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Hyperfine spectroscopy in diffraction geometry
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With the advent of third generation synchrotron radiation sources nuclear Bragg diffrac-
tion became a powerful technique for the determination of hyperfine parameters and the
electronic and magnetic structure of single crystals. Basic features are discussed theoret-
ically and experimentally and are illustrated by examples such as YIG, FeBO3, α-Fe2O3,
and Fe3BO6.

1. Introduction

Soon after the discovery of the Mössbauer effect first experiments have been re-
ported on nuclear resonant scattering utilizing single crystals. These early investigations
dealt mainly with the new phenomenon of pure nuclear reflections and related phenom-
ena such as suppression of the inelastic channel, enhancement and angular dependence
of nuclear scattering, anomalous transmission, interference between electronic and nu-
clear scattering. For a review see the articles of Smirnov and van Bürck [1]. Only a
few of these experiments were aimed at the determination of hyperfine parameters.
From the experimental point of view diffraction studies with radioactive sources are
demanding. Due to the mismatch of the tiny angular acceptance of single crystals
(10–50 µrad) and the isotropic emission of radioactive sources the counting rate is
very low (0.01–1 Hz) and the requirements on mechanical resolution and stability of
the experimental set-up over weeks reached their limits. These facts have prevented a
dissemination of this technique.

Replacing the radioactive source by a synchrotron radiation source should
overcome these problems. In fact, the small beam size (∼1 mm2) and divergence
(∼20 µrad) favour the use of single crystals. Even though the first successful syn-
chrotron radiation experiments [2–4] have not been performed to determine hyperfine
interaction parameters but to study and optimize the demands of a nuclear diffraction
set-up at a beam line, it has been shown how easily and precisely these parameters
could be derived [5].

In the following we will discuss the advantages of synchrotron radiation for hyper-
fine spectroscopy in the investigation of single crystals. Especially, we will emphasize
the features that are not easily accessible in conventional Mössbauer spectroscopy.
In the second part we will give examples for the cases of YIG, FeBO3, Fe2O3, and
Fe3BO6.

 J.C. Baltzer AG, Science Publishers
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2. Nuclear diffraction

The outstanding properties of synchrotron radiation as described in section II.1 of
this issue allow one to perform time differential experiments and obtain information on
hyperfine parameters as well as on the electric and magnetic structure of the material.

Time differential spectroscopy is not equivalent to the conventional energy dif-
ferential absorption spectroscopy (Mössbauer spectroscopy (MS)) which averages over
the time of formation of the excited state in the source. Time differential experiments
are equivalent (by the Fourier transform) to energy differential forward scattering ex-
periments. Therefore, time differential experiments yield more information than the
conventional MS. This principal difference manifests itself impressively in the ampli-
tude of the observable effect. In conventional MS it is typically 0.5–10%, whereas in
diffraction one observes intensity changes of a factor 3–10.

In a typical Mössbauer experiment one determines besides the isomer shift the
magnetic fields and electric field gradients. In this context the asymmetry parameter η
is an important quantity, which is, contrary to time differential spectroscopy, not ob-
servable in the case of conventional MS with 57Fe. Apart from their amplitudes, for a
complete description the orientation of all fields should be determined. For this pur-
pose one needs single crystals. However, the drawback in conventional MS is the need
for large single crystals, yet thin enough to allow experiments in transmission geom-
etry. This limits the application of conventional MS to a few examples. Synchrotron
radiation, with its small beamsize (∼1 mm2 unfocussed and ∼0.01 mm2 focussed [6])
allows one to investigate tiny crystals in transmission and in diffraction geometry. For
thick crystals diffraction geometry will be preferable. In these cases one might avoid
the difficult preparation of a single crystal and the beam can be focussed onto a perfect
crystal which is part of a polycrystalline environment.

Another main feature of a diffraction geometry is the easy access to information
on the magnetic and electric structure of the crystal. As is known, e.g., from neu-
tron diffraction in the case of antiferromagnetic samples, the crystallographic crystal
structure may be superimposed by an electric or/and magnetic structure. These ad-
ditional structures generate new Bragg reflections which are easily detectable. As in
conventional crystallography those structures can be determined from the set of ob-
servable reflections. In addition, each observation of a special reflection pattern yields
the interaction parameters independently.

Polarized sources were hardly available in the past 40 years for routine experi-
ments in conventional MS. Polarization is a built-in feature of synchrotron radiation,
which allows one to select a specific transition for the excitation or to carry out a
polarization analysis of the diffracted beam. In any case, taking advantage of polar-
ization very often simplifies the spectra and thus the data evaluation. An impressive
example are high pressure experiments with magnetic materials in external magnetic
fields (see section IV.2.3 of this issue).

In the case of more complicated structures it is often desirable and possible to
excite only subsets of Mössbauer nuclei and to get the information on those parameters
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independently. The method allows “site selective” spectroscopy. Having in mind that
the synchrotron radiation is in principle white radiation, one has easy access to various
Mössbauer transition energies (see section IV.2.7 of this issue) and might extend the
site selectivity to sites with different Mössbauer nuclei.

3. Theoretical aspects

The theoretical background of nuclear Bragg diffraction (NBD) has been devel-
oped by Hannon and Trammell [7–9] and by Kagan, Afanas’ev and Kohn [10–12] (see
also sections III-1.1 and III-1.2 of this issue). As in the case of Coulomb scattering in
single crystals, the diffraction process is described by the dynamical theory of X-ray
diffraction [13]. However, the Coulomb scattering has to be replaced by the sum of the
Coulomb and nuclear scattering amplitude. Due to the strong energy dependence of
the nuclear scattering amplitude, i.e., its resonance behaviour, additional new features
such as quantum beats, dynamical beats, and speed-up govern the nuclear diffraction
process in comparison to pure Coulomb scattering.

The quantum beat structure is the main feature in hyperfine spectroscopy for the
determination of the nuclear interaction. Furthermore, the strong angular dependence
needs careful examination. For the example of FeBO3 given below, this dependence
is used to determine the small electric interaction including the sign of Vzz. The
data evaluation must be carried out in the framework of the dynamical theory. The
full formalism is implemented in the program package CONUSS [14] for the Bragg,
Laue, and forward diffracted channel. All examples given in this section have been
calculated with this package.

For the basic understanding of some features of the spectra it is, however, often
useful to consider them in the Born approximation. This has been shown in [15,16],
where some extensions have been added in order also to include the speed-up. For
nuclear forward scattering (NFS) of the six resonances in α-iron we may also use
eqs. (6.24) and (6.26) from section II.2 of this issue. For diffraction, however, one has
to introduce the proper spatial phase factors which cause characteristic modifications.
In the following we use the notation ΩM(n,m) = ωn−ωm, where ~ωi is the transition
energy of line i.

The simplest spectrum is obtained when kin ⊥ Bhf and Bhf ⊥ ε̂in ⊥ kin. In this
case only lines two and five, which are linearly polarized, corresponding to ∆m = 0,
are excited and one gets

I(t) ∝ e−Γt/~[1 + cos
(
ΩM(2, 5) · t

)]
. (3.1)

The beating occurs with a single frequency ΩM(2, 5) and maximum contrast, since both
oscillators have equal strength. The factor exp(−Γt/~) gives the overall damping.

For kin ⊥ Bhf and Bhf ‖ ε̂in only the ∆m = ±1 transitions, which are linearly
polarized, will be excited, i.e., lines one, three, four, and six. However, the oscillator
strengths are no longer equal but have the ratios 3 : 1 : 1 : 3. One gets a more
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complicated beat pattern, which is dominated by the beat frequency of the strong
outermost lines, one and six:

I(t) ∝ e−Γt/~
∣∣∣∣ cos

(
1
2

ΩM(1, 6) · t
)

+
1
2

cos

(
1
2

ΩM(3, 4) · t
)∣∣∣∣2. (3.2)

The interference term cos((1/2)ΩM(1, 6) · t) cos((1/2)ΩM(3, 4) · t) gives rise to a
high–low modulation of the beating.

Finally, we have the case where kin ‖ Bhf and Bhf ⊥ ε̂in. Again the four transi-
tions with ∆m = ±1 are excited, however, now lines one and four are left-circularly
polarized while lines three and six are right-circularly polarized. Only transitions of
the same polarization state interfere:

I(t) ∝ e−Γt/~
{[

1 +
3
5

cos
(
ΩM(1, 4) · t

)]
+

[
1 +

3
5

cos
(
ΩM(3, 6) · t

)]}
. (3.3)

For ΩM(1, 4) = ΩM(3, 6), as, e.g., in α-iron, we get a single beat frequency as in
the first case. However, as the strengths of the oscillators involved have the ratios
3 : 1 : 1 : 3 the beat pattern shows less contrast.

In nuclear diffraction spatial phase factors may modify the patterns. For elec-
tronically allowed reflections the spatial phase factor does not change the behaviour
of the quantum beats. Pure nuclear reflections are electronically forbidden reflections
and therefore their scattering amplitudes are out of phase. This changes the cosine
function to a sine function, yielding zero intensity at t = 0. This is a general feature:
pure nuclear reflections always start with zero intensity, whereas “allowed” reflections
always start with maximum intensity.

4. Instrumentation

Nuclear diffraction experiments can easily be performed at the new 3rd genera-
tion synchrotron radiation sources such as ESRF [17], APS [18], and SPring-8 [19].
However, also 2nd generation sources such as DORIS at HASYLAB [20] are suitable.
Normally, the synchrotron beam is delivered by an insertion device of a low emittance
machine, providing a small beam size and divergence. The beam is monochromatized
in two steps by means of Coulomb scattering in silicon single crystals. The first mono-
chromator that must deal with the high heat-load produced by the synchrotron radiation
beam provides an energy bandwidth of some eV. The second, so called high-resolution
monochromator, achieves an energy bandwidth of some meV (see section VI.1 of this
issue). Typical counting rates are 109–1010 phot s−1 in this bandwidth at 3rd generation
synchrotron sources.

The standard sample environment consists of a six circle diffractometer if polar-
ization analysis is included. In the case of the nuclear resonance beamline at the ESRF
this diffractometer is applicable to a vertical as well as to a horizontal scattering geom-
etry and this set-up then comprises eight circles. The angular resolutions of the main



IV-1.1 R. Rüffer et al. / Hyperfine interaction 409

circles are typically 1 µrad. For investigations of temperature dependence cryostats or
furnaces can be fitted into the diffractometer. Details for the various beamlines may
be found on their WEB pages [21].

As detectors avalanche photodiodes (APD) are best suited (see section VI.2 of
this issue). The data are recorded either via single channel analysers and fast counters
for time integral measurements or/and via a standard set-up for time resolved mea-
surements (time-to-amplitude converter, analog-to-digital converter and multichannel
analyzer).

Resonant counting rates in Bragg geometry of 20 kHz in the entire energy band
have been reported for α-Fe2O3 [22] and of 5 kHz in Γ0 for FeBO3 [17].

5. Combined hyperfine interaction: garnets

5.1. Structure and symmetry axes

Garnets [23] are excellent candidates to demonstrate the advantages of syn-
chrotron radiation investigations, due to their rich structure. The garnet structure
O10

h with site formula c3a2d3h12 consists of four crystallographic sites with altogether
160 atoms. Three sites, a, c, and d, may host Mössbauer nuclei, the remaining h-site
is occupied by oxygen ions. As an example we will discuss the yttrium iron garnet
(YIG).

Big single crystals can be easily grown by the Czrochalski method. However, the
samples enriched to about 88% in 57Fe that were used in the following investigations
were grown as single crystalline films on gadolinium gallium garnet (GGG) substrates
by liquid phase epitaxy. This technique allows one to minimize the amount of 57Fe
needed for the production process. Typical crystalline films had diameters of 30 mm
and thicknesses between some µm and 50 µm. Their colour is black.

The 40 iron atoms are distributed over 16 a-sites (each surrounded by a distorted
oxygen octahedron) and 24 d-sites (each surrounded by a distorted oxygen tetrahedron).
The 16 a-sites are further sub-divided into four equal sets by the orientation of the
electric field gradient (efg) symmetry axis relative to the cubic crystal axes parallel
to the [1 1 1], [1̄ 1 1], [1 1̄ 1], and [1 1 1̄] directions, respectively. The 24 d-sites are
further sub-divided into three equal sets by the orientation of the efg symmetry axis
with the d1, d2, and d3 sites having their symmetry axes parallel to the [1 0 0], [0 1 0],
and [0 0 1] directions, respectively.

In addition to the fixed efg at each site, each iron nucleus is also acted on by
an internal hyperfine field Bhf . The direction of Bhf may be controlled by an external
field Bext. At magnetic saturation, which is already achieved in weak applied fields
(see subsection 5.4), Bhf is parallel to the applied field at all a-sites and anti-parallel
at the d-sites. At each site the nuclear energy levels are split under the combined
influence of Bhf and the efg, with the shift depending on the orientation angle β of Bhf

relative to the direction of the efg symmetry axis at that site. More details are given
in [24].
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5.2. Pure nuclear reflections

Due to the rich structure there exists a large number of pure nuclear reflections,
as has been discussed by Winkler et al. [24]. These are the reflections obeying the
following rules for the Miller indices hkl with n,n′ ∈ Z:

d-sites: h = 4n+ 2, k = l = 4n′,

a-sites: either h = 2n+ 1, k = 2n′ + 1, l = 0 or

h = k = 2n+ 1, l = 4n′.

Obviously, pure nuclear reflections exist either for the a-sites or for the d-sites, i.e.,
both sites never contribute to the same pure nuclear reflection. Vice versa, recording
all these reflections simultaneously as is the usual technique in crystallography, e.g.,
by the Laue method, one could determine the electronic and magnetic structure of the
crystal in the same way as one determines the crystallographic structure. The other
approach, namely, to measure the time spectra of some selected reflections, may be
less time consuming and easier to perform. It yields the same information on the
electronic and magnetic structure. As we will see, these spectra depend sensitively
not only on the hyperfine parameters, which are the same for each site, but also on
the chosen reflection itself. With this method one avoids the difficult corrections on
extinction effects and the comparison between intensities of different reflections.

5.3. Site selectivity

As discussed above, the diffraction geometry exhibits a site selectivity. This
feature allows one in the case of YIG to investigate independently the a- [25] and d-
sites [26]. On the contrary in conventional Mössbauer spectroscopy, also using single
crystals, the minimum number of sub-spectra is three, one from one site and two from
the other site [24], leading to overlapping sub-spectra, which may cause problems in
the data evaluation. In diffraction experiments we may get fewer sub-spectra, as shown
in figure 1 for the a-sites and in figure 2 for the d-sites.

These spectra independently reveal the hyperfine parameters of the a-sites and
the d-sites. If the c-site would also be occupied by a Mössbauer nucleus as in thulium
iron garnet [28] all three sites could be investigated independently. Looking more
closely at the diffraction process one sees that for any chosen reflection only two of
the a- and d-sites build up the Bragg reflection, while the other a- and d-sites give
only rise to absorption. Because the resonances of the a- and d-sites are well separated
from each other the absorption by some of the sites influences the diffraction from
the other sites only weakly. For this reason the influence of the other sites on the
hyperfine parameters is insignificant. However, this also means that the isomer shift
of the a-site relative to the d-site can be determined with only low accuracy. It may
be determined by NFS where all sites contribute to the spectrum as in conventional
Mössbauer spectroscopy.
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Figure 1. Time spectra of the a-sites in YIG for the (5 5 4), (0 1 1), and (0 3 3) pure nuclear reflections.
In all cases only the a1- and a2-sites contribute to the reflection (from [25]).
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Figure 2. Time spectra of the d-sites in YIG for the (0 0 2) pure nuclear reflection. Only the d1- and
d2-sites contribute to the reflection. The angle between the crystal axis [1 0 0] and the applied external

field Bext was varied (from [27]).
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(a)

(b)

Figure 3. Time spectra of the d-sites in YIG for the (0 0 2) (a,b) and (0 0 10) (c) pure nuclear reflections.
The alignment of the internal magnetic field Bhf with respect to the incoming kin and the polarization
ε̂in changes the time response. (a) Bhf ⊥ kin and Bhf ‖ ε̂in (from [26]), (b) Bhf ‖ kin and Bhf ⊥ ε̂in

(from [26]), (c) Bhf ⊥ kin and Bhf ⊥ ε̂in ⊥ kin (from [29]).

At first glance these spectra may look complicated. But exploiting the polarization
dependence of the scattering and the 100% linear polarization of synchrotron radiation
one may simplify the spectra. This is shown in figure 3 for the (0 0 2) and (0 0 10)
reflections in YIG and for different orientations of Bhf , kin, and ε̂in.

Ignoring in the following the small perturbation caused by the electric interaction
and using the (0 0 2) reflection with the small Bragg angle of 4◦ we get the following
eigenpolarizations and excite the following nuclear transitions: (a) linear (σ), ∆m =
±1; (b) left-circular with ∆m = +1, right-circular with ∆m = −1; (c) linear (π) with
∆m = 0.

Case (a) is described by eq. (3.2). One may nicely recognize the high–low
modulation of the intensity of adjacent maxima due to the interference term
cos((1/2)ΩM(1, 6) · t) cos((1/2)ΩM(3, 4) · t). Case (b) corresponds to eq. (3.3) and
gives a simple pattern with one frequency. However, the contrast is reduced due to
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(c)

Figure 3. (Continued.)

the unequal oscillator strengths. In the last case, as seen in the figure, we get only one
beat frequency for the magnetic interaction from the two ∆m = 0 transitions. This
corresponds to the case described by eq. (3.1). The high contrast of the beat pattern
caused by the two transitions of equal strength is nicely seen.

The beat pattern caused by the electric interaction stays for all cases and gives
the slow overall modulation. Without losing information on the hyperfine parame-
ters the spectrum in figure 3(c) is very much simplified, making the data evaluation
easier.

5.4. Direction of hyperfine fields

The effective magnetic field at the position of a nucleus is the vector sum of the
internal hyperfine field Bhf and an external field Bext of any origin:

Beff = Bhf + Bext.

Let us disregard for the moment complications which might effect the deviation
of Bext from the applied field, e.g., demagnetization factors or the Knight shift [30],
and assume that it is possible to fully magnetize a sample. Then the above given
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vector equation reduces to either of the two scalar equations combining only absolute
values:

Beff = Bhf +Bext or Beff = Bhf −Bext,

where normally Bhf � Bext and an additional sign attributed to Bhf is defined by the
convention:

• “positive hyperfine field” means: Bhf ↑↑ Bext,

• “negative hyperfine field” means: Bhf ↓↑ Bext.

The magnetic dipole interaction with a nuclear magnetic moment µn introduces an
energy shift ∆EM depending on Bext:

∆EM(Bext) = −µn · Beff(Bext),

which, if its variation with Bext is detectable, allows one to deduce the value and the
sign of the hyperfine field, i.e., its direction with respect to Bext.

This technique does not work in experiments where due to Bext � Bhf a sufficient
variation of the energy shift can not be observed or even vanishes, if Bext ' 0. This
situation is often encountered in easily magnetized samples considered here where
diffraction from single crystals with easy magnetization planes or axes is employed.
On the other hand, diffraction at a Bragg angle ΘB 6= 0◦, 90◦ offers the advantage of
a uniquely defined scattering plane (kin, kout) in contrast to the rotational symmetry
in nuclear forward scattering or in conventional Mössbauer transmission experiments.
Therefore, the experimental situation here is comparable to, e.g., γγ-perturbed angular
correlation experiments where at angles Θ = ∠(γ1, γ2) 6= 0◦, 180◦ the plane (k1, k2)
serves as a reference. In the preferred geometry where Bext is chosen perpendicular
to this plane, the determination of the sign of Bhf is well known, e.g., the time-
differential γ1γ2-coincidence rate contains an angular phase factor ±ωLt, the sign of
which is measured and uniquely determines the sign of the hyperfine field, if the
applied field and the magnetic moment of the nucleus are known [31].

The effect of phase factors was already mentioned in early nuclear diffraction
experiments of the Hamburg group [27,32] where even then quantum beats in the time
spectra of scattered synchrotron radiation by YIG single crystals were observed, when
the contributing scatterers on two different sites oscillate at exactly the same nuclear
frequency. But it is the different phase factor of the two eigenfunctions describing the
emission into the Bragg angle ΘB, which leads to a beating, and is only reproduced
correctly by application of the full dynamical theory of nuclear diffraction, where the
Born approximation predicts zero scattering intensity. The phase difference in the
experiments due to the small Bragg angle of '4◦ for the (0 0 2) reflection in YIG is
relatively small.

Another indication of the importance of the phase factor, which has a definite
sign and bears, therefore, the information on the direction of Bhf, was seen in further
diffraction experiments on YIG [33] when the direction of Bhf was deliberately re-
versed. The time spectra for both settings differed markedly and could only be fitted
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Figure 4. (a) Time spectra for the (0 0 +10) and (0 0−10) reflections of YIG; (b) expanded, superimposed
view of the fits to the data of (a) (from [34]).

if a magnetic field reversal was implemented in the program package (CONUSS [14])
but no definite conclusion on the real direction of Bhf was drawn.

Eventually it was the Stanford group that devoted full attention to this effect in
an experiment at the Cornell High Energy Synchrotron Source (CHESS) [34]. By
choosing the (0 0 +10) reflection in YIG with the much larger Bragg angle of ' 20◦

they could fully clarify the situation and trace back the observed quantum beat shift
to a purely geometrical angular shift of ∆ϕm = m · 2ΘB in each of the two most
prominently interfering photon states (m = +1 and m = −1 ), i.e., lines one and six,
respectively. The intensity function describing the beating of these two lines is given
by

I+(t) ∝ 1 + cos
(
ΩM(1, 6) · t− 4ΘB

)
.
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Using the (0 0 −10) reflection would result in

I−(t) ∝ 1 + cos
(
ΩM(1, 6) · t+ 4ΘB

)
,

so the total angular shift between these two settings would effectively be 8ΘB.
Instead of changing the crystal’s and the detector’s position into the mirrored

Bragg reflection (0 0 −10) setting, the authors took advantage of the fact that the
simple reversal of the external field, i.e., the simultaneous inversion of the hyperfine
field, has the identical result as changing signs of the angular phase factors. Then the
total phase difference between the two settings with reversed field directions is 8ΘB,
which in this experiment gives the almost maximum shift of '160◦ (see figure 4).

While this is a beautiful demonstration of how a purely geometrical effect shows
up as a phase shift which can be clearly observed in an interference measurement, it also
offers access to an unambiguous determination of the sign of the magnetic hyperfine
field. The sign of the measured phase difference +8ΘB or −8ΘB immediately tells
the direction of the hyperfine field. This is based on the noncollinear direction of the
photon vectors kin and kout similar to γγ-perturbed angular correlation experiments
in external fields, where γ1, γ2 coincidences are recorded for noncollinear emission
directions of the two photons.

Eventually, from the measured direction of the hyperfine field and knowing the
direction of the external applied field, a fact which very often in normal laboratory
work is likely to be overlooked, especially in arrangements with permanent magnets,
the sign of Bhf is deducible. Following this procedure the Stanford experiment gave
a direct proof of the known result, that the 57Fe nuclei on the d-sites in YIG, i.e.,
the positions with local tetrahedral symmetry that build up the beat pattern for the
(0 0 ±10) reflections, experience a negative magnetic hyperfine field.

6. Antiferromagnetic systems

FeBO3 and α-Fe2O3 are representatives for (canted) antiferromagnetic systems
crystallizing in a rhombohedral calcite structure, D6

3d [35–37]. They each have two
molecules per unit cell which lead to the formation of magnetic sublattices below
the Néel temperature (348 K for FeBO3 and 948 K for α-Fe2O3). The magnetic mo-
ments lie in the (1 1 1)-plane with two adjacent planes being antiferromagnetically
coupled. Because the antiferromagnetic moments are canted, there is a small ferro-
magnetic moment within the (1 1 1)-plane. A small external field is sufficient to orient
the antiferromagnetic moments.

In these systems the sublattices giving rise to pure nuclear reflections are deter-
mined by the antiferromagnetic sublattice structure. Since the magnetic moments lie in
(nearly) antiparallel directions for adjacent planes, the polarization for each transition
for these planes is different, i.e., the lattice spacing is doubled and a pure nuclear
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reflection is built up. In the rhombohedral representation the following reflections are
pure nuclear reflections:

h = k = l = 2n+ 1 with n ∈ Z.
In the following we will discuss for FeBO3 general aspects of hyperfine spec-

troscopy and will show in the case of α-Fe2O3 how hyperfine spectroscopy may benefit
from an additional polarization analysis of the diffracted beam.

As a third example we will briefly discuss the orthorhombic ironborate Fe3BO6,
which is a weak ferromagnet of structure D16

2h below the Néel temperature at about
508 K. The easy axis of this ferrimagnet changes its orientation from [1 0 0] to [0 0 1]
at a spin reorientation temperature of about 408 K.

6.1. FeBO3

57FeBO3 crystals can be grown as nearly perfect single crystals from the melt [39].
They have a green colour. In the investigations platelets with sizes of about 100 mm2

and thicknesses of 50–150 µm with (1 1 1)-surface have been used.
Figure 5 shows a typical time spectrum for FeBO3 with kin ⊥ Bhf and Bhf ‖ ε̂in.

Again nearly all features of this quantum beat spectrum can be understood in the Born
approximation. The case corresponds to eq. (3.2). Using the correct spatial phase
the cosine dependence becomes a sine dependence, expressing the character of a pure
nuclear reflection.

I(t) ∝ e−Γt/~
∣∣∣∣ sin

(
1
2

ΩM(1, 6) · t
)
− 1

3
e−i∆Ω·t sin

(
1
2

ΩM(3, 4) · t
)∣∣∣∣2. (6.1)

The factor e−i∆Ω·t with ~∆Ω = (1/2)eQVzz takes into account the shift between
the center of the (3, 4)-lines and the center of the (1, 6)-lines which is due to the

Figure 5. Time spectrum of the (1 1 1) pure nuclear reflection of FeBO3.
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small electric interaction. The pattern is dominated by the high frequency ΩM(1, 6)
which arises from the interference between the strong lines one and six. The very
perceptible modulation of a “high–low” pattern is caused by the interference term
sin((1/2)ΩM(1, 6) · t) · sin((1/2)ΩM(3, 4) · t) [40].

6.1.1. Reissverschluss effect
Another interesting feature is the asymmetry in the quantum beat amplitudes

above and below the Bragg angle [40]. This asymmetry gives a direct measure
of the weak quadrupole interaction. In the absence of a quadrupole interaction,
the reflectivity has an inversion symmetry with respect to the deviation δΘ, i.e.
|R(t, δΘ)|2 = |R(t,−δΘ)|2. The quadrupole interaction removes the inversion sym-
metry, leading to an asymmetry in the time response

∣∣R(t, δΘ)
∣∣2−∣∣R(t,−δΘ)

∣∣2 ∝ − sin(∆Ω·t)·
[

sin

(
1
2

ΩM(1, 6)·t
)
·sin

(
1
2

ΩM(3, 4)·t
)]

,

(6.2)
which directly gives ∆Ω, including the sign. Because of the proportionality to
sin((1/2)ΩM(1, 6) · t) this appears as a “Reissverschluss” (zipper) asymmetry in the
amplitudes of the fast quantum beats above and below the Bragg angle.

6.1.2. Temperature dependence
The measurement of the temperature dependence of the hyperfine splitting is re-

ported in [41]. Time spectra of the (3 3 3) pure nuclear reflection were measured in the
temperature range between room temperature and the Néel temperature. They show
a strong quantum beat dilation due to magnetization breakdown. The evaluation with
the dynamical theory allowed the determination of the magnetic fields with an error

Figure 6. Temperature dependence of the internal field Bhf in FeBO3 obtained from the fit of the
corresponding time spectra [33,41].
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less than 0.2 T (figure 6). As the pure nuclear reflection is built up due to the antifer-
romagnetic coupling, the pure nuclear reflection vanishes at the Néel temperature.

6.2. α-Fe2O3 – Polarization analysis

α-Fe2O3 shows the same behaviour as FeBO3 with respect to the hyperfine in-
teraction. Therefore, the previous discussion on FeBO3 also holds for α-Fe2O3. First
investigations on this system have been carried out by the Brookhaven group [42–44]
followed by the Japanese group [22].

In [45] the authors show that one may analyze the polarization of the diffracted
beam and that the theoretical predictions fit the experimental results. Applying this
method to hyperfine spectroscopy one may gain more information on the system under
investigation. In the following scenario the time spectra would look the same, only
the polarization of the diffracted beam is different. For shallow angles an antiferro-
magnetic system will rotate the σ-polarization of the synchrotron radiation beam to the
π-polarization states when the magnetic moments are aligned parallel to the kin-vector.
In the case of ferromagnetic coupling, however, the σ-polarization would stay. In both

Figure 7. Set-up of the diffractometer which carries the sample and its polarizing magnet. The magnetic
field direction can be rotated about the sample diffraction vector. Polarization analysis of the diffracted
beam is done by the beryllium crystal and its detector. The scattering plane of the beryllium can be

rotated around the diffracted beam from the sample (from [45]).
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Figure 8. Intensity scattered into the σ- and π-polarization directions as a function of the orientation of
the magnetic quantization axis (from [45]).

cases an external alignment field is assumed perpendicular to kin and parallel to the
incomimg σ-polarization, i.e., the experimental set-up is the same. The method of
polarization analysis allows one to distinguish between the two cases.

The instrument needs an additional polarization analyzer stage which has been
installed on the main 2Θ-arm of the diffractometer (figure 7). This analyzer stage
consists of another Θ–2Θ stage carrying the analyzer crystal and the detector system.
In the original set-up [45] a Be crystal with a small mosaic spread was used in order
to match the divergence of the synchrotron radiation beam from a wiggler station.
As analyzer a crystal with a Bragg angle of 45◦ at the desired energy has to be
chosen. This is the Brewster angle for X-rays where only one polarization state is
diffracted. Figure 8 shows nicely the dependence of the diffracted intensity in the
σ- and π-channel, respectively, with respect to the quantization axis of the α-Fe2O3

crystal, i.e., the axis of the magnetic moments of the Fe atoms.

6.3. Fe3BO6

Iron orthoborate Fe3BO6 grows as thin crystal platelets of a brownish colour.
Their crystallographic and magnetic structure was extensively studied [38,39,46–48]
with different techniques. We will here concentrate on the resonant nuclear diffraction
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Figure 9. Time spectra of the pure nuclear reflections (3 0 0), (5 0 0) and (7 0 0) of 57Fe3BO6 (from [50]).

experiments using almost perfect single crystals of 57Fe3BO6 in Laue and Bragg geom-
etry. The magnetic structure below the Néel point at about 508 K is made up of two
antiferromagnetic sublattices – one built by the eight iron atoms in the 8d positions, the
other by the four iron atoms in the 4c positions. Both lattices have their spontaneous
antiferromagnetic axis aligned with the [1 0 0]-axis above the spin reorientation tem-
perature at about 408 K, while below this temperature both spin systems are aligned
with the [0 0 1] axis. At least one sublattice does not form a perfect antiferromagnet,
i.e., a canting angle exists, which leads to a small ferromagnetic moment, which points
below 408 K into the [1 0 0] direction, and above it into the [0 0 1] direction. Recent
results from measurements with a polarized Mössbauer source, combined with NFS
studies, indicate that all data can be fitted consistently if for the 4c positions a canting
angle of about 10◦ is assumed [49].

Time spectra of different Bragg reflections were recorded in an experiment at
DORIS (DESY, Hamburg) to reveal the interference of scattering from the different
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Figure 10. Time spectra for the (7 0 0) Bragg reflection (a) and the (0 0 3) Laue reflection from a 43 µm
thick 57Fe3BO6 crystal (b). The solid lines are fits based on the dynamical theory for nuclear resonant

scattering (from [51]).

positions of the nuclei in non-equivalent sublattices [50]. Figure 9 shows the result for
the pure nuclear reflections (3 0 0), (5 0 0), and (7 0 0). The time spectrum of the (3 0 0)
reflection resembles the quantum beat pattern of a simple antiferromagnet (compare
57FeBO3), which is in agreement with the fact that in this case only the 8d sublattice
contributes to the scattering. The time spectra of the (5 0 0) and (7 0 0) reflections show
a slow modulation, which revealed that in these cases interference with the scattering
from the 4c sublattice, where the hyperfine field and consequently the oscillator fre-
quencies are shifted with respect to the 8d sublattice, is observed, either destructive
in the (5 0 0), or constructive in the (7 0 0) reflection. Closer inspection of the spectra
gives evidence that also the fast quantum beats for (5 0 0) and (7 0 0) are in antiphase,
which is in complete agreement with the expectations of the dynamical theory for
nuclear resonant scattering [12].

Another feature of nuclear diffraction from the Fe3BO6 crystals was nicely
demonstrated when the time spectrum of the (7 0 0) Bragg reflection was compared
with the (0 0 3) Laue reflection. In both cases the scattering from the two antiferromag-
netic sublattice positions interferes constructively [51]. Figure 10 shows the results for
the (7 0 0) Bragg case and the (0 0 3) Laue case for a platelet of 43 µm thickness. One
of the pronounced effects in the Laue spectrum is the shift of comparable beat maxima
to earlier times with increasing thickness. Again, this is in total agreement with the
dynamical theory (see solid lines indicating the fits based on the theory); in the Laue
case, the interfering hyperfine components have different phase velocities due to the
complicated dispersion law, and therefore their relative phases at the exit surface of
the crystal are thickness dependent.
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7. Conclusion

These investigations on single crystals were certainly triggered by the need to
suppress the overwhelming background by Coulomb scattering from the nuclear scat-
tered signal. Nevertheless, Nuclear Bragg Diffraction (NBD) became a field of research
in its own right with its special merits. We have discussed some of these, such as the
“Reissverschluss” effect, the determination of the direction of the magnetic hyperfine
field and the polarization analysis. In the case of Fe3BO6 a better understanding of
the magnetic structure could be gained in a rather straightforward way. For a while
the new techniques such as NFS and Nuclear Inelastic Scattering (NIS) have attracted
much attention. However, recently, the diffraction studies got a new impetus.

In the diffusion work (see section IV.2.6 of this issue) it became advantageous
to work in Bragg geometry instead of NFS geometry. In NFS studies one works in
transmission geometry, where very thin single crystals are required. This problem is
avoided in Bragg geometry where crystals as grown might be used, allowing one to
investigate, e.g., very brittle material. First experiments on diffusion have been carried
out on Fe3Si [52] in Bragg geometry.

Another example is the structure determination. In the case of quasi-crystals such
as Al62Cu25.5Fe12.5 there exists a controversial discussion on their structure. Especially
the sites which are occupied by iron ions seem questionable. In this case NBD should
be able to contribute to this debate. First experiments, by measuring over 40 indepen-
dent nuclear as well as electronic reflections, have been carried out [53]. The result
of the data evaluation should clearly distinguish between different theoretical models.

Furthermore, these two examples, using mosaic crystals, show that with the new
high intense synchrotron radiation sources there is no longer a need for highly perfect
single crystals as in the early days. As grown crystals can be investigated, which
should pave the way for further applications.
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[16] R. Rüffer, R. Hollatz, E. Gerdau, U. van Bürck and J.P. Hannon, Hyp. Interact. 42 (1988) 1161.
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Hyp. Interact. 71 (1992) 1341.

[51] A.I. Chumakov, G.V. Smirnov, M.V. Zelepukhin, U. van Bürck, E. Gerdau, R. Rüffer and H.D. Rüter,
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