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Abstract

A theory of specular X-ray reflectivity from a rough interface based on the reflection function method is proposed. By

using the approximation of the abruptly changing potential, we represent a reflectivity in the form of a series. Its first

term reproduces the Nevot–Croce approximation and the second one gives the phase correction, which can be used to

obtain the degree of interface asymmetry. The model X-ray reflectometry profiles for Fe/Cr superlattice are used to

illustrate the method. r 2001 Published by Elsevier Science B.V.
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The X-ray reflectometry is a useful tool for studying

surface and interface structure in thin films and multi-

layers. Usually, the rough surface X-ray reflection is

analysed in the frame of the plane-wave Born approx-

imation (PWBA) or the distorted-wave Born approx-

imation (DWBA) [1,2]. In this work, we apply the

reflection function method (RFM) [3] to the specular

X-ray reflection from a rough surface or interface.

Let us consider the X-ray reflection on a non-ideal

interface structure. We assume that this structure is

homogeneous along the surface which is parallel to the

(xy) plane and the media can be characterized by its

dielectric susceptibility wðzÞ depending only on the

normal coordinate z, where wðzÞ-w7 when z-7N:
The change of the material occurs only in the z-direction

perpendicular to the surface. Then one has to solve the

one-dimensional Helmholtz equation

d2

dz2
þ k2 sin2 y

� �
EðzÞ þ k2wðzÞEðzÞ ¼ 0: ð1Þ

Here EðzÞ is the electric field in the medium, y is the
incident angle and k ¼ 2p=l; l being a wave length of
radiation. As the first step, we need to evaluate the

scattering matrix

S12 ¼
r11 t12

t21 r22

 !

related with the given interface between two subsequent

layers, which are denoted as 1 and 2.

The RFM starts from the transformation of the linear

second order differential equation (1) for the wave

amplitude EðzÞ into a non-linear first order equation of
Riccati type for the reflection function BðzÞ: This

transformation is not unique and can be performed in

a number of different ways. An advantage of the RFM

is that the perturbation expansion carried out in the

framework of this scheme gives more rapid convergence

in comparison with the conventional Born series. In

particular, the first order approximation easily enables

one to go beyond DWBA. We denote qðzÞ ¼

2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 yþ wðzÞ

q
; and represent the electric field EðzÞ

in the form:

EðzÞ ¼ q�1=2ðzÞ AðzÞ exp
i

2

Z z

z0

qðxÞ dx

� ��

þ CðzÞ exp �
i

2

Z z

z0

qðxÞ dx

� �	
; ð2aÞ
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where AðzÞ and CðzÞ are the amplitude functions. In
addition, we apply the following condition:

d

dz
EðzÞ ¼

i

2
q1=2ðzÞ AðzÞ exp

i

2

Z z

z0

qðxÞ dx

� ��

� CðzÞ exp �
i

2

Z z

z0

qðxÞ dx

� �	
: ð2bÞ

The reflection function BðzÞ is defined as BðzÞ ¼
CðzÞ=AðzÞ:Taking into account the continuity of EðzÞ
and Eq. (1) one can prove that BðzÞ satisfies the first
order non-linear differential equation

d

dz
BðzÞ ¼

q0ðzÞ
2qðzÞ

exp i

Z z

z0

qðxÞ dx

� ��

� B2ðzÞ exp �i
Z z

z0

qðxÞ dx

� �	
ð3Þ

Eqs. (1) and (3) should be supplemented by the

boundary conditions. For example, the choice of

BðþNÞ ¼ 0 corresponds to the X-ray beam, incident

from zo0; and in this case a reflection coefficient r11 is

given by the relationr11 ¼ Bð�NÞ: We also take into

consideration the dimensionless functions g7ðzÞ; which
are related to wðzÞ via equality wðzÞ � w7 ¼ 7ðw� �
wþÞg7ðzÞ: The function g�ðzÞ-0; when z-�N; and

g�ðzÞ-1; if z-þN (See Fig. 1). The functions g7ðzÞ
obey the relation gþðzÞ þ g�ðzÞ ¼ 1: One can regard

g7ðzÞ as a ‘‘shape’’ of the interface, which reproduces
the gradual transition from the first layer to the second

one. We shall call interface ‘‘symmetric’’, if ðq=qzÞg�ðzÞ is
an even function of z; otherwise interface is ‘‘asymmetric’’.
In case of grazing incidence angles, Eq. (3) can be

solved in the approximation of the abruptly changing

potential. The small parameter e of this expansion is

defined as e ¼ aqc=2p; where a is the characteristic

length corresponding to the variation of the potential

and qc ¼ maxjqðzÞj: In the X-ray reflectometry studies a

is of the order of mean-root-square interfacial roughness

s ¼ 228 (A [4] and qcBð4p=lÞ sin y: Therefore the

condition e51 holds over the scattering angle region

(0oyo41). These estimates make it possible to find the

solution of Eq. (3) in the form

BðzÞ ¼ B0ðzÞ expðbðzÞÞ; ð4Þ

where

B0ðzÞ ¼ ðqðzÞ � q2Þ=ðqðzÞ þ q2Þ;

q2ð1Þ ¼ 2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 yþ w7

q
and

bðzÞ ¼
XN
n¼1

bnðzÞe
n:

The function B0ðzÞ corresponds to the boundary

condition BðþNÞ ¼ 0 and it gives the Fresnel reflection

coefficient rF11 ¼ ðq1 � q2Þ=ðq1 þ q2Þ from an ideal sharp

interface. The series bðzÞ yields the corrections due to the
interfacial non-ideality.

The use of ansatz (4) is the essential step in the

derivation. It enables us partially to sum up the

reducible parts of the expansion BðzÞ in powers of e; so
that the coefficients bnðzÞ are associated with the

irreducible terms only. The series bðzÞ can be found by
means of subsequent iterations from Eq. (3). It turns out

that, at each step n, one encounters the only linear

inhomogeneous differential equation for bnðzÞ: The

details of this derivation will be presented elsewhere.

As a result, up to the third order of e, the elements of the
matrix S12 can be written in the form

r11 ¼ rF11 exp iq1d� 1
2
q1q2s2

�
þiq1½ðq21 þ 3q22Þm1 þ ðq21 � q22Þm2	s

3
�
; ð5Þ

r22 ¼ rF22 exp �iq2d� 1
2
q1q2s2

�
þ iq2½�ðq21þ3q22Þm1 þ ðq21 � q22Þm2	s

3
�
; ð6Þ

t12 ¼ t21 ¼ tF12 expð
1
2
iðq1 � q2Þdþ 1

8
ðq1 � q2Þ

2s2

þ 1
2
iðq1 � q2Þ½ðq21 þ 3q22Þm1 þ ðq1 þ q2Þ

2m2	s
3Þ: ð7Þ

Here rF; tF are Fresnel’s reflection and transmission

amplitudes and parameters d; s; and m1ð2Þ are expressed
via g7ðzÞ as follows

d ¼ �
Z þN

�N

zg=
�ðzÞ dz; ð8Þ

s2 ¼ �2I ð2Þð�;þÞ

¼ �2
Z þN

�N

g�ðz1Þ dz1

Z þN

z1

gþðz2Þ dz2 ð9Þ

m1ð2Þ ¼ ½I ð3Þð�;þ;þÞ7I ð3Þð�;�;þÞ	=4s3; ð10Þ
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Fig. 1. The linear segment form of the profile g ðzÞ; corre-
sponding to the interface of a width 2a: The ‘‘symmetric’’ case is
shown by the dashed line, and the ‘‘asymmetric’’ one is depicted

by the shaded region.
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where

I ð3Þð�;7;þÞ ¼
Z þN

�N

g�ðzÞ dz1

Z þN

z1

g7ðzÞ dz2

Z þN

zN

gþðzÞ dz3:

Consider now the physical meaning of Eqs. (5)–(10).

First of all, the phase shift d arises due to transmitting
electromagnetic wave in the non-uniform interface

region. This phase shift is equivalent to ‘‘effective’’

increase in the thickness of layer 1 to value d: z0 ¼ z � d
(see Fig. 1). In the process of the numerical treatment of

the X-ray reflectometry profiles this fact enables one to

adjust the ratio between the layers’ thicknesses in the

periodical cell of the superlattice in order to obtain the

best fit to experimental data. The second order correc-

tion to the amplitudes rF; tF in Eq. (5)–(7) reproduces

the well-known Nevot–Croce [5] approximation. The

magnitude s has the meaning of the root-mean-square
interfacial roughness and it is given by Eq. (9).

The phase correction corresponding to the third order

terms of the expansion is a new feature in the question.

In addition to s2 it contains two extra parameters m1 and
m2: We found, that m2 is in general non-zero for a wide
set of profiles wðzÞ; whereas m1 does not vanish in case of
the asymmetric interfaces only. Hence, this property

may be used to define m1 as the measure of the interface
asymmetry. The parameter m2 has no such evident

meaning as m1: But we may note that due to inequality
ðq1 � q2Þ=q1
 {1 the contribution from m2 in Eqs. (5)

and (6) turns out to be less essential, than the

asymmetric term, proportional to m1:
To test the obtained approximation we exploited the

symmetric Epstein profile gE�ðzÞ ¼ ð1þ e�z=aÞ�1 for

which the exact solution is known. In this case we

obtained s ¼ ðp=
ffiffiffi
3

p
Þa and m2 ¼ ð3

ffiffiffi
3

p
=2p3ÞBð3ÞD0:100:

We have also found that m2 has the same order of

magnitude regardless of the exact choice of g7ðzÞ (one
possible form from many others is shown in Fig. 1).

Assuming further m2 ¼ 0:1 the model X-ray profile

corresponding to the Al2O3/Cr(70 (A)/[Fe(20 (A)/

Cr(9 (A)]8 multilayer has been calculated, taking into

account the possible asymmetry m1 in the interfacial

structure. Provided the matrices Sk;kþ1 are known, the

solution of Eq. (1) and, hence, the scattering matrix S of

the whole multilayer is found by means of recurrent

scheme [6]. The results obtained are shown in Fig. 2. In

agreement with Eqs. (5)–(7) the phase correction be-

comes essential with the increase of the incident angle y
and it provides a more adequate description of the

reflectometry spectrum for the scattering vectors in

the range from the first to the second Braggs’ peaks.

The more exhaustive account and the details of our

numerical algorithm will be presented elsewhere. We

would like to emphasize that the form of the scattering

matrix as given in Eqs. (5)–(7) is rather general, i.e., it is

irrelevant to the precise form of a reflectivity profile.

Thus it provides the unification description of a large

variety of possible symmetric as well as asymmetric

interfaces.

Summing up, we have developed the theory of

specular X-ray reflectivity from a rough interface based

upon the reflection function method. By using the

approximation of the abruptly changing potential we

have found the phase correction to the reflectivity due to

interface roughness and asymmetry, which is essential

for the description of the X-ray reflectivity spectra for

greater incident angles.

The research was partially supported by RFBR

(Grants No. 01-02-17119 and 00-15-96745).
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Fig. 2. Model X-ray reflectivity profiles for multilayer structure

Al2O3/Cr(70 (A)/[Fe(20 (A)/Cr(9 (A)]8 calculated without asym-

metric phase corrections (points), and with asymmetric phase

correction (m1 ¼ 0:2; solid line). Wave length l ¼ 1:789 (A.
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