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We discuss the effects of transverse coherence in time domain nuclear resonant scattering
experiments using synchrotron radiation. The importance of source and detector sizes, as
well as the Fresnel zone size of the sample are described. These effects are demonstrated in
experiments using a rotating stainless-steel foil [1]. The emphasis of the text is to provide
simple physical explanations while mathematical details are discussed in the appendix.

1. Introduction

The purpose of this article is to provide an introduction to transverse coherence
and its effects in nuclear resonant scattering (NRS) experiments.1 In the context of
NRS measurements it is usually the longitudinal coherence, being directly related to
the long nuclear lifetime, that attracts interest. However, precisely because many
synchrotron based experiments are scattering measurements using a very small source
(the electron beam in the storage ring), one must consider the effects of transverse
correlations in the scattered wave field, and how they relate to both the sample being
investigated and the experimental setup. This can provide additional information about
a sample and also adds some subtlety to the interpretation of NRS experiments.

The background for this work is recent interest in transverse coherence in X-ray
scattering, largely due to the availability of relatively brilliant synchrotron radiation
sources (see section II-1 of this issue) as coherence effects typically scale with source
brilliance. However, the field of optical coherence (of which X-ray coherence can
be considered a very small part) reaches back to the previous century, including both
sophisticated formalism and a wide range of experiments [2,3]. Relevant areas of
recent interest include X-ray speckle measurements [4,5] and phase-contrast imag-
ing [6,7]. There are also a variety of techniques for directly investigating transverse
X-ray coherence [8–13].

In the context of optical coherence, it is worth pointing out that X-ray mea-
surements are very much in their infancy and X-ray sources are still relatively weak.
Therefore, here we focus only on the simplest field–field correlations and do not dis-

1 We refer the reader to the other sections of this issue for background information on this subject and
references.
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cuss higher order correlations (e.g., Hanbury-Brown–Twiss intensity correlations [14])
as their effects should, in general, be negligible. We deliberately avoid introducing
the extensive formalism from other [2,3] treatments of coherence and focus on phys-
ical arguments, with a minimum of mathematics, though some of the details of the
calculations may be found in the appendix.

2. Transverse coherence length

The relevant figure of merit for many X-ray measurements is the transverse
coherence length, ξt. It is essentially the answer to the question: over what length
scale, transverse to the beam propagation direction, is there a correlation in the phase
and amplitude of a wave field. The simplest examples from optics, monochromatic2

point sources or plane waves, have essentially infinite transverse coherence lengths,
since once the phase and amplitude are defined at one point in space, one knows
them for all other points. With synchrotron radiation, one has an effective point
source for each photon (the emitting electron or positron in the storage ring) but
different photons will come from different electrons (or positrons) in the source and
these radiate independently. Practically, experiments are done integrating over many
detected photons, so the source size limits the transverse coherence length.

One can get a quantitative estimate for the transverse coherence length in different
ways. Very directly, one can ask, given a collection of (independently phased) point
sources of some finite size (e.g., the electron beam in the storage ring), and an object
plane some distance away, how far can one separate two points in the object plane
before the phase difference between them becomes uncertain due to the source size.
However, it is more satisfying physically, and practically equivalent, to consider the
Fraunhofer diffraction from a double slit (or pinhole) [15]. Then one can ask what
is the maximum separation of the two slits (pinholes) placed in the object plane that
yields a Fraunhofer diffraction pattern with good visibility. Consider figure 1. The
radiation from a single electron located, say, at one edge of the electron beam, may, at
the location of the slits, be considered approximately a plane wave. This results in a
diffraction pattern with a period of λ/d in the far field. Radiation from another electron
on the other side of the source will also generate a diffraction pattern, but it will be
displaced in angle from the first, corresponding to the displacement of the electron in
the source. Observation of the interference pattern in the far field requires that the
angular size of the source, as seen by the slits, is less than the period of the interference
pattern. Alternatively, for a fixed source size, one can ask what is the maximum
separation of the slits that provides good visibility of the interference pattern. Thus

2 For nuclear scattering measurements, the bandwidth of the resonance (even when broadened or hyperfine
split) is small enough that it is a monochromatic source as regards transverse coherence measurements.
More exactly, one requires that all optical path length differences are less than the longitudinal coherence
length of the radiation. Typical longitudinal coherence lengths are meters while path length differences
are usually µm.
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Figure 1. Blurring of a Fraunhofer two slit diffraction pattern due to finite source size.

(considering one dimension only, for the moment) one takes the transverse coherence
length at distance S from a source of size σ0 as

ξt ≈
λS

2πσ0
. (2.1)

Depending on the author, definitions will vary by factors of 2 or π. Explicit calculation
for a Gaussian source gives that the Fraunhofer interference pattern for the two slits
has the form I(Θ) ∝ 1 + µ cos(2πΘd/λ), where Θ is the angle between the center of
the slits and the detector point. The amplitude of the interference term is given by
µ = exp[− 1

2 (d/ξt)2]. If we take the slit separation to be d = ξt, one has µ = 0.6,
while for d = 3ξt, µ ∼ 0.01. Thus, with the definition eq. (2.1) slits separated
by ξt give relatively good contrast, while the contrast from slits separated by 3ξt or
more can largely be ignored. Typical source sizes at third generation synchrotron
radiation facilities are 30–100 µm full width at half maximum (FWHM) vertically
(σ0 = 13–43 µm) and about an order of magnitude larger horizontally, while source–
sample distances are about 50 meters. This gives nominal coherence lengths of about
20–60 µm in the vertical, and 2–5 µm in the horizontal direction.

3. Time domain effects of transverse coherence

The “two slit” discussion can be extended to the time domain by replacing the two
slits with two nuclear scatterers. One then asks what time response will be measured by
a point-like detector due to the emission of a short pulse of radiation from an electron
in the source. Considering only a 2-dimensional case for simplicity, figure 2 shows the
relevant quantities. The source–sample and sample–detector distances are S and D,
respectively, and the exact locations of the source and detector are displaced a distance
y0 and yd from the optical axis. The impulse excitation from the source will reach the
two scatterers at slightly different times, corresponding to the difference in path lengths
from the source. The scatterers then radiate and the relative phasing of the fields at the
detector will be further modified by the different path lengths to the detector. This can
all be included using appropriate retarded times (see appendix). Taking, for simplicity,
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Figure 2. The nuclear scattering (time domain) analogue of the two slit experiment.

the two scatterers to be identical up to a shift in their response frequencies (e.g., an
isomer or Doppler induced shift between the two) we have Gj(t) = G0(t)e−iωj t (j =
1, 2). The time dependent intensity measured by a point detector at yd, due to impulse
excitation from a point source at y0, is then

I(t) ∝
∣∣G0(t)

∣∣2[1 + cos

{
Ωt+ 2π

d

λ

(
y0

S
+
yd

D

)}]
, (3.1)

where Ω = ω2 − ω1. In the simplest case (a thin scatterer or a single nucleus), G0(t)
is an exponential decay and, more generally, might include some Bessel function
dependence (for a thick sample, see section IV-2.1 of this issue) and/or hyperfine
structure. In any case, the interference (cosine) term shows the expected quantum beat
pattern at the difference frequency, Ω, but with a phase determined by the geometry.
In an experiment with finite source and detector sizes, this geometry dependent term
leads to blurring. In particular, if we take a Gaussian source (σ0) located at y0 = 0 and
a Gaussian detector (σd) located at yd = yD (for convenience in getting an analytical
form) integration of eq. (3.1) gives

I(t) ∝ |G0(t)|2
[

1 + e−(1/2)(d/ξte)2
cos

{
Ωt+ 2π

d

λ

yD
D

}]
, (3.2)

where

ξte =
λ

2π
1
σΘ

, σΘ
2 =

(
σ0

S

)2

+

(
σd

D

)2

. (3.3)

Here one sees that the finite detector size degrades the contrast in a manner
completely analogous to that of the finite source size. Thus we extend the definition
of the transverse coherence length, ξt, to include the effect of finite detector size as
well as finite source size, defining an effective transverse coherence length, ξte.

4. Experimental results

Demonstration of the effects of transverse coherence requires manipulating the
nuclear response on a fairly small length scale and, practically, a “two scatterer”
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Figure 3. Experimental set-up for the rotating foil experiment.

sample is somewhat difficult to realize. However, demonstration of the main points
of the above discussion was possible using a rotating stainless steel (SS) foil. This
was discussed in some detail in [1]. Here we show some additional data, highlighting
the effects of finite detector and sample sizes, as this is particularly pertinent to our
discussion.

The essential idea for the experiment was to create a sample with a continuous
change (Doppler shift) in the nuclear response transverse to the beam direction. Ro-
tation of a foil, as shown in figure 3, does precisely this, introducing a convenient
one-dimensional gradient in the Doppler shift in the nuclear response frequency. The
coherent addition of the scattering from nuclei with a distribution of Doppler shifts,
essentially a broadening of the frequency response, is expected to result in a faster
decay of the impulse response. More exactly, if the rotation introduces a distribution
of frequencies across the foil given by ∆Ω, then the coherent response of this distrib-
ution should decay with a time scale Tcoh = 1/∆Ω. In contrast, incoherent addition of
the response of different parts of the foil should lead to the same response as that for
the foil at rest. Thus, a faster decay becomes the mark of coherence, much like the
contrast of the beats was the indication of coherence in the previous (two scatterer)
example.

The expected faster decay was demonstrated in [1], and showed excellent agree-
ment with optical calculations (see the appendix and [1]), as is shown in figure 4. The
left hand panel shows the raw data, with the faster decay easily seen as the rotation rate
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Figure 4. Effect of increasing the rotation rate of the foil on the measured time response (detector and
sample sizes both measured to be 15 µm). (a)–(d) show the raw data while (e)–(h) show the data divided

by the fit to the response at rest (solid line in (a)) and the calculation (solid lines).
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Figure 5. Effect of changing the detector size on the time response. The numbers are the nominal sizes
of the slits limiting the sample and the detector, respectively. The solid line is the fit to the response at
rest, included as a reference in each figure. Note that slit sizes are calculated based on the thickness of
shim material used and are not measured values. It is expected that, particularly at the small (8 µm) size,

the actual acceptance was somewhat smaller. Data from [16].

increases, while the right hand panel shows the data divided by the fit to the response
at rest, and the calculation.3

An analytic solution for the rotating foil is possible if we take Gaussian distrib-
utions for the source, sample and detector. We write the solution as [1]

Irotating(t)
Iatrest(t)

= exp

{
−1

2

(
t

Tcoh

ξ

σs

)2}
. (4.1)

3 The only free parameter in the calculation is the source size, which was determined to be a factor of 5
larger than expected. This was confirmed by another technique [13], and found to be due to the high
resolution monochromator (HRM). Subsequent work (K. Fezzaa, A. Baron et al., unpublished) suggests
that the presence of a deposit or oxide, as was clearly visible on the surface of the first crystal of the
HRM, might account for the degradation of the coherence.
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Figure 6. Effect of changing the sample size on the time response. The numbers are the nominal sizes
of the slits limiting the sample and the detector, respectively. The solid line is the fit to the response at
rest, included as a reference in each figure. See the note about slit sizes in the caption of figure 5. Data

from [16].

Here Tcoh is the decay time expected if the response of the entire sample combined
coherently,4 σs is the sample size and ξ is that part of the sample that acts coherently
in the experiment (e.g., leads to a faster response). In particular, one finds

ξ =
λ

2πα
, α2 =

σ2
0

S2 +
σ2

d

D2 +

(
σs

D
+
σs

S

)2

+
1
σ2

s
, (4.2)

where σ0 and σd are the sizes of the source and detector. Then, momentarily neglecting
the last two terms in α, one finds that the dependence on source and detector sizes is

4 The bandwidth due to the Doppler shift from the rotation over a region of the foil of size σs is
∆Ω = kσsΩSS , where ΩSS is the angular velocity of the foil, appropriately projected into the beam
direction: i.e., ΩSS = 2πN sin Θ, where Θ is the angle between the rotation axis and the beam direction
(π/4 in the experiment) and N is the rotation rate of the foil.
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identical to that given above (eq. (3.3)): the relevant length scale is exactly the effective
transverse coherence length, ξte. The importance of this term is demonstrated in
figure 5, where one sees that the response slows to an incoherent (foil at rest) response
as the detector size increases (i.e., the effective transverse coherence length decreases).

The third term in eq. (4.2) is new and deserves comment. Physically, its impor-
tance is demonstrated in figure 6, where the measured response is seen to slow down
(become incoherent) when the sample is increased in size. Mathematically, it results
from including Fresnel (nonlinear) terms in the phase that are important because we
are not in a true far-field (Fraunhofer) limit (see appendix). In fact, considering the
case where this term dominates the response one finds the relevant length scale in
eq. (4.1) is ξF/σs, where

ξF =

√
λ

2π
1

1/D + 1/S
≈
√
λD

2π
, (4.3)

which is just the size of the first Fresnel zone of the sample (up to the factor 2π –
see, e.g., [2, p. 371]). Thus, the interpretation of the third term in α of eq. (4.2) is
that sections outside the first Fresnel zone of the sample contribute incoherently to the
measured response. The final term in eq. (4.2) just ensures the proper limit in the case
of extremely small samples.

5. Application to NRS measurements

In the context of other nuclear scattering experiments, transverse coherence is
most relevant to samples where there may be some sort of domain structure, possibly
resulting from different chemical or magnetic environments, or from some sort of phase
transition. The above discussion shows there are two transverse length scales that are
important for determining the coherence of the measured response. The effective
transverse coherence length, ξte, given by eq. (3.3), is sample-independent. Sections
of the sample that are separated by more than this amount (say 3ξte or more to reduce
effects below the 1% level) will not interfere in a time domain measurement. In a
typical experiment, the detector size (σd ∼ 1 mm at D ∼ 1 m) dominates and one
has ξte ∼ 200λ, so sections of the sample separated transversely by distances of order
0.06 µm or more will generally not produce measurable interference. Thus, if a typical
experiment shows the presence of interference from different domains, this means that
either they are stacked in the direction of beam propagation or they have a rather small
length scale.

The Fresnel zone size of the sample, ξF, given by eq. (4.3), is also important
and sections of the sample that are separated by more than this amount will tend
to add incoherently in the detector. However, if this is the limiting term (i.e., if
ξte > ξF ∼ 4 µm for D = 1 m, λ = 0.86 Å) one should really take it as an indication
that a detailed model of the sample is necessary. The particular example of a rotating
foil showed a general trend toward incoherent response if the sample size exceeded the
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Fresnel zone size. However, more generally the response will depend on the details
of the domain structure that exists in the sample and the detector position relative to
those domains.

Summarizing the above results, the most general rule is that transversely separated
sections of a sample will combine incoherently unless their size is both less than the
effective transverse coherence length eq. (4.2), and less than the Fresnel zone size
eq. (4.3). However, given that these length scales are generally relatively small, the
first consideration should be whether or not the sample will have domains stacked
along the direction of propagation, as this will always lead to coherent combination
of the responses. If, during an experiment, there is some question about the effects
of transverse coherence on the time response, a good first test may be to move the
detector from, say, D = 10 cm to D = 1 m. If the measured time response is not
affected, then probably transverse coherence, can be ignored at least as far as it might
influence a spectroscopic measurement.

One may consider using these effects to investigate correlations in the nuclear
response of a sample perpendicular to the beam direction. One may increase the
effective transverse coherence length (and Fresnel zone size) to some few microns,
allowing investigation of similar sample length scales. However, here one notes there
are two complications: on the one hand there is the practical point that this requires a
detector that is smaller than the beam size and thereby reduces the intensity in what
is already not a high count rate experiment (though this difficulty might be alleviated
by using an array detector). On the other hand, while rough length scale information
might be obtained by simply correlating changes in the measured time response with
the effective transverse coherence length, detailed information and fitting of the time
response requires a similarly detailed model of the sample response, which may be
somewhat complicated.

Appendix

This appendix presents some of the details of the calculations. The purpose of
the presentation is, on the one hand, to facilitate the modification of such calculations
by others and, on the other, to clearly indicate what assumptions have been made, and
some of the effects of such assumptions. We also point out the general importance of
the effective transverse coherence length.

Figure 7 indicates the relevant quantities. The source–sample and sample–
detector distances are S and D, respectively. The exact locations of the point source,
nucleus in the sample and detector point are displaced from their nominal locations by
small distances given by η0, ηs and ηd, respectively. We now take the response of the
sample to impulse excitation at t = tx to be G(t− tx,ηs), where the dependence on ηs
is explicitly included to the possibility of the sample response being non-uniform. Then
we write the total field, as seen by a particular point in the detector, as the integral
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Figure 7. Definition of symbols used in the appendix.

over the sample:

E(t,η0,ηd) =

∫
Sample

G(t− tR1 − tR2,ηs) dηs, (A.1)

where tR1 and tR2 are the travel times from the source point to the sample point and
from the sample point to the detector, respectively.

In the context of nuclear scattering, one must examine G carefully. If we take
G as proportional to the (Fourier transform of the) nuclear scattering amplitude, then
this equation is a kinematic or Born approximation to the scattering. This would be
appropriate in the thin sample limit, where the effect of the downstream part of the
sample on the scattering from the upstream part may be ignored. However, practically,
almost all samples in nuclear scattering experiments are thick. Thus, the approximation
was made to compress the sample into a 2-dimensional one, and take G to be the
forward scattering response, including the Bessel function for multiple scattering. In
general, for cases where the spread of the wave field inside the sample is not large, this
is probably a good approximation. In the experiment described in [1] and the above
work, the fact that the location of the minimum of the Bessel function does not shift
suggests that this is a reasonable assumption.

We now factor out the nuclear resonance frequency, taking G(t,ηs) =
e−iω0tG0(t,ηs) and shift the time by t0 = (S + D)/c, so that t = 0 is redefined
as the time at which the wave first reaches the detector. One now has

E(t,η0,ηd) =

∫
Sample

G0(t,ηs)e
−iω0(t+t0−tR1−tR2) dηs. (A.2)

We have assumed that the dependence on time in G0 is slow, relative to the path length
differences from different parts of the sample, so t0 − tR1 − tR2 ≈ 0 in the argument
of G0. The relative phasing is given by

Φ = ω0(tR1 + tR2 − t0) =
ω0

c

[
|S + η0 − ηs|+ |D + ηd − ηs| − t0

]
. (A.3)

The general form of these terms is (k ≡ ω0/c = 2π/λ)
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k|S + η|= k
[
S2 + η2 + 2S · η

]1/2
, |S| � |η|

≈ kS
[

1 +
1
S

Ŝ · η +
1

2S2

(
η2 −

(
Ŝ · η

)2)]
. (A.4)

Consideration of the magnitude of these terms, λ ∼ 10−10 m, S > 1 m, η (sample and
source size) .10−3 m) shows that, in general, the terms of higher than third order can
certainly be neglected. Terms of third order might be included, but are generally not
interesting because they vary on an essentially macroscopic (mm length) scale. Terms
of second order should generally be included for careful calculations, while the first
order (Fraunhofer) term dominates. Then, taking a 2-dimensional source and detector,
oriented normal to the beam direction (S · η0, D · ηd = 0), one has

Φ ≈ −q · ηs + k
(η0 − ηs)

2

2S
+ k

(ηd − ηs)
2

2D
− k (Ŝ · ηs)

2

2S
− k (D̂ · ηs)

2

2D
, (A.5)

where q = k(D + S) is the usual momentum transfer. Noting that terms independent
of ηs can be taken out of the integral and drop out when one squares to get the intensity,
we can take

Φ ≈ −ηs ·
(
η0

S
+
ηd

D

)
+ η2

s

(
1

2S
+

1
2D

)
. (A.6)

We have also taken q = 0 and S · ηs ≈ 0 and D · ηs ≈ 0, assuming near forward
scattering and a thin (2-dimensional) sample (see the discussion above).

At this point we have provided sufficient background to derive all the equations
in the text: one may calculate the field by integrating over the scattering from the
sample, and then one squares to get the intensity, and then integrate the intensity over
the source and detector distributions. For Gaussians, the appropriate integral may be
found in [17, p. 485, eq. (3.923)].

We now show the importance of the effective transverse coherence length dis-
cussed in the text both explicitly and generally. What we do here really amounts to
a special case of a more general formulation of scattering (see, e.g., [2,3]), but we
do not introduce an extended notation and explicitly highlight the importance of the
effective transverse coherence length. In particular, to see the effect of the finite source
and detector size, it is convenient to explicitly introduce them, and calculate the time
response one should have in a real experiment. One has5

I(t) =

∫
Source

dη0W0(η0)
∫

Detector
dηdWd(ηd)

∣∣E(t,η0,ηd)
∣∣2, (A.7)

where W0 describes the distribution of electrons in the source and Wd the detector
acceptance. Taking these as Gaussians (and assuming they are uncorrelated in the x

5 If the sample response is not static in time (e.g., due to diffusional motion) one should include a
configurational average over sample states as well as the average over the source and detector.
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and y directions), and noting that the field depends on the source and detector positions
only through the phase, one can perform the integrations to find directly

I(t)∝
∫

Sample
dηs1 dηs2G0(t,ηs1)G∗0(t,ηs2)e−iΦ

× e−(ηs1x−ηs2x)2/(2ξ2
tex)e−(ηs1y−ηs2y)2/(2ξ2

tey). (A.8)

The double integration over the sample is from the square in eq. (A.7) while the phase
is directly obtainable from eq. (A.6).6 The important point as regards the previous
discussion is the presence of the Gaussians from the source and detector integrations.
These explicitly limit how far apart two different parts of the sample can be to con-
tribute coherently to the scattering. The length scale is precisely the effective transverse
coherence length introduced in the text (only now, since we consider a 2-dimensional
sample, the x and y components contribute individually). In particular, we have

ξtey =
λ

2π
1
σΘy

, σ2
Θy =

(
σ0y

S

)2

+

(
σdy

D

)2

, (A.9)

where σ0y is the vertical size of the source and σdy the vertical size of the detector.
A similar expression holds for the horizontal dimensions (y → x).

The above discussion shows, in some generality, how the size of the source and
the detector limit the coherent addition of the scattering from transversely separated
portions of the sample. In particular, the relevant length scale is precisely the effective
transverse coherence length (eqs. (3.3) or (A.9)).
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collaboration on the experimental work discussed here [1,16].

References

[1] A.Q.R. Baron, A.I. Chumakov, H.F. Grünsteudel, H. Grünsteudel, L. Niesen and R. Rüffer, Phys.
Rev. Lett. 77 (1996) 4808.

[2] M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1980).
[3] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, New

York, 1995).
[4] M. Sutton, S.G.J. Mochrie, T. Greytak, S.E. Nagler, L.E. Berman, G.A. Held and G.B. Stephenson,

Nature 352 (1991) 608.
[5] S. Brauer, G.B. Stephenson, M. Sutton, R. Brning, E. Dufresne, S.G.J. Mochrie, G. Grübel, J. Als-
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