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Lamb–Mössbauer factor and second-order Doppler shift
from inelastic nuclear resonant absorption
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The derivation of Lamb–Mössbauer factors and second-order Doppler shifts from data
that are measured by inelastic nuclear resonant absorption of synchroton radiation is demon-
strated. This approach offers a viable alternative to procedures that are based on elastic
absorption and scattering techniques. The sources of error are evaluated, and a selection of
examples is provided.

1. Introduction

The recoilless fraction or Lamb–Mössbauer factor and the second-order Doppler
shift (SOD) are of general interest in Mössbauer spectroscopy. Both quantities strongly
depend on the binding of the resonant nucleus in the lattice and vary with material
composition, lattice structure, and environmental conditions, such as temperature or
pressure. Also the Lamb–Mössbauer factor is closely related to the Debye–Waller
factor, which is obtained from X-ray diffraction. In the past, Lamb–Mössbauer factors
have been determined mostly by conventional Mössbauer transmission spectroscopy.
In this approach, the accuracy depends on precise knowledge of the area density of
the resonant nuclei. Determination of this area density turns out to be the dominant
source for systematic errors due to, e.g., uncertainties in the sample geometry, isotopic
abundance, or mass density of the sample. Moreover, knowledge of the Lamb–Möss-
bauer factor of the radioactive source is required. A logical approach to avoid the mix-
up of source and absorber properties would be to replace the conventional radioactive
source with an ideal one, for which the source parameters are well defined.

The proposal of Ruby [1] to substitute a radioactive source by a synchrotron ra-
diation source for the excitation of nuclear levels was successfully realized by Gerdau
et al. [2]. This pioneering experiment was followed by a variety of applications, which
are summarized in [3]. A direct comparison of the sources was given by Sturhahn
et al. [4]. The use of synchrotron radiation essentially eliminates errors related to
source characteristics. However, the accurate determination of the Lamb–Mössbauer
factor remains problematic [5–7] for the same reasons mentioned above, i.e., knowl-
edge of the area density of the resonant nuclei is required. It is interesting to notice
that self-absorption and related dynamical effects [8], which are usually considered a
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complication in conventional Mössbauer transmission spectroscopy, now provide the
means to obtain the Lamb–Mössbauer factor. On the other hand, the alteration of the
source does not change the fact that the measured isomer shift is the sum of chemi-
cal isomer shift and SOD, rendering the two terms indistinguishable. The previously
mentioned methods are based on elastic nuclear resonant absorption or scattering and
therefore directly provide measurements of cross-sections under the constraint that the
state of the lattice remains unchanged in the process. In this contribution, we will
demonstrate that the Lamb–Mössbauer factor and SOD can be obtained by inelastic
nuclear scattering techniques that require a change of the lattice state and may be
interpreted as complementary to the traditional methods. However, the evaluation of
the measured data is much more straightforward and precise and thus permits one to
avoid many of the difficulties mentioned above.

Shortly after Mössbauer’s famous discovery [9], theoretical work of Visscher [10]
and Singwi and Sjölander [11] showed that nuclear resonant absorption can in princi-
ple provide information about lattice dynamics. It turned out that experiments of this
kind require synchrotron radiation, as beautifully demonstrated by Seto et al. [12]. The
quantitative analysis of such spectra including the extraction of the Lamb–Mössbauer
factor, F , and the vibrational density of states (VDOS) was presented by Sturhahn
et al. [13]. In contrast to the traditional methods, in which F is obtained directly
(meaning that the measured signal disappears for F = 0), incoherent inelastic nu-
clear resonant absorption provides 1 − F [13,14]. Another significant merit of the
new technique is that the SOD is obtained independently of chemical isomer shifts.
The preferred approach is the observation of delayed atomic fluorescence of the reso-
nant isotope versus the energy of incident X-rays from a pulsed synchrotron radiation
beam [15]. This technique was called PHOENIX (PHOnon Excitation by Nuclear
Inelastic absorption of X-rays) [16]. In the following sections, we explain how to
derive the Lamb–Mössbauer factor and the SOD directly from the moments of the
measured PHOENIX spectra. Proper normalization of these moments can be obtained
without specific knowledge about isotopic abundance, shape or thickness of the sam-
ple, resonant cross-section, or hyperfine interactions. This property reduces systematic
errors strongly. The residual sources for statistical and systematic errors inherent in
the PHOENIX technique are discussed in a separate section. The technique does not
distinguish different environments for the resonant isotope, and the measurement pro-
vides average values for the Lamb–Mössbauer factor and the SOD. The majority of
PHOENIX experiments were conducted with the 14.413 keV resonance of the Möss-
bauer isotope 57Fe because of the large resonance cross-section, the tolerable electronic
absorption in the materials used, and the convenient lifetime. However, measurements
using the 23.88 keV transition of 119Sn [17–19] and the 21.542 keV transition of
151Eu [20,21] were also reported. A comparison of the feasibility of experiments with
various isotopes, which is based on eq. (2), is shown in table 1. The high intensity of
third-generation synchrotron radiation sources, like the European Synchrotron Radia-
tion Facility (ESRF), the Advanced Photon Source (APS), and the SPring-8, permits
application of the PHOENIX technique even for unfavorable situations, e.g., when
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Table 1
Isotopes with low energy resonances that are feasible for PHOENIX experi-
ments. In the last column, the strength of the incoherent scattering channel is
estimated. The values were obtained by calculating σ0Γηfαf/[(1 + α)σp] for
each isotope, where σ0 is the nuclear resonant cross-section, ηf is the fluo-
rescence yield, α, αf are the total and partial internal conversion coefficients,
Γ is the nuclear level width, and σp is the photoelectric cross-section. The
values were then normalized with respect to 57Fe. For 83Kr and 119Sn, the
fluorescence radiation is very soft, and its observation is not practical. In

those cases, we substituted ηfαf = 1.

Isotope Energy (keV) Lifetime (ns) Strength

169Tm 8.410 5.8 0.22
83Kr 9.4 212 0.062
57Fe 14.413 141 1

151Eu 21.54 14 0.37
119Sn 23.88 25.7 3.9
161Dy 25.66 40.5 0.53

small amounts of resonant nuclei are encountered such as in ultrathin films [22] or in
proteins [23]. Consequently, accurate determination of Lamb–Mössbauer factors and
SODs becomes possible for a much wider range of materials and sample conditions.
As already mentioned, the Lamb–Mössbauer factor has a strong resemblance to the
Debye–Waller factor, which is obtained from X-ray diffraction. In fact, the Lamb–
Mössbauer factor and the Debye–Waller factor originate from the same expression
under the conditions of “slow” and “fast” scattering, respectively. Nuclear resonant
scattering is “slow” because the stages of absorption and emission are well separated
on a time scale given by lattice dynamics. In the case of electronic charge scattering,
absorption and emission occur almost instantaneously on this time scale, and the scat-
tering process is “fast”. For this reason, the Lamb–Mössbauer factor depends only on
the momentum of the incident photon, k, whereas the Debye–Waller factor shows the
same functional dependence on the momentum transfer, q. In a harmonic lattice, we
obtain the relationship

lnFDW =
q2

k2 lnFLM, (1)

where we assumed that k and q point in the same direction. The previous relation
emphasizes the usefulness of Lamb–Mössbauer factors in related areas of science.

2. Sum rules

The main features of the typical PHOENIX spectrum are an elastic peak and
side bands at lower and higher energy. For materials with reasonable probability for
recoilless absorption, the elastic peak dominates the spectrum. In [13], the cross-
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section for inelastic incoherent nuclear resonant absorption accompanied by emission
of delayed atomic K-fluorescence is described by

σ(k,E) = σ0
ηfαf

1 + α

π

2
ΓS(k,E), (2)

where σ0 is the nuclear resonant cross-section, ηf is the fluorescence yield, α, αf are
the total and partial internal conversion coefficients, and Γ is the nuclear level width.
k is the wave vector of the incident radiation. The absorption probability per unit of
energy, S(k,E), is given by the self-correlation of the atomic motion

S(k,E) =
1

2π
<
∫ ∞

0
eiωt e−ΛtL(k, t) dt, (3)

where we used E = ~ω and Γ = 2~Λ. L(k, t) is equivalent to the spatial Fourier
transform of van Hove’s self-correlation function Gs(x, t) [24, eq. (15)]

L(k, t) =
〈
e−ik·r̂(t) eik·r̂(0)〉, (4)

where r̂ is the displacement operator of the atom in Heisenberg representation. The
dependence of S(k,E) on the direction of the incident photon is dicussed by Kohn
et al. [25] for the case of anisotropic single crystals and by Sturhahn and Kohn [26]
for the general case of a harmonic lattice. In the following, we will not explicitly
write the k-dependence unless needed. These expressions are relevant to this paper
because they relate to the moments Sn =

∫
EnS(E) dE. However, straightforward

calculation of Sn from eq. (3) fails for the even moments with n > 2 where we observe
singular behavior. A regularization by using a proper cut-off for the integration range
is justified because, in principle, eq. (3) requires modification for transient effects at
very short times. Therefore it will be our understanding that energy integrations are
properly cut off, and we obtain the useful relationship

Sn = (−i)n
(

dn

dtn
L(t)

)
t=0
. (5)

Similar expressions were discussed by Lipkin [27] and provide a set of sum rules with
a wide range of applicability.

The spectral shape that is obtained experimentally relates to the previous expres-
sions by

I(E) =

∫
R
(
E −E′

){
AS
(
E′
)
−Bδ

(
E′
)}

dE′, (6)

where E is the energy of the incident synchrotron radiation relative to the nuclear
transition energy, S(E) dE is the probability for a vibrational excitation within the
interval [E,E + dE] from eq. (3), and R(E) is the normalized instrumental resolu-
tion function. The coefficients A and B depend on the experimental conditions. In
particular, A provides the data normalization, and its precise determination is crucial
to the data evaluation procedure. The coefficient B quantifies saturation effects that
occur in the vicinity of the nuclear resonance, i.e., around E = 0. It serves to restore
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the proper height of the central elastic peak; however, it does not affect the further
calculations. After integration of eq. (6) we obtain

A=
1
ER

{I1 − I0R1}, B = A− I0, (7)

where the moments Rj =
∫
EjR(E) dE and Ij =

∫
EjI(E) dE were introduced,

and we made use of the sum rule S1 = ER, the recoil energy of the free nucleus.
With these relations we obtain the appropriately normalized, convoluted excitation
probability density∫

R
(
E −E′

)
S
(
E′
)

dE′ =
1
A

{
I(E) +BR(E)

}
. (8)

The values of A and B, however, provide insufficient knowledge for a determination
of the probability for recoilless absorption, the Lamb–Mössbauer factor. In addition,
we have to remove the elastic peak from the measured spectrum by some appropriate
procedure. We obtain for the Lamb–Mössbauer factor

F = 1− 1
A

∫
I ′(E) dE, (9)

where I ′(E) represents the measured spectrum after removal of the elastic peak, i.e.,
I ′(E) = I(E)−CR(E), C > 0. If the resolution function of the instrument, R(E), was
measured independently, e.g., in a setup using nuclear forward scattering; its shape can
be fitted to the elastic peak in the PHOENIX spectrum to obtain a value for C. This
procedure will work accurately if the energy dependence of the inelastic contribution
under the elastic peak is known. Because elastic peaks occur only in solid materials,
the use of a Debye model to approximate the inelastic contribution for small energies
was suggested [28]. This approximation may be improved if the sound velocity of
the material is known [25]. If the Lamb–Mössbauer factor is small, the multiphonon
contribution at small energies increases strongly [18] and the removal of the elastic
peak becomes difficult. If the determination of the elastic contribution fails, eq. (9)
still provides a lower bound for the Lamb–Mössbauer factor, i.e., with C = 0 there
follows F > B/A.

As shown in [13], the VDOS can be obtained from the PHOENIX spectra. The
Lamb–Mössbauer factor can then be calculated from the VDOS to examine the reli-
ability of the value that was obtained from the moments. Such an investigation was
performed for iron metal (bcc) [28]. Furthermore, the Lamb–Mössbauer factor can be
extrapolated to zero temperature [13,29].

Other moments of the probability density S(E) provide valuable information
about the vibrational behavior of the material. We can obtain this information from
PHOENIX spectra after a relationship between those moments and the measured data
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has been established. Under the assumption that the moments of the resolution function
Rj =

∫
EjR(E) dE exist for 0 6 j 6 n, we obtain the relationship [30]

In = A
n∑
j=0

(
n
j

)
SjRn−j −BRn. (10)

This equation permits one to calculate the moments Sj recursively, e.g., for n = 0, 1
we recover eq. (7), and for the second moment there follows

S2 =
I2

A
− 2ERR1 −

I0

A
R2. (11)

We want to emphasize that the extraction of the moments according to eq. (10) does
not require the removal of the elastic peak and thus avoids the related difficulties. The
second moment, S2, provides the average kinetic energy of the nucleus projected onto
the direction of the incident X-rays. The atomic vibrations are nonrelativistic, and we
can write

S2 = E2
0
〈(v̂ · k)2〉
c2k2 +E2

R, (12)

where v̂ is the velocity operator of the atom, E0 is the nuclear transition energy, and
〈 〉 denotes the ensemble average. The SOD is then obtained from measurements with
the direction of the incident radiation along orthogonal axes:

δSOD = −E0
〈v̂2〉
2c2 = −S2x + S2y + S2z − 3E2

R

2E0
. (13)

At this point it should be mentioned that the derivations of Lipkin [27] leading to our
relationships between the PHOENIX spectra and Lamb–Mössbauer factor and SOD
are merely based on the assumption that 〈v̂ · k〉 = 0 for the individual nuclei, which
is generally the case in bound systems. No vibrational model was necessary to obtain
the relationships.

In addition to the Lamb–Mössbauer factor and SOD, which were calculated from
0th-order, 1st-order and 2nd-order moments of the data and resolution function, the
third moment S3 provides an average force constant D(k) projected onto the direction
of the incident X-rays:

D(k) =
E2

0

2~2c2E2
R

{
S3(k)− 3ERS2(k) + 2E3

R

}
. (14)

This quantity is directly related to the binding strength of the resonant isotope. In a
harmonic lattice, D(k) is independent of temperature.

3. Accuracy of the method

In the previous sections, we explained the principles of obtaining the Lamb–Möss-
bauer factor and SOD from PHOENIX spectra. Practical applications will also require
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quantitative estimates of statistical and systematic uncertainties. We will include the
following sources of error in our discussion:

• normalization of measured spectra,

• derivation of the energy scale,

• detector noise,

• removal of the elastic peak.

The experimental procedure provides a set of data pairs {Ej ,Nj}, i.e., at a certain
energy of the incident radiation, Ej , a certain number of events, Nj , is registered. The
values of Nj have unavoidable statistical uncertainties as well as errors related to the
normalization procedure during data acquisition, e.g., counting at each energy for a
fixed time period. Fluctuations of the incident intensity or other perturbations are then
described by a normalization function 1 + φ[E], and the potential systematic error is
given by φj Nj . At present, it is not difficult to achieve |φj | < 2%.

The energy of the incident radiation is a derived quantity, i.e., angle positions
of monochromator crystals are converted to energy. The uncertainty of the angle
measurement depends on the quality of the instrumentation as well as the accuracy
of the crystal alignment [31–34]. The material properties and the temperatures of the
monochromator crystals provide the angle–energy conversion. It is therefore important
to monitor the crystal temperatures during data acquisition with mK sensivity and
perform a corresponding correction [32]. The position of the elastic peak in the
PHOENIX spectra determines the zero-energy of our energy scale. In summary, we
will describe the energy calibration by

ψ[E] = E + δE0 + αE + β[E].

A perfect measurement would have no offset error, δE0 = 0, perfect linear calibration,
α = 0, and vanishing nonlinearities β[E] = 0, i.e., ψ[E] = E. Realistic estimates are
|δE0| < 0.1 meV, |α| < 0.002, |β| < 0.1 meV.

Detector background noise gives an energy-independent contribution to the spec-
trum. If determined independently, the measured data can be corrected. For the error
in this procedure, δN0, it is not difficult to obtain δN0 < 0.002N with N being the
average number of events.

The error that occurs when the elastic peak is removed from the measured data
cannot be addressed generally. As described in the previous section, the procedure
requires a model for the inelastic spectrum hidden under the elastic peak. If such a
model is not available, the determination of the Lamb–Mössbauer factor according to
eq. (9) may become very uncertain. However, the calculation of the higher moments
derived from the PHOENIX spectrum is not affected.

We will now investigate the accuracy of the moments Sn using a simplified
version of eq. (10). In this error analysis, we neglect contributions from the moments of
the resolution function, Rn, n > 0. Note that by virtue of our normalization procedure
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the uncertainty for S1 vanishes. The relative uncertainties, δn, of the moments Sn are
symbollically written as

δn =
I1

In
δ

[
In
I1

]
. (15)

The actual calculation of the variation δ[·] requires somes care due to the correlations
between In and I1, which originate from the same data. In a linear approximation, the
range of relative errors is given by the minimum and maximum values of

δn =

√
I2n

I2
n

− 2
In+1

I1In
+
I2

I2
1

+ (n− 1)α+ δE0

(
n
In−1

In
− I0

I1

)
+
∑
j

Nj (βjgj)
′ dEj +

∑
j

(φjNj + δN0) gj dEj , (16)

where gj = Enj /In − Ej/I1 and the prime denotes the derivative with respect to Ej .
The first term reflects the statistical uncertainties caused by event counting and can
be made arbitrarily small by increasing the data collection time. The next three terms
account for the inaccuracy in the energy scale, and the last two terms describe errors
from normalization and background determination. The uncertainty of the Lamb–
Mössbauer factor is not accurately given by δ0 because the error induced by removal
of the elastic peak is not included. The correct range for the relative error of the
Lamb–Mössbauer factor is obtained from

δF =
1− F
F

(
δ′0 +

δC

I0 − C

)
, (17)

where δ′0 is calculated from eq. (16) by replacing In → In − C, setting n = 0. The
uncertainties in the removal of the elastic peak are expressed by δC with the value of C
defined by eq. (9). The relative accuracy of the Lamb–Mössbauer factor increases as F
approaches one. This arises from the fact that the described method actually measures
the complement 1− F . Therefore, if F approaches values that are close to one, e.g.,
at low temperatures, we obtain particularly precise results.

We note that the various moments Sn of inelastic absorption, as well as the
Lamb–Mössbauer factor, can alternatively be calculated from the vibrational density
of states derived from the same data. Under most circumstances this may serve to
verify the results and independently obtain an estimate for systematic errors [25].

4. Complex systems

In principle, the absorption probability density S(k,E) from eq. (3) can be dif-
ferent for each resonant nucleus in a given material. We accommodate this more
general situation by a separate displacement operator r̂j for each nucleus in eq. (4).
The PHOENIX spectra of such a system are then described by a linear superposition
of the contributions of the individual nuclei because the underlying absorption process
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is incoherent and correlations between the motion of different atoms are not observed.
The latter property of the scattering process implies an average over all momentum
transfers to the lattice and thus leads to a probability density per energy unit only [26].
If S(j)(k,E) denotes the contribution of atom j, we may write

S(k,E) =
1
N

N∑
j=1

S(j)(k,E), (18)

where N is the number of resonant nuclei. In practice, groups of resonant nuclei with
identical excitation probability density are easily formed. Then it is more convenient
to identify such a group of nuclei with an index j:

S(k,E) =
∑
j

ajS
(j)(k,E), (19)

where aj gives the probability of finding a resonant nucleus in this group. The coef-
ficients satisfy

∑
j aj = 1, aj > 0, to maintain proper normalization. To demonstrate

the consequences of many groups to the calculation of the Lamb–Mössbauer factor, we
rewrite eq. (9) in terms of a function S′(E) that differs from S(E) only at E = 0, i.e.,
S′(0) = 0. We then use eq. (19) and the normalization for the coefficients aj to obtain

F =
∑
j

aj

{
1−

∫
S(j)′(E) dE

}
. (20)

The term in braces represents the Lamb–Mössbauer factor of an individual group, and
we find that the PHOENIX measurement provides a linear superposition. In general,
all the moments of the data will be linear superpositions and the relationships that were
outlined in the previous sections remain valid for the average values. The best way
of dividing the nuclei into different groups depends on the particular case. For single
crystals, each resonant nucleus per unit cell represents a group. In a homogeneous
mixture of compounds, each compound containing resonant nuclei constitutes a group.
For polycrystalline materials, which are a collection of randomly oriented small single
crystals, the individual crystallites represent the groups. In the latter case, the averaged
moments should be independent of the direction of the incident radiation.

Next, we consider the problem of extracting the concentrations of the individ-
ual compounds in a mixture. Mössbauer spectroscopy, conventional as well as with
synchrotron radiation, usually provides the product of the concentration and the Lamb–
Mössbauer factor for each constituent that is identified by the characteristic hyperfine
splitting (fingerprinting technique). The concentrations can only be obtained after the
Lamb–Mössbauer factors of the individual compounds have been measured. The deter-
mination of the Lamb–Mössbauer factor of the mixture alone is insufficient. Contrary
to this technical problem, different lattice sites for the resonant nuclei in the unit cell
pose a problem in principle. The local character of PHOENIX data does not permit one
to make a distinction, and the measurement always provides the average over the unit
cell. For iron borate (FeBO3), e.g., the PHOENIX data clearly depend on the angle
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between the 3-fold symmetry axis and the direction of the incident radiation [25,39],
whereas for hematite (Fe2O3) no such behavior was observed [40]. Replacing every
other iron atom in the hematite unit cell with boron essentially creates the iron bo-
rate unit cell. Therefore it was suggested that the different iron sites could produce
PHOENIX spectra with opposite anisotropy such that cancellation occurs for hematite
but not for iron borate [40]. A clear distinction of sites within the unit cell requires
coherent scattering methods.

In the previous sections, we pointed out that the moments of the absorption prob-
ability density and the Lamb–Mössbauer factor could be calculated from the VDOS,
which was obtained by a procedure outlined in [13]. This remains valid for the Lamb–
Mössbauer factor even in the case of complex materials. On the other hand, the
calculation of the moments and thus SOD and average force constant requires the
true averaged VDOS. In general, the averaged absorption probability density, eq. (19),
which is obtained by the PHOENIX method, does not lead to the true averaged VDOS,
because the relationship between the absorption probability density and the VDOS is
nonlinear. For clarification, we rewrite eqs. (5) of [13] for this case:

S(j)(E) =F (j)δ(E) + F (j)
∞∑
n=1

S(j)
n (E),

S(j)
1 (E) =

ERD(j)(E)
E(1− e−βE)

, (21)

S(j)
n (E) =

1
n

∫
S(j)
n−1(E − ε)S(j)

1 (ε) dε, n > 2.

In this expression, S(j)
n (E) represents the n-phonon contribution to the excitation prob-

ability density of group j. β is the inverse temperature. This implicit equation for
the true VDOS, D(j)(E), can be inverted, e.g., by using the Fourier–Log method [42].
The averaged version of the previous equation is

S(E) = Fδ(E) +
∞∑
n=1

∑
j

ajF
(j)S(j)

n (E). (22)

In general, we cannot invert this expression to obtain the true average VDOS. At this
point we note that a calculation of the moments of the absorption probability density
using an approximated average VDOS need not result in the correct average moments
even for perfectly harmonic lattices. Such comparisons can be helpful to distinguish
different sites of the unit cell of a crystal [40].

5. Applications

So far, several experiments using inelastic nuclear resonant absorption provided
values for the Lamb–Mössbauer factor and SOD or produced data relevant to such
quantities. In figures 1 and 2, the Lamb–Mössbauer factors of iron metal (bcc) and
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Figure 1. Lamb–Mössbauer factor of iron metal (bcc) versus temperature. The samples were poly-
crystalline iron foils at ambient pressure. The employed methods comprise Mössbauer spectroscopy
(× – [43], ∗ – [44]), nuclear forward scattering (O – [7]) and inelastic nuclear resonant absorption

(� – [13], • – [28], � – [32], N – [38]).

Figure 2. Lamb–Mössbauer factor of hematite (Fe2O3) versus temperature. The samples were either
prepared from synthetic hematite powder [4,45] or single crystalline [40]. All data were taken at ambient
pressure. Mössbauer spectroscopy(• – [45]) and inelastic nuclear resonant absorption (� – [4], � – [40])

were used.

hematite (Fe2O3) are shown versus temperature, respectively. The uncertainties of the
values obtained with the PHOENIX method are noticeably smaller. In the case of
iron metal, the values obtained by the different experimental techniques show very
good overall agreement. The data of [7] were normalized to F = 0.924 at 9.7 K
to alleviate problems in the determination of the sample thickness in the original
experiment [46]. The simple crystal structure of iron metal at normal pressure with
one atom per irreducible unit does not cause problems related to distinguishable sites as
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Figure 3. Lamb–Mössbauer factor of amorphous Tb1−xFex films versus Fe-concentration. The thickness
of the films was 17.5 nm. All measurements occurred at ambient conditions [22].

discussed in the previous section. For the hematite data larger differences are observed.
In [45], the Lamb–Mössbauer factors were derived from the temperature dependence
of the isomer shift. Problems related to this method were discussed earlier [47] and
may explain the systematically larger values for F . In addition to providing reliable
data in simple cases, the PHOENIX technique readily extends to systems that are
difficult to investigate by other methods. Figure 3 shows the result of a series of
measurements on amorphous Tb1−xFex films with thicknesses of 17.5 nm [22]. In
this particular case, the standard method of observing the temperature shift of the
CEMS emission lines and then assigning a characteristic lattice temperature failed for
low Fe-concentrations. Most likely unknown correlations between magnetic hyperfine
fields and isomer shifts in the amorphous alloy caused these problems. However,
the PHOENIX method is insensitive to the hyperfine interactions and can therefore
provide reliable data. Table 2 contains values for the Lamb–Mössbauer factor for
various compounds, including thin films and biological materials. In figures 4 and 5,
the SODs of iron metal (bcc) and hematite (Fe2O3) are shown versus temperature.
Such information is difficult to obtain from Mössbauer spectroscopy because chemical
isomer shift and SOD are indistinguishable. As already mentioned, the PHOENIX
method is not restricted to the resonant isotope 57Fe. So far the 57Fe, 119Sn, and
151Eu isotopes were used in PHOENIX experiments, which resulted in values for the
Lamb–Mössbauer factor and SOD. In table 1, we listed a selection of candidates that
have excitation energies below 30 keV. The latter restriction is mainly due to the
difficulties to develop X-ray optics with sufficient energy resolution and efficiency
for higher energies [34]. The estimate that is given in the last column of table 1 is
based on eq. (2). Detector efficiencies were not considered. Also isotopes with a short
lifetime of the Mössbauer level require extremely fast detectors, which at present poses
a problem.
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Table 2
Lamb–Mössbauer factor and SOD of various compunds. The values were obtained by inelastic nuclear
resonant absorption using the PHOENIX method with 57Fe, 119Sn, or 151Eu as resonant isotopes. All

samples were measured under ambient conditions.

Compound LM-factor SOD (Γ) Comments

Fe metal (bcc), foil 0.805(3) −2.47(4) [13]
0.791(15) −2.50(13) [28]
0.80(1) [35]
0.796(2) −2.49(2) [32]

Stainless steel, Fe55Cr25Ni20, foil 0.742(10) −2.41(4) evaluated from [13]
0.76(5) [35]

Fe metal, nanocrystalline powder 0.726(15) −2.62(12) evaluated from [36]
Fe3Al, foil 0.743(3) −2.46(2) evaluated from [37]
Pt3Fe, foil 0.76(1) −2.42(7) [38]
Fe2Tb, Laves phase, film 0.679(3) −2.39(2) [22]
Fe67Tb33, amorphous film 0.595(5) −2.39(3) [22]

SrFeO3, powder 0.811(10) −2.57(4) evaluated from [13]
SrFeO2.86, powder 0.814(10) −2.60(4) evaluated from [13]
SrFeO2.74, powder 0.795(10) −2.57(4) evaluated from [13]
SrFeO2.5, powder 0.640(15) −2.54(4) evaluated from [13]
FeBO3, single crystal 0.81(3) [39]
Fe2O3, powder 0.793(4) −2.56(4) [4]
Fe2O3, single crystal 0.792(5) −2.58(6) [40]
YIG, Y3Fe5O12, single crystal 0.775(15) −2.59(5) [38]

[Fe(bpp)2][BF4], polycrystalline 0.10(5) [35]
metmyoglobin, wet powder 0.245(20) −2.50(5) [38]

SnO2, powder 0.628(9) −0.357(6) [19]
CaSnO3, powder 0.659(7) −0.362(6) [41]
SnO, powder 0.32(4) −0.35(2) [41]
V3Sn, polycrystalline 0.40(4) −0.34(3) [41]
Nb3Sn, polycrystalline 0.45(4) −0.35(2) [41]

Eu2O3, cubic phase, powder 0.590(13) −0.045(1) [21]

6. Conclusion

In this paper, the derivation of the Lamb–Mössbauer factor and the SOD from
spectra of inelastic nuclear resonant absorption, the PHOENIX method, was demon-
strated. We explained the application of sum rules that enable proper normalization
of the raw data. Whereas the SOD is obtained from the moments of the data in a
well-defined manner, the determination of the Lamb–Mössbauer factor requires the
subtraction of the elastic peak in the PHOENIX spectrum. The latter procedure is
usually realized by assuming a Debye-like behavior of the sample for small energies
of vibrational excitation. We also discussed complex systems, i.e., mixtures of ma-
terials and different sites for the resonant nuclei in a crystallographic unit cell and
concluded that the PHOENIX measurement provides a linear superposition. Further-
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Figure 4. SOD of iron metal (bcc) versus temperature. The iron samples were polycrystalline foils. All
measurements occured at ambient pressure. � – [13], • – [28], � – [32], N – [38].

Figure 5. SOD of hematite (Fe2O3) versus temperature. Synthetic powder was used to prepare the Fe2O3

samples. All measurements occured at ambient pressure [4].

more, an account for realistic sources of systematic errors was provided. A collection
of results from PHOENIX experiments that have been carried out so far clearly demon-
strated the improved accuracy of the measured Lamb–Mössbauer factors. In the case
of SODs, the results are unique. Our selection of examples implies the applicability
of the PHOENIX method to a variety of sample types and the feasibility of measuring
several Mössbauer isotopes.

Nuclear resonant scattering techniques like the PHOENIX method greatly bene-
fitted from the integrated development of synchrotron radiation optics, detectors, and
intense synchrotron radiation sources. The present paper illustrated one particular as-
pect of these points. Concerning future developments we suggest two topics. First, an
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improvement of the energy resolution would directly affect the accuracy of the data
and alleviate problems related to the removal of the elastic peak. At present energy
resolutions of about 1 meV or slightly below are available [34]. Second, the proper-
ties of synchrotron radiation support efficient focusing. A small focal spot size would
permit the investigation of very small amounts of material. In summary, it appears
very likely that a continuing development of instruments and methods will further the
potential of applications of nuclear resonant scattering with synchrotron radiation.
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