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Effect of roughness on the magnetic structure of ferro/
antiferromagnetic interface
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Abstract

Spin structures at the ferro/antiferromagnetic interfaces perturbed by defects such as atomic high steps are
analytically investigated. A two-dimensional model is proposed to describe the spin distribution formed on the
interfacial step at the domain wall. A criterion of the domain wall configuration relative to the interface is found,

defined by the magnetic and geometrical characteristics of the interface and the magnet.r 2001 Published by Elsevier
Science B.V.
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Layered magnetic structures and interfaces
between different magnetically ordered media have
aroused considerable interest in recent years due to
their wide variety of surprising features and a
multiplicity of technological uses. The roughness
of atomic high steps necessarily abundant on
the interface involves severe consequences for the
magnetic order of the layered systems. The
intention of the present paper is to describe spin
structures at ferro/antiferromagnetic (FM/AFM)
interfaces perturbed by defects such as steps. We
develop a model that allows one to obtain
analytical expressions for the magnetic ordering
throughout the volume of the system and for the
energy of the domain walls (DWs) of various
configurations. Information on the real spin

distribution at the perturbed interface expressed
in terms of the material parameters of the magnet
can be used as a basis for analysis of the
observable physical effects, the formation of
DWs may lead to, such as exchange bias and
other related phenomena.
Consider classical Heisenberg FM/AFM system

with atomic high step on the interface, taking into
account a weak easy-axis anisotropy g along the x
direction in the easy xz-plane (Fig. 1). As it will be
seen from below, qualitative analysis of the
magnetic structure, we are interested in, is allowed
under the assumption of equal anisotropy for FM
and AFM, however, the quantitative analysis
would require one to differ anisotropy for the
two layers. At the exchange interaction through
the interface JS under a critical value J� spin
ordering in FM and AFM is ideal, and collinear
DW forms along one of the x half-axes. At J �
oJSoJnn the DW takes noncollinear form. As
JS reaches the critical value Jnn; the DW is
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ROOFrepelled from the interface since the energy of the

DW in the layer is less than that at the interface.
To find a criterion of the DW orientation and to
determine the values J� and Jnn; calculate the
energy of the noncollinear DW at the step along
the interface.
From the energy of the magnetic interaction in

the spin chain along the z-axis at fixed x static
equations for spin deviations j in the chain can be
derived. After variables substitution taking into
account ‘‘layered’’ ordering in AFM, linearized
equations take the form:

JAb
2 q

2j
qz2

þ
g
2
sinð2jÞ ¼ 0;

JFb
2 q

2j
qz2

þ
g
2
sinð2jÞ ¼ 0; ð1Þ

where b is lattice parameter along z direction, JA
and JF are the exchange constants in the z-
directions in AFM and FM. Eqs. (1) is comple-
mented by the boundary conditions

bJA
qj
qz

����
z¼�b=2

¼ JS sinðj0 � j1Þ;

bJF
qj
qz

����
z¼þb=2

¼ JS sinðj0 � j1Þ: ð2Þ

The solutions of Eqs. (1) describe the rotation of
spins in a chain along z at fixed x:

j ¼ 2 arctan expððzA � zÞ=lAÞ; ðzo0Þ;

j ¼ 2 arctan expððzF � zÞ=lFÞ; ðz > 0Þ; ð3Þ

where lA ¼ b
ffiffiffiffiffiffiffiffiffiffi
JA=g

p
and lF ¼ b

ffiffiffiffiffiffiffiffiffiffi
JF=g

p
are the

‘‘magnetic lengths’’ in the half spaces. The values
zA and zF can be defined from the boundary
conditions (2) and are the functions of the
parameters JA; JF; JS; g: Using Eqs. (3) we obtain
the energy of the unit length of the DW along the
interface:

E8E
ffiffiffiffiffiffiffi
JFg

p
þ

ffiffiffiffiffiffiffiffi
JAg

p
�

g
2
þ

g
b
ðzF � zAÞ

þ 2JS
b=2� zF
2lF

þ
b=2þ zA
2lA

� �2
: ð4Þ

Energy (4) appears to be the function of the
exchange integrals of FM, AFM and through the
interface, depending also on the easy-axis aniso-
tropy parameter. Common expression for the DW
energy immediately follows from Eqs. (4) in the
case JA ¼ JF ¼ JS: E0 ¼ 2

ffiffiffiffiffi
Jg

p
; which agrees with

that obtained by the direct calculation of the DW
energy in the homogeneous magnet. To compare
the energies of variously configurated DW, con-
sider the case of equal values of the exchange
parameters in FM and AFM: J � JA ¼ JFaJS
(we use the assumption of equal exchange con-
stants in FM and AFM to obtain some qualitative
results. Note, that, for Fe/Cr, as an example,
JFe=JCrE2 while JFe=JFe2CrE10 and thus the
assumption is valid to be a good approximation).
Then, the energy of the unit length of the DW
along the interface is

E08ðJ; JS; gÞ ¼ 2
ffiffiffiffiffi
Jg

p
þ

g
2
1�

J

JS

� �
: ð5Þ

Comparing this expression with the energy of
the collinear DW in the plane of the interface
Ecol ¼ 2JS; a critical value of the exchange inter-
action through the interface JS� can be found, at
which the transformation of the collinear DW into
the noncollinear DW occurs: Jn

S ¼ 1
2

ffiffiffiffiffi
Jg

p
: At JS >

Jnn ¼ J the energy of the DW along the interface
exceeds the energy of the DW within the thickness
of the magnet, the DW is repelled from the
interface and is oriented perpendicular to the
interface. It is easy to obtain the value of the Jnn

for JFaJA: J
nn ¼

ffiffiffiffiffiffiffiffiffiffiffi
JFJA

p
: If the exchange para-

meters in FM and AFM differ, the DW at
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Fig. 1. DW caused by a step on FM/AFM interface given

single-ion anisotropy in the easy plane (xz).
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JS > Jnn forms, obviously, in the magnet with the
smallest value of the exchange interaction. These
conclusions as to DW orientation are in agreement
with the results of numerical calculations for Fe/
Cr multilayers presented in Ref. [1]. If the finite
thickness of the FM and AFM layers and the finite
distance L between the steps on the interface are
take into account, a prerequisite to the formation
of the DW along the interface is E8LoE>h; where
E> ¼ 2

ffiffiffiffiffi
*Jg

p
( *J is the exchange integral along the

x-direction). The opposite inequality is the condi-
tion of the DW formation perpendicular to the
interface.
Analytical description of the nonuniform mag-

netization distribution caused by a monatomic
step at the FM/AFM interface can be provided in
the framework of a simple 2D model proposed in
Ref. [2] for a system of AFM with the lattice
dislocation. Consider JS value on the interval J �
oJSoJnn which corresponds to noncollinear DW
formation along the interface. For an equivalent
system of two FM half spaces in contact after
corresponding variables change, long-wave equa-
tions for the magnetization distribution take the
form

*JAa
2 q

2j
qx2

þ JAb
2 q

2j
qz2

�
g
2
sinð2jÞ ¼ 0;

*JFa
2 q

2j
qx2

þ JFb
2 q

2j
qz2

�
g
2
sinð2jÞ ¼ 0; ð6Þ

where a is lattice parameter along the x direction,
*JF and *JA are, respectively, the exchange integrals
in FM and AFM in x-direction. Nonlinear Eqs. (6)
can be linearized by replacing single-ion aniso-
tropy Ean ¼ gð1� cos2 jÞ=2 with the piecewise
parabolic function, which is possible when the
exchange interaction in FM and AFM are of
the same order of value. Since we are interested in
the magnetization distribution over distances
larger than atomic dimensions, replace an interface
with a step by the ideal boundary, having reversed
the sign of the exchange interaction through it on
one side of the step. Complementing the boundary
condition presenting the density of the effective
forces acting at the interface

f7ðxÞ ¼ 7sgnðxÞJS sinðjjz¼þb=2�jjz¼�b=2Þ; ð7Þ

leads us to the following solution of the volume
problem (6):

jðx; z > 0Þ ¼ �
JS

pa
ffiffiffiffiffiffiffiffiffiffi
*JFJF

p
	
Z þN

�N

dx0K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2

s2x
þ
z2

s2z

s0
@

1
A

sinðwðx0ÞÞsgnðx0Þ ð8Þ

(and the analogous expression for AFM half
space), where Macdonald’s function K0ðkÞ is the
Green’s function of the Klein–Gordon equation;
w ¼ jjz¼þb=2�jjz¼�b=2 the function of relative spin
deviation at the interface; sx ¼ a

ffiffiffiffiffiffiffiffiffiffi
*JF=g

q
and sZ ¼

b
ffiffiffiffiffiffiffiffiffiffi
JF=g

p
are, respectively, the ‘‘magnetic lengths’’

along the x and z directions. From the expression
(8) a 1D equation for the function wðxÞ follows. In
the case of the equal exchange constants in FM
and AFM it takes the form

wðxÞ ¼ � p�
2JS

pa
ffiffiffiffiffiffi
J *J

p
	
Z þN

�N

dx0K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2

s2x
þ

b2

4s2z

s0
@

1
A

sinðwðx0ÞÞsgnðx0Þ: ð9Þ

Eq. (9) can be solved by the successive approx-
imations method. For the first approximation it
gives:

w1ðxÞ ¼ �p�
JS
Jn
sinðeÞ

1

p

Z
N

�x=sx
dpK0ðpÞ; ð10Þ

where e changes from �p (at JS ¼ J�) to �ðp=2Þ 	ffiffiffiffiffiffiffiffi
g=J

p
(at JS ¼ J). The function

IðxÞ ¼
1

p

Z
N

�x=sx
dpK0ðpÞ

can be estimated on the different intervals of the
coordinate x values:

IE

ffiffiffiffiffiffiffiffiffiffiffiffi
sx=jxj

p
expðx=sxÞ=

ffiffiffi
p

p
; x5� sx;

ðð1� jxj=sxÞ � ðjxj=sxÞlnðjxj=sxÞÞ=p;

�sxoxo0;
ðð1þ jxj=sxÞ � ðjxj=sxÞlnðjxj=sxÞÞ=p;

0oxosx;

1�
ffiffiffiffiffiffiffiffiffiffi
sx=x

p
expð�x=sxÞ=

ffiffiffi
p

p
; xb� sx:

8>>>>>>>>><
>>>>>>>>>:

ð11Þ
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The solution of the 2D problem can be restored
by substituting the solution of the 1D Eq. (9) into
expression (8):

jðx; z > 0ÞE
1

2

JS
Jn
sinðeðJSÞÞ

	
1

p

Z
N

0

dpK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� x=sxÞ

2 þ ðz=szÞ
2

q
Þ:

ð12Þ

At x ¼ 0 and zb !oZ it follows from Eqs. (12)
that jpðJS=JnÞsinðeðJSÞÞ

ffiffiffiffiffiffiffiffiffiffi
z=sZ

p
expð�z=sZÞ: At

large distances from the interface the system turns
to the ground state (Fig. 1).
In conclusion, a two-dimensional model is

presented for analytical description of the spin
structure at the FM/AFM interface with the
atomic high step. The domain wall is necessarily
associated with the step on the interface. The
energy along with the orientation of the domain
wall is dictated by the anisotropy and exchange

parameters of the FM, AFM and through the
interface as well as by the thickness of the layers
and geometry of the interface. The distribution of
magnetization in the entire volume of the magnet
containing the domain wall along the interface is
expressed in the terms of the magnetic and
geometrical parameters of the system. Decrease
of the nonuniformity of the magnetization dis-
tribution into the depth of the magnets is
exponential, and the width of the domain wall is
proportional to the exchange interaction in the
magnets and inversely related to the anisotropy
parameter.

References

[1] P. B .odeker, A. Hucht, J. Borchers, F. G .uthoff, A. Schreyer,

H. Zabel, Phys. Rev. Let. 81 (1998) 914.

[2] O.K. Dudko, A.S. Kovalev, Low Temp. Phys. 24 (1998)

422.

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

O.K. Dudko, A.S. Kovalev / Journal of Magnetism and Magnetic Materials ] (]]]]) ]]]–]]]4

MAGMA : 8393�


