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In nuclear forward scattering (NFS) of synchrotron radiation, inter-resonance interference
leads to a quantum beat (QB), and intra-resonance interference to a dynamical beat (DB).
In general both interference processes determine the time evolution of NFS. Only in the
case of far distant resonances the resulting interference pattern can be interpreted as a
well distinguishable combination of QB and DB. Multiple scattering by near neighbouring
resonances, by contrast, leads to a hybridisation of QB and DB. In particular, asymmetrical
continuous distributions of resonances make QB and DB blend into a fast hybrid beat with
thickness dependent period and distribution sensitive modulation.

1. Introduction

The development of intense pulsed sources of synchrotron radiation (SR) made
the observation of pure nuclear Bragg scattering of SR [1] possible, providing the basis
for Mössbauer spectroscopy in the time domain (for a review see, e.g., [2,3]). But
only the introduction of meV-resolution X-ray monochromators made the observation
of nuclear forward scattering (NFS) of SR feasible [4] and has thus opened a broad
field of applications for time-domain spectroscopy.

In conventional Mössbauer spectroscopy the dependence of nuclear absorption
on the energy of the incident radiation is measured. The recorded signal in this case
presents the incoherent sum of the spectral components of the transmitted radiation. In
time-domain spectroscopy, by contrast, the scattering spectrum of nuclei excited by a
pulse of white SR is measured in the time domain, where the response is the coherent
sum of the spectral components of the scattered radiation. This results in important
interference effects specific for time-domain Mössbauer spectroscopy.

Interference of radiation scattered by nuclear resonances at different energies,
arising, e.g., due to hyperfine interactions, leads to a quantum beat (QB) [5,6]. Hence-
forth we shall refer to interference of this type as inter-resonance interference. Multiple
nuclear scattering within one resonance yields a dynamical beat (DB) in the time re-
sponse of NFS [7–10]. Multiple resonance scattering via different resonances, by
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contrast, i.e., the coherent combination of the two basic beat phenomena, results in
general in hybrid forms of the beat.

Different hybrid forms of beat phenomena are the subject of this paper. Simple
combinations of QB and DB, where the two kinds of beat can still be distinguished, and
thus can be considered as independent, will be presented in section 2. The interference
in case of discrete near neighbouring resonances, which leads to a hybridisation of QB
and DB, will be discussed in section 3.1, and in section 3.2 the effect of a continuous
distribution of resonances will be considered, which results, in the case of strongly
asymmetric distributions, in a fast hybrid beat.

2. Quantum beat and dynamical beat

NFS of SR is, generally speaking, a complex coherent multiple scattering process.
Mathematically this is expressed by a series of coherent multiple scattering amplitudes
involving different resonances [11,12]. Each single scattering process is described by
a double-time correlation function K(t, t̃) of the nuclear ensemble, giving a single
scattering coherent response of the nuclear system at time t to an excitation at time t̃.

In our discussion of beat phenomena occurring in NFS we will proceed from
simple to complex scattering processes: single scattering via several resonances –
section 2.1, multiple scattering via a single resonance – section 2.2, and finally multiple
scattering via several resonances – section 3.

2.1. Quantum beat

In the single scattering approximation, the radiation amplitude A(t) at time t
after an instantaneous excitation of a nuclear ensemble at time t = 0 is proportional
to the double-time correlation function K(t, 0) [11]. For time-independent hyperfine
interactions it can be presented as

A(t) ∝ −K(t, 0) = −ξ
∑
`

a` exp

(
− i
~
E`t−

t

2τ0

)
. (2.1)

Here τ0 is the nuclear lifetime, ξ = σ0NdfLM/4 is the effective thickness parameter
of the sample, with σ0 the nuclear resonance cross section, N the density of resonant
nuclei, d the sample thickness, and fLM the Lamb–Mössbauer factor. The values
a` (|a`| 6 1) represent the relative scattering amplitudes of different resonances ` with
energies E`.

The observable time spectrum, which is given by I(t) ∝ |A(t)|2, contains a
sum of sinusoidal functions, producing periodic modulations of the signal with differ-
ence frequencies (E`′ −E`′′)/~. These modulations have been named quantum beats
(QB) [5,6]. Usually the different resonances originate from hyperfine interactions in
one and the same sample. They can, however, also be experimentally produced by
a Doppler shift between different samples moving at constant velocity. Examples of
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simple QBs with a single beat frequency resulting either from the two M −m = 0
hyperfine transitions in 57Fe metal or from a Doppler shift between two targets of
stainless steel 57Fe55Cr25Ni20 (SS) can be found in [12, figure 3] and in figure 3(A)
of this paper, respectively.

2.2. Dynamical beat

Multiple nuclear scattering already within each resonance leads to another type
of modulation of the amplitude of the forward scattered radiation. In the case of a
single resonance this modulation is given by [8]

A(t) ∝ −ξ exp

(
− i
~
E0t−

t

2τ0

)
J1(2
√
ξτ )√
ξτ

, (2.2)

where E0 is the nuclear resonance energy and J1 is the Bessel function of first kind
and first order, and τ = t/τ0. The resulting modulation of the NFS intensity is called
dynamical beat (DB).

The DB exhibits characteristic features which are quite general for the propagation
of electromagnetic radiation pulses through a resonant medium, which will be of
importance for the later discussion:

1. The DB is aperiodic, the apparent periods increase with time.

2. The apparent DB periods decrease with increasing thickness ξ.

3. The initial decay is sped up proportionally to thickness ξ.

4. The field amplitude A(t) changes sign at every beat.

These features are obvious from the above expression for A(t). A detailed discussion
and explanation can be found in [13]. Examples of DBs for single-resonance targets
of different thicknesses of SS and (NH4)2Mg57Fe(CN)6 are given in [13, figures 2 and
3, respectively].

A simplified but useful explanation of the DB can be obtained [3] by considering
the energy spectrum of the NFS intensity |A(E)|2, where A(E) = 1 − R(E) with
R(E) the transmission amplitude as, e.g., given in [12]. Such a spectrum is displayed
in figure 1a for a single-resonance material. The spectrum exhibits a double-hump
structure which is typical for optically thick samples, and which arises from enhanced
scattering and diminished absorption on the wings of the resonance. In this picture,
the DB results from the interference of the dominant contributions above and below
resonance. These contributions, with separation ' ~ωD, lead to a DB with frequency
of order ωD which is also displayed in figure 1a.

2.3. Distinguishable combinations of quantum beat and dynamical beat

In the case of several resonances multiple resonance scattering occurs, generally
speaking, not only via one and the same resonance, but also via different resonances.
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Figure 1. Energy and time dependences of the NFS intensity in case of an optically thick scatterer
(ξ = 41.3) with one resonance (a) and two resonances separated by a large (~ωQ = 63Γ0) (b) or a small
(~ωQ = 8Γ0) (c) hyperfine splitting, with Γ0 the natural linewidth. Each resonance shows the typical
double-hump structure, with separation of the two humps by ~ωD (in a) and ~ω′D (in b). Note that
ω′D ' ωD/2. The situation (a) yields a DB with apparent frequency of order ωD. The situation (b) gives
a time evolution characterised by a fast QB with frequency ωQ, modulated by a DB with a frequency of

order ω′D. The situation (c) leads to a so-called slow hybrid beat.

This results in a more complicated time response of the nuclear system where QB
and DB melt together. However, in some cases one can still think in terms of an
independent combination of QB and DB. This happens if the energy separation of the
resonances E`′ − E`′′ is large in comparison with the extension of the double-hump
structures of the resonances ` participating in the scattering and if the observation
time t is not too long. Such cases are considered in this section in order to give a
contrast to the hybrid forms of beat phenomena discussed below.

In case of far separated resonances one can neglect multiple scattering paths
via different resonances and make the approximation (see, e.g., [9,12]) that the time
evolution of the amplitudes A`(t) of the radiation components of resonance ` are
approximately given by eq. (2.2), where for each resonance the appropriate effective
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thickness parameter ξ` = a`ξ is used. The resulting field will then be given by the
sum of all contributions:

A(t) ∝
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2.3.1. Two equivalent resonances
In case of two resonances with equal effective thickness ξ` = ξ̃ this approximation

leads to a DB-modulated QB time spectrum:
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where ~ωQ is the energy separation between the two resonances. Examples of such
DB-modulated QBs can be found in [14, figure 6] or in [13, figure 1] for NFS of
SR by the M − m = 0 hyperfine transitions of 57Fe metal foils of ∼5 and 9 µm
thickness, respectively. A typical NFS energy spectrum calculated for the case of two
well separated hyperfine transitions of equal strengths is depicted in figure 1b together
with the corresponding time spectrum, which clearly exhibits the DB-modulation of
the QB.

In reality, however, there always remains a weak influence of multiple scattering
via different resonances. This influence leads, for instance, to a slight shift of the
QB pattern in time, proportional to sample thickness [10]. Such a shift of the QB
had been revealed first in Bragg scattering by comparing different time evolutions
observed in Laue and in Bragg geometry [15]. In the case of two resonances, such a
shift can be simply understood as due to an increase (decrease) of the refractive index
at the lower-energy (higher-energy) resonance by the influence of the higher-energy
(lower-energy) transition, respectively. The effect of this asymmetric change of the
refractive index at the two transitions can be accounted for in first approximation by
an additional phase in the argument of the cos2-factor in eq. (2.4). In the double-hump
picture of figure 1b the effect of the inter-resonance interference on the intra-resonance
interference is noticed by the slight asymmetry of each double-hump.

2.3.2. Non-equivalent resonances
In the case of non-equivalent resonances which exhibit different thickness pa-

rameters ξ`, the dynamical evolution of the forward scattered radiation amplitudes
A`(t) will be different for each resonance `. In the single-resonance approximation of
eq. (2.3) this leads to a time-dependent interference contrast.

The simplest case of two non-equivalent resonances can be experimentally ob-
tained by mounting two single-resonance targets of different optical thickness down-
stream behind each other, keeping one at rest and moving the other at constant Doppler
velocity. The result of such a measurement performed with SS foils [16] can be found
in [13, figure 5], where the time dependence of the interference contrast and phase
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Figure 2. Time evolution of NFS of SR for a 1 µm iron metal foil in a horizontal magnetic field of
∼0.13 T. The solid lines are fits using the NFS theory [11]. The dashed lines are guidelines to the eye,
pointing out a ∼100 ns modulation of the fast beat, starting high (low) at time zero for the even (uneven)

numbered beats, respectively.

jumps of the QB connected with sign changes of the amplitude A(t) of the thicker foil
are well recognized.

The amplitude modulation of the QB becomes more dramatic when more than two
resonances are involved in the inter-resonance interference. A well known example is
that of the four M −m = ±1 hyperfine transitions in 57Fe, with ratios 3 : 1 : 1 : 3
of the scattering amplitudes and resulting effective thicknesses ξ`. The time evolution
of NFS in this case [12] is depicted in figure 2. At very early times the scattering
is dominated by the strong contributions of the outer resonances, the interference of
which gives rise to a fast QB with ∼8 ns period. At later times, however, the dynamical
modulation makes these radiation components temporarily disappear. As a result, at
times t ∼ 360 ns only the scattering of the inner resonances is observed, which is
characterized by a slow QB of ∼50 ns period. A more detailed analysis of the QB in
this case can be found in [12].

The interesting case of three equidistant resonances with ratios 1 : 2 : 1 of the
effective thickness can be modelled by means of Doppler shifts. It is observed in
backreflection geometry [17], when two identical SS targets are mounted behind each
other, with one kept at rest and the other being moved at constant velocity. Figure 3b
displays the result of this experiment [18]. Initially the inter-resonance interference
leads to a QB ∼ cos4(ωQt/4) as predicted by single scattering for such a distribution
of oscillators, where ~ωQ is the separation of the two outer resonances. Due to the
dynamical modulation, however, the radiation field of the stronger central resonance
decreases faster than the fields of the outer resonance components. Its amplitude goes
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Figure 3. Time evolution of NFS of SR in backreflection geometry: (A) a single SS target of ∼1.3 µm
thickness moved at constant velocity v, corresponding to a Doppler shift of 91.7Γ0; (A + B) two identical
SS targets, A moving with v and B at rest. The corresponding weights of resonances are 1 : 0 : 1 (A) and
1 : 2 : 1 (A + B). The solid lines are fits using the NFS theory [11]. The insets show the corresponding

energy spectra of NFS.

through zero at times t ∼ 95 ns. Then the contributions of the outer two resonances are
left alone, the interference of which gives a QB ∼ cos2(ωQt/2) with double frequency,
comparable to the one obtained in total absence of the foil at rest, which is depicted
in figure 3a. Later on, the radiation field of the central resonance recovers, however
with negative amplitude, and the QB develops to ∼ sin4(ωQt/4).

3. Hybrid beat

The examples of the previous sections demonstrate that in NFS of SR the multiple
scattering of the radiation within each resonance strongly changes the appearance of
the QB pattern in time. To some extent, these patterns already represent hybrid forms
of beating. However, these beat patterns can still be “read” and understood in the
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single-resonance approximation of eq. (2.3). Such an analysis of the time evolution of
NFS is usually possible when the separation of the resonances is large in comparison
with the extensions of the double-hump structures. This is equivalent to the DB being
slow in comparison with the QB.

In the opposite case, however, when the resonances are close to each other and
when the DB is fast in comparison with the QB, combined inter- and intra-resonance
interference leads to results which can no longer be interpreted in the picture of well
distinguishable QB and DB. In this case we have also to consider effects of multiple
scattering via different resonances.

3.1. Slow hybrid beat

The situation with two closely lying resonances is depicted in figure 1c. It is
obvious that in case of a relatively small separation of the resonances, the result of
the interlacing radiation field amplitudes will by no means be a modulation of the
DB by a slow QB, but rather a hybridised form of QB and DB. The result of this
complicated interference in the time domain is uncertain. One could, for instance,
expect that the modified DB will be faster than for an unsplit resonance, because the
two humps become more separated by the resonance splitting in combination with
destructive interference between the lines. Or one could expect that it will be slower
because the scattering strength and thus the effective thickness in each resonance is
reduced by the splitting.

This type of hybridisation, which we shall refer to as slow hybrid beats, was re-
cently studied in an experiment [19]. Again two identical targets of a single-resonance
material were placed downstream behind each other, one being moved at different
constant velocities. With respect to NFS, this sample combination is equivalent to a
target with variable two-line splitting.

In figure 4 the time evolution of NFS of SR for two SS foils of ∼1.3 µm
thickness each is shown for increasing Doppler shifts ∆E. The limiting cases are
∆E = 0 (figure 4a), where a pure DB corresponding to 2.6 µm thickness (first DB
minimum at ∼100 ns) is observed, and ∆E = ±180Γ0 (figure 4d), where a QB of
about 5 ns period is modulated by a DB corresponding to 1.3 µm thickness (first DB
minimum outside the observation window at ∼200 ns). In the first case the nuclear
excitations of both samples are strongly coupled via their radiation field, whereas in the
latter case radiative coupling takes place only within each of the samples. The point
of interest is the transition from one case to the other. Already when a small Doppler
shift of ∼2Γ0 is introduced (figure 4b), the DB minimum is shifted to ∼92 ns. This
shift to earlier times goes on continuously for increasing Doppler shifts (figure 4c).
Thus in spite of the reduction of the effective thickness parameter ξ in each resonance
connected with the resonance splitting, the first minimum of the DB was immediately
shifted to earlier times, corresponding to a larger separation of the two humps in the
double-hump picture.
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Figure 4. Time evolution of NFS of SR from two ∼1.3 µm SS foils, where one foil was moved at
constant velocities corresponding to Doppler shifts of 0 (a), 2 (b), 4 (c) and 180Γ0 (d). The solid lines

are fits using the NFS theory [11].

In order to study this hybridisation also in the case of a faster DB, the experiment
was repeated for SS foils of ∼7 µm thickness each. The result is shown in figure 5. In
the case ∆E = 0 (figure 5a) a pure DB corresponding to 14 µm thickness is observed
(DB minima at ∼20, 67 and 140 ns), and in the case ∆E = ±180Γ0 (figure 5d) a QB of
about 5 ns period is modulated by a DB corresponding to 7 µm thickness (DB minima
at ∼40 and 134 ns). In the transition region between these two cases QBs arise, the
period of which is more and more reduced with increasing Doppler velocity. During
the transition, DB and QB melt together, and can no longer be identified separately.
In this process, neighbouring beat minima may for instance converge, making the beat
maximum between them vanish completely, as, e.g., observed for the third maximum at
∼50 ns, which disappears when ∆E is increased from ∼16 to 24Γ0 (compare figure 5b).
For large Doppler velocities, by contrast, the samples are radiatively almost decoupled,
and the DB modulation stays constant, being determined by each sample alone. This
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Figure 5. Time evolution of NFS of SR from two ∼7 µm SS foils, where one foil was moved at constant
velocities corresponding to Doppler shifts of 0 (a), 20 (b), 40 (c) and 180Γ0 (d). The solid lines are fits

using the NFS theory [11].

regime is already reached at ∆E ∼ 40Γ0, where the QB structure is modulated by the
DB, as observed, e.g., in figure 5c for the DB minimum at ∼40 ns.

This melting together of QB and DB was also demonstrated in the case of a real
quadrupole splitting, where the time evolution of NFS of SR through a single crystal
platelet of 57FeBO3 of thickness ∼30 µm was studied [20]. Above the Néel temperature
this material has a quadrupole splitting of ∼4Γ0. The time evolution of NFS measured
at 348.4 K, i.e., slightly above the Néel point, is shown in figure 6 together with the
calculated energy dependence of the NFS intensity used. The time spectrum exhibits
a slow hybrid beat. The corresponding energy spectrum is particularly remarkable. It
gives no indication of the quadrupole splitting, which is completely covered by the
overall interference process leading to the pronounced double-hump structure.

Thus when the energy separation of discrete resonances is not large in comparison
to the double-hump splittings, QB and DB can no longer be identified. Instead, they
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Figure 6. Time evolution and energy distribution of NFS of SR for a 30 µm 57FeBO3 single crystal
platelet above the Néel temperature. The solid lines are fits using the NFS theory [11].

blend into hybrid forms of beating. A typical example is also shown in figure 1c,
where the time spectrum exhibits a dynamical modulation with strongly shifted zeroes
as compared to the DB of figure 1a. So already in the case of a simple quadrupole
splitting the interference effects involved make the spectra of NFS by optically thick
samples rather complex in structure and inaccessible for direct interpretation without
computer analysis.

3.2. Fast hybrid beat

The situation becomes even less transparent when NFS by a continuous distribu-
tion of resonances is considered. Distributions of hyperfine field parameters are usually
directly connected with the nature of the sample under study, as, for example, mag-
netic field distributions in intermetallic alloys. But they might also be produced by the
experimental technique, e.g., by pressure gradients hardly avoidable in high-pressure
cells. Because of the importance of these effects, the influence of resonance broaden-
ing and of continuous resonance distributions on NFS of SR was recently considered
in a comprehensive study [12].

An Invar alloy of composition Fe65Ni35, enriched to 95% in 57Fe, was used as
sample material. Such alloys are ferromagnetic and considered in Mössbauer spec-
troscopy as classical, but still disputed [21–23] as examples of predominantly inhomo-
geneous resonance broadening due to static magnetic hyperfine field distributions. At
room temperature they exhibit an asymmetric broadening of several natural linewidths
Γ0 [21]. The time dependence of NFS of SR was studied for Invar foils in the thickness
range from ∼1–70 µm.
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Figure 7. Time evolution of NFS of SR for a 40 µm Invar foil in a vertical magnetic field of ∼0.13 T.
Foil mounted perpendicular to the beam (a) and inclined by ∼45◦ (b) and ∼58◦ (c), yielding effective

thicknesses of 40, 57 and 76 µm, respectively. The solid lines are fits using the NFS theory [11].

Figure 7 shows typical results for a foil of ∼40 µm thickness at different inclina-
tions with respect to the beam, yielding effective foil thicknesses of 40, 57 and 76 µm,
respectively. The foil was placed in a vertical magnetic field of ∼0.13 T, so that only
the scattering by the M −m = 0 hyperfine transitions is observed. As with thinner
foils, three unexpected features are noticed:

1. The apparent QB has periods much shorter than expected from the hyperfine split-
ting in Invar. The period decreases with increasing effective foil thickness.

2. No modulation by a DB can be recognised.

3. The apparent QB shows a perceptible high–low modulation.

Model considerations and fitting results indicate that the absence of the DB mod-
ulation might be connected with an asymmetry of the field distribution, which is typical
for Invar at room temperature [21]. At low temperatures, by contrast, the field dis-
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Figure 8. Time evolution of NFS of SR for a 6 µm Invar foil at room temperature in a vertical magnetic
field of ∼0.13 T (a) and at 4 K in a vertical magnetic field of 1 T (b). The solid lines are fits using the

NFS theory [11]. The insets show the field distributions used for the fit.

tribution is much more symmetrical [21]. In order to check the influence of different
resonance shapes, the NFS of a 6 µm Invar foil was compared at room temperature
and at 4 K (figure 8). Whereas the time spectrum at room temperature (figure 8a)
gives no indication of a DB, the time dependence at 4 K (figure 8b) reveals a DB
envelope with rather pronounced minima around 50 and 150 ns. This experiment
proves that the absence of a DB at room temperature is connected with the shape of
the field distribution rather than with thickness inhomogeneities of the foil or other
reasons.

Finally, it was realized that all time dependences could be consistently fitted by
assuming an asymmetric resonance broadening caused by asymmetric magnetic field
distributions. The effect of resonance broadening on the two double-hump structures
and on the corresponding time evolutions of NFS of SR is summarised in figure 9. In
figure 9a a definite value was assumed for the magnetic field, as in the case of iron
metal, for instance. The resulting double-hump structures are well shaped, and in the
time spectrum a fast QB is modulated by a pronounced DB. In figures 9b and 9c sym-
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Figure 9. Time evolution of NFS (left), energy dependence of NFS (right) and field profile (center) for
different magnetic field distributions: definite value of magnetic field (a), symmetrical distributions of
Lorentzian shape (b) and of Gaussian shape (c), slightly asymmetrical distribution corresponding to Invar

at 4 K (d) and strongly asymmetrical distribution (e) based on Invar at room temperature.

metrical distributions of Lorentzian and Gaussian shape, respectively, were assumed.
The general double-hump character and the resulting strong modulation of the time
spectrum by a DB remain essentially unchanged. In particular, the Lorentzian field
distribution does not change the positions of the QB and DB minima, as noted previ-
ously [24–26]. The essential influence of the Lorentzian inhomogeneous broadening
is a faster decay of the NFS signal. In the case of Gaussian broadening, by contrast,
the QB modulation remains unchanged, whereas the DB minima are shifted to earlier
times [12].
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A fundamental change, however, occurs, when an asymmetry is introduced in
the field distribution. For asymmetric broadening, with oscillator densities w(b) which
decrease more slowly in the region between the resonances than outside them, the
inner humps are much more affected by destructive interference than the outer ones
(see figure 9d). For a pronounced asymmetry, they can even be completely cancelled
(see figure 9e). These hump structures then yield NFS time evolutions with less
pronounced or finally completely missing DB modulations (figures 9d and e). Note
that the field distribution of figure 9d is actually the one used for the fit of the NFS
by the 6 µm Invar foil measured at 4 K (compare figure 8b). The field distribution
of figure 9e is the one used for the fit of the NFS of the same foil measured at room
temperature (compare figure 8a), however with the internal fields scaled so that the
highest one corresponds to the one of figures 9a–d.

Thus, the reason for the vanishing DB modulation at room temperature is the
interference of scattering contributions from neighbouring resonances, which leads for
an asymmetric oscillator distribution to a strong deformation of the energy dependence
of NFS of SR.1 This already occurs for scattering by optically thin targets [12]. For
optically thick targets, such asymmetric distributions can obviously make the inner
humps of each pair of humps disappear almost completely, as seen in figure 9e. This
gives an explanation for the anomalous features observed for thick Invar foils (compare
figure 7): DB and QB cease to exist separately, and instead blend into a new fast hybrid
beat. This hybrid beat originates from the interference of the radiation components
associated with the two outer humps, with a beat frequency given approximately by
ωQ +ω′D (compare figure 1b, with the two inner humps cancelled). Since ω′D increases
with sample thickness, the period of the hybrid beat decreases, as observed in the
experiment.

The NFS of SR by another common Invar system, Fe72Pt28, is presently under
study [28]. This material, however, exhibits only a relatively small and symmetrical
field distribution as compared to Fe65Ni35 [29]. Correspondingly, the time evolution
of NFS still exhibits a DB [28]. In light of this experiment the vanishing of the DB
for Fe65Ni35 has to be considered as an extreme but not uncommon case.

The fast hybrid beat is typical for large hyperfine splittings for strongly asym-
metric magnetic field distributions. Since it has a shorter period than the original QB,
it would yield erroneous values for the hyperfine splitting, if it is misinterpreted as a
pure QB.

1 A similar problem is known in X-ray physics, where the peculiar shape of the refractive index near
an atomic edge is caused by asymmetric resonance broadening [27]. Near an atomic edge, the atomic
oscillator distribution, as obtained by X-ray absorption measurements, is extremely asymmetric, re-
sembling a saw-tooth distribution. For each oscillator of this distribution, the scattering amplitude is
negative above and positive below resonance. Within the distribution, the scattering amplitudes above
the individual resonances are almost cancelled by corresponding amplitudes of opposite sign belonging
to neighbouring resonances of slightly higher energy. As a result, only a small positive amplitude below
the atomic edge remains. The essential point here is that the real part of resonant scattering, which
changes sign at resonance, is extremely sensitive to the particular distribution of oscillators.
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4. Summary

In NFS of SR by materials that exhibit several resonances, intra-resonance and
inter-resonance interference appear in parallel, and in general cause complicated hybrid
forms of beating. Three types of interference patterns can be distinguished.

When the separation of the resonances is large in comparison with the extension
of the double-hump structures, the single-resonance approximation can be used. In
this case the modulation of the time evolution can still be analysed in terms of a
combination of DB and QB. A good example of this type of interference pattern is the
NFS by the M −m = ±1 hyperfine transitions in Fe metal.

For near neighbouring resonances, however, inter-resonance and intra-resonance
interference are strongly mixed and can no longer be identified. A small quadrupole
splitting, for instance, leads to a slow hybrid beat, which can be recognised by a shift
of the zeroes of the dynamical modulation.

For a continuous distribution of resonances, the result of the interference de-
pends strongly on its shape. A Lorentzian distribution, for instance, leaves DB and
QB unchanged, and only causes a faster decay of the signal. By contrast, strongly
asymmetric distributions, which occur, for instance, in Invar alloys, can make DB
and QB blend into a fast hybrid beat with thickness dependent period and distribution
dependent modulation.
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