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Mössbauer sum rules for use with synchrotron sources
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The availability of tunable synchrotron radiation sources with millivolt resolution has
opened new prospects for exploring dynamics of complex systems with Mössbauer spec-
troscopy. Early Mössbauer treatments and moment sum rules are extended to treat inelastic
excitations measured in synchrotron experiments, with emphasis on the unique new condi-
tions absent in neutron scattering and arising in resonance scattering: prompt absorption,
delayed emission, recoil-free transitions and coherent forward scattering. The first moment
sum rule normalizes the inelastic spectrum. New sum rules obtained for higher moments
include the third moment proportional to the second derivative of the potential acting on the
Mössbauer nucleus and independent of temperature in the the harmonic approximation.

1. Introduction

The recent development of tunable synchrotron radiation sources using the Möss-
bauer effect provide new tools for investigating properties of complex condensed matter
systems. The use of these tunable sources for studying different types of elastic and
inelastic transitions in crystals [1–3] has opened a new field of millivolt spectroscopy
for investigation of the dynamics of complex systems which are not accessible to
other techniques like neutron scattering. For 57Fe at 14.413 keV it has been possible
to prepare a monochromatic beam with a 1 meV bandpass, tunable over a few hund-
red eV [4].

The synchrotron source offers new possibilities beyond the conventional
Mössbauer spectroscopy [5] by exciting nuclear resonances with an incident pulse
much shorter than the natural lifetime of the resonance. The disappearance of the
incident pulse and all prompt background scattered radiation before the detection of
the signal leads to both an enormous background suppression and the possibility of
observing forward scattered radiation completely separated from the incident beam,
not possible with other techniques. Prompt Rayleigh scattering and scattering by other
nonresonant atoms give no background. Forward scattering from many different nuclei
is coherent by analogy with Bragg scattering, but is essentially independent of the
structure of the sample. This allows the study of coherent radiation from many nuclei
in a sample, with the interesting time behavior of speedup and quantum beats [5],
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simply by looking at forward radiation without the need to choose Bragg angles, and
without even the need for an ordered structure.

In addition, there is the well established difference of the Mössbauer technique
from other techniques; e.g., neutron scattering, by being sensitive to a particular nucleus
like 57Fe in a sample, and having a high cross-section. It, therefore, gives information
on the forces and possible localized vibration modes and local forces in the vicinity
of the iron or other Mössbauer nuclei in complicated and small samples, and allows
investigation of this information as a function of changes in the composition or structure
of the system and behavior near phase transitions.

Many of the qualitatively new effects observable in Mössbauer experiments with
synchrotron radiation have been discussed in detail by Hannon and Trammell [5]. In
this paper we focus on one point not discussed in this excellent review, the information
on inelastic excitations produced by hitting nuclei at specific positions in the lattice
with a synchrotron pulse. We shall see that sum rules originally derived for moments
of the energy spectrum of gamma rays emitted from Mössbauer transitions [6] have
now acquired a new significance in data analysis from synchrotron radiation and have
already been used in recent experiments [1,2].

A central problem arising in understanding the spectrum of inelastic excitations
produced by a synchrotron pulse on a sample is the separation of the elastic and
inelastic cross-sections; i.e., the determination of the Debye–Waller or Mössbauer
f -factor. Samples used in these experiments must be sufficiently thick so that there
is appreciable inelastic absorption from the radiation off resonance. With such thick
crystals the radiation at the resonance which is absorbed and scattered elastically is
both enhanced by coherent scattering from different nuclei and attenuated by absorption
in passing through the sample. The coherent elastic scattering is concentrated into a
sharp forward peak to give a very different angular distribution from that of the inelastic
scattered radiation. The relative normalization of the elastic and inelastic cross-sections
and the value of the Lamb–Mössbauer f -factor are not obtainable from the data alone.
The sum rules provide both a method of separating and normalizing the elastic and
inelastic data without detailed analysis [2] and of obtaining localized information about
forces on and motion of the Mössbauer nucleus.

2. General features of elastic and inelastic transitions

We first summarize some general features of the different types of transitions that
occur in the excitation of nuclear resonance levels in a crystal by a pulse of synchrotron
radiation which is much shorter than the lifetime of the nuclear state. The nuclei in
the crystal will be in a complicated state of excitation after the pulse is over, and the
subsequent radiation will be a mixture of several different types of transitions. The
absorption and emission processes can both be either elastic or inelastic. In elastic
processes a photon is absorbed or emitted by the internal degrees of freedom of the
nucleus, with no change in the other degrees of freedom of the system. Inelastic
processes involve energy transfer to the other degrees of freedom. In both absorption
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and emission, inelastic momentum and energy transfer can occur to the lattice degrees
of freedom via nuclear recoil. In emission there is also the possibility of internal
conversion with the emission of an electron and subsequent X-rays rather than a γ-ray.

The synchrotron radiation pulse will generally have a broad enough energy spec-
trum to excite both the elastic and inelastic transitions. There will also be tunable
sources within this spectrum to enable separation of different types of elastic and in-
elastic transitions. The elastic excitation can be coherent over many nuclei in the crystal
with a subsequent speedup in the decay lifetime. We can, thus, expect to observe two
lifetimes in the detected radiation, the normal lifetime for decays of nuclei produced
by inelastic excitation and a speeded up lifetime produced by the decay of the coherent
or superradiant state.

The emitted radiation would therefore consist of the following components:

1. Purely inelastic transitions giving photons with the inelastic spectrum and also
conversion electrons and X-rays, with the decay lifetime and angular distributions
of single nuclear excitations.

2. Purely elastic transitions giving a coherent spectrum with the speeded up lifetime
and a broadened natural line width produced by the speedup and a sharply peaked
angular distribution in the forward and/or Bragg direction.

3. Inelastic excitation and elastic emission. This will give a photon spectrum with
the natural line width and the natural lifetime and the angular distribution of single
nuclear excitations.

4. Elastic excitation and inelastic emission. This will give the inelastic spectrum
and also conversion electrons and X-rays, with the angular distributions of single
nuclear excitations, but with the speeded-up lifetime.

For general orientation we note the very different energy scales arising in syn-
chrotron Mössbauer physics. The natural line widths of nuclear transitions and nuclear
hyperfine and quadrupole splittings are in the nanoelectronvolt range. At the other
end of relevant energies is rest energy of an 57Fe nucleus, which is in the tens of
gigavolts, and differs from the natural line widths by a factor of 1018. In between
is the energy of the 14 keV γ-ray emitted by the nuclear transition in 57Fe used in
Mössbauer spectroscopy which differs from the rest energy by a factor of order 106.
This factor is relevant, because the ratio of the gamma energy to the rest energy is
also the ratio of the free recoil energy of the nucleus after emission of the γ-ray:

R =
E2
γ

2Mc2 ≈ 10−6 ·Eγ . (2.1)

We thus have four energy scales relevant to the Mössbauer transition; namely, tens of
nanovolts, millivolts, kilovolts and gigavolts, separated from one another by factors
of 106. The Mössbauer experiment features two other energies which happen to lie in
the same millivolt range as the free recoil energy; namely room temperature and the
characteristic temperature or Debye temperature of common crystal lattices. The fact
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that room temperature is in this millivolt range provided the original motivation for
the experiment to use thermal energy to compensate for the free recoil energy. The
surprising result which led to the development of a new field was the result of the fact
that crystal phonon energies are also in this energy range.

The sharp natural line width of the Mössbauer line enabled nanovolt spectroscopy
to be studied with tunable Doppler-shifted lines from radiative sources and by observ-
ing time-dependent quantum beats following an excitation from photons generated by
a synchrotron pulse. The new domain of millivolt spectroscopy has now become avail-
able with synchrotron radiation sources for the study of lattice phonon spectra. The
synchrotron radiation pulse will generally have a broad enough energy spectrum to
excite both the elastic and inelastic transitions. The inelastic spectrum in this range
has not been experimentally explored in detail.

3. The semiclassical parton model

The original motivation for Mössbauer’s experiment was to measure the natural
line width of a nuclear transition by using the thermal Doppler broadening of a pho-
ton line to overcome the recoil shift and obtain resonance absorption. Measuring the
resonance absorption at two different temperatures then gave sufficient information to
calculate the natural line width. Mössbauer found that this procedure succeeded when
he compared a measurement at room temperature with a measurement when either
the source or the absorber was cooled to liquid nitrogen temperature. But when both
were cooled to liquid nitrogen temperature, the experiment disagreed with this simple
theoretical description. The anticipated Doppler broadening did not give a complete
description of the emission and absorption spectra.

In the early days of the Mössbauer effect sum rules were developed for the
moments of the Mössbauer emission [7] spectrum with the aim of clarifying how
momentum could be transferred to a crystal without energy loss due to recoil. Since
then it has become clear that that these sum rules are generally valid for a large
number of very different processes in which momentum is transferred to a constituent
of a complex bound system by the emission, absorption or scattering of an electroweak
boson which can be either a real or virtual photon or a W boson. The momentum and
energy transfer is now simply described in the language of Feynman’s parton model
which did not exist in Mössbauer’s time. It is an instantaneous momentum transfer to
or from the emitting or absorbing particle, which Feynman called the “active parton”
at the instant the transition takes place. In the case of the Mössbauer transition the
active parton is the nucleus that emits or absorbs the photon. The kinematics provides
an “instantaneous snapshot” of the momentum distribution of the active parton which
is assumed to behave like a free particle at the time of the momentum transfer. If
one knows the momentum distribution one can calculate the energy spectrum for
the boson emission or absorption. This is what Mössbauer assumed in his original
experimental program, using the known thermal momentum distributions for room
and liquid nitrogen temperatures. If one measures the energy transfer spectrum, one
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can calculate the momentum spectrum of the active partons. This is what Feynman
initially assumed in showing how the structure of the proton could be determined from
data on deep inelastic scattering. Both assumptions turned out to be approximations.

We shall see here that the approximation fails because of quantum mechanics.
The momentum distribution does not give a complete description of the initial state
of the active parton. It is described by a quantum mechanical wave function in which
components in the momentum spectrum with different momenta are coherent and can
interfere in the transition process. Furthermore, both the initial and final states of
a bound system have discrete energy levels in quantum mechanics, and the energy
transfer cannot be determined completely at the instant when the boson is emitted
or absorbed; information about the allowed initial and final state energies and their
wave functions must somehow be included. All these quantum-mechanical effects can
be simply described by the moment sum rules. But the basic assumption that the
transition is a sudden single momentum transfer to the initial wave function remains
correct. The final wave function |f〉 differs from the initial wave function |i〉 only by
having all of its momentum components shifted coherently by the momentum transfer

|f〉 = ei~k·~rµ |i〉 , (3.1)

where ~rµ and ~pµ denote the coordinate and momentum of the active parton and ~~k
is the momentum transfer. The energy spectrum of the final state is obtained by
expanding this final wave function in the energy eigenstates of the complex system.

We begin with Feynman’s semiclassical model, in which the energy transfer to
the complex system is equal to the change in kinetic energy of a free active parton in
absorbing a momentum ~~k at the instant when its momentum is initially ~pµ:

Ef −Ei = T
(
~pµ + ~k

)
− T

(
~pµ
)
≈ (~~k)2 + 2~~pµ · ~k

2Mµ
= R+

~~pµ · ~k
Mµ

, (3.2)

where T (~p ) is the kinetic energy of a free active parton with momentum ~p, the non-
relativistic approximation holds for all cases of nuclei moving in a lattice, and R is
the free recoil energy for a nucleus of mass Mµ,

R =
(~k)2

2Mµ
. (3.3)

We shall see below that this relation between energy and momentum transfers is
a semiclassical approximation to the exact quantum-mechanical relation. We now
consider the case where the momentum spectrum of the active parton in the initial
state of the system is described by a momentum density distribution function ρ(~pµ).
The centroid or first moment of the excitation energy spectrum is

〈Ef −Ei〉 =

∫
ρ
(
~pµ
)
d~pµ

(
R+

~~pµ · ~k
Mµ

)
= R, (3.4)
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where we have assumed that there is no correlation between the directions of ~k and ~pµ,
and therefore that the expectation values of all odd powers of ~pµ · ~k must vanish:〈(

~pµ · ~k
)(2r+1)〉

= 0. (3.5a)

This is generally true in all cases of interest, since it follows from time reversal
invariance of the interactions. It is convenient to choose our z-axis in the direction of
the photon momentum ~k so that

~~k · ~pµ
Mµ

=
~kpzµ
Mµ

=
2Rpzµ
~k

. (3.5b)

The dispersion, or second moment relative to the first moment, is then〈
(Ef −Ei −R)2〉 =

2R
Mµ

〈
p2
zµ

〉
= 4RT zµ, (3.6a)

where

T zµ ≡
〈p2
zµ〉

2Mµ
(3.6b)

is the mean kinetic energy in the z-direction for nucleus µ.
The general relation for the moments of the excitation energy spectrum is then〈

(Ef −Ei −R)n
〉

=

∫
ρ
(
~pµ
)
d~pµ

(
~~pµ · ~k
Mµ

)n
. (3.7a)

It is convenient for comparison with the quantum expression to rewrite this expression:〈
(Ef −Ei −R)n

〉
=

2R
Mµ

〈
pzµ

(
~kpzµ
Mµ

)(n−2)

pzµ

〉
. (3.7b)

In this semiclassical model we see that the energy excitation spectrum is deter-
mined by the initial momentum spectrum distribution of the active parton. This is the
model originally used by Mössbauer for his first experiment and used by Feynman in
reverse to interpret the experimental data on deep inelastic electron scattering. In both
cases this semiclassical approximation breaks down because of quantum mechanics.

4. Quantizing the semiclassical parton model

Moment sum rules have been applied in many areas of physics where a sudden
momentum transfer occurs on an effectively point-like constituent in a bound system,
from X-ray and neutron scattering [8–10] to lepton-pair emission by heavy quarks
bound in hadrons [11]. The general formulation is essentially the same for all processes
but the applications to data analyses for individual processes can be very different.

All the physics needed to understand the Mössbauer effect had been published
long before Mössbauer’s discovery [8–10]. That photons could be scattered by atoms in
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a crystal without energy loss due to recoil was basic to all work in X-ray diffraction and
crystallography. All the quantitative calculations including the definition and evaluation
of the Debye–Waller factor were well known but not interpreted as a probability that
a photon could be scattered by an atom in a crystal without energy loss due to recoil.
In the wave picture of radiation the Debye–Waller factor written as exp(〈−k2x2〉)
described the loss of intensity of coherent radiation because the atoms were not fixed
at their equilibrium positions and their motion introduced random phases into the
scattered wave.

The relation between Lamb’s treatment [8] of neutron capture in crystals and
Ott’s X-ray treatment [9] was first pointed out by Kaufman [12,13] and reported in
detail in a history of these developments [14]. A general formulation including these
and other processes of momentum transfer to bound systems is given in the quantum
mechanics book [6] which shows the relation of the dual wave–particle descriptions
of similar phenomena.

The first article to use the name Mössbauer effect [15] appeared at a time when the
physics community either did not believe in the effect or felt that it was not important
enough to be called by its discoverer’s name. At that time a number of sum rules
were derived [7] along with other results [16,17] which remain pedagogically useful
today for teaching basic principles of quantum mechanics to graduate students [6]. The
general state of confusion on this issue can be seen in the panel discussion which took
place at the Second International Mössbauer conference [18]. Further applications of
the basic theory [8–10] for the Mössbauer effect and for neutron scattering are reported
in [2].

We now quantize the derivation for the moments of the excitation energy spectrum
by introducing the quantum description of the transition (3.2):〈

(Ef −Ei −R)n
〉

=
∑
f

(Ef −Ei −R)n
∣∣〈f | ei~k·~rµ |i〉

∣∣2. (4.1)

The moments can be rewritten by using closure〈
(Ef −Ei −R)n

〉
= 〈i| e−i~k·~rµ(H −Ei −R)nei~k·~rµ |i〉 , (4.2)

where H is the Hamiltonian describing the lattice dynamics,

H =
N∑
µ=1

~p 2
µ

2Mµ
+

N∑
µ,ν=1

Vµν
(
~xµ, ~xν

)
; (4.3)

N is the mumber of atoms in the lattice, Mµ is the mass of the atom, which may be
different from the mass M of the Mössbauer nucleus for other atoms in the lattice,
Vµν (~xµ, ~xν) is some interaction potential depending only upon the coordinates (~xµ, ~xν)
of the atoms and not on their momenta.
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Substituting the Hamiltonian (4.3) into expression (4.2) gives

〈
(Ef −Ei −R)n

〉
= 〈i|

(
H −Ei +

~~k · ~pµ
M

)n
|i〉 , (4.4a)

and we note that

〈i| (H −Ei) = (H −Ei) |i〉 = 0. (4.4b)

Then 〈
(Ef −Ei −R)n

〉
=−〈i| 2Rpzµ

~k

(
H −Ei −

~kpzµ
M

)(n−1)

|i〉 , (4.5a)

〈
(Ef −Ei −R)n

〉
=

2R
M
〈i| pzµ

(
H −Ei −

~kpzµ
M

)(n−2)

pzµ |i〉 . (4.5b)

The first and second moments are seen to be exactly the same as those for the
semiclassical parton model (3.4) and (3.6) and equal to their values for the case of
nuclear transitions in a noninteracting gas. The first moment is again equal to the free
recoil energy R (3.3) and is completely independent of the dynamics of the system
and the temperature. The second moment is proportional to the mean kinetic energy
T zµ and is, thus, a monotonically increasing function of the temperature.

The effects of quantum mechanics in the higher moments can be seen explicitly
by comparing the quantum expression (4.5b) for the general moment with the corre-
sponding classical expression (3.7b). They differ only by the presence of the term
(H −Ei) in eq. (4.5b), which vanishes by virtue of eq. (4.4b) when acting directly on
the initial state |i〉. The additional quantum contribution results from the commutator
[pzµ,H], which vanishes in the classical limit and also in the quantum case for a
noninteracting gas.

5. Basic theory of excitation by synchrotron radiation

We now apply this basic theory to the case of resonance excitation of a single
bound nucleus by a broad beam X-ray source [19]. The cross-section for this excitation
as a function of the incident gamma ray energy will contain a peak at the resonance
energy corresponding to the elastic or no-recoil Mössbauer transition, and a spectrum
on both sides of the resonance energy corresponding to inelastic transitions in which
the state of the lattice is changed. Consider a transition for photon absorption between
some initial lattice state denoted by |i〉 and a final state denoted by |f〉. We denote the
cross-section for this transition as σi→f (E) and note that its integral over the entire
relevant energy interval can be written∫

σi→f (E) dE = σ̄
∣∣〈f | ei~k·~rµ |i〉

∣∣2, (5.1)
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where ~k denotes the photon wave number, ~rµ is the coordinate in the lattice of the
nucleus being excited, and σ̄ is normalized to give the total integrated cross-section
over all final states:

σ̄ =
∑
f

∫
σi→f (E) dE. (5.2)

In the normal Mössbauer effect, the probability that the transition takes place without
any change in the state of the lattice is given exactly by the Debye–Waller factor.
In excitation by synchrotron radiation the same Debye–Waller or Mössbauer fraction
factor appears in the cross-section for the elastic transition in which the lattice remains
in its initial state, ∫

σi→i(E) dE = σ̄
∣∣〈i| ei~k·~rµ |i〉

∣∣2. (5.3)

Interesting properties of the inelastic transitions are obtainable by generalizing sum
rules (4.1) for Mössbauer emission [7] to apply to the moments of the excitation
energy spectrum〈

(Ef −Ei −R)n
〉
≡
∑
f

1
σ̄

∫
dE(Ef −Ei −R)nσi→f (E)

=
∑
f

(Ef −Ei −R)n
∣∣〈f | ei~k·~rµ |i〉

∣∣2, (5.4)

where the centroid of the spectrum is again the free recoil energy R (3.3) for a nucleus
of mass M .

6. Sum rules for the third and fourth moments

Higher moments had not previously been considered, since they did not seem to
be relevant to feasible experimental tests at the time. Their evaluation also appeared
to be more complicated, since the Hamiltonian H appears explicitly in eq. (4.5b)
sandwiched between factors pzµ with which H does not commute. In contrast to
the first two moments, which are equal to the values obtained simply from classical
billiard-ball kinematics for a non-interacting gas, the higher moments depend upon
properties of the dynamics, i.e., upon the values of parameters in the Hamiltonian (4.3)
and introduce effects of quantum mechanics, expressed by the explicit appearance of
commutators proportional to ~. These have been shown [19] to provide interesting
new information on properties of the lattice.

The relevant commutators needed to evaluate the higher moments are

[pzµ,H] =−i~
∂

∂zµ

N∑
ρ,ν=1

Vρν , (6.1a)
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[
pzµ, [pzµ,H]

]
=−~2 ∂

2

∂z2
µ

N∑
ρ,ν=1

Vρν . (6.1b)

For the case of a harmonic crystal, the potential energy is a polynomial of second
order in all coordinates, which can be written

N∑
ρ,ν=1

Vρν
(
~xρ, ~xν

)
= V zz

µµ (zµ)2 + · · · , (6.2a)

where all the terms beyond the first do not contribute to the double commutator (6.1b).
The potential energy can also be expressed in terms of the coordinates ξj and the
frequencies ωj of the normal modes,

N∑
µ,ν=1

Vµν =
3N∑
j=1

1
2
Mω2

j ξ
2
j . (6.2b)

From the orthonormality of the linear transformation between nucleus coordinates zµ
and the normal coordinates ξj we obtain the useful relations

3N∑
j=1

(
∂ξj
∂zµ

)2

= 1, (6.3a)

N∑
µ=1

(
∂ξj
∂xµ

)2

+

(
∂ξj
∂yµ

)2

+

(
∂ξj
∂zµ

)2

= 1. (6.3b)

For a harmonic crystal the commutators (6.1) become

[pzµ,H] = −i~
3N∑
j=1

Mω2
jξj

∂ξj
∂zµ

, (6.4)

[
pzµ, [pzµ,H]

]
=−~2

3N∑
j=1

Mω2
j

(
∂ξj
∂zµ

)2

, (6.5a)

[
pzµ, [pzµ,H]

]
=−~2 ∂

2

∂z2
µ

N∑
ρ,ν=1

Vρν = −2~2V zz
µµ . (6.5b)

Note that the double commutator (6.5) depends only upon the force on the coordi-
nate zµ which is expressed in terms of normal mode variables as a function of the
frequencies ωj and the expansion coefficients of the coordinate zµ in the normal co-
ordinates ξj . The value of the double commutator for a harmonic lattice thus depends
only on the parameters of the Hamiltonian and is completely independent of the state
of the lattice and of the temperature. This feature is particularly interesting because
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the third moment of the energy spectrum can be seen to be proportional just to this
double commutator:〈

(Ef −Ei −R)3〉=
R

M
〈i| [pzµ,H]pzµ + pzµ[H , pzµ] |i〉

=− R
M
〈i|
[
pzµ, [pzµ,H]

]
. (6.6a)

Thus, 〈
(Ef −Ei −R)3〉 =

R

M
〈i|~2 ∂

2

∂z2
µ

N∑
ρ,ν=1

Vρν |i〉 . (6.6b)

For a harmonic lattice this becomes

〈
(Ef −Ei −R)3〉 = ~2R

3N∑
j=1

ω2
j

(
∂ξj
∂zµ

)2

= R~2ω2
z , (6.7a)

where

ω2
z ≡

3N∑
j=1

ω2
j

(
∂ξj
∂zµ

)2

(6.7b)

is a weighted mean square average lattice frequency, and the subscript z denotes
that it is determined by normal modes with motion in the z-direction. The weighing
factors are seen from the normalization relation (6.3a) to be normalized to unity. For
a harmonic crystal the third moment can also be expressed in terms of the force on
the coordinate zµ, 〈

(Ef −Ei −R)3〉 =
2~2R

M
V zz
µµ . (6.8)

This result is independent of the lattice wave function |i〉 and therefore also of the
temperature. For an isotropic crystal this result is a simple function of the characteristic
temperature of the lattice, e.g., the Debye or Einstein temperature. For an anisotropic
crystal, the result will depend upon the angles between the crystal axes and the photon
direction, and can give information about the parameters of the anisotropic lattice. If
the crystal is not harmonic, expression (6.6b) depends upon the coordinates of various
atoms in the lattice and therefore on the temperature.

The fourth moment can now be evaluated using the same commutators. We
immediately discard expectation values of all odd powers of pzµ and obtain〈

(Ef −Ei −R)4〉=
2R
M
〈i| 2R

M
p4
zµ + [pzµ,H](H −Ei)pzµ |i〉

=
2R
M
〈i| 2R

M
p4
zµ − [pzµ,H]2 |i〉

=
2R
M
〈i| 2R

M
p4
zµ + ~2

(
∂

∂zµ

N∑
ρ,ν=1

Vρν

)2

|i〉 . (6.9a)
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For a harmonic lattice this becomes

〈
(Ef −Ei −R)4〉 =

2R
M
〈i| 2R

M
p4
zµ + ~2

3N∑
j=1

M2ω4
jξ

2
j

(
∂ξj
∂zµ

)2

|i〉 . (6.9b)

7. Use of sum rules for thick samples with many nuclei

These results are easily generalized to the case where there are many nuclei in
the lattice which can be excited by the Mössbauer transition, but the intensity of the
incident beam is sufficiently weak so that only one photon is absorbed. Since the single
excitation cross-sections for inelastic transitions by individual nuclei are independent,
the total rate for inelastic transitions in an experiment is obtained in the usual manner
by summing over all nuclei in the target.

The elastic transitions require special attention. Coherent effects [20] like super-
radiance can enhance the transition matrix element for photon emission [21]. The co-
herence changes the angular distribution of the radiation and the enhancement produces
a corresponding speedup in the lifetime of the excited state. These effects were orig-
inally predicted by Trammell [21], further developed [22] theoretically and observed
in very beautiful experiments [23,24]. An excellent review of these developments has
been given in [5], where the particular coherent state is called a “nuclear exciton”.

The speedup of the elastic transition also broadens the line width of the nuclear
exciton and therefore affects the integrated total cross-section (5.2). However, this
coherence does not affect the inelastic excitation spectrum in a lattice by synchrotron
radiation. The moments can still be obtained by the above analysis and eqs. (6.6)–
(6.9) but corrections are necessary to the normalization procedure, both because of
the enhanced elastic contribution and because radiation in the resonance peak can be
attenuated in passing through a sample which is still sufficiently thin to leave radiation
off resonance unaffected.

To devise a procedure for data analysis which takes account of these effects at
resonance we note that they are all at (Ef − Ei) = (Ef − Ei)n = 0. We therefore
define an “experimental moment”〈

(Ef −Ei)n
〉

ex ≡
∑
f

1
σ̄ex

∫
dE(Ef −Ei)nσi→f (E) =

〈(Ef −Ei)n〉1
Ken

, (7.1a)

where 〈(Ef − Ei)n〉1 denotes the moment for the case of a single nucleus (5.4), Ken

denotes a normalization correction factor which is the same for all moments and σ̄ex

denotes a modified total cross-section which takes into account the fact that the cross-
section in the region of the elastic peak is not correct.

σ̄ex =
∑
f

∫ Ei−ε

−∞
σi→f (E) dE +

∑
f

∫ ∞
Ei+ε

σi→f (E) dE + σo, (7.1b)
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where ε is a suitably chosen small energy interval and σo is the measured value of the
integrated cross-section in the interval Ei − ε 6 E 6 Ei + ε.

The normalization factor Ken can be determined experimentally from the first
moment and then applied to expressions for the higher moments. Substituting the
result for the first moment (3.4) we obtain

〈
(Ef −Ei)

〉
ex =

〈(Ef −Ei)〉1
Ken

=
R

Ken
. (7.2a)

Thus, 〈
(Ef −Ei)n

〉
ex =

〈
(Ef −Ei)n

〉
1

〈(Ef −Ei)〉ex

R
. (7.2b)

These moments can now be measured by using tunable sources with an energy
band width small compared with the free recoil energy R. The moments can be nor-
malized either by integrating over the entire spectrum, or by integrating only over the
inelastic spectrum and removing the elastic peak; i.e., by defining the modified total
cross-section σ̄ex either to include the measured integral over the resonance σo or by
setting σo = 0. The normalization factor Ken will be different in the two cases, but
the result (7.2b) applies to both.

The value of the factor Ken can be calculated theoretically for samples sufficiently
thin so that there is no attenuation of the resonance radiation in passing through the
sample, from the values of the speedup factor denoted by F o

speed for the superradiant
component or nuclear exciton and the Debye–Waller or Mössbauer fraction factor
commonly denoted denoted by f . Note, however, that in experiments where the nuclear
excitation is detected by the decay of the excitation into a particular decay channel
the value of Ken can depend upon the branching ratio for the decay into the observed
channel.

This is particularly important in the case where the detector sees only the inco-
herent channels like conversion electrons or X-rays. The speedup factor changes the
relative branching ratios for decays into different channels, since the speedup applies
only to the Mössbauer fraction of the radiation which is proportional to the Debye–
Waller or Mössbauer fraction factor f . The total decay width Γtot for an elastically
produced coherent state, i.e., the nuclear exciton, is the sum of the partial widths
for coherent γ-ray emission, incoherent γ-ray emission and internal conversion. The
partial widths for incoherent γ emission and internal conversion are not enhanced by
superradiance. They are the same as for a single excited nucleus and proportional
respectively to 1− f and to the internal conversion coefficient α. The coherent com-
ponent is proportional to f but has an additional speedup factor denoted by F o

speed.
Thus,

Γex
tot = Γex

coherent + Γincoherent + Γinconv =
[
F o

speedf + (1− f ) + α
]
Γγ , (7.3)
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where Γγ denotes the partial width for gamma decay by a single nucleus. The rel-
ative probabilities or branching ratios for incoherent gamma emission and internal
conversion, respectively, are reduced:

Γincoherent

Γex
tot

=
1− f

F o
speedf + (1− f ) + α

, (7.4a)

Γinconv

Γex
tot

=
α

F o
speedf + (1− f ) + α

. (7.4b)

The loss due to internal conversion is thus reduced, since the probability that a
given excited nucleus will emit a photon rather than ejecting an electron has been
increased [21,23,24]. The net speedup factor for the decay rate of a nuclear exciton
relative to that of a single nucleus is

Fspeed =
F o

speedf + (1− f ) + α

1 + α
. (7.5)

Thus in experiments where the detector sees only the inelastic channels like conversion
electrons or X-rays, the branching ratios for these detection modes are seen from
eqs. (7.4a) and (7.4b) to be reduced relative to that of the speeded-up coherent forward
radiation. This bias must be taken into account in calculating the factor Ken.

Since the coherent effects do not change the inelastic excitations, the normaliza-
tion factor Ken should be the same for the coherent case as for a single nucleus if the
experimental normalization for the moments is calculated only by integrating over the
inelastic spectrum. For this case the integral is just the total inelastic probability for
the single nucleus case; namely 1− f . Thus we obtain

K inelastic
en =

1
1− f . (7.6)

8. Separating elastic and low-energy inelastic excitations

In most Mössbauer spectra there is a clear distinction between the elastic peak
and the inelastic continuum. But there may also be cases where the Lamb–Mössbauer
factor commonly denoted by f is small and the contributions of very low energy
excitations are appreciable. In this case, one must consider inelastic excitations where
the Mössbauer resonance is excited together with the exchanges of phonons whose
wavelengths are all very long in comparison with the lattice spacings in the crystal.
This can be considered as a kind of nuclear exciton in which the coherence exists over
some finite and non-negligible number of nuclei in the crystal. This exciton may then
decay with a speeded-up lifetime and a modified angular distribution which will be
forward peaked.

In some experiments the excitation is detected by observing the scattered γ-rays
in a particular solid angle away from the forward direction, and with a time delay of
the order of the Mössbauer lifetime in order to discriminate against prompt radiation.
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In such experiments a nuclear exciton with a speeded-up lifetime and a forward-
peaked angular distribution would tend to decay too soon and in the wrong direction
to be observed at the detector. This could reduce the number of events detected at low
excitations when these long wave excitations arise. In a crystal where there are acoustic
and optical modes, this could reduce the detection efficiency of acoustic modes relative
to optical modes. If the data are interpreted by using the sum rule (7.2a) and eq. (7.6)
to obtain the f factor from the first moment of the inelastic excitation spectrum, the
value for f obtained should give the probability for low-energy excitations which
are missed in the observed inelastic spectrum. Normally this is just the probability
of elastic excitation. But here the missed long-wave-phonon excitations would be
included in defining the modified total cross-section σ̄ex, and an “effective” f -factor
feff determined by this procedure would be higher than the real f .

For a simple example let us assume that the initial radiation is incident on a thin
plane of nuclei in a direction normal to the plane. If there is any coherence between
the excitations of different nuclei the relative phases of the radiation emitted nearly
parallel to the plane will be very different and will tend to cancel out. The coherence
therefore not only enhances the forward peak, it strongly suppresses the intensity in
the direction normal to the incident beam.

For a rough quantitative estimate, let us asssume that there is a sharp difference
between excitations which are low enough to produce a nuclear exciton and those which
are too high and do not. We then define flow as the probability of producing such a
low-energy excitation. This is defined precisely as the ratio of the integral over the
low-energy portion of the excitation spectrum to the total integral over the excitation
spectrum. We also define a speedup factor for the decay of the nuclear exciton. We
can apply the treatment of eqs. (7.3)–(7.5) to this case using flow as the probability of
producing the nuclear exciton rather than the normal f which only considers elastic
transitions.

The total decay width Γex
tot for the exciton

Γex
tot =

[
F o

speedflow + (1− flow) + α
]
Γγ. (8.1a)

The relative probabilities or branching ratios for incoherent gamma emission and in-
ternal conversion, respectively, are reduced:

Γex
incoherent

Γex
tot

=
1− flow

F o
speedflow + (1− flow) + α

, (8.1b)

Γex
inconv

Γex
tot

=
α

F o
speedflow + (1− flow) + α

. (8.1c)

The net speedup factor for the exciton decay rate relative to that of a single nucleus is

F ex
speed =

F o
speedflow(1− flow) + (1− flow) + α

1 + α
. (8.1d)

The effective total width that is measured in a scattering experiment by integrating
the observed cross-section over energy is the sum of the true width of the observed



364 H.J. Lipkin / Mössbauer sum rules III-2.1

scattering outside the exciton energy range and the measured width of the scattering
emitted from the exciton. The width of the excitation outside the exciton range is
just (1− flow)Γγ . The measured exciton width depends upon experimental conditions
like angular and time acceptance. For a rough estimate we assume that the coherent
emission from the exciton is lost because of wrong angular and time acceptance and
we also neglect internal conversion. We then obtain

Γobs
tot

Γγ
= 1− flow + flow

Γex
incoherent

Γex
tot

= (1− flow)
1 + F o

speedflow

1 + (F o
speed − 1)flow

. (8.2a)

This satisfies the inequality

1− flow 6
Γobs

tot

Γγ
6 1− f 2

low. (8.2b)

Here, the upper bound is for the case of no speedup (F o
speed = 1). The factor flow

appears twice, once for the probability of producing the exciton and once for the
probability of coherent decay of the exciton. The lower bound is for the case of very
large speedup (F o

speed � 1). Here, the probability of incoherent decay of the exciton is
negligible and only the incoherent excitation without exciton production is observed.

9. Conclusions

The development of tunable synchrotron radiation sources in the millivolt range
provides the possibility of experimental tests and applications for moment sum rules
originally derived for the emission of Mössbauer resonance radiation and hitherto used
primarily for pedagogical purposes. These sum rules are shown to be very useful in
obtaining crucial information from inelastic resonance scattering data.

The first moment sum rule enables the normalization of the inelastic scattering
data and the determination of the Lamb–Mössbauer f -factor. This moment is equal
to the free recoil energy of the resonant nuclear transition and is independent of the
structure of the bound system, its wave function and the temperature.

The second moment is proportional to the mean kinetic energy of the resonant
nucleus and is a function of the temperature and the wave function describing the
motion of the nucleus in the bound system.

The third is proportional to the second derivative of the potential acting on the
resonant nucleus. This is the force constant seen by this nucleus if the forces are
harmonic. For a harmonic system this moment depends only upon the force constants
in the Hamiltonian of the system and is independent of the wave function of the system
or the Hamiltonian.

The fourth moment is the sum of two terms. One term is proportional to the mean
value of the fourth power of the resonant nucleus momentum; the second term is a
function of the constants appearing in the system Hamiltonian and of the wave function
describing the motion of the resonant nucleus in the bound state. The theoretical value
of this moment is easily calculated for any particular model.
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These sum rules can be particularly useful for Mössbauer synchrotron experiments
performed in cases where inelastic excitations are not accessible to other experimental
techniques like neutron scattering. The advantages of the synchrotron Mössbauer tech-
nique are discussed in detail in [2], and include the ability to use small samples and
thin films, the speed of the measurement with the possibility of investigating short-
lived structures and the time development of phase transitions and the ability to focus
on a comparatively rare constituent in a sample.
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