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General properties of nuclear resonant scattering
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The process of nuclear resonant scattering is considered on the basis of an optical model.
The coherent properties of the radiation and scattering mechanism are described. The com-
plementary pictures of γ-ray resonant scattering in energy and time domains are presented.
Special attention is paid to scattering of a γ quantum by an ensemble of nuclei. The central
concept of the theory of nuclear resonant scattering, the nuclear exciton, as a delocalized
nuclear excitation, is described in detail. It is shown that both temporal and spatial aspects
of coherence play a crucial role in the evolution of the nuclear exciton. A large place is
given to the analysis of resonant scattering of synchrotron radiation by nuclear ensembles.

1. Introduction

For a long time the impact of ideas of coherency and scattering on the art and sci-
ence of Mössbauer spectroscopy was not very essential. The main line of development
of Mössbauer experiments was in the frame of absorption spectroscopy. Mössbauer
physicists dealt mostly with absorption spectra taken either in traditional transmission
experiments or in measurements of conversion electron yield or some other secondary
radiation.

For the interpretation and description of these spectra it was appropriate to use
the picture of interaction of a γ-quantum with an individual nucleus exploiting the
nuclear resonant absorption cross-section. The coherent properties of radiation and
those of the interaction mechanism were not explicitly involved.

Nevertheless, already at an early stage of the Mössbauer era scattering experi-
ments clearly proved the coherence of Mössbauer radiation and of nuclear scattering.
Coherent phenomena with Mössbauer γ-rays were thoroughly investigated. These
studies over about thirty years formed the basis of a new branch of optics (for an
overview of experiments and theory see [1–7] and references therein).

The development of synchrotron radiation sources, particularly of third generation
facilities, brought to life the potential of all this knowledge. Now, with the increasing
application of synchrotron radiation sources for studying nuclear resonances [8–15]
the ideas and approaches of coherence physics turn out to be of great importance for
understanding and describing of the results of measurements. The interest in the new
field is rising. To make a bridge for entering as a Mössbauer spectroscopist the new
area we consider in this paper the general properties of nuclear resonant scattering
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involving the principles and notions of the optical theory. Emphasis will be given
to the interferometric aspects of the new method, which make it complementary to
Mössbauer absorption spectroscopy.

2. Coherent properties of radiation

2.1. Wave packet description of Mössbauer quanta

Let us consider a radiative transition between the first excited and the ground
nuclear state with energies E1 and E0. To describe the γ-radiation we use classical
electromagnetic theory. It is an approximation of quantum electrodynamics, which
may be applied to our case. The wave–particle duality of γ-radiation associates the
probability wave language for the description of a γ-quantum state with that using
electromagnetic fields. So the probability amplitude for finding a quantum can be as-
sociated with the relevant electric field strength in the wave train. In case of recoilless
emission the multipolarity, the polarization, the frequency and the decay rate of the
γ-ray field emitted during the nuclear transition are determined precisely by the multi-
pole moment of the nuclear transition. Since the size of a nucleus carrying a transition
moment is much less than the radiation wavelength, a nucleus can be treated as a point
emitter. In the absence of hyperfine splitting of the nuclear levels the nucleus emits
a spherically symmetric wave packet so that the electric field vector at the point of
observation given by the vector r from the origin and at time t is of the form

E = const · 1
r

ei(ωst−kr)−Γt/2~, t > 0, (2.1)

where t = 0 is the time of the formation of the excited state, ωs = (E1 −E0)/~ is the
wave packet carrier frequency, Γ is the natural width of the excited nuclear level, which
is related to the characteristic decay time t0, Γt0 = ~, and k is the propagation vector
giving the wavelength λ by k = 2π/λ, and the direction of propagation. The electric
field oscillates in space and in time. Its oscillation phase contains both temporal and
spatial parts: ωst− kr.

The notion of coherence for an electromagnetic field implies a correlation of
the phase of the oscillation of the electric and magnetic fields in space and in time.
Any Mössbauer nucleus presents a source of highly coherent radiation. The phase
correlation of the electric field of the γ-ray at the point of observation extends typically
over times of 10−9–10−5 s. For the most frequently used 57Fe nucleus this corresponds
to ≈5 ·1011 cycles of the field oscillation. Alternatively one may say that the coherent
γ-ray wave train extends over ≈30 m! In the simplest interpretation one may equate
the coherence length to the length of the photon wave train.

Any photon wave train can be represented as a coherent superposition of time–
space harmonic plane waves (i.e., of spectral–spatial field components)

E(r, t) = e · εω ei(ωt−kr), (2.2)
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where ω is the wave frequency, e is the unit vector of the wave polarization (in general,
a complex vector: e = e1 + ie2, where all e-vectors are normal to k), εω is the scalar
amplitude (in general, a complex number1) of the constituent wave at frequency ω.
Note that the double harmonic plane wave given by eq. (2.2) is an ideal physical
concept of the wave field where the phase correlation spreads infinitely in space and
in time.

The electric field amplitude of a γ-ray emitted without recoil in a nuclear tran-
sition can be decomposed into time harmonics (spectral or frequency components) by
means of a Fourier expansion of the time dependent exponential in eq. (2.1),

E(t) ∝ ei(ωs+iΓ/2~) tΘ(t) = const
∫ ∞
−∞

dω · εω eiωt, (2.3)

where Θ(t) is the unit step function, which is zero for negative argument (the formation
of the nuclear excited state is supposed to occur at t = 0). Multiplying eq. (2.3) by
exp(−iω′t) and integrating over time from −∞ to +∞ yields the following expression
for the amplitudes of the spectral components:

εω = const · 1
ω − ωs − iΓ/2~

(2.4)

(where ω′ is replaced by ω). This expression corresponds to a Lorentzian energy
distribution characterized by the width Γ. All spectral components εω exp(iωt) are
coherent by construction. The integration at the right-hand side of eq. (2.3) physically
means interference of the time harmonic oscillations. The result is determined by
the frequency distribution of |εω| and by the evolution of the phases of the spectral
components with time. One may say that eq. (2.3) when read from right to left presents
a transition from the frequency to the time domain in the description of a γ-ray. In our
case the interference of the spectral components yields a fading oscillation with carrier
frequency ωs and decay constant Γ/2~. Thus the coherence time and the coherence
length of the real photon wave train are intimately connected with the width of the
spectral distribution of its harmonic components.

2.2. Description of the synchrotron radiation wave packet

An electron orbiting in a storage ring radiates when it is accelerated in a bending
magnet, or an undulator. An extremely short wave train of synchrotron radiation (SR)
is emitted, which lasts for about 10−18 s and is of 10−10 m length. The relevant
spectrum of electromagnetic radiation spreads from visible light to hard X-rays with
the upper limit extending up to ∼100 keV. The energy range thus covers the nuclear
transitions of almost all Mössbauer isotopes. The X-rays generated in an undulator-
based SR source can have an especially high spectral density in particular in the region
of nuclear resonances.
1 One should remember that mathematically it is convenient to operate with the electric field amplitude

as a complex vector but only its real part has a physical meaning.
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Before striking the nuclear target the SR light passes through a monochromator
system which selects a limited band of radiation, ~∆ω (~∆ω usually lies in the eV–meV
range). It is very narrow with respect to the primary spectrum of SR but extremely
broad compared to the width of a nuclear resonance. In practice one may assume
that all spectral components of the incident radiation have equal amplitudes within the
selected band, i.e., εω = εω0 (ω0 is the frequency of the nuclear transition). Thus, the
radiation spectrum at the exit of the monochromator is represented by a continuous set
of coherent harmonics

E(ω, t) = εω0 eiωt with εω0 =
√
I0/∆ω, (2.5)

where the amplitude εω0 is frequency independent in contrast to the amplitude εω
of Mössbauer radiation according to eq. (2.4), I0 is the intensity of SR within the
frequency range ∆ω selected by the monochromator system.

Electrons are grouped in bunches of finite size in a storage ring. Since the bunch
size significantly exceeds the wavelength of X-radiation the wave packets from separate
electrons cannot be regarded as coherent and their intensities are added in the signal
resulting at the detector.

After looking at the coherent properties of radiation we turn to the description of
the scattering mechanism.

3. Elastic scattering by a single nucleus

3.1. Steady state and dynamic picture of scattering

The overall process – absorption of a γ-ray or an X-ray photon by a nuclear target
and the re-radiation of a photon – is a scattering process. Due to the interaction with
the target the amplitude distribution, the polarization state, the form of the wave front,
etc. of the incoming photon can be radically transformed. The task of a scattering
theory is to give the full picture of the photon wave packet transformation, which is
determined by the properties of the scattering mechanism and by the parameters of
the scattering system. In resonant scattering, particularly, the change of the spectral
components of the wave packet is of special concern. There are different approaches
possible to describe the effect of scattering (so far we assume the polarization state
and the direction of scattering to be unchanged).

The most universal approach is to describe the transformation of a separate time
harmonic component of the wave packet, i.e., the change of its amplitude and phase
due to resonant scattering. In this description the response of a scattering system to a
harmonic excitation, i.e., the steady state response, at each frequency in the range of
interest is calculated. The scattering process is described here in the frequency domain.
When the transformed components are determined one gets by their superposition the
unit wave packet emerging from the scattering system.

In another approach the emerging wave packet can be found directly if the free
dynamic response of the nuclear system is known, say, the response of a resonating
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system to a pulsed excitation. In this approach the resonant scattering is described in
the time domain.

SR sources provide an excellent opportunity to observe the time evolution of
nuclear scattering. The excitation of a nuclear target by a SR pulse occurs within
∼0.2 ns. The time response of nuclei, e.g., short-lived isomers used in Mössbauer
spectroscopy, lies in the microsecond range. Thus, the excitation and decay stages are
well separated in time and the decay is so long that it can be easily traced with modern
electronics.

Below we consider both of the mentioned approaches.

3.2. Frequency response of a bound nucleus

The response of a nucleus is given by the nuclear scattering amplitude. The
incident quantum excites the nuclear transition in which the nucleus behaves as an
oscillating multipole that radiates. Usually an ensemble of nuclei participates in the
scattering event and the scattering amplitude is derived as a quantum mechanical
average over this ensemble. We limit our discussion to elastic forward scattering
of γ-rays by a bound nucleus with vanishing hyperfine interaction. In this case we
may consider the scattering amplitude as a complex function f0(ω), which relates
the amplitudes and phases of the relevant frequency components of the incident and
scattered radiation

Es(ω) = f0(ω) ·Ei(ω), (3.1)

where the scattering amplitude as a function of frequency is

f0(ω) = −K
4π
· σ0 ·

Γ/2~
ω − ω0 − iΓ/2~

· fLM(K) · β. (3.2)

f0(ω) can be interpreted as the response function of an isolated nucleus in the frequency
domain. In eq. (3.2)

σ0 =
2π
K2 ·

1
1 + α

· 2Ie + 1
2Ig + 1

is the maximum resonance cross-section, Γ = Γγ + Γe is the natural width of the
nuclear excited level composed of radiative and radiationless parts (the energy of the
excited nucleus can also be lost by ejecting an atomic electron via internal conversion),
α = Γe/Γγ is the internal conversion coefficient and Ie, Ig are the nuclear spins of
the ground and excited states (in the case of the 57Fe nucleus σ0 = 2.56× 10−18 cm2,
α = 8.19, Γ = 5 · 10−9 eV, Ig = 1/2, Ie = 3/2), K = ω/c is the magnitude
of the γ-ray wave vector in free space, fLM(K) = exp{−〈(Ku)2〉} is the Lamb–
Mössbauer factor representing the recoilless fraction of the scattered radiation (u is the
displacement of the nucleus from its equilibrium position due to thermal vibrations)
and β is the isotopic enrichment of the target.

As a complex number the scattering amplitude may be written in the form f0 =
|f0(ω)| exp{iΦ(ω)}, where |f0(ω)| represents the attenuation of the amplitude of the
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Figure 1. The amplitude of the elastic scattering by a bound nucleus in the forward direction. The
magnitude (a), the phase (b), the real and imaginary parts (c) of the forward scattering amplitude in the

vicinity of the resonance energy.

scattered radiation component and Φ(ω) is the phase shift of the radiation component
gained in forward scattering. In figure 1 the scattering amplitude in the resonance
region is given.

Dramatic changes of the scattering amplitude occur in the vicinity of a resonance,
within a few natural nuclear level widths (only ≈2 · 10−8 eV in the case of 57Fe).
The amplitude is sharply peaked at resonance, figure 1(a), and the phase drops from
zero below the resonance to −π above the resonance and is −π/2 at resonance,
figure 1(b).

It is convenient to operate with the imaginary and real parts of the scatter-
ing amplitude: f0(ω) = Re[f0(ω)] + i Im[f0(ω)] as shown in figure 1(c). At res-
onance the amplitude is purely imaginary, but on the wings |Re(f0)| � |Im(f0)|
so that the amplitude is almost real. As we shall see below, this property of the
scattering amplitude plays a crucial role in the formation of a specific frequency
structure of the γ-ray wave packet coherently scattered by the nuclear ensem-
ble.
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3.3. From frequency to time response of a nucleus

In figure 2 the scattering of a SR X-ray wave packet is displayed schematically.
The upper panel shows the incoming wave packet, the bottom panel shows the outgoing
one. The left/right-hand columns present the steady state and the dynamic picture of
scattering, respectively.

The incoming radiation, approximated by a δ(t) function, can be decomposed into
a continuous set of oscillations of equal amplitude over an infinite frequency range,
(figure 2 – see the upper left-hand corner). The components of the SR are displayed
as arrows (bold lines) in the complex plane determined by the axes Im(E), Re(E).
The arrows are distributed along the ω-axis, and each arrow is rotating with its angular
frequency ω in the complex plane. At time zero they are all aligned in one direction,
i.e., they are all in phase producing a resultant sum with infinite amplitude, at all other
times they are smeared homogeneously in phase over 2π yielding zero amplitude, in
full agreement with the properties of a δ-function.

The amplitudes and the phases of the elementary oscillations are changed due
to resonant scattering according to eqs. (3.1) and (3.2). In contrast to the incoming

Figure 2. Schematic view of nuclear resonant scattering of a SR X-ray wave packet in the energy and
time domains.
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set of amplitudes the amplitudes of outgoing oscillations are peaked at the resonance
frequency within a narrow band determined by the resonance width, and their initial
phases are dispersed around −π/2, see figure 2 (bottom left). When all scattered waves
are summed to a unit wave packet the nuclear response in the time domain is obtained
(bottom right). Geometrically this means that the vector summation of all arrows in
figure 2 (bottom left) is performed. The dephasing of the elementary oscillations (due
to rotation of the arrows at different angular frequencies) results in a decay of the
wave packet amplitude. The sharper the resonance the slower the dephasing and the
response time of a nucleus is correspondingly larger.

Thus the decay of the scattering intensity can be interpreted as a fading of
the interference signal due to the frequency components becoming homogeneously
distributed in phase with time. Analytically one has to perform the integration of
Es(ω, t) in the frequency domain. Taking into account eqs. (2.5) and (3.1) we have

Es(t) = εω0f0(t), where f0(t) =
1

2π

∫ ∞
−∞

dω · f0(ω) eiωt. (3.3)

After substitution of eq. (3.2) into eq. (3.3) we obtain

f0(t) = −K
4π
σ0fLMβ

1
2π

∫ ∞
−∞

dω
Γ/2~

ω − ω0 − iΓ/2~
eiωt. (3.4)

The integrand in eq. (3.4) has a singularity in the upper half of the complex ω plane at
ω = ω0 + iΓ/2~. The integral can be evaluated by closing the contour on a semicircle
in the upper part of the plane and finding the residue of the integrand. Thus, we obtain
for the scattering amplitude as a function of time

f0(t) = −i
K

8π
· σ0fLMβ

1
t0

eiω0t−t/(2t0)Θ(t), (3.5)

where t0 = ~/Γ (for Θ(t) see eq. (2.3)).
We can conclude that due to nuclear scattering the initial δ-function wave packet

is transformed into an exponentially decaying oscillation at the carrier frequency of the
nuclear resonance, f0(t) thus represents the response function of an isolated nucleus
in the time domain.

In this section the dynamic response of a scatterer was found by using its fre-
quency response. For that the transition from the time domain to the frequency domain
and back via the Fourier transformations was made, presented schematically in figure 2:
counterclockwise transition from upper right to lower right corner.

3.4. Response function technique

However, when the time response function of a scattering system is known one
can avoid addressing the frequency domain and describe the transformation of an
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arbitrarily shaped wave packet directly in the time domain with the aid of the response
function technique given by

Es(t) =

∫ ∞
−∞

dt′R
(
t− t′

)
Ei
(
t′
)
, (3.6)

where Ei(t′) represents the wave packet of a γ-ray incident on the target, Es(t) repre-
sents the scattered wave packet, R(t− t′) is the time response function of the target,
t′ and t are the excitation and the de-excitation times, respectively. The probability
amplitude for the overall scattering event can be understood as the product of the
probability amplitudes of two sequential events, the excitation and the de-excitation,
integrated over all possible excitation times.

To illustrate the response function technique we describe the multiple nuclear
scattering of a SR X-ray. We have already found the wave packet scattered by a
single nucleus, see eqs. (3.3)–(3.5), and figure 2 the lower right. Next we consider the
scattering of this γ-ray by a second nucleus. This nucleus is exposed to the field of
the γ-ray in the time interval (0, +∞) and decays within the same time interval. Thus
it exhibits a driven oscillation rather than a free one (like in the first scattering). The
second scattering is represented by the integral of eq. (3.6), where the wave packet
Ei(t′) now has the time structure given by eq. (3.5), and the response function is
R = f0(t− t′), thus the integral in eq. (3.6) is∫ ∞

−∞
dt′ exp

{
iω0
(
t− t′

)
− (t− t′)

2t0

}
Θ
(
t− t′

)
exp

{
iω0t

′ − t′

2t0

}
Θ
(
t′
)
.

Performing the integration we obtain the following wave packet for the double scattered
SR X-ray:

Es(t) ∝ (−t)eiω0t−t/(2t0)Θ(t). (3.7)

Es(t) is displayed in the middle panel of figure 3. If a SR X-ray is scattered in
succession by m resonant nuclei one obtains

Es(t) ∝
(−i)mtm−1

(m− 1)!
eiω0t−t/(2t0)Θ(t). (3.8)

The drastic transformation of the wave packet by sequential nuclear scattering is seen
in figure 3. It clearly shows that the re-emission of the γ-ray is more and more delayed
with each next scattering event. This effect has recently been revealed as trapping of
radiation by a nuclear ensemble [16]. In addition, figure 3 shows that the wave packet
stretches noticeably over time with the number of scattering events (which corresponds,
in accordance with the principle of uncertainty, to a sequential narrowing of the γ-ray
energy distribution). This effect of stretching of the wave packet plays a crucial role
in multiple nuclear forward scattering of a SR pulse in its propagation through a thick
target (see sections 6.3 and 6.4). We also notice that by each scattering the phase of
the wave packet is shifted by −π/2.
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Figure 3. Time development of a SR X-ray wave packet due to sequential scattering by one, two and
four nuclei (from the top).

The response function technique has been successfully used for finding the result
of scattering from nuclear systems.

4. Elastic scattering from an ensemble of nuclei

4.1. The nuclear exciton

A γ-ray incident on an ensemble of identical nuclei can interact resonantly with
each of them. The energy of the γ-quantum is only sufficient to excite a single nucleus
in the ensemble. However, the observations of total reflection from a nuclear mirror
and Bragg diffraction from a nuclear array in a crystal showed that not single nuclei
but nuclear ensembles are involved in scattering of single γ-quanta.

These two seemingly contradictory facts were successfully combined in a physical
picture, the notion of the delocalized nuclear excitation, which was introduced by
Trammell [1] and by Kagan and Afanas’ev [2] (see also [13]).

In the case of elastic scattering of a γ-ray by a nuclear array, where the intrinsic
state of the scattering system stays unchanged, it is impossible to ascertain which
nucleus in the ensemble was excited. Therefore, accounting for the collective nuclear
response, one may assume the possibility of excitation of each nucleus in accordance
with the principle of superposition of states. In the superposition state the nuclear
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excitation is delocalized and a γ-ray is thus shared by several nuclei. This is how the
scattering process exhibits a collective character.

The experiments on total reflection and Bragg scattering revealed in addition
the coherent nature of the delocalized excitation. The fact that wavelets re-emitted
by nuclei interfere forming a diffraction pattern indicates a phase correlation of the
constituent nuclear currents.

Thus the delocalized intermediate excited state created by a single γ-quantum
can be understood as a spatially coherent superposition of excited states of all nuclei
in the target. In each contributing term one nucleus is excited with a definite prob-
ability amplitude while all others are in the ground state. The spatial and temporal
phasing of the excited nuclear currents over a system is determined by the space and
time coherence of the field associated with the incident γ-ray. The superposition state
of nuclear excitations is called a nuclear exciton. The nuclear exciton has become a
central concept of the theory of nuclear resonant scattering. The nuclear ensemble
behaves like a macroscopic resonator of which the properties differ qualitatively from
those of individual nuclei. This is exhibited by changes of the time and space distribu-
tion of the nuclear decay products, in the redistribution of probabilities of the radiative
and nonradiative channels of scattering, etc. In all these changes the coherence effects
play a crucial role.

When the excitation is distributed over the entire nuclear ensemble and when the
phase correlation of the partial nuclear excitations is preserved during the lifetime of
the excited state, interference of the wavelets re-radiated by the nuclei occurs and a
coherent radiation field is built up in nuclear resonant scattering.

4.2. Spatially coherent and incoherent scattering

While considering scattering of a γ-ray by a single nucleus in section 3 we were
concerned with the correlation of the temporal part of the phase. In this subsection
we concentrate our attention on the correlation of the spatial parts of the phases of the
wavelets re-radiated by different nuclei in the nuclear ensemble.

Let us consider the scattering of a plane wave traveling in space with a propa-
gation vector k0 by two nuclei, one of which is placed at the origin and the other at
the site with coordinate r. The amplitude of the wave scattered in the direction k1 is
determined by interference of the wavelets scattered by the nuclei in this direction. It
can easily be shown that the amplitude of the resulting wave is proportional to 1+eis·r,
where s = k1 − k0 is called the scattering vector and the scalar product sr represents
the difference between the spatial phases of the two wavelets. The total wave scattered
by N nuclei in one direction is then given by the sum of the relevant N wavelets (so
far we neglect multiple scattering)

Es ∝
N∑
a=1

eis·ra . (4.1)
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To find the wavefield intensity one must calculate the product E∗E, where E∗ is the
complex conjugate of E. This gives rise to a double sum in a and a′. In the product
of two sums it is convenient to discuss separately the terms with a = a′, whose sum
equals N , and those with a 6= a′:

E∗sEs = const

{
N +

N∑
a

e−is·ra ·
N∑
a′ 6=a

eis·ra′

}
. (4.2)

The double sum accounts for the interference contributions from all pairs of atoms, a
and a′. It is often called pair correlation function. When there is no spatial correlation
in the atomic arrangement of the scattering system and s 6= 0 the relative phases s·ra are
homogeneously distributed over the interval 0–2π, so that the double sum in eq. (4.2)
equals zero. Then the scattering intensity is simply proportional to the number of
nuclei N . This is characteristic for spatially incoherent scattering, where the total
scattering intensity is the sum of the intensities scattered by individual nuclei.

In the other special case, when the relative phase is zero or a multiple of 2π the
summation in eq. (4.2) yields the product N (N − 1), so that the scattering intensity
becomes proportional to the square of the number of nuclei N2, typical for spatially
coherent scattering. Fully constructive interference, as in our example, occurs in the
case of an ordered arrangement of the ensemble of nuclei in all directions where the
wavelets are in phase (entirely constructive Bragg reflection and forward scattering)
or, in the case of disordered nuclei, only in the forward scattering direction, where
s = 0.

The coherent constructive addition of the wavelets re-radiated by nuclei deter-
mines the physical nature of a strong enhancement of the radiative channel of nuclear
resonant scattering, the super-radiance effect as given by Trammell [1] and Kagan
and Afanas’ev [2] (see also Smirnov [13]). It is observed as a huge increase of the
coherent scattering intensity, e.g., in Bragg diffraction from crystals, in total reflection
from nuclear mirrors, and in forward scattering.

By contrast, destructive interference may lead to a vanishing amplitude of the
scattered waves which results in suppression of the elastic scattering channels, the
sub-radiance effect predicted by Kagan and Afanas’ev [2,17].

In the following sections we describe the main aspects of the dynamical theory
of scattering which allows us to find the solutions for the coherent field of γ-radiation
interacting with nuclear ensembles. For the original presentation of the theory see [12,
18–20] and references therein.

5. Aspects of the dynamical theory of γ-ray nuclear scattering

5.1. Maxwell equations for a space–time harmonic plane wave

The interaction of visible light and X-radiation with matter is analyzed with the
help of the Maxwell equations. The Maxwell equations for a medium allow one to
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find the solutions for the electric and magnetic fields due to the interaction of radiation
with the medium. The Maxwell equations operate with the macroscopic polarization
of the medium, accounting in this way for its response. The polarization represents
the induced electric moment per unit volume.

The existence of a distributed coherent nuclear excitation, the nuclear exciton,
provides the physical basis for the use of a macroscopic polarization given by the
Maxwell equations to treat the radiative effects of nuclei. The macroscopic polarization
of a nuclear ensemble is the sum of the induced nuclear transition moments over a
unit volume, i.e., the density of the induced electric moment. It represents a quantum
mechanical average over the nuclear ensemble.

For a medium without free charges the Maxwell equations can be used in the
form

∇× E = −∂B
∂t

, (5.1a)

∇×H =
∂D
∂t

, (5.1b)

where

∇ = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

is a differential operator with x, y, z unit vectors along the axes of a Cartesian co-
ordinate system, B and D are the magnetic induction and the electric displacement
vector, respectively. We assume that magnetically the scattering material has the same
behaviour as empty space so that B = µ0H, where µ0 is the magnetic permeability of
empty space.

The electric displacement vector D is equal to the net effective polarization,
which is the sum of the polarization induced by the electric field, P, and the equivalent
polarization due to the driving field E. Regardless of the mechanism that gives rise
to P, it is always possible to express the induced polarization mathematically in a
power series of E. For many cases of interest, however, including our case, it is
sufficient to retain only the term linear in E:

P = ε0ηE, (5.2)

where ε0 is the electric permittivity of empty space, which can also be regarded as a
conversion factor that transforms the field E into an equivalent electric moment per
unit volume, and η is the electric susceptibility. From the definition of the polarization
of the medium as a sum of the induced nuclear transition moments per unit volume it is
rather obvious that the susceptibility should be proportional to the coherent scattering
amplitude fc (particularly for forward scattering, where it is given by eq. (3.2)) and
the number n of scattering centers per unit volume. The precise relationship is

η =
λ2

π
nfc. (5.3)
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With

D = ε0E + P (5.4)

we obtain

D = εε0E, (5.5)

where ε = 1 + η is the dielectric constant of the material.
The total coherent field of γ-radiation in a medium can be decomposed into

space and time harmonic plane waves (it refers to all field constituents: E, B, D).
Equations (5.1) must be separately true for each individual elementary component of
the coherent field.

E = E0ei(ωt−k·r), (5.6)

where k is the wave vector inside the medium. In general, it is a complex number.
One immediately derives

∇× E = −ik× E0ei(ωt−k·r) = ik× E (5.7)

and

∂B
∂t

= iωµ0H. (5.8)

Inserting eqs. (5.7) and (5.8) into eq. (5.1a) results in

k× E = ωµ0H. (5.9)

The same procedure applied to eq. (5.1b), taking account of eq. (5.4), yields

−ik×H = iωε0

(
E +

1
ε0

P
)
. (5.10)

Substituting H defined from eq. (5.9) into eq. (5.10) we obtain

k× (k× E) = −K2
(

E +
1
ε0

P
)

, (5.11)

where K = ω/c and c = 1/
√
ε0µ0. K is the magnitude of the wave vector and c

is the velocity of light in vacuum. Making use of the vector identity a × (b × c) =
−c(a · b) + b(c · a) we finally obtain(

k2 −K2)E− k(k · E) = K2 1
ε0

P, (5.12)

which is the form of the Maxwell wave equation for a space and time harmonic plane
wave component of a γ-ray field in a medium. In the approximation of eq. (5.2) one
has (

k2 −K2)E− k(k · E) = K2ηE. (5.13)
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Before proceeding to the solutions of this equation we make some general comments
concerning fields in matter.

5.2. Dynamical wave equations

The radiation state can be radically transformed by interaction with matter. While
propagating through matter radiation excites atomic currents which radiate their own
waves, modifying the total field. When the re-emitted wavelets interfere constructively
enhanced scattered waves are formed. The modification is especially strong if the target
is thick enough to give rise to multiple scattering. The general scattering theory of
visible light and X-rays developed by Ewald takes into account multiple scattering of
radiation by atoms [21]. In the steady state a dynamic self-consistency is established
between the radiation field and the induced currents: the total field created by the
currents should be exactly that which creates those currents.

The total field represents a coherent superposition of the waves allowed by the
scattering system. These waves are dynamically coupled via atomic currents feeding
one another so that the total field must be considered as a single entity. Dynamic
equilibrium between the field and the currents means that each constituent wave gen-
erates the whole set of eigenwaves and vice versa, each wave of the set contributes
to the constituent wave. Let us consider the example of two eigenwaves allowed in a
scattering system (illustrated schematically in figure 4). These could be, for instance,
the waves propagating in the forward direction and having different polarization states
or waves of the same polarization state propagating in forward and Bragg directions,
respectively.

Figure 4. Coupling of two eigenwaves in a scattering system.
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In figure 4 it is shown that wave 1 generates via induced currents the set of waves
1 + 2. In turn, each wave of the set contributes to the formation of wave 1 and so on.
The same transformation is true for wave 2. So the eigenwaves in this case can be
connected in the set of Maxwell wave equations following from eq. (5.13):(

k1
2

K2 − 1

)
E1 = η11E1 + η12E2,

(5.14)(
k2

2

K2 − 1

)
E2 = η21E1 + η22E2.

Equations (5.14), originating from the condition of dynamic equilibrium, are often
referred to as dynamical wave equations. The parameters ηαβ are the amplitudes of
Fourier components of a relevant Fourier expansion of the electric susceptibility of the
scattering medium. We shall refer to them as the susceptibility amplitudes. They form
a scattering matrix each term of which is related to the propability amplitude of the
transition from the eigenstate β of the radiation field to the eigenstate α. In the present
case the matrix is of second rank. In writing down eqs. (5.14) we have assumed that
the electromagnetic field inside a target is practically transverse, i.e., E · k = 0.

The nuclear array in a crystal in the presence of a hyperfine interaction represents
an optically active and diffracting medium. Therefore, in general the eigenwaves can
be of different polarization states and can have different propagation vectors, related
by the Bragg conditions. The Maxwell wave equation (5.13) then splits into a set of
dynamical wave equations, connecting each constituent wave with all others,(

k2
d

K2 − 1

)
Eξd =

∑
d′,ξ′

ηξξ
′

dd′ E
ξ′

d′ , (5.15)

where the index d denotes the propagation directions and the index ξ labels the projec-
tion of the Ed-vector on the ξ-axis of the coordinate system (for Cartesian coordinates
ξ = x, y, z). Usually the basis of mutually orthogonal unit vectors eπ and eσ (conven-
tionally oriented with respect to the scattering plane) is used to describe an arbitrary
polarization state of the radiation. By making use of this basis the set of dynamical
equations can be reduced.

The explicit form of the susceptibility amplitudes ηss
′

dd′ must be derived for each
particular scattering problem using the chosen polarization basis. The set of the dy-
namical equations together with the boundary conditions is sufficient for finding the
propagation vectors, the polarization states and the scalar amplitudes of the con-
stituent eigenwaves. We note that the magnitude of a propagation vector in matter is
only slightly different from that in empty space because of the weak interaction of
γ-radiation with matter.

In a disordered and optically isotropic medium only a single coherent wave is
generated in the forward direction. The susceptibility in this case is a complex scalar η
(eq. (6.4)). The main effect of the medium is a phase shift and an attenuation of the
amplitudes of the transmitted wave.
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In a disordered but optically anisotropic and active medium waves of different
polarization states propagating in the forward direction can be excited (section 6.8).
The susceptibility amplitudes then form a matrix of second rank ηss

′
, where s and s′

mean either σ or π. The optical activity of the nuclear system arises from the hyperfine
splitting of the nuclear transitions. A wealth of polarization phenomena in transmission
of γ-rays through the nuclear target can be observed, such as birefringence: dichroism,
double refraction, and optical activity: the Faraday effect (eq. (6.27)).

In an ordered nuclear array diffraction phenomena can occur. In the case of a
single Bragg reflection two directions are permitted for coherent scattering. In the
absence of optical activity the susceptibility amplitudes again form a (2 × 2) matrix
ηdd′ , where the indices d, d′ denote the forward and the Bragg reflection directions.
Bloch waves of radiation are then formed which have both running and standing wave
behaviour. Thereby the standing wave periodicity matches that of the crystal. For
this reason the Bloch waves exhibit anomalous interaction with the scattering centers,
having, in particular, anomalously weak or strong absorption by atoms (Borrmann
effect in the case of interaction with electronic shells, Kagan–Afanas’ev effect in the
case of nuclear interaction).

In the presence of optical activity in the diffracting medium the susceptibility
amplitudes in general form a (4× 4) matrix ηss

′
dd′ [18].

In this paper we limit ourselves to the analysis of the particular cases of nuclear
resonant scattering of SR in the forward direction.

6. Nuclear forward scattering

6.1. Transmission of a wave in an optically isotropic medium

For the most frequently used disordered atomic system the forward direction is a
particular one because the only scattered waves contributing in phase are those which
propagate in the same direction as the incident beam. In such disordered systems
spatially coherent scattering of γ-rays exists only in this direction. The coherently
scattered wave modifies the incident wave, yielding the transmitted wave. Thus, the
propagation of a wave in the forward direction is a coherent process.

We assume the medium to be optically isotropic. In such media scattering is not
sensitive to the polarization state of the radiation, in other words the susceptibility is
represented by a scalar number. Therefore, the solution for the coherent field in the
medium can be given as a single arbitrary polarized wave propagating in the direction
of incidence. The set of dynamical equations is reduced to a single equation for the
scalar amplitude of the wave: (

k2

K2 − 1

)
E = η0E. (6.1)

We choose the geometry given in figure 5: the sample is a plane parallel plate put
perpendicular to the z-axis. The entrance surface of the plate is at z = 0. The direction
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Figure 5. Wave propagation geometry.

of incidence is along the +z-axis, n is a unit vector directed along the inward surface
normal. The incident wave is Ei = E0ei(ωt−Kz).

Inside the target the propagation vector is

k = K + δKn, (6.2)

where δ is a small complex number accounting both for absorption and refraction of
the medium. By definition the sum 1 + δ is the index of refraction of the medium.
Substituting eq. (6.2) into eq. (6.1) and neglecting terms of second order we find

δ =
1
2
η0. (6.3)

The nuclear susceptibility is obtained from eqs. (5.3) and (3.2)2:

η0 = − 1
K
µ

Γ/2~
ω − ω0 − iqΓ/2~

with µ = σ0fLMβn, (6.4)

where µ is the linear absorption coefficient at resonance (the parameters involved are
defined in eqs. (3.2) and (5.3)). In addition, we have inserted a factor q describing a
broadening of the resonance, which preserves, however, the Lorentzian shape, qΓ =
(1 + ∆)Γ [13].

Obviously, the nuclear susceptibility has the same frequency dependence as the
scattering amplitude, see figure 1. Taking into account the boundary condition, E =
E0, we obtain for the transmitted wave

Etr = E0eiωt−iK(1+(1/2)η0)z = Eie
−i(1/2)η0Kz (6.5)

and for the transmitted intensity

Itr = I0eKIm(η0)z = I0e−µz/(∆2+q2), (6.6)

2 The electronic susceptibility should be added to the nuclear one to get the total susceptibility. In the
resonance range it is a constant which we did not take into account so far.
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where ∆ = ~(ω − ω0)/(Γ/2) is the deviation from resonance in units of the half width
of the nuclear level. It is seen from eqs. (6.5) and (6.6) that the attenuation of the
wave amplitude and the absorption of γ-radiation in a nuclear target, respectively, are
determined by the imaginary part of the nuclear susceptibility. The real part of the
susceptibility gives rise to a phase shift of the transmitted wave with respect to the
incident one, which, however, is not detected in a standard transmission measurement
but can be important in a coherent scattering measurement. From the frequency de-
pendences of the imaginary and real parts of the susceptibility (which are like those
displayed in figure 1(c)) it is immediately seen that at exact resonance the absorption
is strongest and no phase shift takes place, whereas in the wings of the resonance the
absorption is weak and can be accompanied by a large phase shift depending on the
thickness of the target.

It is instructive to consider the field transmitted through a thin layer ∆z with
η0K∆z � 1. Expansion of Etr in eq. (6.5) yields

Etr(ω) ≈ Ei

[
1− i

1
2
η0(ω)K∆z

]
. (6.7)

The first term in eq. (6.7) represents the incident wave, as for the second one, it turns
out to be equal to the wave scattered by the layer in the forward direction, Efs, as
obtained in the direct summing of the wavelets coherently re-radiated by the nuclei in
the layer to the point of observation. The phase shift due to the scattering by a plane
target is −π/2 (e−iπ/2 = −i) as a result of the interference of the wavelets arriving
from the plane target area. Equation (6.7) shows in which way the scattered wave
modifies the incident wave. Particularly, at resonance, where an additional phase shift
of −π/2 appears (see figure 1(b)) the forward scattered wave is in antiphase with the
incident wave, yielding the strongest attenuation of the transmitted wave amplitude
and hence the drop in transmitted intensity. The destructive interference between the
incident and forward scattered waves gives rise to 4π scattering of γ-radiation and
conversion electron emission.

Equation (6.7) represents the first iteration in building up the transmitted field.
In general, one can say that two independent paths occur with well defined

probabilities of transmission of a γ-ray through a target of arbitrary thickness, namely:
transmission without interaction, and coherent forward scattering by the target. In such
a presentation the wavefield transmitted through the target is a coherent superposition
of the incident and the forward scattered waves (coherence between the emission of
the γ-ray by the source and its re-emission by the target is assumed):

Etr = Ei +Efs. (6.8)

The reality of the forward scattered wave in the presence of primary radiation can be
demonstrated in experiments where conditions are provided to either observe the in-
terference between the frequency components of the transmitted radiation or to control
the interference between the primary (incident) and the secondary (forward scattered)
waves. These are experiments with a conventional Mössbauer source where the prop-
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agation of a γ-ray through a resonant absorber is observed, e.g., as a function of
time, with the help of the delayed coincidence technique [22]. Another way to reveal
forward scattering is to apply amplitude modulation of the incident beam, the shutter
technique ([6] and references therein), or phase modulation of the incident or scattered
radiation (see, e.g., [23–25]).

The new SR sources provide an excellent opportunity to observe pure forward
scattering because with these sources the incident and the forward scattered wave trains
are perfectly separated in time. Thus in the experiments with a SR source we may
consider the forward scattered radiation separately rather than coupled intrinsically
with the incident radiation as in experiments with a Mössbauer source.

Concluding this subsection we write down the expressions for a frequency com-
ponent of the forward scattered radiation for a thin layer (where the coupling of nuclei
with the scattered radiation is neglected)

Elfs(ω) ≈ −i
1
2
Eiη0(ω)K∆z (6.9)

and for a target of arbitrary thickness

Efs(ω) = Ei
(
e−i(1/2)η0(ω)Kz − 1

)
. (6.10)

(In the latter case the coupling of the secondary radiation with nuclei is taken into
account.)

6.2. Time response of nuclear target, speed-up, dynamical beat

In section 3.3 we have described the transformation from the energy to the time
domain while regarding the scattering of a γ-ray by an isolated nucleus. Using the
same approach we now describe the transmission of a SR X-ray through a resonant
absorber in time. The wave packet transmitted through a thin layer can be obtained
by integrating all components Etr(ω) given by eq. (6.7):

Etr(t) = εω0

1
2π

∫ ∞
−∞

dω

[
1− i

K

2
η0∆z

]
eiωt, (6.11)

where the frequency component of the incident synchrotron radiation is εω0eiωt (see
section 2.2). The first integral in eq. (6.11) yields the δ-function. The second integral
can be evaluated as described in section 3.3. Substituting eq. (6.4) into eq. (6.11) we
finally obtain the time response of a thin layer to a δ-function-like excitation

Etr(t) ≈ εω0

[
δ(t) − 1

4t0
µ∆zeiω0t−t/(2t0)

]
, t > 0. (6.12)

The transmitted packet consists of the prompt contribution at time zero by the incident
radiation and of an exponentially decaying part representing the delayed forward scat-
tered radiation. The expression in the square brackets is the time response function of a
thin plane layer. The response is obtained in the kinematical approximation where the
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interaction with the primary radiation only is taken into account. The exact solution,
which follows, takes into account the coupling of nuclear currents with both primary
and secondary radiation.

The wave packet at an arbitrary depth z in the target is obtained by integrating the
frequency components eq. (6.5). Performing the integration we arrive at an expression
for the wave packet similar to that obtained in [26]:

Etr(z, t) = εω0 e−
µez

2

[
δ(t) − 1

2t0
µzeiω0t−qt/(2t0)σ(z, t)

]
,

(6.13)

σ(z, t) =
J1(
√
µzt/t0√
µzt/t0

, t > 0,

and for the forward scattering intensity (taking into account eq. (2.5))

Ifs(z, t) = I0
Γ

∆E
· e−µez · (µz)2

4t0
· e−qt/t0σ2(z, t), (6.14)

where the photo-electronic absorption in the target is taken into account: µe is the
relevant absorption length, I0 is the stationary intensity of the SR within the energy
band ∆E determined by a monochromator and J1 is the Bessel function of first order.

The space–time structure of the forward scattered wave packet is represented by
the second term of eq. (6.13). We note that the function σ entering in eq. (6.13) is a
function of a generalized coordinate, namely of a product of space and time coordinates.
This result is closely related to the space–time periodicity of the radiation wavefield
which contains both temporal and spatial phases. It is convenient to use dimensionless
coordinates of space and time: effective thickness T = µz and reduced time τ = t/t0.
The value of the function σ at the point Tτ = 0 is 1/2. Thus, for Tτ � 1 the time
dependence given by eq. (6.13) approaches that of eq. (6.12) at q = 1.

We consider the initial stage of the decay. The duration of the initial stage can be
determined by the condition Tτ ≈ 3. Within the time window τ = 3/T the function
σ can be approximated by an exponential σ(Tτ ) ≈ (1/2) exp(−Tτ/8) so that we get
for the forward scattered wave packet

Efs ∝ T e−(τ/2)(q+T/4) and for the intensity Ifs ∝ T 2e−τ (q+(T/4)). (6.15)

The features of super-radiance specific for coherent nuclear scattering are immediately
seen at the initial stage of the decay. First of all, it is an enhanced scattering intensity,
which is proportional to T 2, i.e., ∼(nz)2, the square of the number of nuclei on
the beam path in the target per cm2. This enhancement is caused by the collective
coherent response of all nuclei in the scattering ensemble which leads to constructive
interference of the scattering paths via separate nuclei. As a result, the probability of
radiative decay in the forward direction increases drastically. This effect already arises
in the kinematical approximation of the scattering theory where only coupling of the
nuclei with the incident radiation is accounted for.
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The next feature is a speeding up of the nuclear decay determined by the ex-
ponential index T/4, i.e., by the effective thickness of the nuclear target. This effect
appears when one also takes into account the coupling of nuclei with the secondary,
coherently scattered radiation. Obviously, the effect of coupling gets stronger with the
amplitude of the coherent field, i.e., with the increase of the depth in the nuclear tar-
get. The nuclei at a depth excited initially by the prompt part of the propagating wave
packet eq. (6.13) are then exposed to the delayed part of the packet. So one could say
that they perform a driven kind of decay similar to stimulated emission and in that
sense the speed-up effect has similarities with the stimulated emission. However, one
should remember that in our case we treat a single photon scattering event and in fact
have to deal with the coherent superposition of different scattering channels rather than
with the real stimulated emission.

As seen from eq. (6.15) there is another reason for accelerated coherent emission.
It is related to the broadening of the resonance introduced by the factor q (see eq. (6.4)).
However in contrast to the speed-up effect, which manifests the enhancement of the
radiative channel, this acceleration reveals the breakdown of the coherent signal due
to inhomogeneous resonance broadening. This broadening is accompanied by a loss
of intensity in the coherent channel and a re-distribution of the scattered intensity in
favour of the incoherent channel [27]. We illustrate the effect of resonance broadening
in section 6.7.

The time integral scattering intensity is approximately proportional to T 2, how-
ever, only for a thin target, T < 1. The thickness dependence of the time integral
nuclear forward scattering intensity, Iint(T ) ∝ e−µez

∫∞
0 dτ ·e−qrσ2(Tτ ), is depicted in

figure 6. It is calculated for the case of a fully enriched stainless steel target (no broad-
ening of the resonance is assumed) taking into account the electronic absorption µez
by the target material: µe ≈ 0.05 µm−1.

The electronic absorption causes an exponential decrease of the intensity with an
increase of thickness, in this way limiting the number of nuclei which participate in
the coherent scattering. Yet in the range of thin targets its influence is low: in the
top panel of figure 6 the intensity rises in between the first and second power of the
thickness parameter T . Then due to the electronic absorption the increase of intensity
slows down, the forward scattering intensity reaches a maximum and starts to decrease
(bottom panel of figure 6). Finally, the electronic absorption becomes dominant and
the intensity drops to zero.

We turn back to the analysis of the space–time structure of the FS wave packet
and now consider the limit of large times and thick targets. There the function σ
determines the modulation of the propagating wave packet both in time – as observed
at the point of observation, and in space – as observed at fixed time. This function
has zeros at values 14.8, 49.2, . . . of its argument Tτ giving rise to a node–antinode
structure of the wave packet, see figure 7. At the node regions the oscillation at
the carrier frequency drops to zero, in passing the node points the oscillation grows
again but its phase gets inverted due to changing the sign of the function σ (compare
the phasing of the oscillation around the node points O1 and O2 in figure 7). The
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Figure 6. Time integral intensity of forward scattered synchrotron radiation as a function of the thickness
of a nuclear target – 57SS foil.

Figure 7. Node–antinode structure of the probability waves of the nuclear excitation and of the coherent
radiation field.

pronounced node–antinode structure of the wave packet is a dramatic consequence of
the propagation of a γ-ray through a thick resonant target. The modulation of the
scattering intensity in time and in space is called propagation or dynamical beat. The
relevant space–time pattern can be imagined as a train of zones of “brightness” and
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“darkness” traveling in space along the propagation direction. The zones’ width is
stretching at later times. In the next subsection we briefly discuss the physical nature
of dynamical beats.

6.3. Coupling of the radiation field and nuclear currents, multiple scattering

Each atom excited by the coherent field propagating through the target becomes
a source of secondary radiation. Along with the directed coherent beam of γ-radiation
the 4π shine of γ-rays, conversion electrons, and fluorescent X-rays appears around a
target due to spatially incoherent scattering of the propagating wave (section 4.2). The
incoherent emission of nuclei detected at a definite depth in the target demonstrates
the nuclear excitation state at this depth. Let us find the wave packet of a γ-ray re-
emitted into 4π by a nucleus situated at depth z. In the process of nuclear resonant
scattering of SR two channels should be distinguished: nuclear excitation with and
without recoil [27–29] (see also section 6.7). Here we limit ourselves by regarding
only the recoilless radiative channel of scattering. The amplitude of the wavelet re-
emitted by a bound nucleus at depth z can be found by employing the response function
technique (section 3.4):

E4π(z, t) =

∫ ∞
−∞

dt′ · fc
(
t− t′

)
Etr
(
z, t′
)
, (6.16)

where Etr represents the wave packet of the propagating coherent γ-radiation at the
nuclear site and fc is the response function of the nucleus with a time dependence
identical with that given by eq. (3.5). We substitute eqs. (6.13) and eq. (3.5) into
eq. (6.16). Then we perform the integration using

∂J0(
√
Tτ )

∂t
= − T

2t0

J1(
√
Tτ )√
Tτ

and obtain

E4π(T , τ ) ∝ eiω0t−τ/2J0(
√
Tτ ), (6.17)

where J0 is the Bessel function of zero order. First of all we see that the time response
of the nuclei at the surface of a target (z = 0) coincides with the free response of
a single nucleus eq. (3.5) (since J0(0) = 1), which is simply an exponential decay.
This result is quite evident because these nuclei are illuminated only by the pulsed
synchrotron radiation. However, at finite depth in the target a nucleus is illuminated
initially by the SR pulse (the prompt constituent of the propagating wave packet) and
then by the delayed γ-radiation which is forward scattered by the upstream part of
the target. It now responds as a driven oscillator. The time response of this nucleus is
modified by the function J0, i.e., it is first accelerated and then strongly modulated in
time.

In figure 7 the wave packet re-emitted in 4π by a single nucleus is compared
with the coherent field at the depth of location of the nucleus. As seen from the
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figure the incoherent response of a nucleus exhibits a node–antinode structure as well,
which, however, is shifted with respect to that of the propagating field. The maxima
of incoherent emission are reached at time–space coordinates where the amplitude of
the propagating field drops to zero.

Remembering that 4π scattering reveals the nuclear excitation we can say that the
nuclear excitation in the target is also modulated both in time and in space. The node–
antinode pattern of the excitation amplitude is strongly related to that of the coherent
field as seen from figure 7. Both are traveling along the propagation direction. The
complete disappearance of the γ-quantum in the propagating field at the points O1 and
O2 coincides with the maximal probability amplitude of nuclear excitation and, on the
other hand, a zero excitation amplitude coincides with the largest probability to find
a quantum in the propagating field. This picture reflects the dynamics of “pumping”
the electromagnetic energy from the radiation field to the nuclear system and back
while a γ-ray propagates in the resonant medium. It is known from classical optics
that in transient phenomena a relationship between the phase of the driving field and
the driven dipole moment determines the direction of the energy transfer. It is quite
obvious that at the node points where the relative phase between radiation and nuclear
dipoles is inverted (shifted by π) the transition between the regimes of emission and
absorption of γ-rays by nuclei occurs. Thus the space–time modulation of both the
nuclear excitations and the propagating field reveals sequential absorptions and re-
emissions of radiation by nuclei. The number of antinodes in the radiation wave packet
shows the number of scattering events in the observation window for a given target.
Multiple scattering occurs in thick targets and becomes apparent only after some time
of interaction of γ-radiation with the nuclear ensemble.

The time gap between the sequential scattering events is related to the lifetime of
the intermediate excited state, in other words to the collision time. It can be shorter than
the natural lifetime because of the collective coherent action of the nuclear ensemble
leading to the speed-up effect. The energy exchange between the radiation field and the
nuclear currents gradually slows down (the collision time increases) as seen in figure 7:
compare the intervals between nodal points. This slowing down of the energy exchange
has to do with the stretching of the γ-ray wave packet in time after each following
collision (see figure 3). With each following scattering event the energy distribution is
getting narrower and hence is more and more localized at the resonance. The closer
to the resonance energy the excitation occurs the longer the intermediate excited state
lives (see, e.g., [30]). We turn again to the nature of the aperiodicity in the next
subsection.

At the first instant after passage of the SR pulse through the target all nuclear
currents are excited with equal probability amplitude. Later a node–antinode structure
is built up in the target with nodal planes moving towards its front surface as a function
of time fulfilling the condition of the nodal plane position Tτ = const. It is of interest
to estimate the velocity of moving the antinode planes of nuclear excitation in the
target. Let us consider the node at Tτ = 14.8. At depth T1 = 100, for example, it
will appear at τ1 = 0.148, while at depth T2 = 50 it will arrive at τ2 = 0.296. The
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nodal plane is moving in the direction from the back to the front of the target. This is
quite natural because the secondary γ-ray–nuclear interaction first occurs deeper in the
target. The motion proceeds with the average reduced speed ν̄ = (T1 − T2)/(τ1 − τ2).
If the target material consists of SS made with pure 57Fe, where µ ≈ 8.8 µm−1 and
t0 ≈ 141 ns, we obtain ν̄/µt0 ∼= 3 · 104 cms−1, which is surprisingly small.

Thus, in accordance with the statement made before, the nuclear exciton repre-
sents a coupled system of the γ-ray field and the nuclear excitations. The development
of the nuclear exciton in space and time is illustrated by the above description.

6.4. The double-hump profile of forward scattered radiation

The role of multiple scattering in the formation of dynamical beats is revealed
by considering the scattering event in the time domain. It is also helpful to find the
physical reason for the dynamical beats using the frequency or energy domain. We
turn back to the solution for the scattered field in the energy domain eq. (6.10) and
plot the square of the oscillation amplitudes as a function of energy. These spectra
of the forward scattered radiation are depicted in figure 8 (middle column) for the
cases of thin and thick targets. The Mössbauer transmission spectra for the same
targets are shown for comparison in the left column. A dramatic change in shape of
the scattering spectra is observed, in contrast to the moderate change of the shape of
Mössbauer transmission spectra.

In the Mössbauer spectra the lineshape stays qualitatively the same with thickness.
As to the scattering spectrum, it has a simple Lorentzian shape for a thin target whereas
for a thick one, a 3 µm thick 57SS foil, it develops a pronounced double-hump profile.

Such a double-hump profile can be understood on the basis of the relationship
given by eq. (6.8), the geometrical image of which in the complex plane is shown
in figure 9 for a 3 µm thick 57SS target. All frequency components of SR have the
same amplitude denoted as Ei (see eq. (2.5)). The amplitude Etr(ω) and the phase
α(ω) of a transmitted frequency component are determined by the deviation ω − ω0

from resonance. The blank dot in figure 9 corresponds to infinite deviation and the
bold dot indicates the resonance position. The phase and amplitude relationship be-
tween the incident and transmitted components determines the scattered component.
The three relevant arrows form a triangle in the complex plane. While moving towards
resonance from −∞ one corner of the triangle glides along the solid curve through
sequential points 1, 2, 3. One can easily follow the amplitude of the forward scat-
tered spectral component Efs developing in this motion. At a large deviation from
resonance the transmitted wave is close to the incident wave both in amplitude and
phase (vicinity of the blank dot). In this limit the FS wave has a vanishing amplitude,
|Efs| ≈ 0. Near resonance, where the real part of the nuclear scattering amplitude
dominates over the imaginary part (somewhere about ±10Γ off resonance, see fig-
ure 1(c)), the transmitted wave is still attenuated a little but its phase is changed
drastically, see point 3. In this range |Efs| ≈ |2Ei|. At exact resonance the transmitted
wave is strongly attenuated in a thick target (vicinity of the bold dot). This is because
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Figure 8. Mössbauer transmission spectra – left column, and synchrotron radiation scattering spectra in
energy and time domain – middle and right columns, respectively, for the case of a single resonance in
a thin target (0.2 µm thick 57SS foil) – upper panel, and in a thick target (3 µm thick 57SS foil) – lower

panel.

Figure 9. Relation between incident, forward scattered and transmitted fields in steady state eq. (6.8) in
the complex plane for a 3 µm thick 57SS foil. The blank dot is at infinite deviation of the energy from
resonance, the bold dot is at the exact resonance energy. The phase α between Ei and Etr is increasing

towards the resonance.
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of destructive addition of incident and FS waves which are of about the same am-
plitude |Efs| ≈ |Ei| at this point but in opposite phases. The same evolution occurs
in the frequency range above resonance and in this way the double-hump structure
results. It follows from the discussion that such a profile develops due to propagation
of white radiation in a thick layer of a resonant medium. In fact several humps can
result in approaching the resonance in a thick target but the outermost humps are most
pronounced.

According to our interference picture the time modulation of the propagating
packet can be interpreted as a beat between the two pronounced groups of radiation
components distributed symmetrically to the left and right of the resonance frequency.
Since these two groups are formed in scattering by a single resonance one can un-
derstand the dynamical beats as a result of intra-resonance interference. The beat
frequency is determined by the separation of the maxima. Both the distance between
the maxima and the beat frequency grow as the target thickness increases. The consid-
ered double-hump structure of the FS spectrum of SR is characteristic for the steady
state picture of scattering. Such a frequency distribution is obtained by integration of
the delayed part of eq. (6.13) over the full time range 0 6 t < ∞. It is instructive
to trace the evolution of the shape of the FS energy spectrum with the increase of
time after excitation. The spectra formed in an extending time window are shown in
figure 10 for the time windows 0–20 ÷ 0–200 ns in the case of a 3 µm thick 57SS
target. The formation and development of the double-hump structure of the spectrum
is clearly seen in the figure. In the initial stage the radiation components form a
spectrum of very large width. Somewhat later their distribution is getting narrow and
growing at resonance. However, at about 80 ns two humps start rising at the sides
of the resonance which at later times become very pronounced. The separation of the
humps gradually decreases with time.

Figure 10. Formation and development of a double-hump profile of the spectrum of SR scattered in the
forward direction by nuclei in a 3 µm thick 57SS foil with increasing observation time after excitation
of the nuclear ensemble. The appearance of humps at about 80 ns observation time coincides with the

occurrence of the first beat minimum in the time spectrum in figure 8.
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The described features of the FS spectrum correlate well with the main features
of the time dependence in figure 8: the broad frequency distribution corresponds
to the very fast initial decay and hence to a short collision time at this stage; the
occurrence of two humps coincides with the beginning of beating; the decrease of the
distance between the humps corresponds to the increase of the beat period with time
(see figure 8). The properties of γ-ray pulse propagation through resonant media are
extensively compared with those in the infrared and the visible in the case of molecular,
atomic and excitonic resonances in [31].

Let us now consider the effect of splitting of the resonance on the evolution of
nuclear forward scattering.

6.5. Resonance splitting, quantum beat

It is a frequently encountered situation in Mössbauer spectroscopy that nuclear
levels are shifted at different nuclei or split due to hyperfine interaction. The elec-
tric monopole, electric quadrupole and magnetic dipole hyperfine interactions are of
particular importance. The nuclear susceptibility then splits into several terms with
different transition frequencies

η0(ω) = const
∑
j

αjR(ω − ωj) with R(ω − ωj) =
Γ/2~

ω − ωj − iΓ/2~
, (6.18)

where αj is the strength of a particular resonance transition. When 2~ · |ωj′−ωj′′| � Γ
the spectrum of FS radiation contains distinctly resolved frequency components. The
interference between the resolved components, inter-resonance interference, yields a
beat pattern termed quantum beat [32,33]. For simplicity we limit our discussion
by considering forward scattering from a thin plane layer with nuclei having two
resonances. Two terms appear in eq. (6.9) in this case and the spectrum of FS radiation
is presented by two groups of oscillators of equal strength as shown in figure 11 upper
panel.

Substituting eq. (6.18) into eq. (6.9) and executing the integration (as described
in section 3.3) we obtain the solution for the FS scattered wave packet

Efs(t) = const
∑
j=1,2

αje
iωjt−t/(2t0) (6.19)

and for the FS intensity (α1 = α2)

Ifs(t) = const · e−t/t0
{

1 + cos(ω1 − ω2)t
}
. (6.20)

The overall time dependence characteristic for the decay of a nuclear state with a
Lorentzian energy distribution is still observed, however, it is strongly modulated due
to interference between the resonance components of eq. (6.19). The quantum beat
pattern of the time spectrum is depicted in figure 11 upper right. The quantum beat
of the scattering intensity demonstrates that the decay of the nuclear exciton in the
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Figure 11. Mössbauer transmission spectra – left column, and synchrotron radiation scattering spectra in
energy and time domain – middle and right columns, respectively, for the case of a resonance doublet in
a thin target (0.2 µm thick 57SS foil) – upper panel, and in a thick target (3 µm thick 57SS foil) – lower

panel.

case of splitting of the resonance is modulated in time: the nuclear exciton periodically
flashes and is attenuated by decay (figure 11, lower right).

By measuring the quantum beat frequency one can immediately determine the
energy separation of the nuclear transitions. However, the complexity of a quantum
beat pattern grows drastically with increasing number of interfering transitions: NF =
NT(NT−1)/2, where NF is the number of frequencies in the beat pattern and NT is the
number of transitions. A preliminary knowledge of the energy spectra as provided by
traditional Mössbauer spectroscopy should be involved to fit the quantum beat spectra
in these cases. But it does not mean that a time spectrum simply confirms what is
known from a traditional Mössbauer measurement. The Mössbauer timing experiment
has its essential merits and advantages (see [11,34]), which are provided on the one
hand by the unique properties of SR: superior spatial and angular density of radiation,
high degree of polarization, etc., and on the other hand, by the principal difference
in the techniques of measurements. In the traditional Mössbauer experiment the phase
relation between the frequency components of the radiation is lost. Therefore only
the strengths of the frequency components are revealed in an ordinary spectroscopic
method. Because of the phase corellation between the frequency components the time
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measurement presents an interferometric technique rather than a spectroscopic one.
Therefore a quantum beat like an interference pattern is very sensitive to the relative
strengths of the frequency components of the resonance and to a slight variation of
the hyperfine interaction parameters, including the orientation of the hyperfine fields.
The latter aspect we consider in section 6.8 while regarding the transmission of SR
through an optically active resonant medium. But first let us briefly analyze the case
of resonant splitting in a thick target.

6.6. Combined dynamical and quantum beats

We consider again a symmetric well resolved resonant doublet. In this case the
solution of the wave equation for an optically thick target results in the FS energy
spectrum displayed in figure 11 lower panel. The spectrum is drastically changed
compared to that of an optically thin target. The double-hump profiles are formed at
each resonance, as described in section 6.4, but now each profile is not symmetric due
to the mutual influence of the resonances. The reason is as follows. The real parts of
the susceptibilities of the two resonances are added. In the frequency range between the
resonances, which is the right-hand side of one resonance and the left-hand side of the
other, they have opposite signs (see figure 1(c)). Therefore, in this range destructive
inter-resonance interference occurs. And vice versa, constructive interference takes
place in the outer frequency range. Thus, the inter-resonance interference gives rise to
an asymmetry of the double-hump profiles.

The time evolution of the forward scattering in this case exhibits both quantum
and dynamical beats (figure 11 lower right). However, the QB period does not corre-
spond to the energetic separation of the resonances. The QB are faster because due
to the asymmetry of the double-hump profiles the centers of gravity of the profiles
are shifted towards higher frequencies. Dynamical beats are less pronounced due to
the asymmetric shape of the double-hump structure. The outlined tendencies develop
as the separation of the resonances decreases. The profiles become more and more
asymmetric until the inner maxima disappear. Approaching this limit the QB and DB
can not be identified separately [35]. When the resonances finally coincide dynamical
beats corresponding to the doubled strength of the resonance are formed.

As demonstrated in [36] the inner humps specific for a thick target can be com-
pletely smeared out even at a large distance between the resonances. This happens in
an Invar alloy due to inter-resonance interference in the case of an asymmetric dis-
tribution of the magnetic hf fields. The beats observed in this case are called hybrid
beats.

Thus, in transmission of a SR pulse through a resonant target the delayed wave
packet is generated as a response of the nuclear ensemble. It can have a compli-
cated node–antinode structure due to inter-resonance interference and due to multiple
scattering of the resonant γ-ray through the target.
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6.7. Resonance broadening and probability of coherent and incoherent emission

Due to the interaction of a nucleus with its environment in the target the nuclear
state may change from site to site over the ensemble of nuclei and even vary at
a site during the collision time. This gives rise to inhomogeneous or homogeneous
broadening of the nuclear resonance. The broadening of the resonance has an influence
on the time evolution of SR nuclear scattering both in the coherent (see, e.g., [13,27,
36]) and the incoherent scattering [27] channels. Regarding the coherent scattering
channel one has to average the scattering amplitude over the nuclear ensemble. If the
Lorentzian shape of the resonance is preserved one ends up with the response function
of the nuclear forward scattering given by eq. (6.13) and with the relevant intensity,
eq. (6.14). The broadening factor q, see eq. (6.4), leads to an accelerated decay of the
coherent signal, with the integral coherent intensity decreased (in contrast to speeded
up decay due to enhancement of the radiative channel, where the integral intensity is
enlarged). It is of interest to analyze the re-distribution of the scattering intensity in
the full picture of scattering, including both coherent and incoherent channels.

We assume that the field scattered over 4π originates only from scattering of
a strong coherent wave. Considering the delayed field scattered over 4π one can
distinguish three scattering paths of the coherent field propagating into the forward
direction:

A – recoilless nuclear scattering of the prompt and delayed parts of the radiation,

B – nuclear scattering with recoil of the prompt part of the radiation,

C – elastic electronic scattering of the delayed part of the radiation.

We rewrite the expressions for the A, B, C contributions obtained in [27]:

IA
4π(z, τ ) =

I0

∆ωt0
Γe

~
nσ0βfLMe−µez

×
∫

dw̃
π

W

w̃2 +W 2

∣∣∣∣ ∫ dw
2π

exp(−iwτ )
w − w̃ + i/2

exp

(
−i

µnz

2(2w + iq)

)∣∣∣∣2,

(6.21)
IB

4π(z, τ ) =
I0

∆ωt0
Γe

~
nσ0β(1− fLM)e−µeze−τ ,

IC
4π(z, τ ) =nσphotoIfs(z, τ ),

where W = (q − 1)/2, w = ~(ω − ω0)/Γ, and w̃ is the parameter of the resonant
energy distribution. The scattering intensities should now be averaged over the energy
distribution of the resonance in the nuclear ensemble (see the first equation in (6.21))
rather than the amplitudes as in the case of coherent scattering. The intensities given by
eqs. (6.21) should be summed and integrated over the target thickness to get the total
intensity of incoherent scattering (here the fluorescent scattered radiation is regarded).

The intensity of the forward and the incoherent scattering represents the time
differential probability of the emission of a secondary particle. We here introduce the



II-2 G.V. Smirnov / General properties of nuclear resonant scattering 63

probability of emission as a function of time which is the integral P (t) =
∫ t

0 dt′I(t′).
The evolution of the relevant emission probabilities Pfs(t) and P4π(t) is given in
figure 12 for a single line resonant target equivalent in thickness to a fully enriched
1 µm thick SS foil, for two resonance widths 2Γ and 10Γ. Obviously, the sum of
Pfs(t) and P4π(t) yields the decay probability of the nuclear exciton.

The following messages can be obtained from figure 12. In the coherent channel
the broadening of the resonance leads to a slowing down of the emission probability
growth and to a large lowering of the final probability level. In the incoherent channel
the effect of resonance broadening is just opposite – a more rapid rise of the emission
probability is observed and a much higher level of the final probability is reached. It
is of interest to see how the balance between the channels develops. At early times the
nuclear exciton decays predominantly into the forward direction, the coherent emission
exceeds the incoherent one in this time interval. However, the probability of coherent
emission gets saturated much earlier, somewhere between 40 and 100 ns depending
on the width of the resonance. After this time interval the nuclear exciton continues
to decay predominantly in the incoherent channel. The probability of decay in this
channel rises much slower and only saturates after 400 ns.

The probability of coherent emission at t → ∞ decreases due to resonance
broadening, whereas the probability of the incoherent decay increases essentially with
the width of the resonance, so that the total probability at t → ∞ should not depend
on the resonance width.

Up to now we considered the frequency composition of the forward scattered
packet and its time evolution for some characteristic cases without taking into account
a possible optical anisotropy of the target. Meanwhile optical anisotropy and optical

Figure 12. Time evolution of the probability of emission in the coherent and the incoherent channels for
different resonance broadenings.
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activity of the nuclear medium strongly influence the polarization state of the radiation.
In the following subsection we shall consider polarization effects.

6.8. Propagation of SR through an optically anisotropic and active medium,
polarization effects

A nuclear medium with preferred orientations of hyperfine magnetic fields or of
electric field gradients becomes optically anisotropic for the resonant radiation and
exhibits optical activity. The incident unpolarized radiation can get polarized, or if the
incident radiation is polarized it can drastically change its polarization state. The field
in a medium is obtained by the solution of the following set of dynamical equations:(

k2

K2 − 1

)
Eσ = ησσEσ + ησπEπ,

(6.22)(
k2

K2 − 1

)
Eπ = ηπσEσ + ηππEπ,

where the nuclear susceptibility amplitudes ηss
′

with s, s′ = σ,π form a matrix of
second rank under these conditions, the elements of which determine the probability
amplitudes for the transitions between σ and π polarized states. As a function of
frequency the susceptibility has several resonances in the range of hyperfine interaction.
Equation (6.22) represents a set of two homogeneous linear equations for the scalar
amplitudes of the field. Setting its determinant equal to zero to obtain the nontrivial
solution yields a second order equation for k with two solutions k1 and k2. So the
general solution for the transmitted wave is

Etr = E0 · eiωt(e1 · e−ik1z + e2 · e−ik2z
)

(6.23)

with

e1 = eσEσ1 + eπEπ1 and e2 = eσEσ2 + eπEπ2 ,

where eσ and eπ are the unit electric polarization vectors oriented along the x- (vertical)
and y-axes, Esi is the scalar wave amplitude and ki is the z-projection of the wave
propagation vector.

Thus, the total wave in the medium consists of two partial fields, WF1 and WF2,
each experiencing its own refraction while propagating through the medium. In turn
the WF1 and the WF2 are superpositions of the two orthogonal waves π and σ. The
polarization structure of the total field is shown schematically in figure 13 (we have
chosen the same geometry as described in section 6.1). The propagation vectors and
scalar amplitudes of the constituent waves are determined by the nuclear susceptibility
amplitudes. The explicit solution of the problem of propagation of γ-radiation through
an optically active medium is beyond the scope of the present paper, it can be found,
e.g., in [37,38].

As a simple example we consider the illustrative case of scattering of SR by a
thin 57Fe target. The magnetic hyperfine interaction takes place in the ground and the
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Figure 13. Transformation of an incident plane wave in an optically active medium.

first excited states of 57Fe with spins 1/2 and 3/2, respectively. Due to the magnetic
hyperfine interaction the nuclear levels are split into two sub-levels in the ground state
and into four sub-levels in the excited state. The new states are pure |m〉-states with
quantization axis parallel to the internal magnetic field; the magnetic quantum numbers
are mg = ±1/2 and me = ±1/2,±3/2. By the selection rules six transitions between
the sub-levels of the ground and excited states with ∆m = me − mg = 0 ± 1 are
allowed.

Polarized SR makes possible selective excitation of different groups of nuclear
transitions. In figure 14 the polarization of SR and the scattering geometry are shown.

A simple practical rule for the selective excitation of a magnetic dipole transition
is the following: the magnetic polarization vector h of the incident wave should have a
component along the magnetic hyperfine field Hhf in order to excite ∆m = 0 transitions
and it should have a component perpendicular to Hhf to excite ∆m = ±1 transitions.
Let us consider the orientations of Hhf along the axes x, y, z. With Hhf‖y only the
lines 2 and 5 are excited. In this case the solution for the wave packet scattered by a
thin target is

in the energy domain Efs(ω) ∝ E0eσ
[
R(ω − ω2)eiω2t +R(ω − ω5)eiω5t

]
,

(6.24)
in the time domain Efs(t) ∝ E0eσe−t/(2t0)(eiω2t + eiω5t

)
with R(ω) defined in eq. (6.18). The solution in the energy domain consists of
two groups of identically linearly σ-polarized oscillations with carrier frequencies ω2

and ω5. The spectral compositions of the oscillation groups are shown in figure 15A
(right bottom). The magnetic polarization vector of the scattered radiation and the
hyperfine field are parallel, hσ‖Hhf . In the time domain one has two wave pack-
ets of the FS radiation at carrier frequencies ω2, ω5 and of the same polarization
state. The interference between the groups in the energy domain or between the wave
packets in the time domain gives rise to the quantum beats of the forward scattered
radiation displayed in figure 15B (left bottom). The most simple beat pattern is real-
ized in this case. The beat occurs at a single frequency, Ω5,2 = ω5 − ω2, and with
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Figure 14. Polarization of synchrotron radiation, eσ and hσ are the electric and magnetic polarization
vectors for a σ-polarized electromagnetic wave.

Figure 15. Spectral compositions (A) and time dependences (B) of nuclear forward scattering of SR by
a 0.2 a µm thick 57Fe foil for three different orientations of the foil magnetization (for the scattering

geometry see figure 14).

the highest contrast since oscillators of equal strength interfere. The beat period is
about 14 ns.

With Hhf‖x, only ∆m = ±1 transitions are excited, i.e., the lines 1, 3, 4, 6.
The forward scattered radiation is σ-polarized as in the previous case, however the
magnetic polarization vector and the hyperfine field are perpendicular, hσ ⊥ Hhf . The
solution has the same form as given by eq. (6.24) but it now contains four groups,
four wave packets, at the frequencies ω1,ω3,ω4,ω6. The oscillation strengths are
3 : 1 : 1 : 3 in this case. The corresponding spectral composition and the beat pattern
are shown in the middle panel of figure 15. The interference of the four groups
of oscillations yields a more complicated quantum beat pattern which now contains
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four beat frequencies (although the number of possible beat frequencies is 6, see
section 6.5) because in iron Ω3,1 = Ω6,4 and Ω4,1 = Ω6,3. The beating of highest
frequency is caused by interference of the outermost lines 1 and 6 (the beat period is
about 8 ns).

Finally, when Hhf‖z the solution for the FS radiation has the following form in
the energy domain:

Efs(ω)∝E0
{(

eπ + ieσ
)
·
[
3R(ω − ω1)eiω1t +R(ω − ω4)eiω4t

]
+
(
eπ − ieσ

)
·
[
R(ω − ω3)eiω3t + 3R(ω − ω6)eiω6t

]}
, (6.25)

and in the time domain

Efs(t) ∝ E0e−t/(2t0){(eπ+ ieσ
)
·
(
3eiω1t+eiω4t

)
+
(
eπ− ieσ

)
·
(
eiω3t+3eiω6t

)}
. (6.26)

The same nuclear transitions are excited as in the former case, figure 15 top. But now
the oscillations related to these transitions are circularly polarized. Those correspond-
ing to 1 and 4 transitions are left circularly polarized while the other two are right
circularly polarized. Quantum beats occur due to interference of oscillations having
the same polarization state, i.e., of the oscillations related to the 1 and 4 transitions
and of those related to the 3 and 6 transitions. Since in iron Ω4,1 = Ω6,3 the beat
pattern has a simple form with a single beat period of 14 ns. Note that the interference
contrast in the top curve is less than that in the bottom one, because the amplitudes of
the interfering oscillations are not equal, their ratio is 3 : 1 (see eq. (6.25)).

We wish to emphasize that the spectral compositions corresponding to the last two
cases (where the 1, 3, 4 and 6 transitions are excited) are absolutely identical, while
the time dependences of the nuclear forward scattering look quite different (compare
top and middle panels in figure 15). Indeed, the frequency content of the radiation in
both cases is the same, but the polarization of the radiation field in one case strongly
differs from that of the other. The time measurement manifests the difference of the
polarizations, being an interference technique, it is able to reveal the amplitude of the
oscillation as a complex number. In contrast, a spectroscopic method gives only the
absolute value of the amplitude.

It is of interest to consider the sum of left and right circularly polarized waves of
equal amplitude, e.g., of those corresponding to the 1 and 6 transitions. One readily
obtains (

eπ + ieσ
)
· eiω1t +

(
eπ − ieσ

)
· eiω6t

= 2

(
eπ cos

ω6 − ω1

2
t+ eσ sin

ω6 − ω1

2
t

)
· ei((ω6+ω1)/2)t. (6.27)

This relationship shows that the sum of left and right circularly polarized waves of
equal amplitude at different carrier frequencies yields a linearly polarized wave at
the carrier frequency (ω1 + ω6)/2, where the polarization vector precesses around
the propagation direction with the frequency (ω6 − ω1)/2. In our case the period of
precession is about 16 ns. This time dependent Faraday rotation of the polarization
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plane was observed in [14,39,50]. It was proposed to use such an optical activity
of samples in combination with the polarization filtering technique to distinguish the
resonant radiation from the non-resonant one and in this way to suppress the intensive
prompt radiation propagating in the forward direction [40,41].

Concluding this section one can say that the time dependences of SR nuclear res-
onant scattering yield rich information about hyperfine interactions. More complicated
cases of combined magnetic and electric quadrupole interaction, of combinations of
several sets of hyperfine fields, etc. can be investigated.

7. The nuclear exciton in a separated target

7.1. Radiative coupling in spatially separated nuclear ensembles

When describing the evolution of a nuclear exciton in space and time (section 6.3)
one has to regard a united system where the two sub-systems, the γ-ray field and
the nuclear transition current, are dynamically coupled to each other. The system is
developing in the space occupied by the nuclear ensemble even if the ensemble is split
into several spatially separated targets. This occurs because the SR pulse traversing
the separated targets creates in all nuclei spatially and temporally phased excitations.
The spatial phasing allows the exciton which comprises all targets involved to decay
coherently via radiative emission into the forward direction. Therefore, a target split
into several slices placed one after another in the SR beam behaves exactly as an
unsplit target from the point of view of the dynamics of γ-ray propagation through the
nuclear ensemble (in the absence of a relative motion of the slices). However, the idea
of spatial separation of a nuclear target offers interesting and beneficial applications.

The interesting possibility appears in a separated nuclear ensemble to modify
a nuclear exciton in a controllable way by manipulating its parts. As an illustrative
example let us consider the forward scattering of a SR pulse in a target split into two
parts A and B (figure 16) with nuclei which exhibit a single resonance.

The SR pulse instantly creates a nuclear exciton extending over the two parts of
the target with effective resonance thicknesses TA and TB. Let the incident radiation
be presented by a δ-function, i.e., E0(t) ∝ εω0δ(t). The wave EA transmitted through

Figure 16. Set-up of a nuclear target consisting of two parts; TA and TB are the effective resonance
thicknesses of the constituent targets, S and D are source and detector, E0 represents the source radiation

field, EA and EA+B represent the transmitted fields.
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the first target and incident on the second target is given by eq. (6.13), where µz =
µdA = TA with dA the physical thickness of target A. The field transmitted through the
targets A and B is found as a convolution of field EA and the time response function
of target B (see eq. (3.6)):

EA+B(t) = εω0

∫ t

0
dt′
[
δ
(
t− t′

)
− 1

2t0
TB · eiωb(t−t′)−qb(t−t′)/(2t0) · σ

(
TB
(
τ − τ ′

))]
×
[
δ
(
t′
)
− 1

2t0
TA · eiωat′−qat′/(2t0) · σ

(
TAτ

′)]. (7.1)

In eq. (7.1) the second factor in square brackets represents the time dependence of the
exciting field emerging from the upstream target, while the first factor in square brackets
represents the response function of the downstream target (we omit the electronic
absorption). The parameters ωa, ωb, and qa, qb are the resonance frequencies and the
resonance broadening factors in targets A and B, respectively. While performing the
integration we use

∫
dxδ(x)f (a − x) = f (a), and obtain

EA+B(t) = εω0

{
δ(t)− 1

2t0
eiωbt−qbt/(2t0)

[
TAe(t)σ(TAτ ) + TBσ(TBτ )

− TATB

2t0

∫ t

0
dt′e
(
t′
)
σ
(
TAτ

′)σ(TB
(
τ − τ ′

))]}
, (7.2)

where

e(t) = exp

[
i(ωa − ωb)t−

(qa − qb)t
2t0

]
, τ =

t

t0
.

The expression in the curly brackets of eq. (7.2) is the response function of the two-part
target. We rewrite the response function as

RA+B = δ(t) +RA(t) +RB(t) +RAB(t). (7.3)

The scattering event is a coherent superposition of the four optical paths: transmission
of the SR pulse without interaction with the nuclei, given by δ(t), nuclear scattering of
the SR pulse by the upstream target, given by RA, nuclear scattering of the SR pulse
by the downstream target, given by RB, and double nuclear scattering of the SR pulse
first by the upstream and then by the downstream target, represented by RAB. This
last term represents the radiative coupling of the currents in target A with those in
target B via the coherent field propagating in the forward direction. Thus the response
of the system is determined by the sum of responses of the constituent parts and of the
term representing the radiative coupling of the parts.

The role of radiative coupling is illustrated in figure 17. There the combined
target consists of two stationary SS foils fully enriched in 57Fe.

At the initial stage the response of the combined target is determined primarily
by the sum of the responses of the targets A and B, i.e., by the interference of the
wave packets EA and EB generated in the targets by the SR pulse. However, since
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Figure 17. Comparison of the probability amplitudes of the scattering paths in separated targets (see
figure 16). The targets A and B are 1 µm thick SS foils.

(a) (b)

Figure 18. Time dependences of the scattering intensity from the target composed of two 1 µm thick
SS foils at different separations of the resonance (a), and for different broadenings of the resonance in
target A (b). Opposite shifts of nodal points of the dynamical beats are observed in cases (a) and (b).

the resonances in the targets coincide, the radiative coupling (or the interaction of the
field EA emerging from the upstream target A with the currents in the downstream
target B) becomes essential. The relevant term rises quite rapidly after the excitation
and reaches its maximum value at approximately the lifetime of the nuclear level.
So the interference of the scattering paths considered above determines the delayed
response of the combined target. As seen from figure 17, the interference between the
packets EA +EB and EAB is mostly destructive during the decay time.

If a shift in energy between the resonances appears the role of radiative coupling
rapidly decreases and a quantum beat between the wave packets EA and EB arises. The
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impact of this kind of radiative de-coupling and quantum beat on the time dependence
of the scattering intensity is displayed in figure 18(a). Initially a shift of the node
of the dynamical beat to earlier times occurs (at higher separation of the resonances
the nodes move towards later times). This effect was recently observed in [42]. The
observed shift of the node of the dynamical beat could be a measure of the shift of
the resonance in the sample relative to that in the reference target.

The broadening of the resonance in one target, say target A, also leads to a
decrease of the radiative coupling of the targets A and B. However, the shift of the
node of the beat occurs in opposite direction in this case, figure 18(b). Thus, in this way
an unresolved splitting of a resonance could be distinguished from an inhomogeneous
broadening.

7.2. On the commutativity of the target parts

It is quite obvious that targets A and B are commutative in the absence of their
radiative coupling. Then the term RAB in eq. (7.3) is simply zero and the rest of
eq. (7.3) is independent on the sequence of targets. But it can be shown that the
commutativity also holds when the targets are radiatively coupled, i.e., RAB = RBA.
Indeed, the inversion of targets A and B results in mutual replacement of time variables
in eq. (7.1): t′ ⇔ t− t′. It can be readily checked that the same exchange of variables
takes place in the integrand of eq. (7.2) and that the form of the wave packet EA+B(t)
is invariant to inversion of targets A and B. This is not obvious in the case where the
thickness of the targets or the width of the resonances are different. It is because the
exciting wave packet EA and the exciton in downstream target B can be essentially
different in the direct and inverted combinations of targets A and B.

Thus the commutativity is a universal property of the considered scattering geom-
etry. One can show that it also holds when a dynamic perturbation, homogeneous in
space and time, of the nuclear exciton in one of the targets, such as ultrasound (see,
e.g., [46]) or magnetic rf excitation, takes place.

7.3. Time domain interferometry in a nuclear target consisting of two parts

If one foil is moved with respect to the other so that the resonances are completely
separated energetically the radiative coupling vanishes. In this limit the response of
the composite target is only determined by the interference of the wave packets EA
and EB emitted by targets A and B. In the full de-coupling conditions one wave packet
can serve as a reference packet to probe the phase and the amplitude of the other. In
figure 19 the result of interference of the reference wave packet generated in a 0.5 µm
thick SS foil and that generated in a 3 µm SS foil is shown as an illustration. The
calculations are performed with the use of eq. (7.2).

As seen in figure 19, in the time window of observation the reference wave EA

exhibits no dynamical beat while the probed wave packet EB exhibits a pronounced
beat due to multiple nuclear scattering of radiation in the 3 µm thick target (see
sections 6.2, 6.3). Two nodes and three antinodes are seen in the dynamical beats of
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Figure 19. Probing of the amplitude and phase structure of the wave packet EB (emitted from a 3 µm
thick SS foil) with the help of the reference wave packet EA (emitted from a 0.5 µm thick SS foil).

the wave packet EB. In passing the nodes of the wave packet phase inversion of the
carrier oscillation occurs: the adjacent oscillations are mirror reflected in phase. When
the carrier frequencies of the wave packets EA and EB are different the interference
of wave packets leads to a quantum beat (see section 6.5). In our example the carrier
frequencies of the interfering wave packets are ωA = 160 and ωB = 100 in relative
units, so that in the interference pattern, the bottom panel in figure 19, quantum beats
occur at the difference frequency Ω = 60. It is well seen that the interference pattern
reveals both the node–antinode structure of the probed wave packet EB and the phase
inversion in the node points of this packet [43,44]. As can be seen, a spatially separated
target suggests a good opportunity to perform interferometric measurements.

The scheme shown in figure 16 can be modified by putting in-between targets A
and B a nonresonant coherent scatterer, a sample target S, which changes the propaga-
tion direction of the wave train EA (see figure 20). This can be done by employing as
target S a Bragg scatterer or a total reflecting mirror or some other scattering system.
In the modified scheme target B is put on the reflected beam.

The forward scattering in this target occurs in a new direction. In the scheme
considered the prompt δ-function part of the SR radiation also creates a nuclear exciton
in targets A and B. Of interest is that the wave train EA is transformed into the wave
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Figure 20. Modified scattering scheme for a separated nuclear target A + B. Between the parts of
the nuclear target as the interferometer arms a sample electronic scatterer S is placed, which scatters
coherently. Modulation of the wave packet due to slow atomic dynamics in S can be revealed by the

nuclear interferometer.

train EA+S which can be phase and amplitude modulated due to a possible dynamics
in target S and then probed with reference wave EB. Targets A and B can be regarded
in this case as nuclear interferometer arms.

The interference arrangements shown in figures 16 and 20 were used in ex-
periments: in [45,46] for studying the perturbation of the nuclear exciton by ultra-
sound, in [47] for phase modulation of the packet EA with a vibrating nonresonant
scatterer (piezo-quartz crystal), in [48] for the investigation of quasi-elastic coher-
ent scattering in a diffusive target S (glycerol), in [49,51] for Mössbauer heterodyne
spectroscopy.

In conclusion, we can say that useful time domain interferometry schemes can
be constructed with the use of a two-part resonant target where one part creates a
reference wave. With the help of the reference wave the amplitude and phase of the
wave packet scattered by the other target can be probed.

8. Summary

The impact of ideas of coherent scattering on the art and science of Mössbauer
spectroscopy became essential with the arrival of synchrotron radiation (SR). The co-
herent properties of the radiation and of the scattering mechanism are clearly demon-
strated in a regular measurement with SR. Both the temporal coherence in scattering
of a γ-ray by a single nucleus and the spatial coherence in scattering by a nuclear
ensemble play a crucial role in the formation of the scattered wave field.

A scattering event is described as sequential absorption and re-emission of a
γ-ray by nuclei. In accordance with the superposition principle the intermediate state
of the nuclear excitation has to be regarded as delocalized over the nuclear ensemble
where an exciting γ-ray is shared by nuclei. The spatial and temporal phasing of the
excited nuclear currents over a system is determined by the space and time coherence
of the field associated with the incident γ-ray. The superposition state of the nuclear
excitations, called nuclear exciton, became a central concept of the theory of nuclear



74 G.V. Smirnov / General properties of nuclear resonant scattering II-2

resonant scattering. In a wider view a nuclear exciton should be considered as a united
state of a γ-ray field and nuclear transition currents where the two subsystems are dy-
namically coupled to each other. The nuclear ensemble thus behaves as a macroscopic
resonator, the properties of which can differ qualitatively from those of individual
nuclei. This is demonstrated in changes of the time and space distribution of nuclear
decay products, in the redistribution of probabilities of the radiative and nonradiative
channels of scattering. In all these changes coherence effects play a crucial role.

The existence of a distributed coherent nuclear excitation, the nuclear exciton,
provides a physical basis for the use of macroscopic polarization in the Maxwell
equations to treat the radiative effects of nuclei. The total field represents a coherent
superposition of the waves allowed by a scattering nuclear system. The waves are
dynamically coupled via nuclear currents feeding one another so that the total field
must be considered as a single entity.

The SR sources provide an excellent opportunity to observe the time evolution
of nuclear scattering. The stages of nuclear excitation and decay are well separated in
time so that a nuclear scatterer exhibits free decay.

The time dependence of coherent scattering can be regarded as an interference
pattern where the time harmonics of the scattered radiation interfere. In this presenta-
tion the decay of the scattered intensity is interpreted as a fading of the interference
signal which is due to the frequency components of a single resonance becoming more
homogeneously distributed in phase with time. When the radiation spectrum contains
several components well separated in energy, e.g., due to hyperfine interaction, the
interference between the components leads to quantum beats of the scattered intensity.
Quantum beats are, thus, an effect of inter-resonance interference.

Coherent constructive addition of wavelets re-radiated by nuclei determines the
physical nature of the strong enhancement of the radiative channel of nuclear res-
onant scattering, called superradiance. It is observed as a huge enlargement of the
coherent scattering intensity, e.g., in Bragg diffraction from crystals, in total reflection
from nuclear mirrors, and in forward scattering. The strong coupling of the nuclear
transition currents with the resonant γ-ray field propagating through the nuclear en-
semble results in a dramatic speed-up of the coherent re-emission of γ-radiation by
the nuclei.

The forward scattering geometry has become widespread in experiments with SR
like the transmission geometry in normal Mössbauer spectroscopy. The decay of a
nuclear exciton in the forward direction is characterized by strong enhancement of the
elastic scattering channel leading to the effects mentioned above. In addition, the decay
of a nuclear exciton in the forward direction can be accompanied by multiple absorption
and re-emission, i.e., multiple scattering of a γ-ray in its propagation through nuclear
media. The wave packet of propagating radiation in this case acquires a pronounced
antinode–node structure both in time and in space. The relevant modulation of the
scattered intensity in time and in space is called dynamical beat. The number of beats
in the observation window for a given target actually shows the number of scattering
events of a γ-ray by nuclei in a target.
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In the energy domain the solution for the forward scattered radiation yields a
spectrum with a double-hump structure where two pronounced humps are built up
symmetrically at the sides of the resonance due to resonant scattering of the SR fre-
quency components in a thick nuclear target. One can interpret the dynamical beat as
the result of interference of two well resolved groups of oscillations.

Resonant scattering of synchrotron radiation by nuclei offers new possibilities to
explore nuclear γ-resonance in matter. The new features of the experimental data orig-
inate from the coherent nature of scattering. The possibility to observe an interference
pattern in space and in time makes the new technique complementary to Mössbauer
spectroscopy. This is because an interference technique reveals the amplitude of the
radiation field, say the amplitude of its electric field component, as a complex vector,
while an absorption spectroscopy reveals only the strength of the radiation compo-
nent. Vector properties of SR and optical anisotropy and activity of scattering media
result in a wealth of polarization phenomena. Interesting applications of time domain
interferometry are offered by the two-part resonance target where one part creates a
reference wave.

Time differential measurements of nuclear forward scattering serve as a source of
refined information about hyperfine interactions. By virtue of the interference nature of
a quantum beat pattern it is usually more sensitive to distinguish relative strengths of
the resonant components and a slight variation of the hyperfine interaction parameters
including the orientation of the hyperfine fields. Complicated cases of combined mag-
netic and electric quadrupole interaction, of combinations of several sets of hyperfine
fields, etc. can be investigated.

The time dependence of forward scattering also provides information on resonant
broadening of both static and dynamic nature. They are usually better revealed in
a measurement with a thin target. The forward scattering in a thick target yields a
dynamical beat pattern which is very sensitive to the effective thickness parameters,
in particular to the Lamb–Mössbauer factor.

We can only mention here that the time integral intensity of nuclear scattering
measured as a function of variables like angle of incidence or scattering, sample temper-
ature, magnetization, thickness, incident radiation energy, etc. can provide considerable
information characterizing the scattering system. Detailed information concerning the
spatial structure of the internal crystalline fields can be obtained by studying nuclear
Bragg scattering.
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