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Theory of X-ray grazing incidence reflection in the
presence of nuclear resonance excitation

R. Röhlsberger

Fachbereich Physik, Universität Rostock, August-Bebel-Str. 55, D-18055 Rostock, Germany

The dynamical theory of nuclear resonant diffraction is applied to the case of grazing
incidence reflection. The solution of the dynamical equations is obtained by evaluation of a
matrix exponential. This formalism is applied to grazing incidence reflection from arbitrary
stratified media. However, the basic formalism is not restricted to this case, but can be
used to describe a wide range of diffraction phenomena. This is demonstrated in the case
of grazing incidence diffraction from gratings in the n-beam case. Moreover, the theory is
extended to describe the influence of surface and boundary roughness.

1. Introduction

The outstanding brilliance of X-ray synchrotron radiation has opened unique ex-
perimental possibilities to study properties of surfaces and thin films. Moreover, the
X-ray optical properties of thin films and multilayer systems are often exploited in
dispersive elements (filters, monochromators) for synchrotron beamlines. In case of
nuclear resonant scattering, it was realized before the first synchrotron-based experi-
ment that thin films can be applied as ultranarrow bandpass filters [1]. The dynamical
theory of nuclear resonant X-ray reflection from thin films was then worked out in a
series of papers [2,3]. On the basis of this theory, thin film optics has been success-
fully developed for nuclear resonant filtering of synchrotron radiation [4–6]. During
the development of grazing incidence optics it turned out that film systems with a
periodicity parallel to the surface normal (multilayers, superlattices) and perpendicular
to it (reflection gratings) are promising candidates for the desired kind of filtering as
well. It was therefore necessary to extend the dynamical theory of nuclear resonant
scattering to include these cases as well [7]. Moreover, the theory should also be able
to handle the influence of surface and boundary roughness. In this contribution we will
summarize the theory with additional emphasis on multilayer systems and diffraction
gratings and the treatment of boundary roughness.

The dynamical theory of nuclear resonant scattering differs from the ordinary
dynamical theory of X-ray scattering due to the strong polarization dependence of the
scattering amplitude. This polarization dependence arises as soon as the degeneracy of
the nuclear levels is lifted by a hyperfine interaction with alignment or texturing of the
nuclear moments in the sample. This applies not only for nuclear resonant scattering
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at transition energies of Mössbauer nuclei [8] but also for magnetic X-ray scattering
in the vicinity of inner-shell resonances [9,10]. The strong polarization dependence
enables the determination of magnetic structures, especially when polarization filter-
ing techniques are applied [11]. Moreover, the extremely sharp energy dependence
of nuclear resonant scattering allows for novel mechanisms for ultra-high resolution
filtering of synchrotron radiation [12–14]. Very similar polarization effects are found
in scattering of visible light from magnetic structures, responsible for many kinds of
magneto-optical effects [15,16], and in reflection of polarized neutrons from magnetic
surfaces [17].

This paper is organized as follows. The first section briefly describes the alge-
braic structure of the theory, based on the evaluation of an exponential of the scattering
matrix. The dimension of the matrix is determined by the scattering geometry and the
geometry of the sample. The latter enters through evaluation of the structure function
and allows the formalism to be extended to arbitrary sample geometries. In the next
section the scattering matrix is derived. It results from the solution of a system of
coupled differential equations that describe the propagation of waves in the sample. It
turns out that the evaluation of the matrix exponential can be considerably simplified
by taking advantage of its symmetry properties, leading to a very intuitive factoriza-
tion into simple matrices. A separate section is devoted to the treatment of boundary
roughness, where a matrix is derived that describes the effect of a continous density
transition between two adjacent layers. Finally, the theory is extended to the case of
reflection from laterally structured layers, i.e., reflection gratings.

Some remarks about the notation used here: Lower-case boldface letters denote
2× 2 matrices, while upper-case boldface letters represent matrices with a dimension
>4. The hat (Â) marks a unit vector, ~A is a 2-component vector, and A is a supervector
with a dimension >4. E, N and M are atomic scattering operators that are represented
by 2× 2 matrices.

2. Algebraic structure of the theory

Basically, every approach to describe the propagation of electromagnetic waves
in homogeneous materials leads to a set of coupled linear differential equations with
constant coefficients [18]. If converted into a set of first-order equations, such a system
can be conveniently solved by calculating the matrix exponential of the coefficient
matrix. As a general result, the propagation of electromagnetic waves through a
homogeneous medium with thickness d can be described by

A(d) = eiF dA(0), (2.1)

where A denotes a multidimensional vector representing the set of field amplitudes
in the open scattering channels. The matrix exponential relates the field amplitudes
A(d) at depth d to the incident amplitudes A(0). The number of scattering channels is
determined by:
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Figure 1. Propagation of electromagnetic waves through homogeneous, anisotropic media of thickness d
as described by A(d) = eiFdA(0) in case of various scattering geometries. The quantities k0 and f are
(2×2) matrices to account for polarization effects. In case of isotropic scattering they reduce to scalars.1

(a) The structure of the sample: in crystalline samples, several Bragg- and Laue-
reflections are possible. In disordered samples at normal incidence only forward
scattering is possible.

(b) The scattering geometry: determines how many scattering channels are actually
open, e.g., how many Bragg reflections are simultaneously excited. Regardless of
its structure, specular reflection at grazing angles takes place for any sample.

To illustrate this, some examples are listed in figure 1. In case of anisotropic media
one has to consider two amplitudes per scattering channel, one for each independent
polarization state. The basic features of these cases will be discussed here briefly:

A. Forward scattering. This is the most simple case, where only one scattering channel
is open. To account for the polarization dependence, F is a 2× 2 matrix with

f =

(
fxx fyx

fxy fyy

)
and k0 =

(
k0 0

0 k0

)
(2.2)

where f is the forward scattering amplitude in an orthogonal polarization basis. The
eigenvectors of f represent the eigenpolarizations of the medium. The eigenvalues
fi determine the corresponding refractive indices as defined by ni = 1 + fi/k0.

1 This is only correct in the approximation that the structure function is the same for σ and π polarization,
otherwise there is an additional factor of γ = ~k·~k′/kk′ = cos 2ϕ for π polarization. f is then a diagonal
(2×2) matrix with fππ = γfσσ .
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In case of an isotropic medium, eq. (2.1) turns into a scalar equation A(d) =
eink0dA(0).

B. Specular reflection. At grazing angles close to the critical angle, the reflected field
cannot be neglected and the two-beam case of dynamical diffraction is encoun-
tered. With F a 4 × 4 matrix, eq. (2.1) describes the polarization amplitudes in
two scattering channels: Specular reflection and forward transmission. A detailed
derivation of F will be given in the next section.

C. Diffraction from a reflection grating. The scattering matrix F contains the scatter-
ing matrices for the interaction between all diffraction orders. fm+n− , for example,
describes the amplitude for scattering from the m+ diffraction order into the n−

diffraction order. A derivation will be given in section 5.

The matrix elements of f are strongly dependent on the scattering geometry, i.e.,
the orientation of magnetic fields or electric field gradients in the sample relative to
the incident wavevector. If the incident polarization does not coincide with one of
the eigenpolarizations of the material, orthogonal scattering takes place and there will
be a mixing of the eigenpolarizations in the outgoing channel. The strong orienta-
tional dependence, combined with the surface sensitivity inherent to grazing incidence
X-ray reflection opens a series of applications especially in the study of thin film mag-
netism [19–21]. As an important example, that is often encountered in the study of
magnetic systems, the evaluation of f in case of pure magnetic hyperfine interaction
is given in appendix A.

In general, the matrix exponential cannot be calculated analytically. This can be
achieved only in a few exceptional cases of 2-beam diffraction. For nuclear Bragg
diffraction those are the cases with scattering angles of 180◦ (backscattering), 90◦

and 0◦. The latter case, which is basically Bragg diffraction with (hkl) = (000), is the
main subject of this article. In section 4.4 we will show how the matrix exponential
for grazing incidence reflection from anisotropic stratified media can be calculated.

3. Scattering amplitude and structure function

The X-ray scattering response, i.e., the coupling of the scatterer to the incident
photons and the amplitude and polarization of the scattered photons are most conve-
niently described in terms of the scattering operators of the individual atoms. In order
to account for the polarization dependence, e.g., in the cases of magnetic X-ray scat-
tering and nuclear resonant scattering, the scattering operators are written as (2 × 2)
matrices in a convenient polarization basis (~εa, ~εb ). Let M̃(~k,ω;~k′,ω′) be the total
operator for scattering of an incident wave with wavevector ~k′ and frequency ω′ into
a wave with wavevector ~k and frequency ω. The scattered field in first order Born
approximation is then given by (momentum representation)

~AS
(
~k,ω

)
= −c δ+(k,ω)

(2π)4

∫
M̃
(
~k,ω;~k′,ω′

)
~A0
(
~k′,ω′

)
d3k′ dω′ (3.1)
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with

δ+(k,ω) = − 4πc
ω2 − k2c2 + iε

, (3.2)

where δ+(k,ω) is the photon propagator of the outgoing photon. After determination of
the scattering operator M̃(~k,ω;~k′,ω′), the scattered amplitude in real space, ~AS(~r, t),
is obtained from ~AS(~k,ω) by Fourier transform.

In the following we will concentrate on elastic scattering, i.e., ω′ = ω. The
scattering operator is the sum over the contributions of all atoms in the scattering
volume:

M̃
(
~k,ω;~k′,ω′

)
= δ
(
ω′ − ω

)∑
j

ei(~k′−~k)~RjMj

(
~k,ω;~k′,ω

)
. (3.3)

Mj(~k,ω;~k′,ω) is the elastic scattering amplitude matrix of the jth atom. Neglecting in-
terference terms between nuclear and electronic scattering, it can be written as the sum
of two matrices Ej and Nj describing electronic and nuclear scattering, respectively:

Mj

(
~k,ω;~k′,ω

)
= Ej

(
~k,ω;~k′,ω

)
+ Nj

(
~k,ω;~k′,ω

)
. (3.4)

Polarization mixing scattering is described by nonvanishing off-diagonal elements
of M. Explicit expressions for E and N are given in appendix A. For more de-
tails, see [22,23] in the case of nuclear resonant scattering and [9,10] in the case of
magnetic X-ray scattering.

Each outgoing wave carries the geometrical phase factor ei(~k′−~k)~Rj which accounts
for the position of the atom in space. We assume that the ensemble of atoms can be
divided into subgroups of identical scattering behaviour (e.g., the different components
of alloys, the various constituents of crystal lattices ), marked by the subscript u. Then
the scattering matrix reads

M̃
(
~k,ω;~k′,ω′

)
= δ
(
ω′ − ω

)∑
u

Su
(
~k′ − ~k

)
Mu

(
~k,ω;~k′,ω

)
. (3.5)

All information about the arrangement of the atoms is contained in the structure func-
tion Su(~q ) = Su(~k − ~k′):

Su
(
~q
)

=

∫
V
ρu
(
~r
)
ei~q·~r d3r, (3.6)

where ρu(~r ) is the number density of the atoms in subgroup (u). The integration runs
over the whole sample volume. In this article we will apply the above formalism
to scattering from homogeneous thin films (next section) and laterally structured thin
films acting as diffraction gratings (section 5).
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4. Scattering from thin films

4.1. Scattering in first order Born approximation

In the following we calculate the scattering response of a thin film in the first order
Born approximation. The film is a very thin platelet of thickness b and homogeneous
density ρu(~r ) = ρu, extending to infinity in the in-plane directions. The structure
function of such a platelet is given by

Su
(
~q
)

= ρu

∫ ∞
−∞

dx dy ei~qxy ·~r
∫ b

0
dz eiqzz = (2π)2ρuδ

2(~qxy)eiqzb − 1
iqz

(4.1)

with

~qxy = ~kxy − ~k′xy and qz = kz − k′z .

Assuming the incident wave to be a plane wave, i.e.,

~A0
(
~k′,ω′

)
= (2π)4δ

(
ω′ − ω0

)
δ3(~k′ − ~k0

)
~A0, (4.2)

the scattered wave in phase space is obtained explicitly after inserting eq. (3.5) with
eq. (4.1) into eq. (3.1):

~AS
(
~k,ω

)
=−c(2π)2δ+(k,ω)δ(ω − ω0)δ2(~qxy)eiqzb − 1

iqz

×
∑
u

ρuMu(~k,ω;~k0,ω0) ~A0. (4.3)

The scattered wave in real space is obtained by Fourier transformation of the above
expression. The integration over the δ-distributions is easy to perform and the re-
maining integral over kz is solved via the residue theorem. The two poles of the
photon propagator, eq. (3.2), lead to two solutions for z > 0 (below the platelet) and
z < 0 (above the platelet). These solutions correspond to a transmitted wave in the
forward direction, the 0+ channel, and a reflected wave in the specular direction, the
0− channel. The wave in the forward direction is given by

~A0+(
~r, t
)

= ei(~k0+ ·~r−ω0t)
(
1 + ibf 0+0+) ~A0 (4.4)

with

f 0+0+
=

1
k0+z

∑
u

ρuMu

(
~k0+ ,ω0;~k0+ ,ω0

)
and the wave in the specular direction is given by

~A0−(~r, t) = ei(~k0− ·~r−ω0t)ibf 0−0+ ~A0 (4.5)
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with

f 0−0+
=

1
k0−z

e2ik0−zb − 1
2ik0−zb

∑
u

ρuMu

(
~k0− ,ω0;~k0+ ,ω0

)
;

~k0+ = ~k0 is the wavevector of the photon field in the 0+ channel and ~k0− the wavevec-
tor of the photon field in the 0− channel. The (2×2) matrices f 0+0+

and f 0−0+
describe

the scattering from the incident 0+ channel into the 0+ and 0− channels, respectively.
1 is the (2× 2) unit matrix.

4.2. Solution of the dynamical scattering equations

For thick layers, especially in grazing incidence geometry, where the scattered
field often reaches the magnitude of the incident field, the 1st order Born approximation
is no longer valid. This problem is solved by dividing the layer into thin platelets for
which the 1st order Born approximation is valid and sum up the contributions of all
these platelets.

If we look at three subsequent platelets within the layer, we find the situation
which is sketched in figure 2: Three thin plateletes are drawn as horizontal lines
numbered with m − 1, m and m + 1. They are thin enough for the 1st order Born
approximation to be valid for calculation of the scattered waves. Each of the waves
incident upon platelet m generates two waves travelling in the 0+ and 0− channel. The
response to incident ~A0+

(m) is given by eqs. (4.4) and (4.5). The response to incident
~A0−(m) is obtained by changing 0+ into 0− channels and vice versa in eqs. (4.4) and
(4.5). Each two contributions in the outgoing channels are added, dropping the phase
factor ei(~k0xy·~r−ωt):

~A0+
(m+ 1) = eik0+zb

{(
1 + ibf 0+0+) ~A0+

(m) + ibf 0+0− ~A0−(m)
}

,
(4.6)

~A0−(m− 1) = e−ik0−zb
{(

1− ibf 0−0−) ~A0−(m)− ibf 0−0+ ~A0+
(m)
}
.

In the continuous limit b→ 0, i.e., k0zb� 1, we expand the exponentials, make
the substitutions

~A0±(m)→ ~A0±(z), ~A0±(m± 1)→ ~A0±(z ± b)

and expand the last expression around z. Then the system of coupled difference equa-
tions converges into a system of coupled differential equations:

d ~A0+
(z)

dz
= i
[(
f 0+0+

+ k
)
~A0+

(z) + f0+0− ~A0−(z)
]
,

(4.7)
d ~A0−(z)

dz
= i
[
f0−0+ ~A0+

(z) +
(
f0−0− − k

)
~A0−(z)

]
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Figure 2. Wavefields in the dynamical theory of X-ray diffraction (left) and scheme of a layer system
(right). The task is to solve for the field amplitudes ~A0− (0) and ~A0+

(D) under the boundary conditions
~A0+

(0) = ~A0 and ~A0−(D) = 0.

with k = k0z1. By combining ~A0+
(z) and ~A0−(z) into one supervector A, these

equations can be written in matrix style:

dA(z)
dz

= iFA(z) (4.8)

with

F =

f0+0+
+ k f0+0−

f 0−0+
f 0−0− − k

 and A(z) =

 ~A0+
(z)

~A0−(z)

 .

If the scattering matrix F is independent of z, this equation has the immediate solution

A(z) = eiF zA(0). (4.9)

This equation relates the field amplitudes at depth z to the field amplitudes on the
surface of the layer. The solution eq. (4.9) is only complete if it is supplemented by
the boundary conditions

~A0+
(0) = ~A0 and ~A0−(D) = 0. (4.10)

At the surface the only field propagating in the 0+ direction is the incident wave ~A0.
At the opposite boundary we assume for the moment that there is no wave traveling in
the 0− direction. This implies that we have a free-standing layer that is not supported
by a substrate. It will be shown later how a semi-infinite substrate is introduced.
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4.3. Calculation of field amplitudes

In order to solve for either the specularly reflected field ~A0−(0) or the transmitted
field ~A0+

(D), eq. (4.9) has to be evaluated for z = D. Equation (4.9) is now rewritten
by expressing the vectors ~A(0) and ~A(D) explicitly in their 0+ and 0− components,
decomposing the matrix eiFD into (2× 2) submatrices s++, s+−, s−+ and s−− and
inserting the boundary conditions: ~A0+

(D)

0

 =

(
s++ s+−

s−+ s−−

) ~A0

~A0−(0)

 . (4.11)

This equation can now be solved for the reflected and transmitted field amplitude as
well as for the amplitude at any depth inside the layer system:

(a) The reflected amplitude. Solving eq. (4.11) for the specularly reflected field
~A0−(0), we obtain

~A0−(0) = −[s−−]−1s−+
~A0. (4.12)

(b) The transmitted amplitude. With the solution for ~A0−(0) it is now possible to
solve for the transmitted field ~A0+

(D):

~A0+
(D) = s++ − s+−[s−−]−1s−+

~A0. (4.13)

(c) The amplitude at depth z. Once the reflected amplitude ~A0−(0) is known, the
amplitude at any depth z can be calculated:

~A0+
(z) = s++(z)− s+−(D)

[
s−−(D)

]−1
s−+(z) ~A0. (4.14)

This is applied, for example, to estimate the fluorescence yield from thin films [24–
26] or the performance of X-ray waveguide structures [27,28].

The above procedure is basically independent of the shape of F . We will show
in section 5 how it is applied in case of diffraction gratings.

If the scattering matrix F is a function of depth, the layer is subdivided into
thin slices within which F is constant. The problem is then solved by calculating the
matrix product of all the individual layer matrices. This procedure will be outlined in
section 4.5.

From the computational point of view, the treatment is already complete at this
point. However, further simplifications that make use of the special symmetry of the
scattering matrix in grazing incidence geometry lead to a clearer representation as well
as a numerically more efficient algorithm, as will be shown in the following section.

4.4. Evaluation of the layer matrix exponential

The matrix exponential is easily calculated after diagonalization of F . In grazing
incidence geometry this can be done analytically because the matrices f ss

′
(s, s′ =
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0+, 0−) can be expressed to a very good approximation by the forward scattering
matrix f 0+0+

and therefore can be diagonalized simultaneously:

f = f0+0+
= f0+0− = −f0−0+

= −f0−0− =:

(
fxx fxy

fyx fyy

)
, (4.15)

where f 0+0+
is given explicitly by eq. (4.4). Now F reads

F =

(
f + k f

−f −f − k

)
. (4.16)

The diagonalization of this matrix is not only a formal procedure. Quite interestingly,
the result is a factorization into matrices with a very intuitive physical interpretation.

F is diagonalized in two steps: First, the (2× 2) forward scattering matrix f is
diagonalized, i.e.,

f = g f e g
−1 with g =

 1 1

f1 − fxx
fxy

f2 − fxx
fxy

 (4.17)

and

f1,2 =
1
2

(fxx + fyy)± 1
2

√
(fxx − fyy)2 + 4fxyfyx , (4.18)

where f1, f2 are the eigenvalues of f . The matrix g consists of the eigenvectors of
f , which are the eigenpolarizations of the material. The eigenpolarizations are those
polarization states that remain unchanged while traveling through the material. Now
F can be rewritten as the following matrix product:

F = GF eG
−1 =

(
g 0

0 g

)(
(f e + k) fe

−f e −(f e + k)

)(
g−1 0

0 g−1

)
. (4.19)

The matrix F e is the representation of F in the basis of eigenpolarizations. Note that
F e is in a simple blockdiagonal shape and can therefore be written as the direct product
of two submatrices representing both eigenpolarizations. This is just the expression
of the fact that the eigenpolarizations in a medium travel independently of each other.
Thus, the diagonalization of F e can be reduced to two independent problems, each
for every eigenpolarization. As a result, F e can be written as the following product
of matrices:

F e =

(
t−1

01 0

0 t−1
01

)(
1 r01

r01 1

)(
q1 0

0 −q1

)(
1 r10

r10 1

)(
t−1

10 0

0 t−1
10

)
(4.20)
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with

r01 =

(
r01,1 0

0 r01,2

)
, t01 =

(
t01,1 0

0 t01,2

)
, and q1 =

(
k0zβ1,1 0

0 k0zβ1,2

)
,

where r01,i and t01,i are the Fresnel reflection and transmission coefficients for both
eigenpolarizations, labeled by i = 1, 2, at the boundary between vacuum and the
material:

r01,i =
1− β1,i

1 + β1,i
, t01,i =

2
1 + β1,i

. (4.21)

The coefficients β1,i relate the z-component of the wavevector in the material to the
wavevector of the incident wave:

k1z,i = k0zβ1,i with β1,i =

√
1 +

2fi
k0z

, i = 1, 2. (4.22)

Putting eqs. (4.19) and (4.20) together we finally express the layer matrix exponential
S as the following matrix product:

S = eiF d = G1T
−1
01 R01E1R10T

−1
10 G

−1
1 . (4.23)

Each matrix appearing here has an obvious physical interpretation:

G1 =

(
g1 0

0 g1

)
is the transformation matrix that mediates the transition from
the basis of eigenpolarizations to the orthogonal polarization
basis chosen for representation.

T 01 =

(
t01 0

0 t01

)
describes the transmission of both eigenpolarizations through
the interface between vacuum and layer 1.

R01 =

(
1 r01

r01 1

)
describes the reflection of both eigenpolarizations at the in-
terface between vacuum and layer 1.

E1 =

(
eiq1d 0

0 e−iq1d

)
describes the propagation of the two eigenpolarizations
through the layer. In the dynamical theory the wavefield
in the medium is the superposition of two waves propagating
in positive and negative z directions.

4.5. Scattering from multiple layers

This formalism is easily extended to the general case of multiple layers. Assume
a layer system consisting of n layers with the scattering matrices Fi, thicknesses di,
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and total thickness D =
∑n

i=1 di. Then the field in the nth layer, i.e., at depth
z > ds =

∑n−1
i=1 di, is given by

~A(z) = eiF n(z−ds)eiF n−1dn−1 · · · eiF 2d2eiF 1d1 ~A(0). (4.24)

For convenience we introduce the following matrix:

S = eiF ndneiF n−1dn−1 · · · eiF 2d2eiF 1d1 . (4.25)

With the matrices introduced above, the layer matrix exponential for a two-layer sand-
wich can be written as

S = S2S1 = G2T
−1
02 R02E2R21E1R10T

−1
10 G

−1
1 , (4.26)

where we have introduced the interface matrix R21:

R21 = T−1
20 R20G21R01T

−1
01 with G21 = G−1

2 G1. (4.27)

The concept of the interface matrix allows us to write the product of matrix exponentials
for an n-layer system in a convenient way:

S = Rn,n−1

1∏
k=n−1

EkRk,k−1, (4.28)

where Rij is given by

Rij =

(
aij bij

bij aij

)
with

aij = t−1
i0 (gij + ri0gijr0j)t

−1
0j ,

bij = t−1
i0 (ri0gij + gijr0j)t

−1
0j .

(4.29)

Here, we have already assumed that the layer system is supported by a substrate, i.e.,
layer n with infinite thickness. In evaluating eq. (4.25) we have carried out the limit
limd→∞ eigd = 0. This is just the expression of the fact that in a semi-infinite medium
the waves traveling in the 0+ direction vanish with increasing depth.

This is the general result for an arbitrary layer system where, for example, the
magnetization direction varies from layer to layer. This is observed, e.g., in case of
magnetic twist grain boundaries, where the magnetization rotates from one direction
into another across a layer boundary.

The above formalism can be further simplified if the eigenpolarizations of all
layers are the same. In this case G21 = 1, and the interface matrix R21 simplifies to2

R21 = T−1
20 R20R01T

−1
01 =

(
t−1

21 0

0 t−1
21

)(
1 r21

r21 1

)
. (4.30)

2 In deriving eq. (4.30) we have used the following relations between the Fresnel coefficients: tij =
ti0t0j/(1 + ri0r0j) and rij = (ri0 + r0j)/(1 + ri0r0j).
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The problem can now be solved for each eigenpolarization separately. We apply
eq. (4.28) for a single coating on a semi-infinite substrate:

S = R21E1R10 (4.31)

and we obtain the classical thin-film multibeam interference formula [29]

r012 =
r01 + r12e2ik0zβ1d1

1 + r01r12e2ik0zβ1d1
. (4.32)

This equation can be used to calculate the reflectivity of a stack of layers recursively
by inserting r012 instead of r12 when adding the next layer on top. Since, in gen-
eral, the eigenpolarizations of the layer system do not coincide with the polarization
basis chosen, a transformation back into that basis has to be performed. The (2 × 2)
reflectivity matrix as defined through eq. (4.12) is then given by

r = greg
−1 (4.33)

with [re]ij = δijRi. Here, the Ri are the reflectivities of the layer system for both
eigenpolarizations, according to eq. (4.32). Evaluation of eq. (4.33) then leads to the
following closed expression for r:

r =

 1
2

(
R+ +R−

(fxx−fyy
f1−f2

))
R−
( fxy
f1−f2

)
R−
( fyx
f1−f2

)
1
2

(
R+ −R−

(fxx−fyy
f1−f2

))
 (4.34)

with R± = R1 ± R2.

4.6. Treatment of surface roughness

In the preceding section the matrix exponential eiF z was evaluated in order to
calculate the field of a wave at depth z of a material characterized by the scattering
matrix F . The calculation of the field in layered media is accomplished by multi-
plication of the corresponding matrix exponentials. This procedure is only valid for
layers of homogeneous density, i.e., where F is independent of z. However, in the
case of boundary roughness we encounter a situation where the density may vary con-
tinuously over a certain range. Then the above formalism can be applied again if the
layer system is subdivided into thin slices of homogeneous density. A drawback is
the increase in computational effort which accompanies such a procedure. Therefore a
closed solution is attempted which replaces the effect of the transition region by one
single “roughness matrix” eW . The transition from the case of a smooth boundary to
a rough boundary shall be accomplished by inserting this matrix eW between the two
exponential matrices of the adjacent layers:

eiF 2d2eiF 1d1 −→ eiF 2d2 eW eiF 1d1 ; (4.35)

W is expected to be a function of the scattering matrices F 1, F 2 and σ is a parameter
characterizing the thickness of the transition region.
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Figure 3. Density variation around a rough interface between two layers with densities ρ1 and ρ2.
(a) Rough boundary between two materials with densities ρ1 and ρ2. s(x, y) is the surface profile function.
(b) Height distribution function h(z) describes the probability to find an element of the surface at depth z.
(c) Density transition ρ(z) as obtained from integration over the height distribution function. (d) Simplified

model of (c), leading to eq. (4.36).

In a simple model, let us first assume that the rough boundary is represented by
a transition layer with thickness 2d, centered around the common boundary between
two layers of thickness D each, see figure 3. The scattering matrices of these layers
are given by F 1 and F 2, respectively, the scattering matrix of the transition region is
(F 1 + F 2)/2. With the above ansatz, the product of the exponential matrices is then
given by

eiF 2DeW eiF 1D = eiF 2D e−iF 2d ei(F 1+F 2)d e−iF 1d eiF 1D

= eiF 2D e−(1/2)i[F 2,F 1]d eiF 1D, (4.36)

where we have made use of the Campbell–Baker–Hausdorff (CBH) relation:

eAeB = eA+B+(1/2)[A,B]; (4.37)

[A,B] = AB −BA is the commutator between A and B. Commutators of higher
than second order have been neglected, which is reasonable if the thickness of the
transition region is small. Moreover, in this approximation every matrix exponential
with second order exponents commutes with matrices of first order exponents. As a
result, the matrix W we are looking for is expected to contain commutators of various
orders between F 1 and F 2.

Now we want to develop a more realistic model of the transition region. In
any case, however, we concentrate only on the specular reflection. Fluctuations of
the optical properties perpendicular to the surface normal lead to diffuse scattering.
A corresponding theory for X-ray diffuse scattering including polarization effects has
just been developed on the basis of the distorted-wave Born approximation [30]. This,
however, is beyond the scope of this paper. Here, it is assumed that the roughness
can be treated as a continuous density transition along the surface normal. In grazing
incidence geometry this assumption is justified as long as only the specularly reflected
radiation is considered and the condition kzσ � 1 holds. In the following the rough
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boundary is located around z = 0, surrounded by two layers with densities ρ1 and ρ2

and equal thickness d� σ, see figure 3.
The boundary plane is defined as the average smooth surface for which∫

s(x, y) dx dy = 0 holds, where s(x, y) is the surface profile function, measured
relative to that plane. For derivation of the roughness matrix we subdivide the density
transition region into thin slices of constant density and multiply the layer matrices of
all these layers. An outline of the computational procedure is given in the appendix.
The result is

W =
1
2

[F 1,F 2]
∫ ∞
−∞

z2h(z) dz +
1

24

[[
[F 1,F 2],F 1

]
,F 2

] ∫ ∞
−∞

z4h(z)dz + · · ·

=
∞∑
n=1

〈h(z)〉2n
(2n)!

[F 1,F 2]2n, (4.38)

where 〈h(z)〉2n is the (2n)th moment of the height distribution function h(z) and
[F 1,F 2]2n is the commutator of order 2n between F 1 and F 2, i.e., [F 1,F 2]2 =
[F 1,F 2], [F 1,F 2]4 = [[[F 1,F 2],F 1],F 2], and so on.

This is the general result for taking into account roughness described by a density
transition which follows from a height distribution. In this limit it is valid for all
kinds of scattering phenomena that are described in the exponential matrix formalism,
especially grazing incidence diffraction with polarization mixing and diffraction from
laterally structured surfaces.

In the special case of a Gaussian height distribution we have

h(z) =
1√
2πσ

e−z
2/(2σ2) and

〈
h(z)

〉
2n = (2n− 1)!!σ2n, (4.39)

so that the roughness matrix is given by

W =
∞∑
n=1

1
n!

(
σ2

2

)n
[F 1,F 2]2n. (4.40)

A closed expression for this series has so far been found only in the special case that
the eigenpolarizations for all layers are the same. In appendix B it will be shown
that the above result leads to the widely accepted formula for the treatment of surface
roughness obtained by Nevot and Croce [31].

5. Grazing incidence diffraction from reflection gratings

Reflection gratings are widely used as monochromatizing elements in spectrome-
ters for energies from the infrared to the range of soft X-rays. They are just becoming
interesting also for hard X-rays with respect to the analysis of microstructures [32,33],
and they are conceptually new in the field of nuclear resonant scattering. By producing
gratings with an isotopic or magnetic superstructure, pure nuclear reflections can be
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created that can be used for ultra-narrow monochromatization of synchrotron radiation.
A detailed example will be discussed in [34].

Diffraction from a reflection grating relies on the interference between waves re-
flected from different parts of the surface. Interference only takes place if the incoming
wavefield has a sufficiently large degree of transverse coherence. In this section we
present the formalism of the dynamical theory of X-ray diffraction for the case of re-
flection from a planar grating. The treatment is an extension of the formalism described
in the preceding section.

Of special interest in the experiments described here is the diffraction from rec-
tangular gratings because of the unique phase shift occurring between different parts
of the incoming beam upon reflection. The geometry is shown in figure 4. In analogy
to the treatment in the preceding section, this grating is assumed to be very thin so
that the 1st order Born approximation is valid. The structure function is given by

S
(
~q
)

= ρ
∞∑

n=−∞

∫ na+(d/2)

na−(d/2)
dx eiqxx

∫ ∞
−∞

dy eiqyy
∫ b

0
dz eiqzz. (5.1)

After carrying out the sum and performing the integrations we obtain

S
(
~q
)

= −(2π)2 ρ

a

(eiqxd − 1)(eiqzb − 1)e−iqxd/2

qxqz
δ(qy)

∞∑
m=−∞

δ

(
qx −

2πm
a

)
. (5.2)

Each summand corresponds to a certain diffraction order. The further treatment pro-
ceeds in the same way as in the case of grazing incidence reflection. We assume a
very thin layer of thickness b and treat each diffraction order separately, which results
in a solution above and below the scattering plane, respectively. The diffraction orders
below the scattering plane, observed in transmission, are labeled by a plus sign, the
orders above the scattering plane, the reflected orders, are marked by a minus sign.

The z-component of the wavevector of the wave in the mth diffraction order is
given by

km±z =±
√
k2

0z −mg(2k0x +mg), (5.3)

where g = 2π/a is the reciprocal lattice unit vector of the grating. Equation (5.3)
allows one to determine the range of open scattering channels, i.e., possible diffraction

Figure 4. Geometry of a rectangular grating (cross-section).
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Figure 5. Diffraction at a reflection grating. In reciprocal space a grating is represented by parallel sheets.
The intersection points with the Ewald circle indicate the direction of the diffraction orders.

orders. Open channels are those for which km±z is a real quantity. The bound-
aries of this interval, i.e., the maximum and minimum diffraction order, are given by
mmin ≈ −INT(aϕ2/2λ) and mmax ≈ INT(2a/λ), where INT means the integer func-
tion. Figure 5 illustrates the different appearance of positive and negative diffraction
orders. Below a certain angle of incidence, no negative diffraction orders are observed.
The number of positive diffraction orders can be very large, since it scales directly
with the ratio of the lattice spacing a to the wavelength λ. All open channels form
a closed set, i.e., the waves coming from diffraction at the pth plane, incident upon
the (p+ 1)th plane, generate waves which fall into the same set of diffraction orders.
The above treatment yields the following expression for the scattering amplitude for
scattering from the m+ channel into the n+ channel:

fm
+n+

= fm
+n− = −fm−n+

= −fm−n−

=
ρ

km+z

sin(π(m− n)q)
π(m− n)

M
(
~k0,ω0;~k0,ω0

)
. (5.4)

The resulting total amplitude in the m+ diffraction order is the result of contributions
from all other diffraction orders scattering into this particular order. Summing all
these contributions, one finally obtains the following system of coupled differential
equations:

d ~Am
+

(z)
dz

= i
∑
n

[(
fm

+n+
+ δm+n+km+z

)
~An

+
(z) + fm

+n− ~An
−

(z)
]
,

(5.5)
d ~Am

−
(z)

dz
= i
∑
n

[
fm

−n+ ~An
+

(z) +
(
fm

−n− + δm−n−km−z
)
~An
−

(z)
]
.
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By combining all the vectors ~Am
±

into one supervector, this system of equations can
again be written in matrix style and solved by a matrix exponential:

dA(z)
dz

= iFA(0) =⇒ A(z) = eiF zA(0) =:

(
S++ S+−
S−+ S−−

)
A(0). (5.6)

This solution is valid if the matrix F is independent of z, which is the case for a
rectangular grating. The dimension of F is 4(mmax − mmin + 1) with polarization
dependence taken into account. As shown above, this can be a considerably large
number, which cannot be handled on ordinary computers. However, in many cases a
satisfactory accuracy can already be achieved by confining the calculation to a small
number N of diffraction orders. In the following the amplitudes in the transmitted and
reflected diffraction orders are calculated for a grating of thickness L on a reflecting
surface. The boundary conditions specify the values of A+(0) and A−(L):[

A+(0)
]
m

= δ0m ~A0,
(5.7)[

A−(L)
]
m

= r02(ψm)
[
A+(L)

]
m
.

r02(ψm) is the (2× 2) reflectivity matrix of the substrate for radiation incident at the
diffraction angle ψm of the mth diffraction order. By proceeding in a similar way as
in the transition from eq. (4.11) to eq. (4.12) we obtain the field amplitude in the mth
reflected diffraction order:

~Am
−

(0) = rm ~A0 with

rm =−Pm−(S−− −R02S+−)−1(S−+ −R02S++)P 0+ . (5.8)

Pm− and P 0+ are projection matrices, whose combined action in the above equation is
to project out the (2×2) submatrix which describes the scattering from the incident 0+

channel into the outgoing m− channel. A significant simplification of the calculations
can be achieved by taking into account the symmetry of F [7].

This treatment represents the dynamical theory for diffraction from rectangular
gratings. Gratings of any other shape can be composed of thin rectangular gratings,
where the corresponding exponential matrices have to be multiplied consecutively.

6. Summary

The dynamical theory of X-ray diffraction has been outlined for the case of
anisotropic scattering. This occurs, for example, in magnetic materials, especially in
the vicinity of inner-shell and nuclear resonances. The latter case is given special
emphasis here, even though the formalism is valid for both; the main differences are
in the evaluation of the scattering amplitude. The theory presented is based on the
calculation of the matrix exponential of the scattering matrix, the matrix elements
of which represent the “transition amplitudes” between the scattering channels. In
the special case of grazing incidence diffraction, the transitions between the scattering
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channels can be described to a very good approximation in terms of the (2×2) matrix of
the forward scattering amplitude. This leads to an analytic solution that is not possible
in the general case of anisotropic 2-beam Bragg diffraction. Closed expressions were
derived for the reflectivity of a general multilayer system. The treatment of a rough
boundary as a multilayer system with a continuous density transition yielded a single
roughness matrix representing that boundary. It could be shown that for common
eigenpolarizations of all layers the result is practically identical to the formula of
Nevot and Croce for X-ray reflection from rough interfaces.

The algebraic structure of the theory allows an easy extension to the general
case of n-beam diffraction. This was demonstrated in case of diffraction from planar
gratings illuminated in grazing incidence geometry. An interesting application would
be the extension of the theory to anisotropic grazing incidence diffraction, where a
surface Bragg reflection is excited under total reflection conditions. This may allow
new experiments in the field of surface magnetism.

The numerical evaluation of the layer-matrix exponential can be performed very
efficiently by taking advantage of the special symmetry of the layer matrix. The the-
ory presented here has been implemented in a computer program to be used with the
CONUSS distribution [23] and is available from the author.3 Another, very efficient
algorithm has been developed by Deák et al. [35] that is described in this collec-
tion [36].
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Appendix A. Evaluation of the forward scattering amplitude

The electronic elastic forward scattering amplitude Ej(~k,ω;~k′,ω) is diagonal:[
E
(
~k,ω;~k,ω

)]
µν

= 2πδµν

[
−r0

(
Fe(0) + ∆Fa

)
+ i

k

4π
σt(ω)

]
, (A.1)

where Fe(0) is the atomic form factor, which, for forward scattering at X-ray energies,
is equal to Z, the atomic number. ∆Fa is the correction to the form factor due to
anomalous scattering, which becomes significant near absorption edges. σt(ω) is the
total absorption cross-section at the photon energy ~ω.

The nuclear forward scattering amplitude for an LM multipole oscillator in case
of a pure magnetic hyperfine interaction is given by

[
N
(
~k0,ω;~k0,ω

)]
µν

=
L∑

M=−L

[
ê∗µ · ŶLM

(
~k0
)][
Ŷ ∗LM

(
~k0
)
· êν
]
FLM (ω), (A.2)

3 Present e-mail address: roehle@physik1.uni-rostock.de.
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which describes the scattering of an incident wave with wavevector ~k0 and polariza-
tion êν into an outgoing wave with wavevector ~k0 and polarization êµ. The vector
spherical harmonics ŶLM (k̂) describe the emission characteristics of the oscillator. The
representation of these functions is given in a spherical polar coordinate frame that
is aligned along the quantization axis, which is given here by the direction of the
magnetic field B̂.

The energy dependence of the scattering amplitude is contained in the FLM ,
which are a linear combination of single resonances belonging to each value of M ,
weighted with the Clebsch–Gordan coefficients, which account for the angular mo-
mentum coupling:

FLM (ω) =
4πλfMB

2j0 + 1
1

1 + α

j0∑
m0=−j0

C(j0 Lj1;m0M )2

x(m0 M )− i (A.3)

with x(m0 M ) = 2[E(j1;m0 + M ) − E(j0;m0) − ~ω]/Γ being the deviation of the
energy from the unsplit resonance energy, measured in units of the natural linewidth Γ0.
The sum runs over all ground-state levels.

The vector spherical harmonics for an M1 transition as in the case of the 14.4 keV
resonance of 57Fe are given by

Ŷ10 = i

√
3

8π
sin θêφ, Ŷ11 = Ŷ ∗1−1 =

√
3

16π
eiφ[êθ + i cos θêφ

]
. (A.4)

Ŷ10 describes a linear polarization, while Ŷ11 and Ŷ1−1 describe left- or right-handed
polarization, respectively. êθ und êφ are the polar unit vectors. The choice of the
wavevector ~k0 of the incident radiation ~k as quantization axis has the advantage that
relative phase factors between magnetic sublattices are calculated in a unique way.
With the above definitions it is now possible to evaluate the elements of the forward
scattering matrix f̂ according to eq. (A.2). After some algebra (expressing trigono-
metric functions by the scalar products k̂0 · B̂, σ̂ · B̂ and π̂ · B̂) we finally obtain:

f =
3

16π


F1 + F−1 −i(k̂0 · B̂)(F1 − F−1)

+(π̂ · B̂)2 (2F0 − F1 − F−1) −(σ̂ · B̂)(π̂ · B̂)(2F0 − F1 − F−1)

i(k̂0 · B̂)(F1 − F−1) F1 + F−1

−(σ̂ · B̂)(π̂ · B̂)(2F0 − F1 − F−1) +(σ̂ · B̂)2(2F0 − F1 − F−1)

 .

(A.5)

This expression allows us to discuss various scattering geometries in a convenient way.
Of special interest are often the cases where f is diagonal in a linear polarization basis.
They can be summarized as follows:

• Special orientations of k̂0 relative to B̂: B̂ ‖ σ̂ and B̂ ‖ π̂.
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• Special distributions of magnetic orientations as in 2D and 3D polycrystallinity.
The scattering matrix for these cases is easily obtained by integration over the
corresponding orientational distribution of magnetic fields. Some of these cases
have been discussed in detail in [37].

• No hyperfine interaction at all. In this case there is a single, unsplit resonance and
the scattering is isotropic.

Appendix B. Derivation of the roughness matrix

Here, we give an outline of the derivation of the roughness matrix in eq. (4.38). It
is assumed that the roughness can be translated into a continuous density transition. The
density variation across the boundary is described by a transition function u(z) ∈ [0, 1]
with limz→−∞ u(z) = 0 and limz→∞ u(z) = 1.4 Then the density at depth z is given
by

ρ(z) = ρ1 − (ρ1 − ρ2)u(z). (B.1)

Since the scattering amplitude matrix f is proportional to the density ρ of the material,
the z-dependence of the scattering matrix F (z) can be written as

F (z) =

{
F 1 − F 12u(z), z < 0,

F 2 + F 12v(z), z > 0,
(B.2)

with F 12 = F 1 − F 2 and v(z) = 1 − u(z). We divide each layer into n slices of
homogeneous density and infinitesimal thickness δ = d/n. For abbreviation we set
um := u(−mδ) and vm := v(mδ) and substitute iδF 1,2,12 → F 1,2,12. Then the field at
z = d is related to the field at z = −d by ~A(d) = Sn ~A(−d) with the matrix Sn given
by

Sn = eF 2+F 12vn · · · eF 2+F 12v2eF 2+F 12v1︸ ︷︷ ︸ eF 1−F 12u1eF 1−F 12u2 · · · eF 1−F 12un︸ ︷︷ ︸ . (B.3)

The underbracing groups the layers above and below the average boundary at z = 0.
The central problem here is to evaluate these matrix products. In the approximation
made here, we apply the CBH equation (eq. (4.37)) to second order, i.e., we assume
that the matrices F 1 and F 2 commute with their commutator. We multiply the matrices
in each group successively in the order of increasing index i, thereby making use of
the following relations which can easily be proven by induction:

eF 1−F 12unenF 1 = e(n+1)F 1e−F 12une(n+1/2)[F 1,F 12]un ,
(B.4)

enF 2eF 2+F 12vn = e(n+1/2)[F 2,F 12]vneF 12vne(n+1)F 2 .

4 The function u(z) can be derived from the height distribution function h(z), which gives the probability
of finding an element of the boundary at coordinate z: u(z) =

∫ z
−∞ h(ε) dε.
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The result is, after the resubstitutions F 1,2,12 → iδF 1,2,12:

Sn = eiF 1deW neiF 2d with

W n =
n∑
k=1

(
k − 1

2

)
[F 1,F 2](uk + vk) + F 12(vk − uk). (B.5)

In the limit n → ∞ the sums convert into integrals, where kd/n ≡ z is the spatial
coordinate, δ = d/n ≡ dz and uk ≡ u(z), vk ≡ v(z) = 1 − u(z). Integrations with
u(z) and v(z) involved have to be integrated over [0,−d] and [0, d], respectively. If
the thickness of the density transition region is small compared to the film thickness d,
the error introduced by extending the integration intervals to [0,−∞] and [0,∞],
respectively, is negligible. In this “continuum” limit the matrix W n becomes:

W =−[F 1,F 2]

(∫ 0

−∞
zu(z) dz +

∫ ∞
0

zv(z) dz

)
+ iF 12

(∫ 0

−∞
u(z) dz +

∫ ∞
0

v(z) dz

)
. (B.6)

This lenghty expression can be simplified considerably. We integrate by parts, observ-
ing that du(z)/dz = h(z). The rightmost expression in brackets turns out to be the
first moment of h(z), which is zero by definition. The remaining integrals turn out to
give the second moment of the height distribution function, so that we finally obtain

W =
1
2

[F 1,F 2]
∫ ∞
−∞

z2h(z) dz. (B.7)

The higher order terms of eq. (4.38) result from a treatment where the CBH equation
is applied to higher orders.

Appendix C. Roughness matrix for isotropic media

Here, we show that in case of equal eigenpolarizations for the adjacent layers, the
roughness matrix in eq. (4.40) merges into the result obtained by Nevot and Croce [31],
i.e., the reflection coefficient of a rough boundary is affected according to rij →
rije−2k0zβiβjσ

2
.

Under these conditions the matrices f 1 and f2 commute, the problem can be
solved for each eigenpolarization separately, and a closed expression for the (2n)th
order commutator can be derived:

[F 1,F 2]2n =

(
0 bn

bn 0

)
with bn = k2

0z

(
β2

2 − β2
1

)(
2k2

0z

)n−1(
β2

1 + β2
2

)n−1
, (C.1)

where we have expressed the fi by the βi according to eq. (4.22). Since all ma-
trices appearing in the above equation are diagonal, the problem can be solved for
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Figure 6. The reflectivity of a Pd boundary for different roughness values, calculated according to the
formula of Nevot and Croce [31] (solid lines) and the roughness matrix developed here (dashed lines).

each eigenpolarization separately. Based on the above expression, the summation in
eq. (4.40) can be carried out exactly and one obtains for W

W =

(
0 c

c 0

)
with c =

1
2
β2

1 − β2
2

β2
1 + β2

2

(
1− exp

{
−k2

0z

(
β2

2 + β2
1

)
σ2}). (C.2)

After evaluation of the roughness matrix eW the interface matrix R21 can be calculated
according to eq. (4.27). In case of identical eigenpolarizations of the adjacent layers
we have G21 = 1. After some algebra5 we finally obtain the interface matrix of the
rough boundary:

R21 =

(
1 β−1

2

1 −β−1
2

)(
ec 0

0 e−c

)(
1 1

β1 −β1

)
. (C.3)

Equation (C.3) is to an extremely high accuracy equivalent to the following equation
from which the Nevot–Croce formula directly follows:

R21 =
1
t12

 e−(1/2)k2
0z (β1−β2)2σ2

r21e−(1/2)k2
0z (β1+β2)2σ2

r21e−(1/2)k2
0z (β1+β2)2σ2

e−(1/2)k2
0z(β1−β2)2σ2

 . (C.4)

To verify this equivalence, we have calculated the reflectivity of a Pd boundary for
differrent roughness values. The result is displayed in figure 6.

As it turns out, the roughness matrix developed here leads to practically the same
results as the Nevot–Croce formula [31] and, in a slightly different nomenclature,
the results obtained by Vidal and Vincent [38]. For high momentum transfer, the
reflectivity values calculated from our theory deviate from the Nevot–Croce result in a

5 We have used the following relations between the Fresnel coefficients: 1 + rij = tij , 1 − rij = tji
and t−1

ji tij = β−1
j βi.
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systematic way and merge into each other asymptotically, independent of the roughness.
However, these deviations show up under conditions (low reflectivity, large roughness)
that are very likely outside the validity range of both theories anyway.
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