spectra for a simple case of two-
state magnetic relaxation using the Blume–Tjon mechanism. The results are shown
in figure 10. The calculations were performed for a 1/2 → 3/2 nuclear transition.
The two magnetic states are characterized by hyperfine fields of opposite sign. The
magnitude of the hyperfine fields is equivalent to a separation of the outer lines of
100 Γ. The transition matrix used in eq. (7) assumed the form

λ

(
−1 1
1 −1

)
, (10)

where the relaxation rate λ appears as parameter in figure 10. The calculations leading
to figure 10 assumed a polarizer–analyzer setup as described by Alp et al. [11] with
a scattering geometry identical to the inset in figure 6. In the slow-relaxation limit,
the image in figure 10 shows a pronounced oscillation pattern that is characteristic

1 The Fe3Al sample was provided by Prof. B. Fultz, California Institute of Technology. The manufacturing
process is, e.g., described in [23].
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Figure 10. Calculated time spectra versus relaxation rate λ for a two-state magnetic relaxation model
after Blume and Tjon. The transition matrix is given by eq. (10). Brighter areas indicate larger intensity
values. The bar scale to the right shows the relationship between brightness and calculated intensity.
The image shows the intensity that arises from σ-to-π scattering, i.e., one assumes the same polarization
filtering technique that was applied to obtain the data of figure 6. Also the scattering geometry was

adopted.

for the magnetic splitting. With increasing values of the relaxation rate, the decay of
the oscillations accelerates but the pattern remains unchanged. Around λ = 8 Γ, the
time spectra change dramatically, indicating the collapse of the inner lines. In this
region, the damping is strongest. For larger values of λ, the short-period oscillations
disappear. The remaining slow modulation is essentially determined by the relaxation
rate and the effective thickness of the sample, d = 10 in the present case. Finally,
the fast-relaxation limit leaves only the dynamical oscillations arising from thickness
effects. In addition, the optical activity of the sample, and thus the integrated intensity
for a crossed-polarizer setup, vanishes. However, the use of a polarizer–analyzer setup
seems appropriate for the experimental study of systems with relaxation behavior,
because the early times in the decay pattern are more easily accessible, e.g., compare
the spectra in figures 5 and 6.

3. The PHOENIX software

The spectra that are obtained in applications of incoherent NRS are quite different
from the time spectra discussed in the previous section. If the nucleus is excited by
pulsed synchrotron radiation, the discrimination of incoherent NRS events from elec-
tronic contributions proceeds very efficiently by counting delayed photons originating
in either atomic or nuclear fluorescence. Tuning the energy of the incident synchrotron
radiation with respect to the nuclear resonance while monitoring the total yield of the
delayed fluorescence photons provides a superposition of all possible phonon excita-
tions. The experimental details were elucidated by Chumakov and Sturhahn [24], and
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Figure 11. Incoherent NRS spectrum of an α-iron foil. The central region was multiplied by 0.1 to
emphasize the inelastic components of the spectrum. The data were taken from [31].

theoretical aspects were studied by Sturhahn and Kohn [25]. The evaluation of spectra
from incoherent NRS has been discussed by Sturhahn et al. [16], Kohn et al. [26], and
Hu et al. [27]. A typical spectrum is shown in figure 11. The central, elastic peak
indicates the energy of the nuclear transition. The left-hand side shows an energy trans-
fer from lattice to nucleus that is equivalent to net-annihilation of vibrational quanta.
Similarly, the right-hand side gives the net-creation term. The evaluation procedure
consists of two steps:

– Determination of the elastic contribution to the spectrum by matching the resolution
function to the central peak and calculation of several moments of the spectrum
followed by normalization.

– Removal of the elastic contribution from the data, decomposition into n-phonon
terms, and derivation of the partial phonon density of states (DOS).

3.1. Normalization and moments

The functional dependence of the measured curve can be described as

I(E) =

∫
R
(
E −E′

){
aS
(
E′
)
− bδ

(
E′
)}

dE′, (11)

where E is the energy of the incident synchrotron radiation relative to the nuclear
transition energy, S(E) dE is the probability for a vibrational excitation within the
interval [E,E + dE], and R is the normalized resolution function of the monochro-
mator. The coefficients a and b depend on the experimental conditions. In particular,
a provides the data normalization, and its precise determination is crucial to the data
evaluation procedure. The coefficient b quantifies saturation effects [16] that occur
in the vicinity of the nuclear resonance. The correct zero-energy is found by a fit of
the monochromator resolution function to the central peak. The user has the choice
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Table 6
List of parameters needed by PHOENIX.

Symbol Parameter

E0 Nuclear transition energy.
ER Recoil energy of the free atom.
T Temperature of the sample.
B0 Background in measured data, e.g., detector noise.
EF Energy range of elastic peak, which will be adjusted

to the resolution function in the interval [−EF ,EF ].
c2 Relative inelastic contribution under the elastic peak.
c4 Left/right asymmetry of the resolution function.
c5 Determines the shape of internally generated

resolution functions.
δE FWHM of a Gaussian used to smooth output data.

of specifying the resolution function of the monochromator either by file, e.g., from
a separate measurement, or by a set of parameters that cause generation of a shape
function internally. Table 6 gives the set of needed input parameters. The PHOENIX
software adjusts the following function to the central area of the spectrum

P (E) = c1

{
R(E − c0) + c2

β(E − c0)
1− e−β(E−c0)

}
, (12)

where the parameters c0, c1, c2 are adjustable and β is the inverse temperature. The
second term comprises a background function that is equivalent to the one-phonon
contribution from a Debye solid. The function R describes the shape of the elastic
peak. In case the shape is specified by file in the form of the function H , the program
uses

R(E) =


H

[
E

2c3

1 + c4

]
, E > 0,

H

[
E

2c3c4

1 + c4

]
, E < 0,

(13)

where c3 keeps the width adjustable and c4 6= 1 permits the introduction of asymmetry.
If the user selects to generate the shape function internally, the dependence H(x) =
exp(−|x|c5) is used. The parameters c0−5 are optimized by minimizing the least squares
deviation between resolution function and data. Now the zero and first-order moments
of eq. (11) can be calculated, and values for the parameters a and b follow from
Lipkin’s sum rule

∫
ES(E) dE = ER [28], where ER is the recoil energy of the

free nucleus. The calculation of higher-order moments of S from measured data is
described in detail by Hu et al. [27] and also by Sturhahn and Chumakov [29]. The
second moment provides the average kinetic energy of the atom, and the third moment
gives the average force constant for the atom. The PHOENIX software normalizes the
spectrum and calculates several moments of the spectrum using these prescriptions.
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3.2. Decomposition and partial phonon DOS

Further analysis of the data requires removal of the elastic contribution, i.e.,
c1R(E−c0) is subtracted from the spectrum. The Lamb–Mössbauer factor immediately
follows:

f = 1 +
c1

a
− 1
a

∫
I(E) dE. (14)

At this point all information is prepared to decompose the measured spectrum into
n-phonon contributions in accordance with the model of a harmonic lattice. We can
write [16,25]

I(E) = c1R(E) + af
∞∑
n=1

∫
Gn
(
E′
)
R
(
E −E′

)
dE′, (15)

where the energy scale is relative to c0 and the n-phonon functions Gn depend recur-
sively on the one-phonon function

Gn+1(E) =
1

n+ 1

∫
Gn
(
E′
)
G1
(
E −E′

)
dE′. (16)

Equations (15) and (16) have a simple form in reciprocal presentation that arises
naturally in the discussion of the self-intermediate scattering function [25]. Indicating
the Fourier image of a function with a tilde we obtain

G̃1 = ln

{
1 +

Ĩ − c1R̃

afR̃

}
. (17)

This convenient way of obtaining the one-phonon function is referred to as the Fourier-
log method [30]. The problems that may arise from the deconvolution, i.e., the division
by R̃ in the previous equation, are addressed in a twofold way. A cutoff function φ is
introduced, and the n-phonon functions are convoluted with the resolution function.
The PHOENIX software produces the following results: the one-phonon contribu-
tion

S1(E) = fF−1
[
R̃ ln

{
1 + φ

Ĩ − c1R̃

afR̃

}]
, (18)

the two-phonon contribution

S2(E) =
f

2
F−1

[
R̃ ln2

{
1 + φ

Ĩ − c1R̃

afR̃

}]
, (19)

and the higher-order contributions

Sn>2(E) =
1
a

{
I(E)− c1R(E)

}
− S1(E) − S2(E). (20)
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Figure 12. Decompostion of the incoherent NRS spectrum of an α-iron foil. The symbols represent the
normalized data. Using the procedure described in the text, the PHOENIX software produces a one-
phonon contribution (solid line), a two-phonon contribution (dashed line), and higher-order contributions

(dotted line). The background is also indicated (dash-dotted line). The data were taken from [31].

In the previous expressions, F−1 stands for the inverse Fourier transform. The cutoff
function is chosen as

φ = min

{
1,

∣∣∣∣ ĨR̃(0)

R̃Ĩ(0)

∣∣∣∣}. (21)

Figure 12 gives the result of the decomposition procedure when applied to the data
shown in figure 11. The relationship between the one-phonon contribution as given by
eq. (18) and the partial phonon DOS is material independent. The PHOENIX program
uses the formula

g(E) =
E

ER
tanh

βE

2

(
S1(E) + S1(−E)

)
, E > 0. (22)

Figure 13 shows the partial phonon DOS derived from the data in figure 11. In this
particular case of iron metal, the derived quantity is identical to the total phonon DOS.
It should be noted that the Lamb–Mössbauer factor, as well as the decomposition of
the spectrum into individual phonon contributions, critically depends on the removal
procedure of the elastic peak. In particular, the shape of the inelastic background under
the elastic peak is speculative. As mentioned earlier, the functional dependence chosen
in eq. (12) is equivalent to the one-phonon contribution from a Debye solid. One can
distinguish two situations that would lead to inaccurate results. Either the higher order
phonon contributions are considerable around the central peak or the material is not
Debye-like for small energies, i.e., the phonon DOS is not proportional to E2. In the
first case, one obtains an estimate by combination of the relationships

1− f = S1 +
∑
n>1

Sn,
∫
Sn(E) dE = f

(− ln f )n

n!
. (23)
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Figure 13. Phonon density of states of an α-iron foil. The procedure described in the text was applied
to the data shown in figure 11. The error bars were obtained by propagating the statistical errors of the

measured events.

The estimated relative contribution of higher order terms with n > 1 follows as
γ = 1 + f ln f/(1− f ). For f = 0.8, 0.6, 0.4, one obtains γ = 0.11, 0.23, 0.39,
respectively. In principle, eventual deficiencies that may occur for small values of
the Lamb–Mössbauer factor can be corrected by obtaining an improved shape for the
background in a two-step procedure. After calculating a phonon DOS as described
earlier in this section, one uses this function to calculate the higher order phonon
terms and thus obtains the desired improvement.2 The situation where the material
is not Debye-like for small energies cannot be cured in a similar fashion by nu-
merical tricks. However, consistency checks that are implemented in the PHOENIX
software can give the needed help to decide upon the reliability of the decomposi-
tion procedure. It was mentioned earlier in the text that moments of the measured
data of the type

∫
EnI(E) dE for n > 0 can be calculated without removal of the

elastic peak. One obtains the average kinetic energy from the second moment and
the average force constant from the third moment. Both physical quantities can be
equally calculated from the phonon DOS, and the results are compared with each
other and the statistical error margins. Large deviations indicate either systematic er-
rors in the data or an insufficient removal procedure for the central peak. Additional
information can be derived from the left/right asymmetry (detailed balance) of the
data, which is material independent. The PHOENIX program also provides error mar-
gins that are obtained by propagating the statistical uncertainties of the measured
data.
2 This procedure is not presently implemented in the PHOENIX software.
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4. Conclusion

In this paper, the basic features of two software packages pertinent to the evalua-
tion of NRS data were described. The CONUSS program was shown to be most useful
for interpreting data obtained by nuclear forward scattering or nuclear Bragg/Laue scat-
tering. This software offers ample flexibility to produce theoretical predictions of time
spectra, CEM spectra, and Mössbauer transmission spectra for given sets of nuclear
hyperfine parameters. The capability of adjusting such parameters automatically to
measured data makes CONUSS a valuable tool for an extended range of coherent
elastic NRS techniques. The PHOENIX software is designed to guide evaluation of
data from the recently advanced incoherent NRS technique. The program derives
several parameters characterizing the binding of atoms containing a resonant nucleus
to neighboring atoms. The partial phonon density of states, an important quantity in
understanding lattice dynamics, is extracted. In summary, a continuous development
of instruments and methods furthered the potential of NRS applications with synchro-
tron radiation in the past decade. The software packages presented in this paper are
designed to meet the natural need for evaluation and understanding of the measured
data.
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data prior to publication. My gratitude also goes to Yu. Shvyd’ko for placing data at
my disposal and to B. Fultz for providing the Fe3Al sample. R. Rüffer and E. Gerdau
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Appendix

This appendix presents calculations of integrated delayed counting rates that can
be achieved in NFS experiments. The CONUSS software was used. Figure 14 pro-
vides the results for typical scenarios with static hyperfine interactions, i.e., magneti-
cally split samples (six-line pattern, separation of outer lines 110 Γ), quadrupole split
samples (two-line pattern, splitting 10 Γ), and unsplit samples, where Γ is the natural
linewidth of the excited nuclear state. In each case, the effective thickness of the
sample was varied over 5 orders of magnitude starting at 0.1. In addition, results for
magnetic hyperfine field distributions and for two-state magnetic relaxation (Blume–
Tjon mechanism) are shown in figures 15 and 16, respectively. In the relaxation case,
the two magnetic states are characterized by hyperfine fields of opposite sign and a
magnitude that is equivalent to a separation of the outer lines of 100 Γ. In all cal-
culations, the field directions are randomly distributed. In the relaxation case, the
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Figure 14. Integrated transmission for discrete static hyperfine interactions. The nuclear forward scattering
signal was integrated over time regions starting at 30% (a), 50% (b), 100% (c), and 200% (d) of the half
lifetime of the nuclear excited state. The calculations were performed for an unsplit resonance (solid
lines), for two-line quadrupole splitting of 10 Γ (dashed lines), and for six-line magnetic splitting of
110 Γ (dotted lines). The field directions were randomly distributed. The fluctuations of the integrated
transmission at larger effective thicknesses originate in dynamical oscillations in the time spectra that are

truncated at the beginning of the integration region.

Figure 15. Integrated transmission for a Gaussian distribution of static magnetic hyperfine fields. The
nuclear forward scattering signal was integrated over time regions starting at 30% (a), 50% (b), 100% (c),
and 200% (d) of the half lifetime of the nuclear excited state. The six-line pattern with a 110 Γ separation
of the outer lines was broadened by Gaussian distributions with 1% (solid lines), 5% (dashed lines), 10%
(dotted lines), and 20% (dash-dotted lines) FWHM. The field directions were randomly distributed. The
fluctuations of the integrated transmission at larger effective thicknesses originate in dynamical oscillations

in the time spectra that are truncated at the beginning of the integration region.
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Figure 16. Integrated transmission for Blume–Tjon relaxation versus the relaxation rate in units of natural
linewidths (Γ) of the excited nuclear state. Two magnetic hyperfine fields of 100 Γ separation of the outer
lines but with opposite sign coexist. The field directions were randomly distributed. The nuclear forward
scattering signal was integrated over time regions starting at 30% (a), 50% (b), 100% (c), and 200% (d)
of the half lifetime of the nuclear excited state. The effective thicknesses are 0.1 (solid lines), 1 (dashed
lines), 10 (dotted lines), and 100 (dash-dotted lines). The deep minima in the integrated transmission
indicate a collapse of spectral lines that is accompanied by strong damping and very fast decay (see also

figure 10 and the related discussion in the text).

transition matrix is given by eq. (10), where the relaxation rate λ is used as abcissa in
figure 16. The selected time regions for the integration start at 0.3, 0.5, 1, 2 times the
nuclear half lifetime t1/2 and extend up to 30t1/2. The calculations were performed
for a 1/2 → 3/2 nuclear transition. The integrated delayed intensities are given in
units of Γ and do not consider electronic absorption. Hereafter, an example is given to
demonstrate the use of the presented graphs for evaluating delayed counting rates for
a particular situation. Please note that the given counting rates must still be reduced
by the detector efficiency to obtain realistic results.

Consider, for example, a magnetically split sample containing 57Fe to be studied
by NFS. The detector system permits us to start the collection of delayed events after
30 ns = 0.3t1/2. The effective thickness of the sample is 10. The transmitted intensity
is reduced by a factor of 100 due to electronic absorption. The spectral intensity of
the synchrotron radiation source is 4700 Hz/Γ. From figure 14(a) we read off an
integrated delayed intensity of 3.8 Γ. Using the source intensity and the correction for
electronic absorption, we expect 190 cps for the integrated delayed counting rate. For
a complete assessment, the characteristics of the detector system and the energy width
of the incident synchrotron radiation must be known. With 40% detector efficiency, the
expected counting rate is reduced to 76 cps. However, one has to assure that the total
measured photon flux (including the “prompt” counting rate) is below the saturation
limit of the detector system. With an incident energy bandwidth of 1 meV, we calculate
4 MHz for the total measured photon flux. Avalanche photodiodes that are common



VIII-1 W. Sturhahn / CONUSS and PHOENIX 171

for this type of measurement easily withstand 107 Hz and will not add constraints in
this example.

In summary, the following information is needed for a realistic assessment of
counting rates in nuclear forward scattering experiments:

• t1/2 and Γ,

• type of hyperfine interaction that is expected,

• effective thickness,

• reduction of transmission due to electronic absorption,

• starting time of observation window after prompt pulse,

• efficiency of detector,

• maximum measurable photon flux,

• spectral intensity of synchrotron radiation,

• energy bandwidth of synchrotron radiation.
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[2] E. Gerdau, R. Rüffer, H. Winkler, W. Tolksdorf, C.P. Klages and J.P. Hannon, Phys. Rev. Lett. 54
(1985) 835.
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