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Diffusion in crystalline materials

G. Vogl and B. Sepiol
Institut für Materialphysik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria

Recently nuclear scattering of synchrotron radiation proved to be a powerful new method
to study the elementary diffusion jump in crystalline solids. The scattered radiation decays
faster when atoms move on the time scale of the excited-state lifetime of a Mössbauer
isotope because of a loss of coherence. The acceleration of the decay rate differs for
different crystal orientations relative to the beam providing information not only about the
rates but also about the directions of the elementary jumps. We discuss first applications of
the method.

1. Introduction

1.1. Diffusion in crystalline materials

There is no need to emphasize the importance of diffusion for innumerable
processes in materials, quasi-continuous (gases, liquids, glasses) or with discrete struc-
ture, i.e., crystalline solids. Fick was the first to formulate a law of diffusion, thinking
of continuous media. It is most remarkable that for a long time no methods were
available for detecting atomic jumps between well-defined residence sites in solids in
an atomistic way, i.e., to determine the elementary diffusion jumps, which implies de-
termining jump frequency and jump vector. Nearly all information on the mechanism
of diffusion was derived in a rather indirect way from studies of radiotracer diffusion
which is a bulk phenomenon of great sensitivity, lacking, however, any atomistic in-
formation. Some relaxation methods allowed one to deduce a jump frequency, tacitly
taking for granted that these jumps exist, but the jump vector, i.e., length and direction
of the diffusion jumps, remained unknown.

1.2. Atomistic methods, in particular nuclear resonant scattering of synchrotron
radiation

We confine ourselves in this paper to diffusion processes where indeed the full
information on jump frequency and vector is necessary to describe the event, i.e., we
limit this paper to diffusion in crystalline materials. For diffusion in glasses see the
contribution by Franz et al. [1].

The breakthrough of quasielastic neutron scattering (QNS), promoted by Brock-
house in the late fifties [2], opened the way to an atomistic view on diffusion. Quasi-
elastic Mössbauer spectroscopy (QMS) on diffusion started in the late sixties [3], after
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the theoretical papers by Singwi and Sjölander on how to study diffusion in solids
with QNS and QMS [4]. In the case of QNS, diffusion manifests itself through the en-
ergy broadening of the scattered intensity; in the case of QMS, through the analogous
broadening of the nuclear resonance line(s).

In the following we explain how to use the new technique of nuclear resonant
scattering of synchrotron radiation [5–7] for studying diffusion directly in the time
domain, whereas QMS and QNS studies work in the energy domain.

In this paper we shall mainly discuss nuclear resonant forward scattering of
synchrotron radiation. NRS is, however, not limited to scattering in the forward
direction and some preliminary results obtained for scattering into the Bragg directions
will also be presented.

The principal idea of NRS is: the extreme coherence of the SR in the forward
direction (the phase matching) after nuclear resonance absorption in the sample is
destroyed by diffusion through “muddling up” the phases of the partial wave trains
reemitted from the jumping atoms. This leads to a faster decay of the intensity of the
reemitted radiation. From this diffusionally accelerated decay, details on the diffusion
process can be derived, in particular when the sample is a single crystal.

2. A few words about theory

Here we give only an outline, for more details see the contribution by Kohn and
Smirnov in this issue (section III-1.5).

2.1. Scattering functions for diffusion

All nuclear methods have common principles, essentially already described in the
original theory of Singwi and Sjölander about the effects of diffusion on quasielastic
neutron scattering (QNS) and quasielastic Mössbauer spectroscopy (QMS) [3]. The
diffusion is contained in the intermediate scattering function1 I(Q, t) which is a Fourier
transform of the diffusional part of the space–time self-correlation function G(r, t):

I(Q, t) =

∫
dr exp(−iQr)GS(r, t), (2.1)

where Q is the momentum transfer from/to the interacting radiation.
In the following we perform the usual separation into the slow diffusional motions

and the much faster lattice vibration. The energy change (the phonons) which the
lattice vibrations transfer to the radiation is far out of the energy window of interest in
diffusion studies; therefore lattice vibrations are only of interest here inasmuch as they

1 The name “intermediate” is derived originally from QNS where the measured scattering function S(Q,ω)
is calculated from the space–time correlation function G(r, t) by performing first a Fourier transform
from space into momentum (leading to the intermediate scattering function) and then a Fourier trans-
formation from time into energy, leading to S(Q,ω).
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cause an intensity reduction of the quasielastic radiation through the Lamb–Mössbauer
factor.

For Markovian diffusion on crystalline lattices of Bravais type (i.e., only one sub-
lattice) the intermediate scattering function is simply an exponential of time, modulated
by the lattice structure [8]:

I(Q, t) = exp

[
− t
τ

N∑
i=1

N−1{1− exp(−iQli)
}]

= exp

[
− t
τ
α(Q)

]
, (2.2)

with τ the residence time on one site (its reciprocal being the jump frequency to any
neighbour site). The diffusion jumps follow jump vectors li to N possible sites. In
the simplest case of jumps to nearest neighbours (NN) only, i counts the NNs from 1
to their number N .

The right hand side of eq. (2.2) is an abbreviated form defining α(Q), which
describes the summation of partial wave trains when the atom jumps from site to site
on what we may call the “jump lattice”, i.e., the ensemble of neighbour sites reached
by jumps during the interaction time with the probing radiation. We call α(Q) the
“jump function” because it contains all information on the sites visited by a jumping
atom during the interaction time.

From I(Q, t), the universal resonance function ϕ(Q,ω) [9] is calculated by a
time-to-energy Laplace transformation

ϕ(Q,ω) =

∫ ∞
0

dt exp

[
iωt− Γ0t

2~

]
I(Q, t), (2.3)

where for NRS and QMS Γ0 is the natural width (FWHM) of the excited state of the
nucleus, for QNS it is the experimental resolution if we regard it as having approxi-
mately a Lorentzian distribution.

By the integration one obtains

ϕ(Q,ω) = i

{
ω + i

[(
Γ0

2~

)
+

1
τ
α(Q)

]}−1

. (2.4)

In the two “old” methods, QMS and QNS, the real part of ϕ(Q,ω) is the essential
factor of the absorption cross section and the emission probability and of the scatter-
ing function. (2~/τ )α(Q) is equal to Γd(Q), the energy width (FWHM) caused by
diffusion, responsible for the Lorentzian shaped “diffusional line broadening”.

In nuclear resonant scattering of synchrotron radiation, in particular, in nuclear
forward scattering, ϕ(Q,ω) describes the dynamical effects on the spectrum, which
consist of a time-accelerated decay of the scattered intensity because the coherency
among the partial wave trains from the different diffusion sites is destroyed. As
already mentioned in section 1, this leads to a “diffusionally accelerated” decay of the
coherently forward scattered intensity.
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2.2. Diffusion and nuclear resonant forward scattering

As just mentioned, ϕ(Q,ω) describes diffusional effects on the spectrum. In
the case of a thin sample the intensity2 IFS(Q, t) of nuclear resonant scattering in
the forward direction in the presence of diffusion can be expressed directly by the
intermediate scattering function I(Q, t) [10] leaving out the mathematically abstract
transformation into the energy domain, as is necessary for QMS and QNS:

IFS(Q, t) = I0

(
L2

4τ0

)
exp

(
− t

τ0

)∣∣I(Q, t)
∣∣2, (2.5)

where I0 is the fraction of incoming radiation within the width of the nulear level (in the
following the 14.4 keV level of 57Fe) reduced by electronic absorption in the sample,
t is the time after nuclear excitation by the synchrotron pulse, L is the “effective
sample thickness”, which is the product of the number of scattering atoms in the
sample, the nuclear absorption cross section and (relevant in solid state investigation)
the Lamb–Mössbauer factor. τ0 is the natural lifetime of the nucleus (141 ns for 57Fe).

We mention here (but for sake of simplicity shall not elaborate that general case
in detail) that for finite sample thickness the expression for the intensity of nuclear
forward scattering is considerably less lucid (for details, see [10]):

IFS(Q, t) = I0(2π)−1

∣∣∣∣∫ +∞

−∞
dω exp(−iωt) exp

[
− L

4τ0
ϕ(Q,ω)

]∣∣∣∣2. (2.6)

2.3. Diffusion and non-forward scattering

For scattering in other directions than forward, we must distinguish several cases.

2.3.1. Resonant incoherent scattering
Up to now experiments on the influence of diffusion on nuclear resonant scattering

have treated without exception the accelerated decay of the forward scattered intensity.
Because resonant scattering is a nuclear process, which cannot be directly affected by
atomic motions, one would expect this fraction to go somewhere else. Since the reason
for the intensity drop in the forward direction is the destruction of coherence by nuclei
that change their sites during nuclear excitation, it is obvious that the missing intensity
will be scattered incoherently in all directions [9]. Of course, it is more difficult to
measure this diffuse part than the forward coherent intensity, which is the reason why
only exceptionally such experiments have been performed so far [11]. An attempt to
measure the dynamical effects through incoherent scattering of synchrotron radiation
was performed on a glass [12] but the inelastic background was too large to observe
the slower intensity decay predicted by [9].

2 In order to gain maximum information about the jumps, the samples have to be single crystals. In
forward scattering the vector Q is fixed, its length being 7.3 Å−1, but the angles of the jump vectors li
versus Q can be varied by changing the crystal orientation. We symbolise this dependence by writing
IFS(Q, t).
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2.3.2. Resonant Bragg-scattering
For crystalline materials the phenomenon of coherent scattering should not only

be observable in the forward direction, but also for all momentum transfers that fulfill
the Bragg-condition ∆Q = G, where G is a reciprocal lattice vector. Of course, this
condition restricts the possibility of observing accelerated decay of coherent intensity
to a limited number of directions, on the other hand this technique allows us to work
in a scattering geometry which permits the use of thick samples which cannot be
prepared as thin foils due to their brittleness. Feasibility tests on Fe3Si single crystals
were performed very recently [13].

2.3.3. Rayleigh scattering
Rayleigh scattering, i.e., elastic scattering from the electronic shells of the atom,

of radiation which has undergone nuclear resonant scattering before reaching the sam-
ple, allows the study of samples without 57Fe or other Mössbauer isotopes. This
method will hopefully lift the restrictions to very few Mössbauer isotopes and in fact
allow for diffusion studies at high temperatures. Rayleigh scattering is a fully coherent
process, in consequence one observes the coherent scattering function S(Q,ω) which is
the Fourier transformed pair-correlation-function G(r, t). There have been attempts to
use nuclear resonant monochromators like 57FeBO3 [14] to provide a time-independent
high-brilliance source of Mössbauer quanta, which could be scattered by the sample
and analyzed by using a Doppler-shifted absorber to obtain S(Q,ω). Unfortunately,
this is a difficult task due to the complicated hyperfine structure of FeBO3.

A more direct way of measuring atomic diffusion consists of observing in the
time domain the decay of quantum beats, produced by resonant scattering of syn-
chrotron radiation on two stainless-steel foils in constant relative motion, one in
front of the sample, the other behind the sample. The method is called time do-
main interferometry [15] and can again be related to the pair correlation function via
I(Q, t) ∝

∫
dr exp(−iQr)G(r, t). In crystalline materials the scattered intensity is

mainly found in Bragg reflections, which restricts the measurement of I(Q, t) to a few
singular points in reciprocal space, except for disordered samples where additional
Laue monotonic scattering provides more or less isotropic intensity. According to the
recently published theory of Ruebenbauer [16] this method will allow the investigation
of the atomistic diffusion mechanism beyond iron.

3. Experiments on forward scattering

We shall explain the potential of NRS for studying diffusion in crystalline mate-
rials for two examples.

Experiments with NRS were carried out at the nuclear resonance beamline of the
ESRF (for details on the beam line see [17]). The storage ring operated in 16-bunch
mode providing short pulses of X-rays (duration about 100 ps) every 176 ns. The
radiation from the undulator source, optimized for the 14.4 keV transition in iron,
was filterd by a double Si (1 1 1) reflection followed by monochromatization in a high
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Figure 1. Set-up used in investigations of diffusion with nuclear resonant forward scattering. The crystal
orientation relative to the synchrotron beam can be freely chosen.

resolution nested monochromator. The delayed events, resulting from nuclear forward
scattering, were counted by a fast avalanche photodiode (APD) detector. Because of
overloading of the detector immediately after the synchrotron pulse, data taken during
the first 20–25 ns after each pulse had to be discarded.

The samples were heated in a furnace which was mounted on a goniometer
head permitting orientation of the furnace together with the sample relative to the
synchrotron beam. Temperatures up to 1100 ◦C are possible. Encapsulation of the
samples (in BN or in BeO ceramics) is necessary in order to prevent crumbling and
evaporation at high temperatures. Figure 1 shows schematically the set-up of a diffu-
sion experiment with NRS. The crystals were sufficiently thin (in the order of 20 µm)
to allow the thin sample approximation. To obtain the intensity in forward scattering
in a crystalline sample, we insert eq. (2.1) into eq. (2.5):

IFS(Q, t) = I0
L2

4τ0
exp

(
− t

τ0

)
exp

[
−2t
τ
α(Q)

]
. (3.1)

In the case of crystalline lattices of Bravais type, the diffusionally accelerated decay of
nuclear scattering in the forward direction can be connected to the natural Mössbauer
broadening Γ0 and the diffusional Mössbauer line width Γd,

Γ0 =
~
τ0

and Γd(Q) =
2~
τ
α(Q), (3.2)

in the following way:

IFS(Q, t) = I0
L2

4τ0
exp

[
−t(Γ0 + Γd(Q))

~

]
. (3.3)
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We see that the logarithm of the decay rate is now proportional to the width of the
diffusionally broadened line (Γ0 + Γd), as measured in classical QMS. This has been
used in [18] and recently derived more strictly in [10].

3.1. Iron diffusion in FeAl

3.1.1. Time dependence
A system of general interest for diffusion studies was selected as one of the

first candidates to test the new method of NRS. It was an intermetallic alloy with
the ordered B2 structure (CsCl structure). There, an intriguing question is still under
discussion, i.e., whether the atoms of one type, here Fe, jump directly to sites on the
Bravais lattice occupied only by Fe atoms, or whether they take the opportunity of the
shorter jumps to intermediate residence sites on the Al sublattice.

A crystal of a stoichiometric (equiatomic) sample of the ordered alloy FeAl
was oriented with its (1 1̄ 1)-plane horizontal (i.e., in the plane of the synchrotron
beam), so that any crystal direction from [1 1 3] through [1 1 1] to [1 1 0] could be
adjusted parallel to the beam. Figure 2 shows the time dependence of IFS(Q, t) at

Figure 2. FeAl. Time dependence of forward scattering intensity at three temperatures with the beam
parallel to the [1 1 0] crystal direction.
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three different temperatures with the beam parallel to the [1 1 0] crystal direction. It is
evident that at high temperatures the time dependence of the logarithm of the forward
scattered intensity indeed follows eq. (3.3), its slope, if measured as a function of crystal
orientation, yielding the details of the jump mechanism, i.e., jump frequency and jump
vector. At low temperatures, however, the logarithm of the decay deviates from a
linear dependence. Here the thin-sample approximation is no longer valid because the
Lamb–Mössbauer factor contained in the effective thickness L is too large. Now the
full theory has to be applied, i.e., eq. (2.6). For jump diffusion between lattice sites
we get [9]

IFS(Q, t) = I0
L

4t
J2

1

(√
Lt/τ0

)
exp

[
− t
τ
α(Q)

]
, (3.4)

with J1 the first order Bessel function. In terms of Mössbauer line width:

IFS(Q, t) = I0
L

4t
J2

1

(√
Lt/τ0

)
exp

[
− t(Γ0 + Γd(Q))

~

]
. (3.5)

For a sufficiently thin sample the Bessel function J1 can be expanded up to first
order and eqs. (3.4) and (3.5) reduce to the simpler eqs. (3.1) and (3.3), respectively.
Since diffusional effects are only visible at high temperatures, we shall not discuss the
complicated full-theory case any further.

3.1.2. Orientation dependence of integrated intensity (ODIN)
For realising a study with a great number of crystal orientations in a limited

beam time we made use of an abbreviated method [29] which does not follow the
decay of the NRS intensity over a longer time interval, but rather time-integrates over
the intensity. For the method the name ODIN (orientation dependence of integrated
intensity of NRS) was adopted. The idea is: a diffusionally accelerated decay will
lead to a lower integrated intensity during the measuring period (about 165 ns after
every pulse) than without diffusion. If the decay is purely exponential in time, as
expected for a sufficiently thin sample, the integrated intensity depends in a simple
way on the jump function α(Q), or – in other words – it is related in a simple way to
the diffusional broadening of classical QMS:

IODIN(Q) =

∫ ∞
0

dt IFS(Q, t) ∝
(
Γ0 + Γd(Q)

)−1
. (3.6)

For FeAl we know from the earlier measurements [20,21] that in the limit of resolution
the jumps are on Bravais lattices.

Figures 3 and 4 show ODIN values measured at 1030 ◦C, with the sample oriented
in 44 different directions, together with model calculations. Because of experimental
limitations the time integration was, of course, not from zero to infinity, but rather
over a time window from 2 ns to 165 ns after the synchrotron pulse. This leads to a
modification of eq. (3.6) by a factor which is a simple function of the period after the
synchrotron pulse during which the time window is open.
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Figure 3. Orientation dependence of time-integrated intensity of delayed counts. Symbols: measured
data. Lines: expected orientation dependence for three different types of jumps: (a) [1/2 1/2 1/2] –
jumps of the iron atom into nearest neighbour sites, (b) [1 0 0] – jumps into second nearest neighbour

sites, (c) [1 1 1] – jumps to third nearest neighbours.

In the figures a clear angular dependence is obvious. In the following we com-
pare the data with expectations from different jump models. If there are several j
independent jump paths, the diffusional line broadening Γd(Q) – and therefore also the
ODIN value – is

IODIN(Q) ∝
(
Γ0 + Γd(Q)

)−1
=

[
Γ0 +

2~
τ

∑
j

Wjαj(Q)

]−1

, (3.7)

where Wj are the probabilities for particular jump paths and αj(Q) are the correspond-
ing jump functions.

A comparison with the experimental data proves that the best fit (figure 4) is
achieved with a combination of [1 1 0] and [1 0 0] jumps in the ratio of (1.9± 0.1) : 1.
These are jumps to sites on the iron sublattice of the ordered structure. Within errors the
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Figure 4. Orientation dependence of time-integrated intensity of delayed counts together with a model
for a combination of [1 0 0] and [1 1 0] jumps via a short-time occupation of an antistructure site.

result agrees with conventional QMS [20], but the uncertainty of the NRS measurement
is considerally smaller. The reasons are: Firstly, the angular resolution of NRS (µrad) is
far better than that of QMS (0.12 rad). Secondly, such a dense chain of measurements
as in figures 3 and 4 would need months in classical QMS (with NRS it needed
about one hour); to keep the parameters constant and the sample composition and
crystallinity stable at high temperatures (single crystal close to melting point!) is very
difficult during such a long period.

The crystal structure of FeAl is that of ordered CsCl (B2) structure. The intrigu-
ing question how diffusion proceeds in such an ordered structure, where the nearest
neighbours are of the other kind, has been under discussion for a considerable time.

Now from the described experiment, the apparent elementary diffusion jumps
in FeAl are between sites on the iron sublattice without making use of the sites on
the aluminium sublattice. All considerations regarding the underlying mechanism that
lead to the measured combination of [1 1 0] and [1 0 0] jumps lead to the conclusion
that a nearest neighbour jump to an antistructure site on the Al sublattice must be
the elementary jump (see figure 4, inset). Even though that antistructure site must be
occupied for a much shorter time than the “normal” positions on the iron sublattice,
and therefore inaccessible to the earlier QMS measurement. It should form the basis
for further jumps to second nearest neighbours, i.e., along [1 0 0] or to third nearest
neighbours, i.e., along [1 1 0].

Calculations have been performed to explain the experiments and prove the basic
mechanism. Questions addressed are: is the [1 1 0] preference a normal statistical
effect or does it need coupled vacancies? Monte-Carlo calculations [22,23] appear to
indicate the former: elementary jumps lead “automatically” to preference of neighbour



IV-2.6 G. Vogl, B. Sepiol / Diffusion in crystalline materials 605

sites along [1 1 0] over sites along [1 0 0]. A disturbing issue results from first principle
calculations [24] that find the jump to the antisite to be very costly in energy. Thus
there remains a controversy on the details of the jump mechanism: is it really via the
short-time residence on an antistructure site [25]?

It is challenging to find jumps to the antistructure site. We need to find a second
component in the spectra attributable to fast jumps away from the antisite. Since
that component’s contribution would be small, QMS is not sensitive enough for a
clear answer; we expect to obtain it from NRS with its considerably higher statistical
precision and angular resolution.

3.2. Iron diffusion in Fe3Si

Fe3Si is another intermetallic alloy with ordered lattice structure. The first full
report [18] on a measurement of diffusion in a crystal with the new technique of NRS
of synchrotron radiation has been on this system.

For Fe3Si the theory is slightly more complicated, since here we have three iron
sublattices. Now the jumps between sites on the different sublattices (between sites on
a non-Bravais lattice) are accessible to the measurements, we therefore expect several
components in the spectra.

As in the preceding section, we have to find the intermediate scattering function
and introduce it into eq. (2.5) in order to find the intensity of the forward scattered
radiation. For diffusion via several sublattices of a non-Bravais lattice the intermediate
scattering function is a sum over the sublattices [26,27]:

I(Q, t) =
∑
p

wp exp
[
tMp(Q)

]
, (3.8)

with Mp(Q) the pth eigenvalue of the jump matrix A (the non-Bravais-lattice analogue
to the jump function for a Bravais lattice) [18] and wp(Q) the weight of the component
in the measured spectra corresponding to the pth eigenvalue of the jump matrix. The
elements of the jump matrix A specify the various allowed jumps for the diffusing
atom and the accompanying jump rates. In terms of QMS Mp(Q) = −Γd,p(Q)/2~,
the negative value of the half width at half maximum of the diffusional part of the
Mössbauer line.

In the case of Fe diffusion in Fe3Si we deal with the so-called D03 lattice structure
(figure 5), the superlattice is built up of four interpenetrating f.c.c. sublattices with
three of them occupied by iron atoms (called α1, α2 and γ) and the fourth (called β)
by silicon. The two α sublattices have different symmetries for γ- and β nearest-
neighbours (NNs), iron atoms on α-sublattice sites with four iron NNs on γ-sublattice
sites, iron atoms on γ-sublattice sites with eight iron NNs on α-sublattice sites. In
earlier Mössbauer work it was proved that for stoichiometric composition a simple
diffusion model with NN jumps of iron atoms between α- and γ-iron sublattice sites
is sufficient [28].
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Figure 5. Fe3Si. Top: time dependence of forward scattering intensity with the synchrotron beam along
the [1 1 1] and [1 1 3] directions at three different temperatures. Bottom: 2/8 of elementary cell of the
D03 structure. The iron atoms occupy the sublattices α1, α2 and γ (open circles), the silicon atoms the

sublattice β (full circles).

For a stoichiometric D03 structure the jump matrix A has the form [28]

A =
1
ταγ

−2 E E∗

E∗ −1 0
E 0 −1

 , (3.9)
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where 1/ταγ is the jump rate of the iron atom from a site on a α sublattice into a
vacancy on any NN site on the γ sublattice and vice versa, and E is a function of
the structure of the jump lattice (see [28]). The matrix tells us that in general there
are three components in the spectra with three different eigenvalues Mp (for QMS
corresponding to three diffusionally broadened lines) with corresponding weights.

With Q parallel to special crystal directions, the number of components can be
less than three: there are only two components when Q is parallel to a [1 1 3] crystal
direction and only one for a [1 1 1] direction.

Single crystalline samples were measured in several orientations, in particular
with the [1 1 3] and the [1 1 1] crystal directions parallel to the synchrotron beam.

Analytical calculations prove that in the [1 1 3] direction (only two components,
the third has weight zero) the eigenvalues and relative weights for the slow component
are very close to zero (no diffusional acceleration) and to 1/9, for the fast component
close to 3/ταγ and 8/9, respectively. It is easily shown by numerical calculations (see,
e.g., [10]) that in the thin sample approximation the decay of the forward scattered
intensity can be approximately described by two exponentials, one of which exhibits
the natural decay rate of the nuclear excitation while the other shows a diffusionally
accelerated decay. The exact result is obtained by inserting the intermediate scattering
function eq. (2.2) into the universal resonance function eq. (2.3) and the result into
eq. (2.6).

Figure 5 shows time spectra – forward scattered intensity as a function of de-
lay after the SR pulse – for both sample orientations and at two and three different
temperatures. Whereas for the [1 1 1] orientation the decay is close to one exponential
(non-accelerated), for the [1 1 3] orientation the time dependence may indeed be ap-
proximated by two exponential decays (dashed lines). The exact interpretation made
use of convoluting with the Bessel function as a prefactor to follow the equation for
non-infinitely thin samples. This correction, however, gives only a very slight bending
down of the exponential functions. The results are in agreement, though not perfectly,
with the simple theory. For more details on experiment and complete interpretation
see [29].

The experiment was a feasibility test of a rather involved system – two different
elementary jumps – and was not expected to provide results beyond what had been
known from QMS. The elementary jump mechanism of the iron atoms is a to-and-fro
jumping between α and γ sublattices avoiding the Si-sublattice.

3.3. A side-glance at diffusion in glasses

Meyer et al. [24] have undertaken NRS measurements in the forward direction on
ferrocene/dibutylphthalate in the temperature range from 140 to 205 K, i.e., up to the
glass transition in order to study relaxation. Whereas in the above described studies on
crystalline materials NRS has no competition (except from the related methods of QMS
and QNS), since other methods are completely unable to determine the elementary
jump, i.e., jump vector and frequency, in glasses the aim is to determine relaxation
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times which can also be drawn from a number of other methods. Nevertheless, Meyer
et al. were able to demonstrate that in the future it should be possible with NRS to gain
results competitive with or even superior to the wealth of already existing data, if one
makes use of the unique features of SR, i.e., short measuring times, indispensable for
the unstable glasses in particular near the glass transition, a narrow beam with small
divergence, permitting the study of small samples. For details see Franz et al. [1].

4. Conclusions

In conclusion we state that it is possible to follow diffusion in the time domain
by observing the diffusional acceleration of the intensity decay of nuclear resonant
scattering (NRS) of synchrotron radiation in the forward direction, in analogy to con-
ventional quasielastic Mössbauer spectrocopy (QMS) or quasielastic neutron scattering
(QNS), both in the energy domain.

Definite advantages of the NRS method are:

(a) The highly brilliant synchrotron beam with its size of less than 1 mm2 at the sample
position and a divergence in the µrad range permits measurements of diffusional
line broadening with considerably higher resolution.

(b) The narrow beam will enable diffusion investigations of small crystals and recrys-
tallized foils.

Drawbacks of NRS for diffusion studies are:

(a) Presently, NRS is limited to moderately fast diffusion, since diffusivities higher
than 10−12 m2s−1 (corresponding for QMS on 57Fe to diffusional line broadening
of about 2 mms−1) leads to a diffusional acceleration of the intensity decay within
the dead time of the detection system of about 20 ns when using the intensity
available at the ESRF for measurements of this kind. One can overcome this
problem by sufficiently reducing the beam intensity, but, of course, pays for this
with longer measuring times. One may hope for a reduction of the deadtime by
an improvement of the electronics.

(b) An essential trivial drawback of NRS for diffusion studies compared to conven-
tional Mössbauer studies in one’s own laboratory should also be mentioned: the
limited access (at least presently) to synchrotrons of the third generation for such
studies.
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[15] A.Q.R. Baron, H. Franz, A. Meyer, R. Rüffer, A.I. Chumakov, E. Bürkel and W. Petry, Phys. Rev.

Lett. 79 (1997) 2823.
[16] K. Ruebenbauer and U.D. Wdowik, Phys. Rev. B 58 (1998) 11896.
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