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Backscattering mirrors for X-rays and Mössbauer
radiation

Yu.V. Shvyd’ko and E. Gerdau
II. Institut für Experimentalphysik, Universität Hamburg, D-22761 Hamburg, Germany

Observation of exact backscattering of X-rays and studies of its energy and angular
dependences; test of the validity of the dynamical theory of diffraction in the extreme case of
exact backscattering; backscattering high-energy-resolution monochromators; backscattering
interferometers, in particular of the Fabry–Pérot interferometer type; and precise, up to
5 · 10−9 Å, measurements of crystal lattice parameters: these are central topics of the paper.
Special attention is paid to the selection of crystals to be used as backscattering mirrors.
Noncubic crystals like Al2O3, SiC, etc., allow backscattering for X-rays with practically any
energy above 10 keV. Feasibility of backscattering mirrors for Mössbauer radiation of 57Fe
(14.4 keV), 151Eu (21.5 keV), 119Sn (23.9 keV), and 161Dy (25.6 keV) nuclei is demonstrated
by Al2O3 crystals. A concrete design of a sapphire Fabry–Pérot–Bragg étalon is presented.
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1. Introduction

The large coherence length of cm up to km of radiation from Mössbauer transi-
tions is without precedent among all other sources in the hard X-ray region from 10
to 100 keV. This is a favourable starting condition for the successful demonstration of
Fabry–Pérot, Michelson or other types of interferometers for radiation in this spectral
range. Contrary to the visible spectral region where backscattering mirrors needed for
an interferometric set-up are easy to produce, this is a central problem for hard X-rays.

The need for backscattering mirrors as components of X-ray resonators in dif-
ferent proposed schemes of γ-lasers or free electron X-ray lasers was expressed more
than once in publications on these subjects.

Only recently X-rays were observed reflected from a crystal exactly opposite
to the direction of the incident beam [1–3]. The observation of exact backscattering
and studies of its properties are central topics of the present paper. The selection of
crystals for backscattering mirrors, the use of Bragg mirrors in backscattering interfer-
ometers, resonators, and high-energy resolution monochromators for hard X-rays will
be addressed as well.

Backscattering was first considered theoretically in the paper of Kohra and
Matsushita [4]. Already in this publication two outstanding features were pointed
out: approaching the Bragg angle of π/2 the reflection width reaches its smallest
value on the energy scale and its largest value on the angular scale, see figure 1.
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Figure 1. The solid line shows the region of high reflectivity of X-rays in a crystal for the case of two-
beam Bragg diffraction; θ is the angle of incidence to the reflecting atomic planes (hkl) with interplanar
distance dhkl and λ is the wavelength of the X-rays. The curve is given by the kinematical Bragg
law: λ = 2dhkl sin θ. The width of the curve is defined in the dynamical theory of X-ray diffraction.
The enlarged parts of the diagram display the advantages of backscattering: high reflectivity in a broad

angular region with a narrow spectral width.

Backscattering was thus promising to found a basis of X-ray optics on with enhanced
luminosity and high-energy resolution. These predictions have stimulated in the years
following the publication [4] further theoretical [5–7] and experimental [7,8] studies
of backscattering, as well as its application in different schemes of high-energy res-
olution monochromators and analyzers [9–16] for hard X-rays. Though restricted to
angles of incidence deviating from normal incidence to the reflecting atomic planes
by δθ > 2 mrad the experiments of Graef and Materlik [7] and of Kushnir and Su-
vorov [8] have confirmed the two outstanding features of backscattering predicted by
theory.

Woodruff et al. [17] have reported the first X-ray diffraction experiments at nor-
mal incidence to the reflecting planes. In an X-ray standing wave-field they observed
emission of electrons and studied their energy profile. Cusatis et al. [1] were the first
to observe X-rays reflected exactly backwards from a Si(1 1 1) plate at an energy of
1.9 keV. They studied the angular profiles in reflection and transmission. Soon after-
wards we have reported the observation of exact backscattering and comprehensive
studies of its energy and angular dependences in sapphire (Al2O3) single crystals with
well collimated and ideally monochromatic 14.4 keV Mössbauer radiation [2]. A re-
flectivity of '64% at exact backscattering close to the theoretical value of 88% was
observed. A detailed comparison with the predictions of the dynamical theory of X-ray
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diffraction was made. Kikuta et al. [3] have reported studies of the angular depen-
dencies of transmissivity and reflectivity at a Bragg angle near π/2 in thin Si(9 9 1)
crystal plates. In particular, they demonstrated that, approaching exact backscattering,
the reflectivity drops drastically. This happens due to the transition of two-beam Bragg
diffraction into multiple-beam diffraction while approaching normal incidence to the
atomic planes in crystals with cubic symmetry. Soon after that Sinn et al. [18], using
the set-up of [2], studied the effects of multiple-beam diffraction on the angular de-
pendence of the reflectivity at normal incidence to atomic planes in Si crystals. Very
recently Jach et al. [19] reported the observation of dynamical diffraction and X-ray
standing waves at normal incidence to atomic planes in an AlPdMn quasi-crystal.

In the present paper we give more details of the experimental and theoretical
studies of exact backscattering reported in [2], and discuss prospects of its applications
in γ- and X-ray optics. In section 2 the selection of single crystals to be used as
backscattering mirrors is addressed. In section 2.1 we show that perfect crystals of
cubic type like Si are not optimal for this purpose. The arguments are supported by
our recent measurements of the energy and angular dependences of the reflectivity in
silicon at normal incidence to (12 4 0) atomic planes. In section 2.2 we extend the
considerations to noncubic single crystals like sapphire, hexagonal or rhombohedral
polytypes of silicon carbide (4H-SiC, 6H-SiC, 15R-SiC, etc.) and show that they
are most appropriate for backscattering applications. Backscattering reflections in
Al2O3 for X-rays matching selected Mössbauer transitions are given. In section 3 the
experimental technique for the observation of exact backscattering is described. The
results of studies of the reflectivity, the angular and energy profiles of backscattering
by using 14.413 keV Mössbauer radiation of 57Fe nuclei in sapphire crystals are given
in section 3.2. In section 3.3 the experimental dependence of reflectivity is compared
with that evaluated by the dynamical theory of diffraction, as outlined in the appendix.
A systematic deviation from the exact line shape for backscattering predicted by the
theory is pointed out. Application of backscattering for a very precise (up to 5·10−9 Å)
measurement of crystal lattice parameters is addressed in section 3.3.3. Results of
tests of sapphire crystals as backscattering mirrors for Mössbauer radiation of other
nuclei: 151Eu (21.5 keV), 119Sn (23.9 keV), and 161Dy (25.6 keV) are presented in
section 4. The performance of the sapphire mirror as part of a backscattering resonator
is demonstrated in section 5. Design and simulations of a Fabry–Pérot–Bragg étalon for
14.413 keV Mössbauer radiation with sapphire single crystal plates as backscattering
mirrors are presented in section 6.

In the appendix we recall elements of the dynamical theory of diffraction of
X-rays in perfect crystals, laying emphasis on the points crucial in the backscattering
geometry. Those equations are derived that are used in the present paper for the
evaluation of angular, energy, and temperature dependences of the crystal reflectivity
in backscattering as well as for the evaluation of the reflectivity and transmissivity of
Fabry–Pérot–Bragg étalons.
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2. Crystals for backscattering mirrors

Among commercially available single crystals those of Si have the highest quality.
Their use in high resolution crystal X-ray optics is an established method. Despite this
fact we decided to use Al2O3 (sapphire) and hexagonal or rhombohedral polytypes
of silicon carbide (4H-SiC, 6H-SiC, 15R-SiC, etc.) single crystals as backscattering
mirrors. There are several reasons for this choice.

2.1. Why not perfect Si?

Bragg’s kinematical law

λ = 2dhkl sin θ, (2.1)

the relation between the wavelength λ of X-rays, their angle of incidence θ on the
crystallographic planes (hkl) and the interplanar distance dhkl reduces in the case of

Figure 2. X-ray backscattering spectra of Si and Al2O3 single crystals calculated by the dynamical theory
of diffraction for single crystal plates of 1 mm thickness. The positions of peaks in the spectra are defined
by the Bragg energies eq. (2.2). The heights and widths of the peaks result from the convolution of the
energy profile of the theoretical reflectivity curve with the energy profile of the incident radiation, which
is assumed to be 2 eV broad. Peaks corresponding to n-times degenerate Bragg energies are taken to

have n-times greater height. The insets show expanded spectra in the range 14.3–14.5 keV.
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backscattering (θ = π/2) to

λ = 2dhkl or E =
hc

2dhkl
≡ Ehkl. (2.2)

E = hc/λ is the energy of the X-rays, and dhkl is the interplanar distance. Thus,
only for selected X-ray energies Ehkl, hereafter referred to as Bragg energies, back-
reflections may occur in a given crystal.

In crystals with a cubic unit cell the interplanar distance is

dhkl = a/
√
h2 + k2 + l2,

where a is the lattice constant. The same value of dhkl and accordingly the same Bragg
energy Ehkl belong to reflections with different Miller indices hkl. The Bragg energies
in cubic crystals are therefore highly degenerate and the number of different Bragg
energies is rather low: typically one per '500–250 eV in the range 10–25 keV, see
figure 2(Si). Tuning of a Bragg energy is equivalent to tuning of the lattice constant,
which, for practical reasons, means a variation of the temperature. The temperature
expansion coefficient in Si at room temperature is a−1da/dT = 2.65 · 10−6 K−1.
Thus, dEhkl/dT = 0.038 eV/K for Ehkl ' 15 keV. I.e., to shift Ehkl by 100 eV, the
temperature has to be changed by an unrealistic 2600 K. Therefore, Si single crystals
allow backscattering only in limited regions of the X-ray spectrum. Unfortunately,

Figure 3. Two-dimensional angular dependence of the reflectivity of a Si single crystal for X-rays
incoming close to normal incidence to the (12 4 0) atomic planes and the scheme of the experimental
setup for its observation (in the inset). The angular divergence of the X-rays is ' 20 × 20 µrad2.
δθ and δχ are deviations from normal incidence to (12 4 0) in the [1 1 1], [12 4 0] plane and in the plane
perpendicular to it, respectively. The X-rays are monochromatized to an energy band of 7 meV width.

The semitransparent detector D is placed at a distance of 0.8 m from the Si crystal.
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Figure 4. Energy (A), (B), (C), (D) and angular (E) dependences of the reflectivity of a Si single crystal
for X-rays incoming close to normal incidence to the (12 4 0) atomic planes with δχ = 0. A, B, C and D
in (E) mark the δθ angular positions at which the energy spectra (A), (B), (C) and (D) are measured. The
X-rays are monochromatized to an energy band of 7 meV width and scanned around E0 ' 14.438 keV
by using a high-energy resolution monochromator (figure 5(b)). The crystal temperature is T ' 300 K.

Solid lines in (C) and (D) are fits with a Gaussian of 8.5 meV width.

there is no Mössbauer transition which by chance is close to a Bragg energy in Si that
can be reached in the room temperature region. This imposes a first restriction on the
use of Si crystals as backscattering mirrors.

Another restriction on using Si is due to multiple diffraction, which occurs in
crystals with cubic symmetry at exact backscattering. The wave vector of the incident
radiation fulfilling Bragg’s conditions for backscattering for a certain reflection (hkl)
points, in the reciprocal space of a crystal with cubic symmetry, always to an intersec-
tion of facets of one of its Brillouin zones. Thus, the condition for Bragg scattering
is automatically fulfilled not only for the selected but also for other sets of atomic
planes, namely for those parallel to the facets of the Brillouin zone. In crystals with
cubic symmetry, exact backscattering co-exists with multiple diffraction.1 For exam-

1 The only exceptions to this rule are the very low-order Bragg reflections (1 1 1), (2 2 0). The reflection
(1 1 1), corresponding to a Bragg energy of 1.9 keV, was applied in [1].
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ple, 14.438 keV X-rays can be reflected backwards from the (12 4 0) atomic planes in
Si at a temperature of T ' 300 K and at about 800 K it would reflect the 14.413 keV
Mössbauer radiation of 57Fe. However, at normal incidence an X-ray beam would
simultaneously satisfy Bragg’s conditions for another 22 allowed reflections among
them: (0 2 2), (0 4 0), (4 2 6), (4 8 0), (6 0 6), (8 8 0), etc. Thus, approaching normal
incidence to the (12 4 0) planes, new reflection channels for X-rays open up. One
expects a reduced reflectivity in the backscattering channel and a complicated energy
dependence. The results of our studies are shown in figures 3 and 4. The technique of
backscattering measurements by using a semitransparent detector with a time resolu-
tion which allows observation of incident and reflected quanta separately is described
in more detail in section 3.1. The two-dimensional angular dependence shown in
figure 3 and a one-dimensional angular dependence measured at δχ = 0 shown in
figure 4 demonstrate that due to multiple-beam diffraction a dramatic decrease of the
reflectivity of Si occurs while approaching normal incidence. The measured angular
region of decreasing reflectivity is δθ ' ±0.2 mrad. The energy dependence of the
reflectivity 0.2 mrad off normal incidence shows a single peak, see figure 4(D). At
normal incidence the spectrum changes drastically and shows a triple peak structure,
see figure 4(A), which is due to multiple-beam diffraction. This very interesting mode
of Bragg scattering deserves comprehensive experimental and theoretical studies on its
own. However, they are beyond the scope of this paper.2

One more restriction on using Si crystals as backscattering mirrors is their low
reflectivity for hard X-rays (a consequence of the relatively low Debye temperature).
This is seen, e.g., from the rapid decrease of the backscattering spectrum in figure 2(Si)
for E > 25 keV.

2.2. Non-cubic Al2O3, SiC, etc.

These problems can be avoided if one uses crystals (i) with lower crystal symme-
try, (ii) with higher Debye temperature and (iii) with low photo-absorption. Hexagonal
Al2O3, hexagonal and rhombohedral polytypes of silicon carbide (4H-SiC, 6H-SiC,
15R-SiC, etc.), BeO or Be are such crystals. In our experiments we have used com-
mercially available high quality HEMEX sapphire (Al2O3) crystals, grown by the
heat-exchange method [22].

The Bragg energies in Al2O3 are much less degenerate. Therefore, sapphire
single crystals allow exact backscattering with a density of reflections of at least one per
'15 eV in the range 10–25 keV and even more for harder X-rays, see figure 2(Al2O3).
By heating or cooling Al2O3 by no more than 100 K from room temperature one can
fulfil the backscattering condition (2.2) for any X-ray energy above 10 keV. Table 1
illustrates this statement.

In table 1 we list Miller indices (hkil) of atomic planes (in the hexagonal basis,
h+k+ i = 0) and the temperatures TB of Al2O3 for which peak reflectivity at normal

2 Comprehensive studies of the Si(12 4 0) backscattering case are presented in [21], theoretical studies of
the Si(9 9 1) backscattering case are presented in [20].
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Table 1
Miller indices (hkil) of atomic planes (in the hexagonal basis, h+k+ i = 0) and Bragg temperatures TB

of Al2O3 for which the peak reflectivity at normal incidence occurs at X-ray energies E matching selected
Mössbauer transitions. Other symbols are explained in the text.

Nucleus E (hkil) TB ∆θ ∆E Reflec- Extinc- dE/dT
keV hexagonal K µrad meV tivity tion (mm) eV/K

181Ta 6.2155 (1 3 2 10) 251.1 3373.5 58.340 0.888 0.004 −0.038
73Ge 13.263 (2 6 8 16) 320.5 1246.7 9.458 0.900 0.022 −0.093
57Fe 14.4125 (1 3 4 28) 379.5 1009.5 6.156 0.879 0.034 −0.098

151Eu 21.5415 (11 2 13 24) 254.5 525.6 2.615 0.917 0.081 −0.145
149Sm 22.494 (3 13 16 8) 241.5 569.8 2.362 0.912 0.089 −0.164
119Sn 23.8795 (9 1 10 40) 297.0 444.1 1.779 0.908 0.119 −0.151
161Dy 25.6513 (5 10 15 34) 421.5 403.1 1.613 0.919 0.131 −0.191
129I 27.77 (7 13 20 18) 447.5 363.6 1.144 0.907 0.185 −0.213
40K 29.56 (16 5 21 16) 396.5 283.7 0.733 0.882 0.287 −0.223

201Hg 32.19 (5 18 23 14) 407.5 242.9 0.597 0.889 0.354 −0.244
125Te 35.46 (3 13 16 58) 290.5 213.9 0.489 0.899 0.433 −0.224
189Os 36.22 (7 8 15 64) 461.5 181.2 0.351 0.870 0.603 −0.278
121Sb 37.15 (16 12 28 14) 486.5 157.1 0.263 0.842 0.806 −0.288
129Xe 39.58 (21 8 29 14) 331.5 132.3 0.194 0.825 1.095 −0.295
161Dy 43.83 (12 19 31 34) 322.5 092.4 0.101 0.766 2.111 −0.319
238U 44.915 (15 19 34 14) 230.5 79.8 0.076 0.720 2.808 −0.327
183W 46.4837 (17 17 34 30) 476.5 63.6 0.049 0.636 4.350 −0.360
127I 57.60 (20 24 44 10) 284.5 23.4 0.008 0.205 33.294 −0.428

incidence occurs at X-ray energies matching selected Mössbauer transitions. In the
present paper TB is referred to as Bragg temperature, which applies to a selected set
of atomic planes (hkl) and to a selected X-ray energy.

Generally there exists more than one set of reflecting atomic planes for each
X-ray energy. Data for only one set with the highest reflectivity and with the Bragg
temperature in the range 200 6 TB 6 500 K are given. The table provides for each
reflection the calculated angular width ∆θ, the energy bandpass ∆E, the maximum
reflectivity, the extinction length Lext = λ/(2π|χH |), and the variation of the energy at
the position of peak reflectivity with crystal temperature dE/dT . All calculations were
performed with the dynamical theory of X-ray diffraction in perfect crystals, outlined
in the appendix. The crystals are assumed to be semi-infinite.

According to this table, for X-rays matching the 14.4125 keV Mössbauer tran-
sition in 57Fe nuclei, a (1 3 4̄ 28) back reflection can be predicted at TB = 380 K in
sapphire with an angular acceptance of 1.0 mrad, an energy bandwidth of 6.2 meV,
and 88% reflectivity.

It is remarkable that even for X-rays with relatively high energy, e.g., for those
matching the 57.6 keV Mössbauer transition in 127I, sapphire offers reflections with
high reflectivity, with an angular acceptance large enough to fit the divergence of
radiation from present day undulator based X-ray sources, and with an energy bandpass
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as low as 8 µeV. However, for this to be realized, a more than 3 cm thick perfect
sapphire crystal has to be used that must be kept in an environment with a temperature
stability better than 10 µK.

The crystallographic data used in the evaluations are taken from [23]. The thermal
expansion data are taken from [24]. It should be noted that lattice constants and thermal
expansion data for Al2O3 reported by different authors [23,25–28] differ by 100 ppm.
This imposes an uncertainty on the predicted Bragg temperatures. We estimate that the
Bragg temperatures given in the table may deviate from their real values by ±15 K.
In section 4 measured Bragg temperatures for selected X-ray energies will be given.
We also report there lattice parameters of Al2O3 at two temperatures, derived from our
data.

3. Exact backscattering

3.1. Experimental method

The observation of exact 180◦-scattering has an obvious experimental difficulty.
Either the X-ray source or the detector is blocking the reflected or the incident X-rays.
There are only two possibilities to overcome this problem.

One is to use a transparent X-ray source, wiggler or undulator, as proposed in [7,
9,29,30]. The construction of such an exact backscattering beam-line was announced
at the APS (Argonne) [30].

Another possible way, which was realized in [1], is to use a semi-transparent
detector. However, in this case the reflected radiation is observed on the strong back-
ground of the incident radiation.

To discriminate against this background we proposed to insert a semi-transparent
detector with a good time resolution and make use of the pulsed structure of synchrotron
radiation [2]. The time-of-flight τ = 2L/c to the crystal and back to the detector
separated by a distance L allowed us to distinguish between the incident and reflected
radiation pulses, see figures 5 and 6.

The experiments further described in this paper were performed mostly at the
wiggler beam line BW4 at HASYLAB, Hamburg (L = 9.9 m and τ = 66 ns).
The DORIS-III positron storage ring was operated in the five-bunch mode, producing
synchrotron radiation pulses from the wiggler every 192 ns (∼200 ps duration). A high-
heat-load Si(1 1 1) monochromator (M) provided 14.413 keV radiation with '3 eV
bandwidth. The beam divergence was typically 20 µrad in the vertical and 80 µrad in
the horizontal plane, i.e., much less than the angular acceptances of back reflections
in Al2O3 in this energy range (see table 1).

To study the properties of backscattering one not only needs collimated but also
monochromatic radiation. We used 14.413 keV Mössbauer radiation of 57Fe nuclei for
this purpose. The energy spectrum of the Mössbauer radiation, even for the largest
observed broadening, is within a band of 1 µeV width, which can be considered
as quasi mono-energetic relative to the energy widths of backscattering reflections of
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Figure 5. Set-ups for backscattering experiments. (a) M is the Si(1 1 1) high-heat-load monochromator;
D is a semi-transparent X-ray detector; F is a 10 µm thick 57Fe foil; V is a vacuum tube of 1–10 m
length; S is a backscattering single crystal in an oven; δθ is the angle between the wave vector K0 of
the incident radiation and the scattering vector H; KH = K0 +H is the wave vector of the scattered
radiation. (b) The high-energy resolution monochromator (HRM) monochromatizes the incident radiation

to a meV bandwidth.

Figure 6. Counts in the semi-transparent detector as seen on the time scale. The detector is placed at a
distance of L ' 9.9 m from the reflecting crystal. At t ' −66 ns: primary radiation pulse; at t ' 0:

back reflected radiation pulse; at t > 0: back reflected resonant radiation.

typically 610 meV. A collimated beam of Mössbauer photons is generated by spatially
coherent excitation of the 14.4 keV resonance in 57Fe nuclei in a 10 µm thick iron
foil (F in figure 5) with synchrotron radiation pulses. The iron foil was enriched in
57Fe to 95%. Due to coherent enhancement the ensemble of excited 57Fe nuclei emits
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photons in the direction of the incident beam (see [31] and references therein) with
a delay of ≈20–50 ns. The time spectrum of the radiation scattered in the forward
direction is shown in figure 6.

An avalanche photodiode EG&G C30703F with a 100 µm thick sensitive Si
wafer serves as the semi-transparent detector.3 The transverse size of the diode is
15 × 15 mm2 with a sensitive area of 10 × 10 mm2. Its time resolution is 1 ns [32]
and allows one to distinguish between the incident pulse and the pulse reflected from
a crystal at L > 0.5 m distance. This time resolution is used twice in the experiment.
First, to distinguish between the incident and the reflected radiation pulses. Second,
to count only 14.413 keV photons from the 0.5 µeV energy band, scattered by 57Fe
nuclei in the forward direction.

The diode in combination with the timing electronics is able to detect a photon
flux up to '108 Hz. The flux after the high-heat-load monochromator is significantly
larger. Therefore, to observe exact backscattering, either an absorber or a high-energy
resolution monochromator4 (see figure 6(b)) is installed. The latter reduces the energy
band of the incident beam from '2 eV to '7 meV and correspondingly the total
flux, preserving the flux of “good” photons. Depending on the situation we use one
of these methods. Sometimes we also use a third set-up. However, the diode is
then put as close as possible to the incident beam, see figure 6(a). The deviation
from exact backscattering in our geometrical arrangement can be chosen as small as
0.2 mrad, which in the cases discussed in the present section is almost equivalent
to exact backscattering since the widths of the measured angular dependences are
typically 1 mrad.

For studies of exact backscattering the (1 3 4̄ 28) atomic planes in Al2O3 were
chosen, as backscattering of the 14.413 keV Mössbauer radiation is predicted for this
set of planes at a moderate temperature of 380 K (see table 1).

In the experiments, sapphire crystals in the form of a disk of 15 mm diameter
and 1 mm thickness cut perpendicular to the axis [0 0 0 1] were employed.5 They were
installed in an oven on a four-circle diffractometer at the end of the vacuum tube, see
figure 5.

Backscattering of the 14.413 keV Mössbauer radiation from the (1 3 4̄ 28) atomic
planes is searched for as follows. First the crystal axis [0 0 0 1] is oriented parallel to
the incident beam by detecting exact back reflection (0 0 0 30) of X-rays with energy
E = 14.317 keV (crystal at room temperature). All photons are counted except
those incident at t ' −66 ns. Then the atomic planes (1 3 4̄ 28) are set perpendicular
to the incident beam by detecting exact back reflection of the incident 14.413 keV

3 We are indebted to Dr. Henri Dautet from the EG&G Optoelectronics Ltd., Vaudreuil, Quebec, for
delivering photodiodes without a ceramic stiffener in the back and without a back-cover.

4 The high-energy resolution monochromator used in the experiments at HASYLAB built with channel-
cut Si(4 2 2) and Si(12 2 2) crystals in nested geometry was designed by E. Gerdau, R. Rüffer and
H.D. Rüter based on the initial proposal of [12].

5 The crystals were obtained from ESCETE B.V. Single Crystal Technology, Schiffstraat 220, NL-7574
RD Enschede, the Netherlands.
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photons.6 The angular position of the crystal at which it reflects these X-rays back
into the detector with maximum intensity is taken as the reference point δθ = 0 for
exact backscattering. At this stage of the adjustment procedure the Mössbauer photons
generated in the iron foil do not necessarily fall into the energy band of the (1 3 4̄ 28)
back reflection. As a next step the temperature of the crystal is scanned until events
within a time window of 20–120 ns are detected (figure 6). This signals that the crystal
reflects Mössbauer photons backwards.

3.1.1. T–E equivalence relation
Being bound to the fixed energy of the Mössbauer radiation, the standard mea-

surement of the reflectivity as a function of the X-ray energy E is replaced by the
equivalent reflectivity measurement as a function of the crystal temperature T .

The T–E equivalence relation can be derived easily. As discussed in the appen-
dix, according to the dynamical theory of diffraction the reflectivity is a function of
the deviation from Bragg’s condition given by the parameter α, which is a function
of T and E. Those values of E and T are equivalent which result in the same value
of α. Using the general expression (A.11) for α, derived in the appendix without
approximations, and the definition of the Bragg energy (2.2) one finds that α is a
function of the product Edhkl(T ). Therefore, the condition for the E–T equivalence
reads Edhkl(T ) = const, or, after differentiation,

dE
dT

=
Ehkl
dhkl

ddhkl
dT

. (3.1)

For more details see appendix A.2.
By using the temperature expansion in the [1 3 4̄ 28] direction derived in equa-

tion (3.6), we obtain for X-rays with energy E ' 14.413 keV and for a crystal
temperature T ' 372 K

dE
dT

= −0.100 [eV/K] (3.2)

in the case of Bragg scattering from the atomic planes (1 3 4̄ 28).

3.2. Studies of exact backscattering in the two-beam diffraction case

3.2.1. Temperature dependences
Figure 7 shows temperature dependences of the reflectivity recorded at different

angular deviations δθ from normal incidence to the (1 3 4̄ 28) planes. The temperature
in the oven was stabilized with an accuracy of 1 mK by using computer control [33].
A platinum resistor PT100 was used as a temperature sensor.

6 The angle ψ between the [0 0 0 1] and [1 3 4̄ 28] directions is 22.091◦. There are another 5 reciprocal
vectors equivalent to [1 3 4̄ 28]. They lie on the surface of a cone with opening angle ψ and rotation
axis parallel to [0 0 0 1]. Back reflections corresponding to these reciprocal vectors are easily found by
directing the incident beam at an angle of ψ to the [0 0 0 1] axis and by rotating the crystal around the
[0 0 0 1] direction.
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Figure 7. Temperature dependences of Bragg scattering of 14.413 keV photons with 0.5 µeV bandwidth
from an Al2O3 crystal measured at different angular deviations δθ from normal incidence to the (1 3 4̄ 28)
reflecting planes. Solid lines are fits with Lorentzians. The width of the curve at δθ = 0.2 mrad is

100 mK (equivalent to a 10.0 meV X-ray energy bandwidth).

At δθ = 0.2 mrad (i.e., in almost exact backscattering) the maximum reflectivity
is achieved in this sample at TB = 372.40± 0.01 K. The width of the reflection curve
is 100 mK, corresponding to an energy width of 10.0 meV. This is more than the
6.2 meV expected theoretically. With increasing δθ the temperature where maximum
reflectivity is reached increases proportional to δθ2. This square dependence, which
is a characteristic feature of backscattering, has a remarkable consequence, namely an
extraordinarily large angular acceptance of Bragg back reflections. The corresponding
measurements are shown below in section 3.2.2.

The temperature dependence of almost exact backscattering was measured in
sapphire single crystals of different origin. The width and the form of the temper-
ature dependence served as a crystal quality test. Czochralski grown crystals7 show
energy widths of typically about 40–50 meV. HEMEX sapphire [22] shows signifi-
cantly narrower reflection curves with widths from 20 meV down to the theoretical
value of 6.2 meV, see figure 8. All samples were mechanically polished as described
in [22].

To reduce possible tension in a surface layer due to mechanical polishing, some
samples were chemically polished in a 1 : 1 H2SO4 : H3PO4 solution, as described
in [34]. The effect of chemical polishing, although not very pronounced, was positive.
The narrowest temperature dependence, shown in figure 8, was measured in a crystal

7 The samples were obtained from Union Carbide via Roditi International Corporation GmbH, D-21029
Hamburg, Germany.
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Figure 8. Reflectivity in Al2O3 (circles) measured at almost exact backscattering with δθ = 0.2 mrad as
a function of the crystal temperature T [35]. The upper scale is in units of the X-ray energy equivalent
to the temperature change. The solid line is the calculation according to the dynamical theory for an
ideal 1 mm thick crystal of Al2O3 and an incident monochromatic plane wave, see eqs. (A.31), (A.27),

(A.21) and (A.11) of the appendix. The dashed line is a Lorentzian with a width of 6.2 meV.

polished in the above solution for 6 hours at 300±10◦C. A surface layer of '0.15 mm
is removed by this procedure.

TB differs slightly from sample to sample. Its average value, calculated from the
data of about 30 measured samples of HEMEX sapphire, is 〈TB〉 = 372.19 K with a
mean square deviation of ±0.06 K.

3.2.2. Angular dependences
Figure 9 shows the angular dependences of Bragg scattering of 14.413 keV res-

onant radiation measured at different temperatures T of the same Al2O3 crystal. The
angle δθ of deviation from exact backscattering was varied only in one direction.
Because of the symmetry of scattering at 90◦ this is equivalent to a variation in the
opposite direction. Therefore, the angular dependences of figure 9 are symmetric with
respect to δθ = 0.

Below TB, i.e., at T − TB = ∆T < 0, Bragg scattering scarcely takes place.
Approaching TB Bragg scattering builds up, with its maximum of reflectivity at δθ = 0
and the largest angular width (full width at half maximum) of 1.7 mrad at ∆T = 0. With
a further increase of temperature the peak reflectivity is shifted to values of δθ 6= 0, the
rocking curve narrows and gradually acquires the form known in conventional Bragg
scattering. Nevertheless, the width of the Bragg reflection at δθ = 2.78 mrad still has
the extraordinarily large value of 0.24 mrad.
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Figure 9. The angular dependences of Bragg scattering of monochromatic 14.413 keV X-rays with
0.5 µeV bandwidth measured at different temperatures T of an Al2O3 crystal utilizing the (1 3 4̄ 28)
reflection. δθ is the angular deviation from normal incidence of the X-rays to the (1 3 4̄ 28) reflecting
planes. ∆T = T − TB, where TB = 372.40 K. Solid lines are fits using the dynamical theory of Bragg

scattering.
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3.2.3. Peak reflectivity at normal incidence
The peak reflectivity is constant at different deviations δθ from normal incidence.

To measure the absolute value of the peak reflectivity at normal incidence to (1 3 4̄ 28)
planes in Al2O3 a high-energy resolution monochromator was installed, see figure 5(b).
This reduces the flux without loss of “good” photons to such an amount that the full
incident beam does not damage the semi-transparent detector. The iron foil in these
measurements is put in front of the detector. Now the time spectrum of nuclear for-
ward scattering from the iron foil appears twice in the detector with a 2L/c separation
in time: once direct from the foil beginning at t > −66 ns and for the second time
at t > 0 ns reflected from the sapphire crystal. The ratio of the time integrated count
rates of both time spectra gives the reflectivity of sapphire multiplied by the trans-
missivity of the detector. The transmissivity is easily measurable. The reflectivity of
the sapphire crystal for the 14.413 keV nuclear resonant radiation is found to be 64%.
This value applies to the sample used in the measurements shown in figures 7 and 9.
It is remarkable that the measured reflectivity, even for a not perfect crystal, is close
to the value of 88% calculated for perfect crystals.

3.3. Evaluation of data and discussion

The experimental data can be compared with the predictions of the dynamical
theory of backscattering of X-rays outlined in the appendix.

The main predictions of the theory are summarized graphically in figure 10. The
ordinate of the graph is (E −Ehkl)/Ehkl – the deviation of the X-ray energy E from
the Bragg energy Ehkl expressed in units of Ehkl. The abscissa is the square of the
angular deviation from normal incidence, δθ2. The spectral-angular region of total
reflection for a perfect non-absorbing crystal – a kind of DuMond diagram – is given
in this representation by the straight grey strip, according to eqs. (A.18), (A.36) of
the appendix. The width of the grey strip along both axes scales with the value of

Figure 10. Spectral-angular region of total reflection of backscattering. Note that the abscissa scales
with δθ2.
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χH – the Fourier component of the electric susceptibility, see eqs. (A.1), (A.2) of the
appendix. Typically |χH | ' 10−6–10−7 for 15 keV X-rays.

At normal incidence (δθ = 0) X-rays which are reflected backwards are centered
around an energy E = Ehkl(1 − χ0/2) slightly larger than Ehkl. As discussed in
the appendix, eq. (A.35), this is due to refraction in the crystal which scales with
χ0 ≈ −10−5. The relative width of the region on the energy scale is ∆E/E ' χH
and equivalently ∆T/T ' χH .

An important feature of the DuMond diagram for backscattering is that the angular
scale – the abscissa – has a δθ2 dependence, resulting in an unusually large width of
the angular region of total reflection of ∆θ '

√
2χH .

The diagram helps to see that the sets of measured temperature and angular pro-
files of backscattering shown in figures 7 and 9 qualitatively agree with the theoretical
predictions, but not in details.

3.3.1. Temperature dependences
Practically for all measured samples the temperature dependences of backscat-

tering can be fitted by Lorentzian curves (cf. figure 7) having a width larger than
predicted for a perfect crystal. This is an unusual line form, which differs significantly
from the Darwin–Prins curve predicted by the dynamical theory of diffraction in per-
fect crystals. Further, the Lorentzian distribution which we observe can not be caused
by an energy or angular distribution of the incident beam, as our measurements were
performed with ideal monochromatic and well collimated X-rays.

The only measured exception is in the temperature dependence shown in figure 8.
The width and the central part of the experimental curve fit well to the theoretical
Darwin–Prins curve calculated with the theory of dynamical diffraction extended to
backscattering as outlined in the appendix. However, the wings again fit better to a
Lorentzian. Most probably, the Lorentzian line shape is a result of crystal imperfec-
tions. The challenge to account for the observed Lorentzian distribution remains.

3.3.2. Angular dependences
The angular dependences shown in figure 9 were compared with the dependences

calculated by the dynamical theory extended to the case of backscattering. We made
certain assumptions to account for the observed broadening of the temperature and
angular curves. As the type of crystal defects causing the broadening was not known, it
was assumed that the defects subdivide the crystal into perfect blocks of finite thickness.
The thinner the block, the broader the reflectivity curve. We have ascertained that the
calculated angular dependences averaged over block thicknesses in the range ` =
70± 70 µm may satisfactorily describe our experimental results, as shown by solid
lines in figure 9. Still, the fit is not ideal and the wings of the experimental dependences
are decaying slower than the theoretical curves.

The following data were used in the calculations: E = 14.413 keV, χ0 =
(−78.4 + i 0.29) × 10−7, χH = (−4.04 + i 0.13) × 10−7, b = −1.
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3.3.3. Crystal lattice parameters
The backscattering geometry is especially favourable for a precise determination

of lattice parameters of the reflecting crystal. One of the techniques based on Bragg
backscattering at fixed wavelength (energy) of the incident radiation is presented here.

For backscattering Bragg’s law reads

λ = 2dhkl(T + ∆T ) sin

(
π

2
− δθ

)
' 2dhkl(T + ∆T )

(
1− 1

2
δθ2
)
. (3.3)

More precisely, taking into account refraction and assuming low photoabsorption
in the crystal (χ′′0 � |χ′0|), one gets, in the frame of the dynamical theory,

λ̃ = λ

(
1− χ′0

2

)
= 2dhkl(T + ∆T )

(
1− δθ2

2

)
. (3.4)

Here χ′0 = Re{χ0} < 0 and χ′′0 = Im{χ0}. λ̃ is the wavelength of the radiation in
the crystal. It is exactly backscattered at the temperature T . Equation (3.4) can be
rewritten, using dhkl(T + ∆T ) = λ̃/2 + ∆dhkl, as

∆dhkl =
λ̃

4
δθ2. (3.5)

According to eq. (3.5) ∆dhkl depends on the square of the angular position δθ of
maximal reflectivity. This is a special property of backscattering, which therefore is
extremely sensitive to tiny changes of the lattice constant. If δθ can be measured
with an accuracy of 0.1 mrad, ∆dhkl ≈ 10−9λ̃. Indeed, the fit of the curves shown in
figure 9 turned out to be sensitive to variations of the average interplanar distance as
∆dhkl ' 5× 10−9 Å.

As λ̃ is defined by the extreme sharpness of the Mössbauer radiation, this method
opens the possibility of very precise measurements of the average crystal lattice para-
meters in units of the Mössbauer wavelength λ. We estimate the accuracy to be better
than 10−8λ. The precision is limited mostly by the accuracy of χ0.

The values of δ[1 3 4̄ 28] = 2d[1 3 4̄ 28]/λ̃−1 and of d[1 3 4̄ 28] at different temperatures
(above TB) obtained from the fits of the measured angular dependences of figure 9 are
shown in figure 11. The set of points in figure 11 can be approximated by a linear
temperature dependence:

d[1 3 4̄ 28](T ) =
λ̃

2

[
1 + 6.944 × 10−6(T − TB)

]
, TB = 372.40 K. (3.6)

In standard length units the value for the wavelength of the Mössbauer radia-
tion in sapphire is λ̃ = 0.8602583 Å. It is derived from the vacuum value λ =
0.8602549(12) Å [36] (E = 14412.50(2) eV) and χ′0 = −0.784 × 10−5.
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Figure 11. Temperature variation of the relative interplanar distance δ[1 3 4̄ 28] in Al2O3 measured in units
of the half Mössbauer wavelength λ̃/2 in sapphire: δ[1 3 4̄ 28] = d[1 3 4̄ 28]/(λ̃/2) − 1. The data are derived
from the fit of the angular dependences of backscattering (figure 9) measured at fixed values of the crystal
temperature T . The absolute values of d[1 3 4̄ 28] are given taking λ̃ = 0.8602583 Å (see text). The dashed

line is a linear fit using eq. (3.6).

4. Sapphire as a universal backscattering mirror

As shown in section 2.2 (see especially figure 2 and table 1), in noncubic crystals
like sapphire the number of different Bragg energies per energy interval is sufficiently
large to find at any γ-energy of about 10–50 keV a backscattering reflection by a
moderate change of the temperature. Along with 14.4125 keV Mössbauer radiation
of 57Fe nuclei, almost exact backscattering was also observed for the 21.5415 keV
Mössbauer radiation of 151Eu [37], the 23.8795 keV radiation of 119Sn [37], and for
the 25.6513 keV radiation of 161Dy [38].

In table 2 we summarize measured Bragg temperatures, as well as temperature
and energy width of the observed back reflections. The experiments were performed at
the undulator beamlines at APS (SRI-CAT 3ID) [37] and HASYLAB (PETRA1) [38]
by using set-ups very similar to that shown in figure 5(a). Details of the experimental
results are given in [37,38].

All observed reflections have a narrow energy width. However, the measured
energy widths are larger than the predicted values given in braces. Again the most
probable reason for this is an insufficient crystal perfection.

The measured Bragg temperatures systematically deviate by '10 K from the
Bragg temperatures calculated by using the lattice constants determined in [23,24] –
table 1.

The lucky coincidence of the Bragg temperatures for 151Eu and 119Sn Mössbauer
radiation allowed us to determine more accurately the lattice constant in HEMEX
sapphire at TB = 287.35 K via the known energies of the Mössbauer lines:

a = 4.7590(4) Å, c = 12.99085(22) Å at T = 287.35 K.
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Table 2
Atomic planes (hkil) and Bragg temperatures TB of Al2O3 for which peak reflectivity in almost exact
backscattering geometry (δθ = 0) occurs at X-ray energies E matching selected Mössbauer transitions.
Rated values of the energy widths and peak reflectivities are added in braces. Experimental errors are

given in parentheses.

Nucleus E (hkil) TB ∆T ∆E Reflec-
keV hexagonal K mK meV tivity

57Fe 14.41250(2) [36] (1 3 4 28) 372.19(6) 62 6.2 {6.2} 0.80 {0.88}
151Eu 21.54149(16) [39] (3 2 5 43) 287.34(15) 69 8.7 {0.6} – {0.65}
119Sn 23.8795(5) [40] (1 9 10 40) 287.35(15) 77 11.5 {1.7} – {0.91}
161Dy 25.65129(16) [39] (3 2 5 52) 375.11(15) 46 8.0 {0.8} – {0.77}

The error originates from the uncertainties of the Mössbauer energies, given
in [39,40].

In a similar way Bragg temperatures for 57Fe and 161Dy Mössbauer radiations
which are close to each other, combined with the known temperature expansion in the
direction [1 3 4̄ 28] – eq. (3.6) – allow us to determine the lattice constants in HEMEX
sapphire at another temperature:

a = 4.7609(4) Å, c = 12.99838(17) Å at T = 375.11 K.

The experiments with 57Fe, 151Eu, 119Sn, and 161Dy Mössbauer radiations demon-
strated that by using almost exact backscattering at different reflections in the same
Al2O3 crystal one is able to obtain highly monochromatic radiation in a wide energy
range of the X-ray spectrum.

5. Backscattering in combination with a moving resonant scatterer

A backscattering mirror reflects the beam back to the same sample, see figure 12.
A resonator with two mirrors lets the beam pass though the sample many times (see,
e.g., section 6). Multiple interaction of the beam with the sample then occurs and
depends on the coherent properties of the beam: on its longitudinal (time) and lateral
coherency.

Here we present the results of an experiment with a single backscattering mir-
ror, which reflects synchrotron radiation pulses (14.413 keV) to a sample containing
57Fe nuclei. The sample is a '1.3 µm thick stainless steel (SS) foil of composition
Fe55Cr25Ni20 with iron enriched in 57Fe to 95%. 57Fe nuclei in SS exhibit an unsplit
nuclear resonance. The nuclei behave as an ensemble of spatially coherent equivalent
resonators which responds after excitation with enhanced re-emission of the resonant
radiation in the forward direction.

The SS foil is placed 1 m in front of the mirror, thus the nuclear system is excited
twice with a time lag of 6 ns by radiation pulses propagating in two opposite directions.
The detector records time responses (spectra) on both excitations. In figure 12(a) the
time spectrum is shown measured with the SS foil at rest. In figure 12(b) the time
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Figure 12. Time spectra of nuclear forward scattering (NFS) of synchrotron radiation measured with a
backscattering mirror: (a) a single-resonance nuclear target SS ('1.3 µm thick stainless steel foil) at rest:
v = 0; (b) SS, moving with constant velocity v corresponding to a Doppler shift of 91.7 Γ0, Γ0 = 4.8 neV.
(The measurements were performed at HASYLAB at the beamline BW4 by the authors in collaboration
with J. Jäschke, M. Lucht, O. Leupold, U. van Bürck, W. Potzel and P. Schindelmann.) The solid lines
are fits using the NFS theory [41,42]. The insets show the corresponding calculated energy spectra of

NFS.

spectrum is shown measured with the SS foil moving with constant velocity v in the
direction of the incident beam, producing a Doppler shift of the nuclear resonance
in SS of ∆ED = (v/c)E = 91.7 Γ0. Γ0 = 4.8 neV is the natural linewidth. After
reflection the beam sees the direction of v reversed with respect to the beam propagation
direction. Thus, the nuclear resonance is shifted to −91.7 Γ0. The time spectra are
fitted by using the model of nuclear resonant forward scattering in two samples which
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are placed in a row. Without motion the nuclear resonance energies in both samples
coincide. Thus, one expects scattering from a single resonance with a target of twice
the effective thickness – see figure 12(a). An inspection of the measured curve supports
this assumption. The minimum at about 93 ns is the minimum of a dynamical beat
which is not seen in figure 12(b). If for some reason the energy of the reflected
beam would be shifted and thus the incident and backscattered wave would have
slightly different energies, the dynamical beat minimum would be shifted to earlier
times [43,44]. The fit of the curve (a) yields no shift within the limits of a natural line
width Γ0.

The experiment can be interpreted as an ether drift experiment of the Michelson
type. If the whole set-up is not at rest but moves with velocity u with respect to
some universal frame the nuclear resonance is shifted to E0(1 + u/c) and the forward
scattering of delayed quanta takes place at this energy. After reflection by the moving
mirror the energy of the quanta is changed to

E0

(
1 +

u

c

)
− 2

u

c
E0

(
1 +

u

c

)
= E0

(
1− u

c

)
− 2

(
u

c

)2

E0.

E0(1−u/c) is the energy at which the resonance is seen by a γ-ray moving backwards.
Thus, there remains a mismatch by the term −2(u/c)2E0. It is quadratic in u/c as in all
experiments with closed path [45]. According to the analysis of the measurement (a)
we get

2

(
u

c

)2

E0 6 Γ0 or

(
u

c

)2

6 1
2

Γ0

E0
≈ 1.8 · 10−13

and

u 6 4.2 · 10−7c ' 126 ms−1

gives the lower level estimate of the velocity u. No systematic search for a possible
ether drift was planned in this experiment. Thus, this result means that at the time of
the experiment the laboratory component of the velocity with respect to a universal
frame was below the given limit.

Finally, when the sample is moved the position of the resonance in “both” targets
is shifted. This is proved by the observation of strong beating of two resonances spaced
by 2∆ED = 183.4 Γ0, see figure 12(b).

The experiment and the simulations demonstrate that the backscattering mirror
allows the radiation to interact coherently twice with the sample. Results of measure-
ments with two samples are presented and discussed in [43].

6. Fabry–Pérot–Bragg étalon

As shown in the previous sections, sapphire crystals can be used as backscattering
mirrors for hard X-rays. This makes backscattering resonators and interferometers in
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this spectral region of electromagnetic radiation feasible. In the present section we
analyse theoretically the properties of a Fabry–Pérot interferometer with single crystal
sapphire mirrors for monochromatic 14.143 keV X-rays.

The Fabry–Pérot interferometer is commonly used in optics as a narrow-bandpass
filter or as an instrument to measure spectral linewidths. It basically consists of two
parallel mirrors separated by a gap `gap. Fabry–Pérot interferometers that cannot be
scanned are called étalons. The normal modes of radiation, numbered here by n, which
can be excited in the gap have energies En = hνn = (hc/2`gap)n. The separation
between the normal mode energies is

∆EFP = En+1 −En =
hc

2`gap
(6.1)

and, e.g., for a 1 mm gap ∆EFP = 0.62 meV (∆νFP = 1.5 · 1011 Hz). The spectral
width of these modes depend on the reflectivity and transmissivity of the mirrors. The
relative width can be made very small provided the reflectivity of the mirrors is high.
The theory of the optical Fabry–Pérot interferometer is well developed [46].

A first design of a Fabry–Pérot-type interferometer for X-rays was proposed
by Steyerl and Steinhauser [47]. The theory of the Fabry–Pérot–Bragg étalon based
on the dynamical theory of X-ray diffraction in perfect crystals was given in refer-
ences [48,49]. The latter unfortunately contains misprints. We will give here inde-
pendently a short derivation of the expressions for reflectivity and transmissivity of
the Fabry–Pérot–Bragg étalon. A more general theory of the Fabry–Pérot–Bragg in-
terferometer, which takes into account a possible translation of the reflecting planes of
both mirrors, surface roughness, and possible misalignment (rotation) of the crystals
is considered in [50].

It will be assumed that the mirrors of our device are parts of a common crystal.
No translation of the reflecting planes is possible. We shall refer to such an instrument
as a Fabry–Pérot–Bragg étalon.

The amplitude rFP of the radiation reflected from the Fabry–Pérot–Bragg étalon
and the amplitude tFP of the radiation transmitted through the Fabry–Pérot–Bragg étalon
can be derived by summing the amplitudes of all possible multiple scattering paths.
With each path a probability amplitude is associated for an incident beam to arrive at
the final point, which is a product of successive reflection and transmission amplitudes
in both crystal plates of the Fabry–Pérot–Bragg étalon and its gap.8 By using the
notations of figure 13 we obtain:

rFP = r0H + t00eiφr̃0Heiφ̃(tHH + rH0eiφr̃0Heiφ̃(tHH + · · · ,
tFP = t00eiφ(t̃00 + r̃0Heiφ̃rH0eiφ(t̃00 + · · · .

8 This way of derivation, although illustrative, is based mostly on intuition. A self-consistent derivation
of the reflectivity and transmissivity of the Fabry–Pérot–Bragg étalon is given in [50].
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Figure 13. The Fabry–Pérot–Bragg étalon with two parallel single crystal plates used as reflecting mirrors.
The crystals have a thickness ` = z2 − z1 and ˜̀= z̃2 − z̃1 separated by a gap `gap = z̃1 − z2 filled with
nondiffracting medium. Scheme of the multiple scattering and the amplitudes of the individual scattering

events r0H , rH0, etc. are shown.

The summation of the series of multiple scattering amplitudes results in

rFP = r0H +
t00tHH r̃0Hei(φ+φ̃)

1− rH0r̃0Hei(φ+φ̃)
, tFP =

t00t̃00eiφ

1− rH0r̃0Hei(φ+φ̃)
. (6.2)

exp(iφ) and exp(iφ̃) are the transmission amplitudes through the gap for the radiation
propagating in the direction of the incident and of the reflected beam, respectively.
The complex phases φ and φ̃ are due to refraction in the gap:

φ =
K`gap

2γ0
χgap

0 , φ̃ =
K`gap

2γ0

(
χgap

0 − α
)
. (6.3)

Here χgap
0 is the Fourier component of zero order of the electric susceptibility of the

medium filling the gap, cf. eqs. (A.1) and (A.2) of the appendix. The phase φ̃ contains,
additionally to φ, a shift which results from the difference of the values of the wave
vectors of the incident K0 and reflected KH waves: KH − K0 = αK/2, which is
obtained from eq. (A.9) of the appendix, α is the deviation from Bragg’s condition
defined in appendix A.2.

The amplitude of the radiation r0H reflected from the top side of the first crystal
is given by the expression

r0H = R1R2
1− ei(δ1−δ2)`

R2 −R1ei(δ1−δ2)` , (6.4)
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which is obtained from eq. (A.27) of the appendix by using the definitions r0H =
EH (z1) and ` = z2 − z1.

The transmission t00 through the first crystal of the radiation incident on the
crystal is E0(z2) of eq. (A.26) of the appendix and is given by

t00 = eiδ1`
R2 −R1

R2 −R1ei(δ1−δ2)` . (6.5)

To evaluate reflection and transmission of the radiation incident on the bottom of
the crystals we use eqs. (A.28), (A.29) of the appendix. By using the definitions
rH0 = E0(z2) and tHH = EH(z1) we obtain

rH0 =
1− ei(δ1−δ2)`

R2 −R1ei(δ1−δ2)` , (6.6)

tHH = e−iδ2`
R2 −R1

R2 −R1ei(δ1−δ2)` . (6.7)

For the reflection and transmission amplitudes of the second crystal, r̃0H , r̃H0, t̃00,
t̃HH , the same equations (6.4)–(6.7) are valid, however, with the substitution of `
by ˜̀.

The δ1,2 and R1,2 entering expressions (6.4)–(6.7) for reflectivity and transmis-
sivity of the Bragg mirrors are functions of the parameter α – the deviation from
Bragg’s condition – only, as discussed in appendix A.3. The parameter α is a func-
tion of the energy E and the angle of incidence θ of the X-ray, as well as of the
crystal temperature T . The latter controls the Bragg energy of the reflection. Thus,
reflectivity and transmissivity of the Fabry–Pérot–Bragg étalon, given by eq. (6.2),
can also be expressed as functions of the parameter α: rFP(α), tFP(α). The energy,
angular, and temperature dependences of reflectivity and transmissivity are obtained
from rFP(α), tFP(α) by using the dependences of α on E, θ, and T , respectively, given
by eq. (A.11) or (A.18) of the appendix.

The results of numerical calculations of the energy and angular dependence
of transmissivity and reflectivity of the Fabry–Pérot–Bragg étalon performed with
eqs. (6.2)–(6.7) of the present section are shown in figures 14 and 15. Calculations
for four different values of the gap `gap between the sapphire (1 3 4̄ 28) Bragg mirrors
are shown. The dependences labelled with (a) correspond to a zero gap (`gap = 0),
i.e., to a single crystal plate of thickness `+ ˜̀. The dependences show the region of
high reflectivity and respectively very low transmissivity typical for Bragg diffraction
as discussed, e.g., in appendix A.3. The superimposed oscillation is a result of the
finite crystal thickness `+ ˜̀.

The transmissivity with nonzero gaps marked by (b), (c), or (d) in figure 14
shows sharp maxima with spacing ∆EFP given by eq. (6.1) in the region of initially
low transmissivity. Normal incidence of the plane monochromatic wave to the reflecting
planes (1 3 4̄ 28) is assumed. The reflectivity shows sharp minima at the same positions.
The calculations demonstrate that the Fabry–Pérot–Bragg étalon behaves similar to
the optical Fabry–Pérot étalon in the region of high reflectivity. At well-defined X-ray
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Figure 14. Energy spectrum of X-rays (E0 = 14.413 keV) transmitted through (left) or reflected from
(right) the Fabry–Pérot–Bragg étalon made of two single crystal plates of Al2O3 with Bragg-reflecting
planes (1 3 4̄ 28) parallel to the surfaces (figure 13). The crystal temperature is T = 373.11 K. The
radiation is a plane monochromatic wave at normal incidence to the reflecting planes (δθ = 0). The
thicknesses of the Bragg mirrors are ` = ˜̀= 100 µm. The gap between the mirrors in vacuum is taken

to be (a) `gap = 0, (b) `gap = 200 µm, (c) `gap = 500 µm, (d) `gap = 1000 µm.

energies (angles of incidence) a system of two strongly reflecting parallel Bragg mirrors
becomes transparent.

To ensure an observation of the sharp transmission peaks in the energy spectra
of figure 14 one has to use an X-ray beam with a sufficiently high angular collimation.
As one can see from the angular dependences shown in figure 15, the larger the gap
between the mirrors, the less divergent the incident beam should be. For `gap = 1 mm,
e.g., the divergence of the incident beam should be 620 µrad. Along with the very
good collimation the incident X-rays have to have a monochromatization better than
∆EFP, i.e., it should be in the sub-meV region for 14.4 keV X-rays and even sharper
for X-rays with higher energy.
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Figure 15. Angular dependence of transmissivity of X-rays (E0 = 14.413 keV) through a Fabry–Pérot–
Bragg étalon (figure 13) made of two single crystal plates of Al2O3 with Bragg-reflecting planes (1 3 4̄ 28)
parallel to the surfaces. δθ is the angular deviation from normal incidence of the X-rays to the (1 3 4̄ 28)
reflecting planes. The crystal temperature is T = 373.11 K. The radiation is a plane monochromatic wave
at normal incidence to the reflecting planes. The thicknesses of the Bragg mirrors are ` = ˜̀= 100 µm.
The gap between the mirrors in vacuum is taken to be (a) `gap = 0, (b) `gap = 200 µm, (c) `gap = 500 µm,

(d) `gap = 1000 µm.

7. Conclusions

We have presented results of comprehensive experimental studies of exact
backscattering in the two-beam diffraction case in sapphire (Al2O3) single crystals.
The peak reflectivity, the angular and energy dependences were measured by using
highly monochromatic and well collimated X-rays. The dynamical theory of dif-
fraction in perfect crystals qualitatively agrees with our results. We also point out
discrepancies: the wings of energy profiles are better described by a Lorentzian rather
than by a Darwin–Prins profile. We attribute this to a not sufficient perfection of the
sapphire crystals used.

We have also measured energy profiles of reflectivity at normal incidence to
atomic planes (12 4 0) of a silicon single crystal. In this case multiple beam scattering
effects (24 beams are involved rather than 2 in the case of Al2O3) play a significant
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role. The reflectivity drops by more than a factor of 2 and the energy dependence of
exact backscattering has three apparent peaks with different widths.

Crystals with noncubic symmetry, like Al2O3, BeO, Be, noncubic polytypes of
SiC, suit better than, e.g., cubic Si crystals, for use as backscattering mirrors. First,
due to the fact that Bragg energies (X-ray energies for which peak reflectivity in
exact backscattering takes place) are much less degenerate and thus backscattering is
realised for X-rays of practically any energy. Fine tuning of the crystal lattice and thus
of Bragg energies is performed by changing the crystal temperature. Second, exact
backscattering in Si crystals is practically impossible, because of the multiple beam
scattering effects.

Exact backscattering in Al2O3 was observed for 14.4125 keV Mössbauer radiation
of 57Fe [2], 21.5415 keV Mössbauer radiation of 151Eu [37], 23.8795 keV radiation of
119Sn [37], and 25.6513 keV radiation of 161Dy [38]. Experiments with 57Fe, 151Eu,
119Sn, and 161Dy Mössbauer radiations demonstrate that by using backscattering in
one and the same Al2O3 crystal one is able to obtain highly monochromatic radiation
in a wide energy range of the X-ray spectrum.

The performance of the sapphire Bragg mirror as part of a backscattering res-
onator was demonstrated.

A concrete design of a Fabry–Pérot–Bragg étalon and simulations of energy
and angular dependences of transmissivity and reflectivity for 14.413 keV X-rays are
presented and sapphire crystals with a (1 3 4̄ 28) Bragg reflection have been used as
backscattering mirrors.
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Appendix A. Dynamical theory of backscattering

We will recall here elements of the dynamical theory of diffraction of X-rays in
perfect crystals laying emphasis on the points critical in the backscattering geometry.
The equations will be derived that are used in the present paper for evaluation of angu-
lar, energy, and temperature dependences of the crystal reflectivity in backscattering as
well as for the evaluation of the reflectivity and transmissivity of Fabry–Pérot–Bragg
étalons.

The dynamical theory of diffraction in backscattering geometry is discussed
in [4–7]. Our derivation is similar to that of Caticha and Caticha-Ellis [6]. It is based on
the perception that the basic equations of dynamical diffraction theory as they were de-
rived by von Laue [51] (see also [52–54]) are valid in backscattering geometry as well.
However, the parameter α of deviation from the Bragg condition should be defined
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slightly differently. In [6] a new expression for α, valid in backscattering geometry,
was derived. A more general expression for α, valid for any angle of incidence, was
given in [2] and is derived here.

A.1. General equations

The scattering geometry is shown in figure 16. The wave vectors K0 and KH of
the incident and scattered radiation in vacuum define the scattering plane (K0,KH).
Diffraction takes place on the atomic planes of a crystal, which are perpendicular to
the reciprocal vector H . The unit vector ẑ is a normal to the crystal surface directed
inwards.

The equations of the dynamical theory will be derived by using an approach
first formulated by von Laue [51] (see also [52–54]). It is based on the solution of
Maxwell’s equations for a medium with an electric susceptibility that continuously
varies and is periodic in space:

χ(r) =
∑
H

χHeiHr. (A.1)

The Fourier components of the susceptibility χ0,χH , χH̄ , etc. are determined by

χH = −re
λ2

πV
FH (A.2)

with

FH =
∑

n

fn(H)eiHrne−Wn(H) (A.3)

the structure factor of the crystal unit cell, fn the atomic scattering amplitude (with
anomalous scattering corrections) and exp(−2Wn) the Debye–Waller factor of an atom
located in the unit cell at a point with radius vector rn; V is the unit cell volume and
re is the classical electron radius.

The incident monochromatic plane wave εsexp[i(K0r − Et/~)] (|K0| = K =
E/~c = 2π/λ) in the polarization state εs (s = {σ,π}, |εs| = 1) excites a radiation

Figure 16. Scattering geometry.
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field Es(r, t) inside the crystal in the form of a Bloch wave, which in the two-beam
approximation is given by

Es(r, t) = e−iEt/~[Es0eik0r +EsHeikHr
]
, (A.4)

where k0 and kH are in-crystal wave vectors of the incident and diffracted radiation,
respectively, which are related by conservation of momentum in crystals:

kH = k0 +H. (A.5)

Because of the refraction, although small, the in-crystal wave vectors k0,H differ from
those in vacuum K0,H :

k0,H = K0,H + δẑ. (A.6)

This relation is derived from the condition of continuity of the tangential component of
the radiation at the vacuum–crystal interface. Along with δ we shall use the parameter
ε = δγ0/K (γ0 = ẑK0/K).

Substitution of the radiation field in the crystal in the form given by eqs. (A.4),
(A.5), and (A.6) into Maxwell’s equations with the electric susceptibility eq. (A.1)
results in the following set of algebraic equations for the amplitudes of the transmitted
Es0 and diffracted EsH radiation components:

(2ε− χ0)Es0 − χH̄CsEsH = 0,
(A.7)

−χHCsEs0 + (2ε/b − χ0 + α)EsH = 0.

Let us first discuss the parameters α, b, Cs of this set of equations.
The asymmetry parameter

b =
ẑK0

ẑKH
(A.8)

characterizes how symmetrically the wave vectors of the incident and reflected radiation
are directed with respect to the normal of the crystal surface. In the reflection scattering
geometry, the so-called Bragg geometry, as in figure 16, the asymmetry parameter takes
arbitrary negative values. If the wave vectors of the incident and reflected beams make
the same angle with the normal to the crystal surface, then b = −1. This is always
the case for exact backscattering.

The polarization factor Cσ = 1 and Cπ = cos 2θ. As long as our primary
interest here is backscattering, for which |Cs|2 ' 1 for both polarizations, we will not
distinguish in the following between the solutions of eq. (A.7) for different polarization
components and will omit for simplicity the polarization index s.

A.2. Deviation from Bragg’s condition

The parameter

α =
K2

H −K2
0

K2 (A.9)
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is a measure of the deviation from Bragg’s condition (2.1). Indeed, if α = 0 then
K0 = KH and with eq. (A.5) one obtains the kinematical Bragg law in the form
H = 2K sin θ, equivalent to eq. (2.1).

The dimensionless parameter α plays an important role in our considerations since
the reflectivity (transmissivity) can be presented as a function of only this parameter,
as shown in the next section. The sought for angular, energy, and temperature depen-
dences of the reflectivity and transmissivity are then defined by using an α = f (E, θ,T )
dependence. It is this dependence α = f (E, θ,T ) which should be carefully speci-
fied for the dynamical theory to be applicable for backscattering. This dependence is
derived here.

We make use of definition (A.9). With figure 16 and the relation KH = K0 +H
the parameter α is

α =
1
K2

(
−2KH sin θ +H2). (A.10)

Bearing in mind that H = 2π/dhkl = 2Ehkl/~c and K = ω/c = E/~c, α may be
presented as a function of the angle of incidence θ, the energy E, and the Bragg energy
Ehkl(T ) in the following way [2]:

α = 4
Ehkl(T )
E

[
Ehkl(T )
E

− sin θ

]
. (A.11)

This expression is valid for any angle of incidence θ, including θ = π/2. It is the
sought for general dependence α = f (E, θ,T ) for the given value of the Bragg energy
Ehkl.

By using the X-ray wavelength λ instead of energy E and dhkl instead of Ehkl
we obtain the equivalent dependence

α =
2λ

dhkl(T )

[
λ

2dhkl(T )
− sin θ

]
. (A.12)

By using the kinematical Bragg law, eq. (2.1), α can be expressed via the kinematical
Bragg angle θB:

α = 4 sin θB[sin θB − sin θ]. (A.13)

Assuming that |θB − θ| � 1 one easily derives from eq. (A.13) the standard approxi-
mation for α normally used in the dynamical theory [53,54]:

α = 2(θB − θ) sin 2θB. (A.14)

However, this expression fails to work in the region of backscattering: θB = π/2.
As was shown in [6] another approximation of α is applicable for backscattering:

α = 2

[
δθ2 − 2(E −Ehkl)

Ehkl

]
. (A.15)

This expression is easily derived from the general expression (A.11) for α, assuming
|δθ| � 1 and |(E −Ehkl)/Ehkl| � 1.
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Due to the fact that the interplanar distance dhkl and, therefore, the Bragg energy
is temperature-dependent, α can be changed by varying the temperature. Taking into
account that the variation of the Bragg energy in a small temperature range can be
expressed as

Ehkl(T + δT ) = Ehkl(T )(1− βhklδT ), (A.16)

with

βhkl =
1

dhkl(T )
ddhkl
dT

(A.17)

the linear temperature expansion coefficient in the direction [hkl], we obtain for α the
following expression:

α = 2δθ2 − 4

[
δE

Ehkl(T )
+ βhkl(T )δT

]
. (A.18)

Here δE = E − Ehkl(T ). The equation shows that α varies linearly both with
X-ray energy and crystal temperature, and quadratically with the angular deviation δθ.

Equation (A.18) can be used to establish the relation of equivalence between the
variations of X-ray energy and crystal temperature. Those values of E and T are
equivalent which result in the same reflectivity. As long as the reflectivity of X-rays
is a function of α only, we obtain from eq. (A.18) the E–T equivalence relation:

δE = Ehkl(T )βhkl(T )δT. (A.19)

A.3. Reflectivity and transmissivity

The compatibility conditions for the set of linear equations (A.7) determine two
possible values of ε:

2ε(1,2) − χ0 = C
√
|b|χHχH̄

[
−y ±

√
y2 +

b

|b|

]
. (A.20)

Here

y =
χ0(1− b) + αb

2C
√
|b|χHχH̄

. (A.21)

It is assumed that the imaginary part of the root in eq. (A.20) is positive and index 1
in ε1 corresponds to the sign “+”, i.e., Im(ε1 − ε2) > 0. With account of the two
possible solutions (A.20) for ε, expression eq. (A.4) for the radiation field in the crystal
reads

E(r, t) = eiK0r−iEt/~[E0(z) +EH (z) eiHr], (A.22)

with

E0(z) =
∑
ν=1,2

eiδνzE(ν)
0 , EH (z) =

∑
ν=1,2

eiδνzE(ν)
H , δν =

K

γ0
εν . (A.23)
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By using eq. (A.7) one can define the ratio of the amplitudes E(1,2)
0 and E(1,2)

H :

R(1,2) =
E(1,2)
H

E(1,2)
0

=
2ε(1,2) − χ0

CχH̄
. (A.24)

To define the amplitudes E(1,2)
0 and E(1,2)

H themselves additional information is needed.
It can be obtained from the boundary condition E0(z1) = 1 at the entrance surface
z = z1 for the beam propagating in the forward direction and from the boundary
condition EH(z2) = 0 at the exit surface z = z2 for the reflected beam, see figure 16.
By using eqs. (A.23), they can be written as

E(1)
0 exp[iδ1z1] +E(2)

0 exp[iδ2z1] = 1,
(A.25)

E(1)
H exp[iδ1z2] +E(2)

H exp[iδ2z2] = 0.

As a result the forward E0(z) and Bragg scattered EH(z) components of the radiation
field eq. (A.22) inside the crystal at a depth z are given by

E0(z) =
R1 exp[iδ2(z − z2)]−R2 exp[iδ1(z − z2)]
R1 exp[iδ2(z1 − z2)]−R2 exp[iδ1(z1 − z2)]

, (A.26)

EH(z) =
R1R2{exp[iδ2(z − z2)]− exp[iδ1(z − z2)]}
R1 exp[iδ2(z1 − z2)]−R2 exp[iδ1(z1 − z2)]

. (A.27)

For the problem of the Fabry–Pérot–Bragg étalon addressed in section 6 it is
helpful also to consider the case of the entrance surface at z2 and the incident radiation
with the wave vector KH rather than with K0. In this case the boundary conditions
are written as

E(1)
0 exp[iδ1z1] +E(2)

0 exp[iδ2z1] = 0,
(A.28)

E(1)
H exp[iδ1z2] +E(2)

H exp[iδ2z2] = 1,

resulting in the solution:

E0(z) =
exp[iδ2(z − z1)]− exp[iδ1(z − z1)]

R2 exp[iδ2(z2 − z1)]−R1 exp[iδ1(z2 − z1)]
, (A.29)

EH(z) =
R2 exp[iδ2(z − z1)]−R1 exp[iδ1(z − z1)]
R2 exp[iδ2(z2 − z1)]−R1 exp[iδ1(z2 − z1)]

. (A.30)

The reflectivity of the crystal is the ratio of the fluxes in the incident and in the
reflected beams:

R =
1
|b|
|EH(zin)|2
|E0(zin)|2 , (A.31)

where for incidence from the front side zin = z1 and eqs. (A.26)–(A.27) should be used,
while for incidence from the opposite side zin = z2 and eqs. (A.29)–(A.30) should be
used. In the approximation of a semi-infinite crystal for which Im(δ1−δ2)(z2−z1)� 1
the expression for the reflectivity (A.31) using eqs. (A.26)–(A.27) – front side incidence
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– reduces to R = R1/|b|. By using eqs. (A.20), (A.24) we obtain the well-known
expression for the reflectivity in the approximation of a semi-infinite crystal:

R =

∣∣∣∣χHχH̄
∣∣∣∣
∣∣∣∣∣−y ±

√
y2 +

b

|b|

∣∣∣∣∣
2

. (A.32)

The reflectivity is a function of the parameter y alone.
Let us first assume that y is real. This happens in the absence of photo-absorption,

or when the photo-absorption can be neglected: Im{χ0,H} � Re{χ0,H}. We assume
also that χH = χH̄ , which is true for centrosymmetric crystals. Under these conditions
the reflectivity equals unity in the region y2 6 b/|b|, usually referred to as the region
of total reflection. Taking into account eq. (A.21) the region of total reflection can be
defined by the parameter α as

α−1 6 α 6 α+1, (A.33)

α±1 = α0 ± 2C
√
χHχH̄
|b| , α0 = χ0

(
1− 1

b

)
. (A.34)

The centre of the region of total reflection is shifted from the kinematical position
α = 0 by α0 = χ0(1−1/b) due to refraction. For instance, X-rays at normal incidence
(δθ = 0, b = −1) are reflected at an energy

E = Ehkl

(
1− χ0

2

)
≡ Ẽhkl, (A.35)

which is shifted by δE = −χ0Ehkl/2 from the kinematical Bragg energy Ehkl. The
shift is positive, as χ0 < 0. Ẽhkl will be referred to as the dynamical Bragg energy.
The width of the region of total reflection,

∆α = α+1 − α−1 = 4C
√
χHχH̄/|b|, (A.36)

is of the order of |√χHχH̄ | 6 10−6. To define the width of the reflection region
in units of the angle of incidence θ, X-ray energy E, or crystal temperature T an
α = f (θ,E,T ) dependence should be used, e.g., expressed by eq. (A.18), which is
valid in backscattering geometry.

According to eqs. (A.18), (A.33), (A.34) already tiny variations of E, θ or T
produce sizable changes in reflectivity. These variations, however, leave the compo-
nents of the electric susceptibility χ0, χH , asymmetry parameter b, and polarization
factor C entering along with α the variable y practically unchanged. From this we
conclude that the reflectivity can be expressed as a function R(α). If R(α) is known,
by using α = f (θ,E,T ) presented in appendix A.2, the reflectivity as a function of
angle of incidence, photon energy and crystal temperature can be immediately derived.

Taking into account photo-absorption or a crystal of finite thickness requires the
application of general eqs. (A.26)–(A.31) for calculations of the reflectivity. Maximum
reflectivity and its position α0, as well as the width in the reflection curve ∆α =
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α+1 − α−1, can be derived by numerical calculations. It will be different from δα
given by eq. (A.36), but still of the order |χH | 6 10−5. Also the conclusion, that the
reflectivity is a function of α, only stays intact in the general case.

From numerical calculations one defines R(α), maximum reflectivity R(α0), its
position α0 and its half width ∆α. All these dependences and values can be easily
expressed in the units of the variables θ, E, or T by using a valid relation α =
f (θ,E,T ) presented in appendix A.2.
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Phys. Rev. A 139 (2000).
[45] R. Mansouri and R.U. Sexl, Gen. Rel. Grav. 8 (1977) 497, 515 and 809.
[46] M. Born and M. Wolf, Principles of Optics (Pergamon Press, Oxford, 1964).
[47] A. Steyerl and K.-A. Steinhauser, Z. Phys. B 34 (1979) 221.
[48] A. Caticha and S. Caticha-Ellis, Phys. Status Solidi A 119 (1990) 643.
[49] A. Caticha, K. Alberty and S. Caticha-Ellis, Rev. Sci. Instrum. 67 (1996) 3380.
[50] V.G. Kohn, Yu.V. Shvyd’ko and E. Gerdau, to appear in Phys. Status Solidi B (2000).
[51] M. von Laue, Ergebn. Exakten Naturwiss. 10 (1931) 133.
[52] W.H. Zachariasen, Theory of X-Ray Diffraction in Crystals (Willey, New York, 1945).
[53] B. Batterman and H. Cole, Rev. Mod. Phys. 36 (1964) 681.
[54] Z.G. Pinsker, Dynamical Scattering of X-rays in Crystals (Springer, Berlin, 1978).


