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We have investigated the effect of a free (100) surface on low-temperature properties of a Heisenberg anti-
ferromagnet of the CsCl structure. It is found that a surface magnon branch occurs in the excita-
tion spectrum, with an excitation energy less'than the frequency of a bulk magnon of the same wavelength.
In the limit of infinite wavelength, the surface magnon frequency for this geometry is (HgHa+H42)'2,
compared to (2HgH 4+ H 4*)"? for bulk magnons of infinite wavelength. In the limit Hg>>H 4, the surface
magnon frequency is found to be insensitive to changes in exchange constants or anisotropy fields near

_the surface. The surface modes may be observed in the infrared absorption spectrum of the material, and
will affect the low-temperature thermodynamic properties of the system. By means of a Green’s-function
method, we have examined the influence of the surface on the infrared absorption spectrum, the specific
heat, and the low-temperature form of the parallel susceptibility and mean sublattice deviation. Numerical
estimates indicate that the surface corrections of the thermodynamic quantities may be observable when

ke T<K(2HEgH 4)'2.

I. INTRODUCTION

HERE has been a considerable amount of interest
in the theoretical study of the influence of a free
surface on the properties of crystals. One often finds
that excitations localized near the surface occur. For
example, many years ago, Lord Rayleigh! demonstrated
that in the theory of elasticity, surface waves exist with
displacement field localized near the surface. Wallis
and co-workers? have recently examined the properties
of short-wavelength surface waves in a simple crystal
model. The properties of surface spin waves in ferro-
magnets have been discussed by several authors, in the
long-wavelength limit, where the dominant contribu-
tion to the spin-wave energy comes from the dipolar
interactions,® and in the short-wavelength region, where
exchange interactions are important.*®
The surface waves are eigenmodes of the Hamiltonian
in a linearized theory. Consequently, thermally excited
surface waves will contribute to the specific heat. In
addition, the surface alters the distribution in frequency
of the bulk waves. Thus the contribution to the specific
heat from the bulk waves is changed by the presence of
the surface. The low-temperature specific heat of a semi-
infinite vibrating lattice has been studied by Onsager
and co-workers,® by Stratton,” and by Maradudin and
Wallis.? At low temperatures, a contribution propor-
tional to the surface area, and to the square of the tem-
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perature, is obtained. In the high-temperature limit,
Clark, Herman, and Wallis® have computed the mean-
square displacement of an ion from its equilibrium
position as a function of distance from the surface. The
surface contribution to the magnetic specific heat of
a ferromagnet, and the dependence of the mean spin
deviation on distance from the surface, has also been
studied recently.!

It has been possible to excite low-frequency surface
vibrations directly,"! and to study the vibrational
properties of atoms in the surface layer by low-energy
electron-diffraction techniques.’? It appears that low-
energy electron diffraction may also prove a useful
technique for the study of magnetic properties of atoms
in the surface layer of magnetic crystals.®

However, it has proved difficult to observe the sur-
face contribution to thermodynamic properties of these
systems. Indeed, we do not know of any unambiguous
observation of the surface specific heat of a crystal, in
experimental geometries similar to those employed in
the model calculations described above. One difficulty
is that in nonmagnetic crystals or in ferromagnetic
arrays the bulk phonon or spin-wave energy tends to
zero as the wavelength of the excitation becomes
infinite.* Thus the contribution to the specific heat
from the low-frequency bulk excitations generally
dominates the surface contribution unless the tempera-
ture is very low, or the effective surface-to-volume ratio
large.

For this reason, we have studied the influence of a free
surface on the properties of a simple Heisenberg anti-
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ferromagnet. When the exchange frequency wg is large
compared to the anisotropy frequency w4, the minimum
excitation energy wp®™ for excitation of a bulk magnon
is given by the well-known result wp™ = (2wgws)/2.
The excitation energy wp™ is often quite large, the
order of tens of degrees Kelvin in many instances. If,
for a particular geometry, surface modes exist in the
gap, then when kzT'<wp™, the ratio of the surface to
the bulk contribution to the specific heat may be of
observable magnitude, since the bulk contribution may
be nearly frozen out in this range of temperature.

We have investigated the effect of a free (100) surface
on the low-temperature properties of a simple Heisen-
berg antiferromagnet of the CsCl structure. The spins
are assumed to interact via nearest-neighbor isotropic
exchange interactions of antiferromagnetic sign. If it is
assumed that spins in the surface layer experience the
same anisotropy field as spins in the bulk, then the
frequency of the surface branch becomes (wgwa)!? in
the limit as k—0, if wg>>w,4. Thus the excitation energy
of the long-wavelength surface waves lies in the gap
below wp™. When wg>wy, the frequencies of the sur-
face waves are found to be insensitive to changes in the
exchange constants, and changes in the anisotropy
field near the surface.

The surface spin-wave mode at k=0 may be observed
in the one-magnon absorption spectrum of the material.
If the surface area of the sample is .S, the volume V, and
the lattice constant @, then the ratio of the integrated
intensity of the line associated with the k=0 surface
magnon to the integrated intensity of the bulk one-
magnon absorption is found to be (¢S/2V) (wg/wa) 2.

The purpose of this paper is to discuss the properties
of the surface magnons in detail for the model described
above, and to compute the effect of the surface on a
number of low-temperature properties of the material.
In Sec. IT the properties of the surface magnons are
studied by an equation-of-motion technique. In the
spin-wave approximation, a number of thermodynamic
properties of the crystal may be computed if certain
single-particle Green’s functions are known. In Sec. 111,
we define the Green’s functions and solve for them from
the appropriate equations of motion. The subsequent
sections are devoted to a discussion of the one-magnon
absorption spectrum, the surface contribution to the
specific heat, the parallel magnetic susceptibility, and
the variation of the temperature-dependent contribu-
tion to the sublattice spin deviation with distance from
the surface.

The paper employs a picture of the surface that is
certainly oversimplified. However, for the model con-
sidered, the expressions for the wvarious quantities
assume a reasonably simple form. We believe that the
results provide a reliable estimate of the nature and
magnitude of the surface effects. It is straightforward
in principle to include the effect of changes in the
anisotropy field and exchange constants in the surface.
To include these effects makes the details of the algebra
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F1G. 1. The two-sublattice anti-
ferromagnet considered in the
present paper.

considerably more complex. As mentioned above, the
results are expected to be insensitive to changes in wg
near the surface, when wg>ws. We believe that these
effects may be included in a later study, hopefully
after some experimental information is available that
will enable one to assess more readily the relative impor-
tance of the various complications.

II. PROPERTIES OF SURFACE MODES

As mentioned in the Introduction, we shall confine
our discussion to a particularly simple geometry, a two
sublattice antiferromagnet of the CsCl structure. In the
infinitely extended medium, a spin on a given sublattice
is located at the body center of a cube of edge length a,
with an antiparallel spin of the other sublattice at each
cube corner. We assume nearest-neighbor antiferro-
magnetic exchange coupling between a spin and its
eight nearest neighbors, in the bulk medium. Notice that
each sublattice is a simple cubic lattice of lattice con-
stant ¢. The model crystal is illustrated in Fig. 1.

In this section, we consider a semi-infinite antiferro-
magnetic array, with a (100) surface. The surface layer
then consists of a layer of spins on just one sublattice.
For definiteness, we suppose the surface layer consists of
A spins, pointing in the -4z direction. It will also be
assumed an external magnetic field H is applied parallel
to the direction of the sublattice magnetizations.

For the moment, consider the Hamiltonian of the
infinitely extended medium. One has (with #=1)

H=—(vs+twn) l):sz(zo + (wa—wn) >1:Szflb>
a b
+JIZ ;S(m -S(L+3), (1)

where wy4 is the frequency of precession of a spin in the
local uniaxial anisotropy field wa, wy is the precession
frequency in the external magnetic field, and J is the
nearest-neighbor exchange integral. The sign conven-
tion is chosen so that J is a positive number. The first
sum is over the sites of sublattice 4, on which the spins
point in the 4z direction. The second sum is over the
sites of sublattice B, and in the third, for a given value
of 1;, one sums over the eight sites at {1,453} adjacent
to L. Then assuming the temperature is low compared
to the Néel temperature, we make the Holstein-
Primakoff transformation to boson variables, retaining
only terms quadratic in the spin deviation annihilation
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and creation operators.!® Then, ignoring constant terms,

H=(wstwg—omn) bebfblb—l- (watwe+en) Zdlafala
T la
+ieny, 2 (aLbuista, 4", (2)
[

We have defined the exchange frequency wgzp=38JS.
Recall the commutation relations

[ow, a1 T ]=611.,  [bu, brrT1=0110,

where all commutators not exhibited vanish.

The spin-wave frequencies associated with the bulk
material may be derived in the standard manner. One
obtains the equation of motion for the spin deviation
operators a1, and b;,". Then it is assumed the solutions
vary in time like exp(#2f) , and a Fourier transformation
with respect to the spatial variables {L}, {l5} is carried
out. For a given value of the wave vector k, there exist
two spin-wave modes of frequency®

(k) =wg=£[ (watwg)?—wsy (k)72

=wptw(k), 3)

where (k) =cos(3k.a) cos(3k,a) cos(zk.a) for the
structure considered.

To include the effect of a free surface, the Hamil-
tonian of Eq. (2) must be modified to include the
influence of the surface on the motion of the surface
spins. The crystal will be assumed to lie in the region
2>0 with a (100) surface of 4 spins in the x-y plane.
The Hamiltonian may then be written in the form

H=[wA+wE—wH]lebl,,‘rbl,,
+€S[wA+wE+wH+A(1:> (bwa—}wp) Jar, ',
+%wE41‘:|:1—A(laz)]za:[dlabzm-l-H-C-]
+%wE§A(1J)BZ Lanbs+He], (4)

302>0
where
A(l?) =1 12=0
=0 1,2#%0.

The sums in Eq. (4) extend only over sites in the
upper half-space, with %,#>0. From the second term in
the first line, one notes the surface spins see only half
the exchange field seen by an interior spin. The term
in the third line occurs because a surface spin is
“bonded” only to half as many B spins as an interior

15 C, Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc.,
New York, 1963), p. 58.

16 The excitation energies of the modes are wy+w(k) and
—wg-+w(k), respectively. The excitation energies are both posi-
tive, provided that wg <wg® = (2wswg+w4s?) 2. When wg>wn®),
the ground state is unstable, and a spin-flop transition occurs in
the bulk material. See S. Foner, in Magnetism, edited by G. T.
Rado and H. Suh! (Academic Press Inc., New York, 1963), Vol. I.
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spin. For the moment, we ignore changes in the ex-
change constants near the surface. We shall return to
consider the effect of altering the exchange constants on
the solutions described below.

The quantity dw, is the change in anisotropy field in
the surface layer. We assume that the change in anisot-
ropy field near the surface is parallel to the direction of
magnetization, so only the magnitude of wa differs in
the surface, compared to its value in the bulk. For one
model, if our anisotropy field is dipolar in origin and
the sublattice magnetization is parallel to the surface,
then this assumption is valid. For this case, we estimate
dws=—0.3 ws. The change in anisotropy field one layer
from the surface is quite negligible for this picture.

The creation operators a,' associated with the nth
normal mode of the semi-infinite crystal may be written
in the form

Qy= IZAﬂ(la) a1, lqu(lb) b1,

The coefficients 4,4(1,) and By(l;) will be normalized so
that

Lam ay']=1.

The eigenfrequencies @, and the coefficients may be
obtained from the eigenvalue equation

Qna0f=[H s aﬂT]
= ;A,(la) I:H) aluT:H' lsz(lb) [H; blb.]-

By first commuting this equation with ay,, then with
b, one derives two equations involving only the
c-number amplitudes:

QVA")(IG) = ;Av(la,) [Eala'.r; H:]; ala]
+;Bv(lb) E[blu H]: ala]

and

Qva( ]b) = IZAv(la) [blb T; [alaf; H:D
+;Bn<1b'>[bl,,f, [bw, HT.

Evaluation of the double commutators then gives

QuBn(lb) = (wA""wE_wH)Bn(lb)'f'%wEsZA u(lb+ 5): (5)
2,4 v(la) = [wA+“’E+wH+5wA(laz) :lA o)
—3ws[1—-A®) ]A;B,,(L,Jr 8)
—3wpA(l#) 2 Bylat9),
82>0

where we have defined dw=8ws—$wz.

Because translational invariance with respect to dis-
placements in the x and vy directions (parallel to the
surface) has not been destroyed, the solutions to Egs.
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(5) have the Bloch form
Aq(L) =y (I07) exp(iky-la),
Bqy(l) =B,(ls°) exp(iky+h),
where k|| =Zk,+jk,.

Substitution of this form into Egs. (5) then yields
equations for a,(/?) and B8,(4?) :

QBy(h*) = — (watwe—wn) By (h?)
Twph (k) [og (b +3a) +a,(r—%a) ],
Quaty (I7) =[watwptwntdwA(le?) Loy (%a?)]
—3wpN (k) [1— A(%?) 18yl +3a) 4B, (le—%a) ]
—%ws\ (k) A(L*)By(30), (6b)

with N(ky)) =cos(%k.a) cos(Fk,a).

The first of Egs. (6) may now be employed to
eliminate the 8,’s from the second of Egs. (6) to give
an equation for the «,’s alone. One finds

[(Q—wn)?— (watwp) *Jaq(la*) + 1w (K)))
X Lay(la*+a) +aq(la—a) + 20, (L*) JT1—A(%*) ]
=A(1%) {80(Qy— wg+watwr) a,(0)
— 10N (k) [0y (0) +ay(a) 3. (7)

This equation determines the quantities a,(Z2). The
amplitude B,(%?) of the spin deviation on the B sub-
lattice associated with a particular normal mode may
be determined from Eq. (6a).

In this section, we shall be interested in studying the
solutions of Eq. (7) for which the spin deviation is
localized near the surface. Consider a mode in which
the spin deviation decays exponentially into the sample:

as(l*) =exp(—gls?). (8)

Substitution of Eq. (8) into Eq. (7) with 7,70 yields
an expression for the frequency €, of the surface wave
in terms of the attenuation constant ¢g. One finds

(2—wn)?= (watwp)?*—wr’N (k) cosh*(3ga). (9)

For a given value of k), the attenuation constant ¢
is found by requiring the solution to satisfy Eq. (7)
for the case 7,=0. It is necessary to require that the
real part of the quantity ¢ be positive, so that a,(2,?)—0
as [, . From the equation for /,=0, one finds

1+ exp(qa) =— [4&0/601«;2)\2( k“) :l (Qs—‘ wH-f—wA-i-wE) .
(10)

Equations (9) and (10) may now be combined to
yield an equation for @, as a function of k. At this
point, the algebra is simplified greatly by ignoring the
change in the anisotropy field in the surface layer. We
shall return to discuss the effect of including an addi-
tional pinning field on the surface spins after first con-
sidering the case éws =0. Then dw=—3Fwg.

(6a)
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From Eq. (10), after a bit of rearrangement, one finds
4 (Q—wptwstwr)?
Mog? (2/Nwg) (Q—wp+wsto)—1°

Insertion of this result into Eq. (9) leads to a quad-
ratic equation for the quantity (Q,—wpg):

(Qs—wy) 2-]*%0.)1«;( 1 —')\2) (Qs—*' wH)

cosh?(%qa) =

— (wa—wg) [wat3wr(1-2) ]=0. (11)
The two solutions to this equation are
Q=wg—iwp(1—N2) L3 {wr?(1—22)2

+4(wator) [eatzoe(1-N) 1. (12)

As k;—0, A1, and one finds
Qs =wg=[wa(watwr) T2
When wg>wy, with wgy=0, one has
Qs === (wawg) V2.

For a given value of k), the surface magnon excita-
tion energy lies in the gap below the excitation spectrum
of the bulk waves.

Only one of the two solutions to Eq. (12) satisfies the
requirement ¢>0. For simplicity, consider the case
k;;=0. Then from Eq. (10), with éw=—3}wg,

14-exp(ga) =+ (2/wp) {wp+wat[ws(wptwa) ]2},
(13)

The right side of Eq. (13) must be greater than 2 if
¢>0. This requires that the upper sign in Egs. (12)
and (13) be chosen. The solution corresponding to the
lower sign corresponds to a wave with amplitude that
grows exponentially from the surface. Thus there exists
a single, nondegenerate surface magnon branch. The
frequency Q; of a surface wave with a given value of
k| is

Q=wp+{ (watwr) [watFws(1—N2) ]

Fswrt (1—N2) 2} 12— 165 (1—22).  (14)
A plot of the surface magnon dispersion relation, along
with the dispersion relation of bulk waves propagating
parallel to the surface, is given in Fig. 2.

The magnetic field dependence of the surface magnon
frequency exhibited in Eq. (14) has some interesting
consequences. If the direction of the magnetic field is
parallel to the direction of the A spins that lie in the
surface layer (wg>0), then the application of a field
“stiffens” the surface mode by increasing its frequency.
Application of a field antiparallel to the 4 spin direction
(wgr<0) “softens” the mode. The dependence of the
sign of the shift in frequency of the surface mode on
the orientation of the exiernal magnetic field relative
to the direction of surface-spin alignment will strongly
influence the sign of the contribution of the layers near
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i
T { W (we+wa)}’
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F16. 2. The dispersion relations for surface magnons and bulk
magnons propagating parallel to the x axis, which lies in the sample
surface. The external magnetic field is assumed zero. The unphysi-
cal solution to Eq. (12) is indicated by the dashed line.

the surface to the parallel susceptibility. This will be
discussed in detail in a subsequent section.

If wy<0, as l wy I —wg @ =|:wA (watwg) ]1/2 from
below, the excitation energy of the k=0 surface mode
approaches zero. For wg>wg(@, the antiferromagnetic
ground state is unstable with respect to a new ground
state in which the spins near the surface rotate through
an angle of roughly 90°. A detailed description of this
“surface spin-flop” transition has been given in a paper
by one of us.”

The discussion above neglects the effects of changes
in the anisotropy field in the surface layer. We shall
examine the sensitivity of the frequency of the surface
mode at k;;=0 to changes in the surface anisotropy
field. Let wa® be the anisotropy field seen by a spin in
the surface layer. Define

0=2(ws—wa®)/wg.

It will be assumed that §<1. If wg>w4, and the anisot-
ropy field is largely dipolar in origin, then the discussion
earlier in this section indicates that this assumption is
reasonable. In terms of the parameter §, Eq. (10)
assumes the form (with k=0 and wg=0)

1+exp(qa) =2(1+5)[(wE+wA~Qs) /wE]
Using this result, one finds the k;;=0 surface magnon

frequency is given as the solution of the quadratic

17D, L. Mills, Phys. Rev. Letters 20, 18 (1968).
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equation
(148)Q24Lwp[ (14-8)2—172,
— (watwz)[(148) wa—Lwps?]=0, (15)

which corresponds to ¢>0.

In the limit §<1, the change in ©; to first order in §
may be found. One finds that the fractional change in
€, is related to the fractional change in surface anisot-
ropy field as follows:

8Q2,/Q@ = {wa/[wa(watwr) I} [(0s®—wa) /wa].
Thus, in the limit wp>wy,
(220 <1 i [(0s®@—ws) fosll.

In the case where wg>wy, the reason for the insensi-
tivity of the surface magnon mode to changes in the
surface anisotropy field may be seen by noting from
Eq. (13) that ga=22(wa/wg)? at k=0. The spin
deviation associated with the surface mode extends
roughly (wg/wa)'? atomic layers into the crystal. Since
the mode involves the motion of spins in many layers,
changes in the anisotropy field seen by the surface spin
results in only a small shift in the frequency of the mode.

Next suppose that the exchange constants are
changed near the surface. To be specific, suppose the
exchange coupling between spins in the layer /,>=0 and
r=11s J'5£J, and we define wg' =87J"S. The effect of
this perturbation on the k=0 surface magnon frequency
may be found by a method very similar to the preceding
discussion of the effect of dw4. Since the algebra involved
is straightforward but tedious, we shall simply quote
the result. To first order in (wg’—wg) we find

8Q,/2.9 =1 (wg' —wz) /wg.

This result may be understood qualitatively by the
following simple argument. We have just seen that the
effect of changing the anisotropy field in the surface
layer shifts the surface mode frequency by an amount
dw4. If the only effect of the change in wz was to change
the molecular field of a spin in the surface layer, then
the shift in exchange constants described above would
shift the frequency of the mode by an amount dwgz=
wg'—wg. However, the change in wgp can affect the
frequency of the mode only if one has a nonzero value
of the angle 6 that measures the amount by which the
angle between the A spins in the surface, and the B
spins in the layer Lz=1, differs from 180°. When
wakwg, 0(wa/wr)?. The frequency shift is thus
reduced from the value (wg'—wg) obtained from the
molecular-field  approximation to (wg—wg)8=
(wa/wr)?(wr’—wg) . This is the result exhibited above,
within a multiplicative constant of order unity. Notice
that the frequency shift is proportional to 8 rather than
to 62 because of the low symmetry of the surface region.

It is difficult to estimate the magnitude of the changes
in wg near the surface in a reliable way. However, it is
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known!® that in Ni the change Aa in the lattice constant
near the surface is of the order of a few percent. In a
crystal in which the magnetic ion is an S-state ion,
the value of J may not be affected greatly by the lowered
symmetry of the crystal field in the surface layer. If
the change in J comes solely from the change in lattice
constant near the surface, and if Aae/a=20.05 is a
typical change in a, then one might expect

(wg' —wg) /wr~0.05.

Thus changes in wg near the surface may shift Q, by a
few percent, if the above estimates are correct.

In the subsequent discussion, we ignore changes in
wg and w4 on the quantities computed. In the spin-wave
approximation, the surface magnon mode is an eigen-
mode of the Hamiltonian. In principle, one may observe
a line from the surface mode in the infrared absorption
spectrum of the material. Also, thermally excited sur-
face modes will contribute to the specific heat, parallel
susceptibility, and sublattice deviation. These effects
are best discussed with a Green’s-function technique,
since in addition to the presence of the surface waves,
it is necessary to realize that the bulk spin-wave fre-
quency distribution function and eigenvectors are
altered by the surface. Once certain Green’s functions
are known, a systematic discussion of the contribution
of both the surface modes and the perturbed bulk
waves to the various low-temperature properties of the
system is possible.

In Sec. III, the relevant Green’s functions are defined,
and their properties discussed. In subsequent sections,
the Green’s functions will be employed to study some
low-temperature properties of the system.

III. THERMODYNAMIC GREEN’S FUNCTIONS

We shall consider imaginary time Green’s functions
of the form

DB (1) =(T (A(r)B(0)))

=D>4P (1)0(r)+ D42 (1)6(—7), (16)
where

D545 (7) = (A(r) B(0))
and

D 4B (1) =(B(0) A(7)).

The angular brackets denote an average of the enclosed
operators over the appropriate finite-temperature sta-
tistical ensemble. For the system considered here,

(0)=Tr(e#70)/Tr(e ),

where H is the Hamiltonian of the antiferromagnet in
the lowest-order Holstein-Primakoff transformation,
and B8=1/kpT. Also, A (1) =e#7A(0)e 4",

It is by now well known that the various thermo-
dynamic averages encountered in describing the proper-

18 A, U. MacRae, Science 139, 379 (1963).
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ties of many-body systems may be conveniently related
to the Fourier transform of the correlation function of
Eq. (16). It will be useful to recall some properties of
the correlation functions. From the periodicity property

DU (r46) =DUP(r),

one may expand D in a Fourier series of the form

DB () = (1/8) f DUB) (4w,) exp(iwar),

where w,=2mn/8. If we denote the analytic continua-
tion of DB (4w,) off the imaginary axis into the appro-
priate half-plane by D) (z), then it is useful to intro-
duce the spectral density I'4®) (), defined by

TUB)(Q) = (1/2mi) [DUB (Q-ie) — DUB (Q—ie) ]. (17)

One may express a number of expectation values in
terms of I'® (Q). In particular, if

n(Q) =[exp(8Q) —1]7

is the Bose-Einstein function, then
+oo
(AB)= / 42 n(Q) T4P (Q)

and
(A(B, H])=—([4, H]B)

- / " 12 0n(Q) TUB (0).

The correlation functions may in principle be com-
puted from the equations of motion, which describe
the time development of D. One has

[6/0r1DUB (7)+(T{[A(7), H]B(0)})
=([4(0), B(0) ])s(7).

The Green’s functions of interest in the present work
are the functions

D (1, L'; 1) =(T (a1,' (1) 21, (0) )),
D (1, Loy 7) =(T' (b1, (1) 01, (0) )),
D (L, 1’5 7) =(T (b1, () b1, (0) )).

In Sec. II, where the properties of the surface
magnons were deduced from the operator equations of
motion, the Hamiltonian employed described a semi-
infinite array of spins. In order to obtain expressions
for the Green’s functions just defined, a different
procedure will be convenient. We follow Maradudin and
Wallis® and begin with a large macroscopic cube of
perfect crystal with sides of length L. The periodic
boundary conditions are imposed on all physical
quantities, in the standard manner. Two free (100)
surfaces are then created by setting to zero all interac-
tions between spins in two adjacent, parallel (100)
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planes. Specifically, we shall set equal to zero the ex-
change couplings between B spins in the plane with z
coordinate zero, and A4 spins in the plane with z coordi-
nate +%a. With this procedure, one (100) surface of 4
spins and one (100) surface of B spins are obtained.

If desired, additional pinning fields, along with
changes in the exchange constants near the surface,
may be included in the Hamiltonian in a straightforward
manner. As mentioned earlier, we believe that the
insensitivity of the surface magnon frequency to changes
in these quantities when wg>>w4 suggests that a reliable
estimate of the surface effects may be obtained by
ignoring these complications. This approximation will
greatly simplify the algebra in the remainder of the
paper.

With the preceding remarks in mind, we write the
Hamiltonian in the form

H=H0+ V,
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where H, is defined in Eq. (2), and
V= “‘%wEZdlaleaA(laz—%d) “%‘wEZblebl,,A(lbz)
1o Iy

—twr) D [anbiystan, b4 JA(lr—3a) A(8.+3a).
la 8
(18)

The definition of the function A(x) is given after
Eq. (2).

We shall consider in detail the functions D¢ (1,,1,’; 7)
and D® (1, 1,; 7), since it will become apparent in the
subsequent discussion that knowledge of these two
functions will enable us to discuss the properties of the
system of interest in this study. By employing the
equation of motion obtained from differentiating the
functions with respect to the imaginary time variable 7,
then introducing the Fourier transform with respect to
7, one finds

[iwn— (wntwitwr) 1D (1, 1'; iw,) — 3oz 2 DO (L 435, L'; iw,) = — A (l,— 1) — fozA (l—3a) D9 (1,,1,; iw,)
3

—bwpA (l"—3a) DA (8+3a) DO (1,43, 1/; iw,),
)

[iwnt (watwz—wg) JD® (1, 1, iw,) + Lz 2 D@ (L3, l,; dw,) = +LwzA (475 0) D (1, 1, iw,)
s

+1opA (b?) D A(5°—3a) D (1,43, 1,/; iw,).  (19)
]

In the subsequent discussion, the quantity iw, will be replaced by the complex variable z, since it will be con-
venient to employ values of D (1,, 1,’; z) for 2 near the real axis.

Since the translational invariance of the system with respect to (discrete) translations parallel to the x and y
axes has not been destroyed by creating the surfaces, D@ (1,,1,; 2) is a function only of (,,¥—12'%) and (,*—1,'*).
However, D@ depends on both /,% and /,’>. We introduce the following Fourier expansion with respect to the spatial

variables:

D@ (1,15 2) =N-1Y_ > expliky s (I'— L) +ik.l/*— ikl D@ (ky bk, ; 2).

k|| kzk2!

(20)

Recall that k)= Zk,+Jk,. The function D® (I, 1,; ) will be Fourier analyzed in the same manner. From Egs. (19),
one may obtain equations satisfied by the Fourier transforms introduced in Eq. (20). We find

I:Z— (wH+wA+wE)]D(‘"‘)(k“kzkz'; Z) —wE)\(k“) COS(%GJC;) D(b“)(k“kzkzl; Z)
= —A(k,—k.) — (0n/2L) exp[i}(ak.) ]2 exp[—i}(ak.”) D@ (k) k. k.'; 3)
kat!

and

— (wr/2L)N(kyy) expl[i}(ak:) 12.D% (kyk."k/; 2) (21a)

[Z+ (wA-l-wE-—-wH)]D(”“)(k“kzkz'; Z) -l—wE)\(k”) COS(%GkZ) D(‘w)(k”kzkz,; Z)
=+ (wr/2L) 2 _D% (kyk,"'k.’; 5) + (wn/2L)N (k) 3 exp[—i} (ak.”) ID@ (ky k"R, ; 5), (21b)
k! kgt

where
M ky) =cos(3akx) cos(3ak,).

From Eqgs. (21a) and (21b), it is evident that the
Green’s functions in the presence of the external mag-
netic field may be obtained from the zero-field func-

tions by replacing the frequency variable z by z—wag.
In the discussion, we shall set wg=0, and take note
of the preceding remarks. The functions D® and
D) gatisfy a set of coupled equations similar in struc-
ture to Egs. (21), but the effect of finite wg is to replace
2 by 24wg rather than z—wp.
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It will be convenient to introduce the quantities simplify the expressions, let us introduce the quantities
MO (k)5 5) = (1/L) 2 D% (k k"%, ; %) wn=ws+wg,
kz!!
and wy=awrh(k)),
and
M@ (kyk,'; 2) = (1/L) D exp[—ik,"}a] w(k) =[wn2—wp? cos?(3ak,) ]2

P

S D@ (T by k! 5). The function w(k) is the freguency of a bulk spin wave

of wave vector k, and w, is the maximum spin-wave

Upon rearranging Eqgs. (21), one may express the frequency in the infinitely extended medium. Then we
Green’s functions in terms of M©@® and M®., To find

[z4wm] _ 1 [w’ cos(3ak,) —wp(z+wn) exp(i3ak.)]
wt(k)—22 2 w?(k)—22

D<) (ki kokes'; 2) = Ak~ k") Meo (kk.'; 2)

1 w[ wz cos(3ak.) — (z+wn) exp(i3ak.)]

) )2 MOk (22)

and

wp cos(3ak,) 1 [wsi? cos(3ak,) exp(i3ak.) +wr(2—wm) ]

() —7 > (k) —2 M (kk,; 2)

D% (ky k.k.'; 5)=—A(k,—k.)

_ 1 [wg cos(3ak.) exp(#3ak,) + (2—wm) ]

2 ()~ M (lyiks's 7). (22b)

Two inhomogeneous equations for M@ and M@ may be obtained by multiplying Eq. (22a) by exp(—i3ak.)
and summing over k., then summing Eq. (22b) over k.. This gives

a(ky|, 2) M@ (Kyks, 2) +6(k, 2) MO (K ks, 5) = L[ (5+wn) exp(—izak.) }/[«(k)—2"]

and
8Ky, —2) M@ (K ke, 2)+a(kyy, —2) M@ (k) k., 2) = — L[ cos(aks) I/ [w? (k) — 2], (23)
where
a(k), z)=(1/L) ;[(wm-i-Z) (wm—3wr—2) — 5 (w?) cos?(3ak.)]/[«*(k) —32"],
and

B(ky, 2) = (en/2L) ;[wﬁ cos(3aks) — (z+wm) J/[* (k) —2°].

Equation (23) may be solved for M@ and M®, then the result inserted in Egs. (22a) and (22b) to find the
Green’s function. For the moment, we shall examine in detail the properties of the function D, since a number
of properties of the system may be described knowing only D@, Let us define the quantities

Do(k k:; 2) = [o*(B) =21,
F(ky; 28)=(1/L) %sz(k) -2
Then
D@ (K kok.'; ) = A(k.—k.") (2-+wm) Do(Kyiks; 22)+ [Do(ky kz; 2) {cos(3ak.) cos(zak.”) Ni(lky), 2)
+[cos(3ak.) exp(—itak.)+exp(ijaks) cos(3ak.) INa(ky, 2)
+exp(ijak.) exp(—ijak.’) Ns(k), 2) } Do(kk.'; ) ILee(ky, 2) (ki —2) —B (K, 2)8(ky, —2) 17, (24)
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where
Ni(ky, 2) = wp—30r(0nt2) (1—N2) F], (25a)
Ny(kyy, 2) =3wr*(wnt2)
X[ (wn2—22) (1—N) F— (14+22)], (25b)
and
Ni(kyy, 2) = (wnt+2)[wp—3wr (wn—2) (1—N2) F].
(25¢)

From Eq. (17), and the equations that follow, it is
evident that knowledge of the spectral function I'®»(Q)
enables a number of averages of physical quantities to
be computed. This function is related to the singularities
in D@ (Q) on the real axis. From Eq. (24), one sees
that the function D (k;k.k,'; ) has singularities at
z=w(k)k,;) and z2=w(k;k.'). The contribution to I'(2)
from the first term will provide a description of the
perfect extended medium, with the free surfaces absent.
The contribution from the singularities at w(k%.) and
w(ky k) in the second term will describe the change in
the spectral function associated with the modification
of the bulk modes, since these singularities occur in
the range of frequencies associated with the extended
spin-wave modes of the unperturbed host. We now
show that the denominator a(ky, 2)a(k;, —2)—
B(k;, 2)B(ky, —2) has a zero at the frequency of the
surface spin-wave mode of wave vector kj;.

Let z lie on the real axis, below the bulk spin-wave
frequencies associated with the bulk waves of wave
vector kj;. We replace z by € in what follows, where
| 2] < (wn2—w?) 2. The function F may then be eval-
uated explicitly:

F(kyj, @) =[(wn?—0) (wn?—wp—02) ]2,
[ Q] < (wn2—wid)'e,

After a bit of rearranging, o and 8 may be expressed in
terms of F. We find

a(ky, Q) =3+3(wntQ) (wn—wr—Q)F,
B(ky, Q) =— (1/2\) [1— (0n+Q) (wn—weh2—Q) F].
(26)
Then after some algebra, one finds
d( Xy, @) =a(ky, @)a(ky, —2) —B(ky, 2)B(k;, —Q)
= (1/222) { [ (wn2—22) (14-A2) — 20,,0pN*]F

(1=} (27)

Now consider the quantity

{(“""2’"92) (1+2) = Zumeonhi (1?2) }[ZV . k;’ > ]

=[(wn2—02) (14-72) — 20mwpA2
— (1_)\2) 2(wm2__.92) (wm2_wb2___92) .
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After manipulating the right side of this last equation
and utilizing Eq. (11) for the case wg =0, we find

d”(%%@ [w—m) (1422) = 2umwpNi+ (L?')']

=(P—Q2) (B2—Qs?), (28)

where Q4 and Q. are the two solutions of Eq. (11).
Notice from Eq. (27) that d(ky, Q) is a function only
of Q2. The right side of Eq. (28) has a zero when Q*=
Qa2 and P?=Q,;%. Let us label the roots of Eq. (11) so
that Q2>Q.% Now recall from the discussion of Sec. IT
that the root Qs corresponds to an unphysical solution
to Eq. (11) in which the spin deviation increases
exponentially as one moves away from the surface. We
now show from Egs. (27) and (28) that d(k,;, Q) has
a zero only at the physical root Q.2

In Fig. 3, we have plotted the functions 4= (1—\?)/F
and  (wn2—Q2) (14-22) —2w,weN? for 0<P<w,i—apl
From the figure, one sees that the function d(k;, 9%)
has only a single zero in the interval 0<Q?<wn?—w?
From Eq. (28), it is then apparent that the quantity
in square brackets on the left side of Eq. (28) has a
zero in the interval. Consulting Fig. 3 once again, it
is evident that the zero of d(k;, @) occurs at a smaller
value of 2 than the zero of this last-mentioned quantity.
From Eq. (28), it follows that d(k), @) has a zero at
the physical surface magnon frequency Qs?, while the
quantity in square brackets on the left side of Eq. (28)
has a zero at the unphysical frequency Q%

We conclude this section with one final remark. In
the discussion of the semi-infinite sample given in
Sec. II, the surface magnon branch was found to be
nondegenerate. For a given value of A, the Green’s
function discussed in this section has one pole at =8y,
and Q= —Qy, so the surface mode is twofold degenerate.

~
—
P |

Fic. 3. Graphical representation of the functions encountered
in the demonstration that d(ky, ) has a zero only at the physical
surface magnon frequency. The solid line is a sketch of the func-
tion [wm?—0%] (14A2) —2wnwe2.
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The reason for this is that by “cutting the bonds”
in the manner described at the beginning of the present
section, two free surfaces were formed. Thus for a given
A, two modes occur, one localized about each surface.
One surface layer consists of A spins, pointing upward.
A positive frequency mode is associated with this sur-
face. The second surface consists of B spins pointing
downward, and gives rise to a negative frequency mode.
These statements may be verified by examining the
equations of motion for the two geometries that result
from the bond-cutting procedure.

IV. SURFACE CONTRIBUTION TO THE
SPECIFIC HEAT

The Green’s functions discussed in Sec. III will now
be applied to compute the contribution to the internal
energy and specific heat proportional to the surface area.
As mentioned earlier, there are two contributions to the
surface specific heat. First, a contribution from the
thermally exited surface modes is obtained. It must also
be realized that the distribution in frequency of the
bulk modes is altered by the presence of the surfaces.
The change in the frequency distribution of the bulk
waves also produces a change in the thermodynamic
functions proportional to the surface area.

Before embarking on a discussion of the details of
the calculation, we first make some comments on some
approximations employed below. The Green’s functions
exhibited in Egs. (22) and (24) have been obtained
exactly, within the framework of the spin-wave theory
of the Hamiltonian of the model crystal. In order to
simplify the results obtained in the remainder of the
paper, we shall assume that the exchange frequency wg
is large compared to the anisotropy frequency wa. If
wp and ws are comparable in magnitude, the results
assume a more complex appearance. In addition, the
discussion in Sec. IT indicates that when wg and w4 are
comparable, one must consider the effect of changes in
the anisotropy field near the surface in order to obtain
a realistic description of the surface effects.

We begin with some remarks on the formalism. From
the Hamiltonian of Eq. (4), one finds the identity

H=Y a,Ta,, H]— 2 [by', H]b,.
la Iy

Then employing an identity exhibited after Eq. (17),
the internal energy U(T) of the spin system at tem-
perature 7 may be written

U(T)

=" den@OLE T, 1, 9)+ ST (1, 1, 9)],
— ) 1y

where the spectral functions T9(l, L, ©) and
T (1, 1,, Q) are related to the Green’s functions in the
manner indicated in Eq. (17). In zero magnetic field,
symmetry considerations imply that the contribution
to U from the B sublattice is identical to the contribu-
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tion of the A sublattice. Then
+m
U(T) =2f i (@@ TC(1,, 1, Q). (29)
—0 la

In the antiferromagnet, it is well known that even at
T=0, the spins are not perfectly aligned parallel or
antiparallel to the z axis, but execute zero-point motion
about this axis. Thus the energy of spin motion U(T') is
finite at 7'=0, since the zero-point motion elevates the
energy of the ground state above the value expected for
the perfectly aligned state. Since short-wavelength
magnons contribute to the zero-point energy, an
analytic calculation of the surface contribution to this
quantity will be difficult. To compute the specific heat,
only the temperature-dependent portion of Eq. (29) is
required. When 7°< T, only long-wavelength magnons
contribute to the temperature-dependent part of U(T").
Noting that #(—Q)=—1—»(Q), Eq. (29) may be
written in the alternative form

U(T) =2/°° QT (L, Ly —0)
0 a

+2 / “ do.on(Q) T[T (1, 1, @)+ T, 1, —2)]
0 la

=Upt+AU(T). (30)

The first term on the right side of Eq. (30) is the
temperature-independent zero-point energy of the sys-
tem, while the remaining terms, which vanish as 70,
represent the contribution from the thermally excited
spin waves. In the remainder of this section, we discuss
only AU(T). Upon introducing the Fourier transform
with respect to the spatial variables, Eq. (20), one has

AU(T) =25 Z/mdﬂﬂn(ﬂ)
kil kz Yo

X[F(“a) (k |kzkz', Q) + (e ( ky k&2, —Q) ]

The first term in the Green’s function of Egs. (22a)
and (22b) gives the contribution to AU for the infi-
nitely extended medium. We denote this contribution
to I'e® by Ty, One easily finds

Fo(““) ( kl lkzkz,: Q)
=[(wn+9)/20(k) J[6(@—w(k) )—5 (Q+w(k) )],

where w(k) is the bulk magnon frequency given in
Sec. II1. The contribution to AU(T') from I'y¢e® is then
the standard result

AUW(T) =22k:w(k)n(w( k)).

(31)

(32)

In the subsequent discussion, it will prove useful to
employ the expression for AU(T') in the two tempera-
ture regions kpT<K(2wpwa)'? and (2wgwa)?<<kpT<<
kpTn. We briefly discuss these regimes separately.

(1) kpT<<(2wgwa)'?: The expression in Eq. (32)
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may be evaluated employing an expression for w(k)
valid for ke 1:

w(k) = (2wpwa) 2+ DE?,

where D=+v%V2wg(wr/wa)?a®. Then the dominant term
in AUS(T) is

AUo(T) =[16V/( 21/213)1/203:160‘4 (wA/coE) 1’4(kBT/wE)3/2
Xexp[—— ZwEwA) 1/2/k3T], (33)

where V is the volume of the crystal.
(2) (ZwEwA)”2<<kBT<<kBTN One may let ws—0 in
this regime, since kg7 is large compared to the energy
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gap (2wpw4)'?. Then the magnon dispersion relation is
roughly linear for frequencies the order of k7. For
ka1, one has

w(k)=twgak.
Then

AUN(T) = (8V/7°a*) [ (ksT)*/wr*IT (4) (4),

where T'(x) and {(x) are the gamma function and
Riemann zeta function, respectively.

To evaluate the surface contribution to AU(T), let
us denote the part of D@ (k k.k., z) that results from
the presence of the surfaces by AD“? (kk.k., 2). Then
performing some manipulations on Eq. (24) yields

(34)

[(zHwn) (14-22) —wph ]— (2Fwm) (1—A2) (wn2—22—3w?) F

AD@ (k) k,ky; 2) =+ L

(z74wm) { 2w0meh—[14+A](wn2—22) } +

2Vd(ky, 2)[o* (k) —77]

(z4wm) (wn2—22) (w2—w2—22) (1=N2)F .39

+I

22%d(ky), 2)[w? (k) —2

This result may be obtained from Eq. (24) by employing the identity
w2 cos?(3ak.) /[w?(K) —22]= (win—22) /[?(k) —22]—1.

At this point one may compute the contribution AT (ky k.k,; 2) from the presence of the surfaces utilizing
Eq. (35). However, it will be more convenient to first sum the result of Eq. (35) over k., then compute the dis-
continuity of the result across the real axis. To do this, it will be convenient to consider two regimes of frequency

separately.

(a) The case 0<R<w,?—w?, where z=Q+414e. The contribution of the surface modes to the function AT
will come from this region. Upon summing both sides of Eq. (35) over k., one obtains

;AD(‘”’ (Kyjkke; 2) = [2Nd (K, 2) TH (54 wm) (14+8) —wh— (z+wm) (1—N) (0’ —Fw*—2*) FF

[ (z4wn) Comwr— (1422) (wn2—22) )+ (2+wn) (Wn2—22) (wnP—w?—22) (1—A2) FJ0F/3 (%) }. (36a)
Now notice that
OF/3(2?) = (wn2— 22— 2) F3.
Then one has
;AD(M) (kykok; 3) =[222d (K, 2) ][ (g4 wm) { (1A F—[ (wn2—22) (14-22) — 20,,sA J0F /3 (2%) } —wwhF].  (36b)
From Eq. (27), it follows that
2M9/0(2) Jd(ky), 2) =[ (wn2—2) (14-22) — 20,0\ JOF /9 (22) — (14-A2) F.
Then finally
(Z+wm) ad(k”, Z) F
(aa; . —_ —w .
LADS bk == 25 "0 ot ik 9 (36¢)

From the discussion of Sec. III, it is apparent that
d(ky, 2) has only a single zero on the real axis, for
0< V< w,,2—wy2. This zero occurs at z22=Q.2, where ; is
the surface magnon frequency. Then for 22 near 2, we
have

d( k), 2) =[2*—Q]0d (X, z) /92*

and

wb)\) F

m—l—z
2 \ADfe . - ( :
(ki koks; 2) = + dd/dz2] Q2— 2

Using this form, the surface magnon mode contribu-
tion to the spectral density is found to be

AT (&, Q)+ AT (K, —Q)
=8 (@—Q:( k) )46 (Q4+2:( k) ),

where
AT (K, Q) = (1/2a)
X D [AD @ (k) koky; Q--ie) — AD@O (ky ks Q—ie) ]
kz
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for
0 <Q2 <wm2—- wb2.

The contribution of the surface spin-wave modes to the
temperature-dependent part of the internal energy is
then

AUL(T) =2;“9s(ku)%(ﬂs(kn) ). (37)

This is the result that one would obtain in a straight-
forward manner from elementary considerations. The
factor of 2 is present because the bond-cutting procedure
employed in this calculation produces two free surfaces.
For each value of ky, there are two surface modes, one
localized about each surface.

To evaluate the contribution to AU(T). from the
surface modes, it is again convenient to calculate
AU(T) separately, as we did earlier in this section
when the contribution from the unperturbed bulk
waves were discussed.

(1) kpT<<(wgwa)'. In the limit that wsKwg, for
small values of %jja, one has

Qs (k)= (wpwa) >+ Dk %,
where

D =-11—6wE(wE/wA) 1/202.

The sum over ky; in Eq. (37) may be converted to an
integral in the standard manner. In the low-temperature
limit, the dominant term in AU(T) is

AU(T) =4S/ma*(wa/wr) keT exp[— (wpwa)2/kpT].

In this expression, the total area of the two free surfaces
is S. The specific heat associated with the surface waves
may be obtained by differentiating this result with
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respect to temperature. One has

4S fwa\ (wpwa)ll?
(T) =kp —|— )| ——
CoT) =k ( ) kgT

1ra2 WE,

exp[— (wE/wA)llz/kBT].

(38)

We shall make a numerical estimate of the magnitude
of the surface wave contribution later in this section.

(1) (wp/wa)?KkpT<<kgTn. The dispersion rela-
tion for the surface magnons varies in a linear manner
with | k) | when 7%Q,( k) =2ksT. One has

Qs (k) =23V2wraky).
Then
AU(T)=8S/wa[ (ksT)?/wr* ] (3)

when wg>>w,. Consequently,

Cs(T) =kp(24S/7a2) (ksT/wp)%(3).  (39)

We now turn to the evaluation of the change in
internal energy that results from the redistribution of
the bulk waves in frequency. It is necessary to consider
the properties of AD©? (k, k.k.; 2) for wn?— w2 <P < wn?,
where z2=04"7e.

(b) The case wn?—wp?<Q<w.?. The expression for
> 4, AD@ (kyk.k,, 3) exhibited in Eq. (36a) remains
valid in this frequency range. However, the function F
must be reevaluated. If z=0+1¢, and w,?— w2 <P <wy?,
then

F=1sgnQ/[ (wn2—Q?) (R— w,2+w?) 2=1f.
The relation
OF/0(Q?) = (w2— Fw2—Q2) F3

used to simplify the algebra in the preceding discussion
remains valid. Using this result, and the expression in
Eq. (27) for d(ky), @), yields

P (K, ) {[ (0m?—92) (14-22) — 20mwm?] f—1(1—22) }
(1=2)2417 (wn?—22) (1472) — 200N J? ’

where the expression has been rationalized to separate the function into its real and imaginary parts. We have
defined

(K11, Q) = (om2—02) (P— o +02) [ (@t wm) (142AD) — A T+ (@mt-2) [ (14A2) (eon—02) — Zeomeh ] (com— heor—2)..

;AD(M) (K Boks; Qi) = (40)

The expression in Eq. (40) has been derived for the case 2=Q-+17¢. When z=Q—1¢, one obtains the complex
conjugate of the result in Eq. (40). Then for wa?— w2 <@ <w.? the perturbation of the continuum modes by the
surface produces the following change in the spectral function:

AT (ky), Q) = (1/2n1) Y[ D@ (K koker; Qie) — D@ (K ko Q—ie)
or k2

AT (ky, @) = —[sgn(Q) | £ 1%/xJg(kn, Q) /{ (1—N) >+ (wn®— @) (1432) — 2omeh TP}

After some simplification, which employs some of manipulations similar to those described in Sec. III, we
obtain

» - WEQ(1—A2) [ 20 (wn?— Fa2— ) —Fwg (14+22) (w2— D) ]
AL e, 0) AT (b, =) = ) (@ e Fan) (@) (2 0)

(41)
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Again we have introduced the solutions Q4 and @, of
Eq. (11), for wg=0.

The result exhibited in Eq. (41) is valid for arbitrary
Q and k). So long as the temperature is low compared
to the Néel temperature, only the low-frequency, long-
wavelength modes will contribute to the internal
energy. Thus we simplify Eq. (41) by assuming only
frequencies @ near (w.2—w?)'?, and values of \ near
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unity are of interest. We introduce a quantity 6, defined
by
O = > — wi? - wp?6%.

Then when °<1, and 1—N1, the numerator of Eq.
(41) may be simplified to write the expression in the
form

AT (ky), )+ AT (k), — Q)=

Inside the square brackets in the numerator, terms of
order (1—X?)2 and 6%(1—\?) have been ignored.

To proceed further, it will be convenient to restrict
attention to the two temperature regimes considered in
the computation of the contribution to AU(T’) from
the surface modes.

(i) The case kpT<K(2wgwas)'?. Again we suppose
we>wa. In the denominator of Eq. (42), in the long-
wavelength limit, one has (Q2—Qq?) (22— Q?) Swrfw4®.

Also, (wn2—Q2) (P— w2+ w?) w6, Then one obtains
the simple result
AT (kyj, @) +ATe (kyy, —Q)

=(V2/7) (wawg) M2 (1—N) /6.

For the model employed in this work, 1—\=2%ae%; 2
Then the change in the contribution to the internal
energy from the continuum modes is, from Eq. (31),

a aQQ
AU(T) = ——— k 2/ — n(Q
( ) 27r(2wEwA)1/2 :L:l' n (omi-wp)l/2 O M«( ).

The upper limit of integration has been replaced by
infinity, in the spirit of the low-temperature approxima-
tion. It is convenient to introduce a new variable %,
defined by

d=1ak,.

After some rearranging, one obtains the simple result
a3wES WEg 172 d3k
—6_\/5— (‘:’;) / (27'_)3 k“’n(w(k) )
Again S is the total surface area, and w(k) is the bulk
magnon frequency, given by

(k)= (2wpwa) 2416 V2wr (wr/wa) V2a2k?.
Upon performing the integration over wave vector,
AU(T) = (V2/73)12(4S/a®) wp(wa/wg)¥* (kpT/wg) 5

X exp[— (2wrwa) 1/2/kBT].

The contribution to the specific heat from the perturba-
tion of the continuum modes is then

AC(T) =0AU(T) /6T
Eks(\/f/ws) 1/2(4\/25/0,2) (wA/wE) 5“(kBT/wE)ll2
Xexp[-— (ZwEwA)llz/kBT].

AU(T) =

[(wmz__

(42)

92) (Q2__wm2+wb2) ]ll2 (92_9312) (92_ 9322)

(ii) The case (2wgwa)*KkpT<KkpTy. Again em-
ploying ws<<wg, one may obtain an expression for the
spectral density by allowing ws—0. For (1—2\)<1 and
§<1, we find

AT 9 (k), Q)+ AT (kyy, — )

~ A=NRAN O [(1-3) — 8]
LA+

In the expression for AU.(T), the integral over Q
may be replaced by an integral over § by noting
QdQ =wg?8ds. Then

AU(T) = (2wg/T) kZ”u—x)

TwEd

= [2(1=N)+EPAL(1—N) — ]
R e
Snfwosl (1—X0) +85)

Once again let §=4%ak,, and note 1—A=2}a%;%. Then
we find

AU(T) = (a®wr/2L) Z | k| (BR—Fk2)

X[ (#—3k?) /[ (F+ks)*In(Gwse | k),

where the thickness of the macroscopic cube is L. Upon
converting the sum to an integral, then defining » = cosf,
where 6 is the angle between k and the £, axis,

2S =
AU(D) = T fo dk ¥n(bwgak)
B (1= (1-39)
X -1 @ (1472
125 (kaT (1—) (1=3%)
=St @), S (1)

The integral over » may be performed to yield
AU (T) = (6/7%) (10—37) (S/a?) wg(ksT/wgr)* (4).

The contribution from the change in the frequency
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distribution of the bulk modes is thus
AC(T) = (24/7?) (10—3x) (S/a?) (kpT/wg)?

in the temperature regime (2wgws)2<KksT<<kpTy.

We now summarize the results obtained in this sec-
tion, and provide some estimates of the magnitude of
the surface contributions to the specific heat employing
the parameters relevant to MnF,. Again it will be
convenient to consider the two temperature regimes
discussed above separately.

(i) The case kpT<<(wgwa)'2. The total specific heat
is given by ‘

C(T)=Co(T)+AC(T)+Cs(T),

where Co(T') is found by differentiating the result of
Eq. (33) with respect to temperature. Then we have
found

V2\V2 16V [ wg \V? (w,4>7/4
T)=kp( =) — (=
C(T) =k <7r3) al (kBT) WE

x[1+~ koT

2V W] exp[_ (ZwAwE.) llz/kBTJ

4S [ws\*? [ wg
+k3 W—(Iz ((:E‘) (m) exp[— (wEwA) 1I2/kBT]. (43)
Note that the term proportional to the surface area in
the first line of Eq. (43) may be neglected, since it is
always small compared to the term proportional to the
volume. This term has its origin in the change in the
frequency distribution of the continuum modes produced
by the surface. Thus, when kpT<<(wgwa)'?, the domi-
nant contribution to the specific heat proportional to
the surface area comes from the surface magnons. Since
the ratio of the surface term to the volume term con-
tains the factor exp[(VZ—1)(wpwa)¥?/kpT], when
keT<< (wgwa)V? the contribution of the surface modes
to the specific heat may be comparable to the contribu-
tion from the bulk excitations.

We shall compare the contribution from the surface
modes with that from the bulk modes, employing
parameters relevant to MnF,. Consider a thin film
consisting of NV atomic layers. Then V =%(NSa), where
S is the total surface area. For a given value of N, the
surface and bulk contributions are equal when the
temperature 7" satisfies

N =8/ 2 (p/ksT) ¥ (on/20)
Xexpl (1= $2) (2apn) 1/ kaT]

For MnF,;, one has (2wpws)2=12.6°K, and
(wg/wa) =81 Then for a film of MnF,, one has the
numerical relation

N=218.5712 exp(3.8/T).

15D, Sell, R. Greene, and R. White, Phys. Rev. 158, 489 (1967).
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For T'=1°K, the bulk and surface contributions to the
specific heat will be equal if V=850 layers.

This estimate indicates that at low temperatures, the
surface spin-wave contribution to the specific heat of
antiferromagnetic films or small particles is of an
observable magnitude. Our estimate indicates that at
1°K, about 109, of the specific heat of a film of MnF;~
25000 A thick will come from the surface modes.

(1) (2wpwa)Y?<KkpT<<kpTy. The total specific heat
has been found to be

C(T) = ks (7—?)2 = (k”T)3;<4)

wg

. wr {3) Sa (Q_ )§i’]
X[H”kﬂm) v T 37

Since kpT<<wg, the dominant contribution to the
portion of the specific heat proportional to the surface
area again comes from the surface magnons, rather
than the term that arises from the redistribution of the
bulk modes in frequency. It is interesting to note that
in the previous studies of the surface specific heat of
the vibrating lattice® and the surface heat of the Heisen-
berg ferromagnet,® the change in the specific heat that
results from the redistribution of the continuum modes
is the same magnitude as that from the surface excita-
tions.

Notice that, in the antiferromagnet, when

(20pwa) 2k T<<k Ty,
the surface magnons give a contribution to C(7T') pro-
portional to T2 For this contribution to be observable
in this temperature range, it is necessary to have
(aS/V)wg/ksT comparable to unity.

For a given surface-to-volume ratio, it seems possible
that C(T) may be easiest to observe when kpT<<
(2wgwa)Y?, where the bulk mode contribution will be
frozen out and the surface magnon part exhibits the
exponential temperature dependence.

V. TEMPERATURE-DEPENDENT PART OF THE
MEAN SUBLATTICE DEVIATION

In this section, we study the quantity
2@ =5—(8),7)=(ar,ta1,)
that describes the mean deviation from perfect align-

ment of an 4 spin with z coordinate ls*=a(l+%). From
the expression that follows Eq. (17), one sees that

A =(2a%/8) D, /m dQn(Q)T{(ky, @), (44)
k|| Y-

where

@ (k, Q)= (1/27”) {A(kyy, Q4-1e) — A1 ( k), Q—1e) },

and

Ay(ky), Qie) = (a/L) D, expli(k:—ks')la?]

2k 2

X D@ (& kk, ; Qie).
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It is well known that in antiferromagnets the spins
are not perfectly aligned along the z axis at the absolute
zero of temperature, since the spins execute zero-point
motion about the z axis. Thus A; is finite at 7’=0. To
compute the amplitude of the zero-point motion, it is
necessary to perform an integration over the entire
first Brillouin zone. In the presence of the surfaces, the
amplitude of the zero-point motion executed by a given
spin will be a function of its distance from the surface.
To compute the position dependence of the zero-point
motion is not straightforward, since the functions to
be integrated are quite complex.

In this section, only the temperature-dependent part
of A; will be computed. To compute A;(T") —A(0), one
needs only to include the contribution from the low-
frequency, long-wavelength spin-wave modes. We will
also confine our attention to temperatures sufficiently
low that kpT<<(wgwa)'?. The temperature-dependent
part of the mean sublattice deviation near the surface
then comes entirely from the thermally excited surface
magnons. The discussion of Sec. IV implies that the
influence of the surface on the spatial variation of A;
will be most pronounced in this region of temperature.
Upon manipulating Eq. (40) a bit,

6Al(a)(T) =Al(a) (T) _Al(a) (0)
—e/S) [~ dan@
(20Y/S) [ (@)

X D [T (I, @) — @ (kyy, —2) 1.

k||

We now separate 6A;(7") into the portion independent
of I that characterizes the extended medium, and the
spatially varying part produced by the presence of the
surface:

3AL(T) =84, (T)+di(T).

From the first term in the Green’s function of Eq. (24),
one finds

30, (T) =(a%/V) };[wm/w( k) Jn(w(k))

16(V2r) Y2(wa/wg) V4 (ksT /wg) 2
Xexp[— (2wgwa) 2/ kpT].

or@ (k) Q)=
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The last expression is valid in the low-temperature
limit considered in the present section. Now write

Ai(ky, Qtie) = A (kyy, @) +64:( k), @),

where 64,(ky, @) is the change in the quantity
Ai(ky, @) produced by the presence of the surface.

From the Green’s function exhibited in Eq. (24), we
have

64:( k), Q) =[2d(ky;, @) T
XLGN+No) FiF v+ (3N1+-No+-N3) Fo 2 1NF 2],

where the definitions of Ny, Vs, and N3 are given in
Egs. (25), d(k;, Q) is defined in Eq. (27), and

Fi=(1/L) kZ[cos(k,la) /(w2(k) —Q2)].

Since we are only interested in the surface magnon
contribution to di(T), the function F; may be eval-
uated for 0<2?<w2—wy®. The integral is elementary:

Fi=exp(—8|1])/[(on’—@) (on?—w>—Q2) I,
with
€= (2/w?)
X {wm— b2 — 02— [ (om?— D) (wmi—r?— ) 112},
We can then write (for >0)
04,( Ky, Q)

_ [(%er-Nz) e P4 (N1 No+N3) 6"2B+71;N1] s
2d( k), 2) (0n2—D2) (wnd—wp?—Q2) )

It is now possible to obtain the surface magnon
contribution to I';(k; Q) by recalling that d(k;;, Q) has
a zero at Q2=Q4?% where Qg is the surface spin-wave
frequency. Again, for @ near Qq,

d(ky, Q) = (P—Qs*) [0d(ky, 2) /0(2) 1.

With the expression given in Sec. IV for dd/d(Q?), one
has (still with [>0)

N[N+ (3N1+Ns) 6P+ (EN1+ Not Ni) e e

Since only the long-wavelength surface modes will
contribute to d; at low temperatures, the quantity A
will be replaced by unity. Then with wg>>ws, we find
for I>0

8Ty (), @) — 8T (ky), —Q)=36(2—Q)
X[%wg/w,i—- (wE/wA-{—Z) e‘5+ (%wg/wA+4) 6"25]6_251.

From the definition of ¢#, with Q replaced by Q., one

293{ (1+)\2) F—] - (wmz'* %wa* ng) [(wm2_932) (1+)\2) - Zwmwb)\]F}

[6(2—Q,) —6(2+Q,)]. (45)
sees
21— 2(wa/wp) 2 for wiLwg,
so that
B=22(wa/wg) 12,

Then
6T (kyj, Q) — T4 (ky), —Q)

=25(Q—Q;) expl[—4(wa/wr)V2l] 1>0.



171

To obtain this simple result, terms in ws/wgp were
assumed small compared to unity. Then the position-
dependent portion of Ay(7T) —A(0) is given by

dy(T) =eXP[—4(wA/wE)”2l](ZG"/S)%:" Qs (Kyp) ).

The sum over k;; may be converted to an integral, and
the integral may be evaluated by employing the long-
wavelength form of the surface magnon dispersion
relation. The final result for the temperature-dependent
part of the mean sublattice deviation is found to be

) 30000 =620 () (D)
(0]

E WE

12
Xexp[— (2wpwa) 2/ kT 1+ 1% (ﬂ) (M)

Xexp[ —4(wa/wg) | 1| ] exp[ — (wpwa)?/ksT].
(46)

This expression is valid for kpT<<(wgwa)'?. Although
the derivation was discussed in detail only for the case
I>0, it may be seen that A;(7T)—A;(0) is an even
function of I. Thus | / | rather than / appears in Eq. (46).

When (ksT)<< (wgwa )2, the result of Eq. (46) shows
that A;(7) —A,(0) is greatly enhanced near the surface,
compared to its value in the bulk crystal.

The result in Eq. (46) gives the temperature-depend-
ent part of the sublattice deviation of the A spins, for
all values of 7 in the temperature range considered. In
zero magnetic field, a symmetry argument may be
employed to find the mean deviation on the B sublattice.
One simply needs to note that magnitude associated
with a plane of B spins located above the x—y plane at
lr=al (1=1,2,--+), is the same as that of a plane of
A spins below the z-y plane at l,*=a(—1+3).

The dependence of the result in Eq. (47) on ||
may be understood in a simple manner. In Sec. II, we
found that for a surface magnon with kj; =0, the spin
deviation was proportional to exp[ —2(wa/wg)?|1|].
When kpT<<(wgwa)'?, the thermally excited surface
modes all have a wavelength long compared to the
lattice constant. Since the change in the mean value
of S; is proportional to the mean of the square of the
transverse component of spin for small deviations, the
spatial-dependent part of A;(7) —A;(0) is proportional
to exp[—4(wa/we) 2| 1|].

VI. SURFACE CORRECTIONS TO THE LOW-
TEMPERATURE PARALLEL SUSCEPTIBILITY

Suppose a magnetic field is applied parallel to the z
axis of the system. Let the field be parallel to the direc-
tion of the A spins, with the precession frequency of a
free spin in the field denoted by wg. In Sec. ITI, we noted
that the effect of a field was to replace the function
D@a (L1, z) by D@d(1l/, z—wy). The change
A (H, T)—A(0, T) in the mean deviation of a
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plane of 4 spins produced by the field is then
A@(H, T)—A(0, T) =(2a%/S)

X%L:m dQ n(Q)[T1@ (ky, @—wn) — T4 (I, Q) ],
zhere T (%, Q) is defined in Sec. V. To first order in
A (H, T)— A (0, T)

= (2/5) 3 f 49 n(@)[oT4® (K, 2) /60],

We define a susceptibility per atomic layer that
relates the change in spin deviation to first order in the
field to the applied magnetic field:

A9 (H, T)—A@(0, T) =—wnxi®,
where

xXi@=—(2a%/S), /‘+°° dQ n(Q)[8/0Q1T, (ky, Q).
PR

After a partial integration is performed, and the
result is rearranged, we find

xi@=(26/SkT) Y [ den(@[1+n(2)]
kil Y0

X[T@ (kyy, @)+ T0@ (ky, —) 1. (47)

Since there is a gap in the spin-wave spectrum, it is
evident that x;—0 as 7—0. As in Sec. V, the low-tem-
perature region with kp7<< (wgwa)'/? will be considered,
since the surface corrections to x; have their greatest
relative importance in this temperature range. So long
as kpT<<(wgwa)'?, we will have #(Q)<K1 for the fre-
quencies of interest. Hence

@202/ SkaT) 3 f “ 2 n(Q)
0

X[T@ (%, Q) +T0@ (ky, —2) 1.

Following the development in Sec. V, I';@(k;;, @) may
be separated into a part independent of / that charac-
terizes the bulk material, and an /-dependent part:

T (kyy, @) =T,@ (&, @) +0T7@ (ky, Q).
From the Green’s function of Eq. (24), one has
T @ (K, ) +To@ (ky, —2Q)

+x/a
- f  (adke/203@—0(1)),

where w(k) is the bulk magnon frequency. We then
write

X1 =X +8x:1,

Xeo=(6*/VEsT) §n (w(k))

where
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is the parallel susceptibility of the extended medium,
and 8x; is the position-dependent part of x; that results
from the presence of the surfaces. In the previous equa-
tion, the sum over the wave vector may be converted
to an integral, and evaluated in the standard manner.
When kpT<<(wgwa)'?, the quantity x., is well approxi-
mated by

w= 32 (1)"’ (&)3’4 (EB_T_)"’
Xeo WE V2 WE. wWE

Xexp[— (ZwEwA) 1’2/k3T]. (48)

The quantity 6I';@ (k;|, @) required to compute the
position-dependent part &x; of the parallel suscepti-
bility is exhibited in Eq. (45). It is now necessary to
take the sum 6T;@ ( k;, Q) 4619 ( k), —Q) rather than
the difference of these two quantities, as we did in
Sec. V.

In the limit wg>>ws employed throughout this paper,
we obtain the surface spin-wave contribution

aI‘l(u)(kH: Q) +5Pl(a)(kl|7 '_9)
=sgn(l) 5(@—2(ky) ) exp[—4(wa/wr) | 1]

In the low-temperature limit, the corrections to x,
from the presence of the surfaces will come almost
entirely from the surface magnons, since the bulk mode
contribution will be nearly completely frozen out.
Inserting this result into the expression for x;' gives

8 WA 1/2
ox1@=sgn(l) — (—) exp[—4(wa/wp)? | 1]]
TWE \WE

Xexp[— (wgwa)?/ksT]. (49)

The exponential dependence of 6x;® on | /| is of the
same form as the spatial dependence of the mean sub-
lattice deviation discussed in Sec. V. The physical
origin of this spatial dependence was discussed near the
end of Sec. V.

One interesting feature of the form exhibited in Eq.
(49) is that it is an odd function of /. Application of a
magnetic field parallel to the +2 axis decreases the mean
deviation A; of a plane of 4 spins with positive z
coordinate?® while the sublattice deviation of a plane of
A spins with negative z coordinate is increased.

This behavior of x; may be understood by referring
to the discussion in Sec. IT of the magnetic field depend-
ence of the (nondegenerate) surface magnon mode
associated with the semi-infinite medium. It was
pointed out that if an external magnetic field is applied
parallel to the direction of magnetization of the spins
in the surface layer, the surface mode stiffens, i.e., its
excitation energy increases. Thus the surface magnon
contribution to the mean deviation A; near the surface
decreases. The application of the magnetic field has
thus resulted in a negative §x;?. However, if the field
is applied antiparallel to the direction in which the 4

2 Note the sign convention employed in the definition x;.
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spins point, the surface magnon frequency is decreased,
and a positive §x; is obtained at low temperatures.

In the present model, we have formed two free sur-
faces by setting to zero exchange interactions between
the B spins in the layer with z coordinate zero, and the 4
spins with z coordinate +4a. Application of a magnetic
field parallel to the 4 spin direction stiffens the surface
mode associated with the upper surface to produce a
positive §x; for I>0, while the surface mode associated
with the lower surface is softened. Hence 8y, <0 for
i<0.

We have exhibited the form of &x; to first order in
wg. So long as only the change in A; first order in
wy is considered, the surface magnon contribution to
the change in A; for a plane of 4 spins with z coordinate
a(l+%) is the same as the surface magnon contribution
to the change in sublattice deviation of a plane of B
spins with z coordinate —al.

We conclude this section with an estimate of the
importance of the surface-region contribution to the
total moment induced by an external magnetic field
applied parallel to the z axis. Consider the region above
the x—y plane of the model crystal employed in this
work. If there are NV, spins in one layer, the contribution
of this region to the total moment induced by the field
is proportional to

2N, Y bx1@ =16N./7wp (waws) 2
=0

X[1—exp (—4(wsa/wr) )] exp[ — (wpws)?/kpT ]
= (4N,/7wg) exp] — (wpwa) 2/ kpT],

when wg>ws. The factor of 2 has been introduced
because the B spin contribution to the moment equals
the 4 spin contribution to first order in H.

This expression may be compared to the contribution
from the bulk of the medium, which is equal to 2V,Lyx,,
if the material consists of L atomic layers.

Thus we have the following ratio:

AM, moment induced near one surface
M,

moment induced in the bulk

VINVZ foog\ 34 ( wg )1/2
= - (2 e wr
(16rL) (7r ) (O-M) kT,

Xexp[ (1—3V2) (2wgwa ) ?/ksT ].
If the parameters relevant to MnF;, are employed in
this expression (see Sec. IV), then we find
(AM,/My)==(2.8/LT'?) exp[3.8/T].
If we consider a film the order of 10000 A thick
(L~2000), then at 1°K,
AM ;) M==0.05.

This estimate suggests that the experimental observa-
tion of the surface magnon contribution to the parallel
susceptibility may be possible, if films the order of 1 u
in thickness are studied at temperatures =21°K.
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VII. ONE-MAGNON ABSORPTION SPECTRUM

In this section, we shall consider the effect of the
surface on the absorption spectrum of the antiferromag-
netic array. It is well known that bulk antiferromagnetic
crystals exhibit an absorption line at the bulk k=0
magnon frequency, equal to (Z2wgws)? in the limit
wp>>wy4. The presence of the surface mode will introduce
a new absorption line in the spectrum at the frequency
(wgwa)'? of the k;; =0 surface magnon. The integrated
strength of this line will clearly be proportional to the
surface-to-volume ratio. The purpose of this section is
to compute the strength of the surface mode absorp-
tion, and compare it to the strength of the main AFMR
line.

Suppose a microwave field with frequency € is inci-
dent on the sample. Let the field be circularly polarized.
Since in the frequency range of interest the wavelength
of the radiation is long compared to the lattice constant,
we suppose the wavelength of the radiation infinite.
The interaction between the radiation and the crystal
may be written In the form

V=—gup exp(—i@) [ D h-S(L)+ 2 h-S(h) J+H.c.,
la Iy

where we suppose h=%V2k(&+1j). Then
V'=—gur exp( —iﬂt)%\/fh[lZ&ﬂ (L)+ ;Sm ()]
a b

+H.c.

After carrying out the Holstein-Primakoff transfor-
mation, and retaining only the lowest-order terms, we
have

V =—guphS"? exp(—iQ) A+H.c.,
where the operator

A= Zala—l- Zb]bf.
la it

Then if we treat the effect of V by employing the
Fermi golden rule of time-dependent perturbation
theory, the system may be seen to absorb energy from
the field at the rate

dE/dt=2rgug?l2SQ{ Y Pr | (F| A | I) [?26(Ep— E1—%Q)
I,F
—%P, | (F| AT | I) Po(Ep—Er+Q)}. (50)

We assume the probability that the incident radiation
encounters the system in state | I') is Pr. The radiation
induces a transition to the final state | F). The energies
of the initial and final states are Er and Er, respectively.

The expression for dE/dt may be expressed in con-
venient form by introducing the correlation function

DAt () = (T (A1 (1) A(0))),

where as before AT(7) =exp(H7) AT(0) exp(—Hr). As
in Sec. III, the function D4 (7) is a periodic function

HEISENBERG ANTIFERROMAGNET

505

of = with period 8=1/k5T. Let D44 (jw,) denote the
appropriate Fourier transform with respect to = (again
we follow Sec. III), and D“14) (z) the function obtained
by analytically continuing D14 (iw,) off the imaginary
axis into the appropriate half-plane. Then introduce the
spectral density

T4t (Q) =( 1/2,”') [D(AM) (Q4+1¢) — D(ATA) (Q—1e) ']
One has the explicit expression
n(Q) Tt (Q)
=(1/2) X exp(=BEx) | (m] 4 | n) (@12,

where
Z=Trp= Y exp(—BE,).

Note that

[t (Q) = —uan(Q)y, (51)

If the identity in Eq. (51) is employed in Eq. (50),
one finds the result

AE/dl=—2r@uph2 SQT A (—Q)

If one employs the specific form of the operator 4,
then
DU (r) = 3 (T (a1} (7) 2 (0))

lale/

+§<T(am<r)bm<0> >+;<T(blb(7)aza(0)>
+ 20 (T (by, () b2 1(0) )

laly!

= >, D@t (L1 )+ D D@D (1L 1)

lala! laly

+2.D®) (ble, 1)+ 2 DD (I, 7).
laly Ibly!

In the superscripts associated with the correlation
functions in the last expression, for the sake of clarity,
we have introduced a notation slightly different from
that employed in earlier sections of the paper.

Next we introduce Fourier transforms with respect to
the spatial variables, in a fashion analogous to Eq. (20).
Then we obtain (with N the total number of spins in
the sample)

N7ITU) (—Q) =Tyt (—Q) 4 Ty@hh (—Q)

+ Lg% (—Q) +To®h (—Q).
The subscript “0” indicates that the spectral density
T@ta(Q) is to be obtained from D@ (k) k.k., 2),

Wlth k” =kz=kz,=0.
Now, in a manner similar to Eq. (51), one has

T (—0) =— Dy (),
and
To®D (—Q) = — T,®™(Q).
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Hence,
dE/dt=2wg?up?h®N SQ
X [To®1 (@) — Totete) (—Q) +-To@ (Q) — Ty® (—Q) ].

The quantities Ty (Q) and T'y® (Q) may be com-
puted from the expressions given in Egs. (22) and (24).
Until this point, we have not needed the explicit form of
(T (b3,7(7)b,,(0) )) and its Fourier transforms with
respect to the space and time varjables. One may
compute these quantities in a fashion analogous to the
discussion in Sec. III. The equation of motion of
(T (81,%(7)b1,,(0) )) involves (T (as,(7)bs,(0))). For
these two functions, one obtains a closed set of equa-
tions similar in structure to Egs. (19). Upon solving
the equations, one sees that T,®™(Q)=T\6t(Q),
[This identity is obtained only in the limit when %,
and %,/ in DO™ (kkk,/, 3) and D@ (kk.k/, 2)
approach zero. ]

Finally, one has

dE/dt=2nus?h?N SQ
X[I‘o(a‘f‘a) Q) — Ty(et ( —Q)+ T (Q) — T'y® (—Q) ]

To compute the strength of the bulk magnon line,
one may derive Ty (Q) and Ty®(Q) from the first
term on the right side of Egs. (20). The result is

reta(Q) —Telo(—Q) = (1/29) (wa+wr) 8(2—Q)
and
T@ (Q) —T00 (—Q) = (—1/20) wrd (Q— Q)

where Q= (2wpws+ws®) 2 is the frequency of the bulk
k=0.
Then, for wg>wa,

dEg/dt=guph?N Swas (Q— (2wpwa) ). (52)

The result of Eq. (52) may also be obtained from the
standard methods of spin-wave theory. In the presence
of the surface, there will be corrections to the strength
of the bulk magnon line proportional to the surface
area. We have ignored such corrections in the result
exhibited in Eq. (52). Note that in Eq. (52), the spin
of an ion is S. This quantity must not be confused
with the surface area, denoted by S in the earlier
sections.

From the forms in Egs. (22) and (24), one may
compute the contribution to the absorption spectrum
from the surface mode. Since algebraic manipulations
with the surface corrections to the Green’s functions
have been described in detail in the preceding sections
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of the paper, we shall be content to simply exhibit the
final result at this point.

In the limit that ws<wg, the surface mode contribu-
tions to Ty (Q) and Ty® (Q) lead to (for >0)

I‘o(a?a) (Q) — I‘o(afu) ( _Q)

= (1/2L) (wp/wa+1)8 (Q— (wnwa) )
and

Ty (2) — T ()

=—(1/2L) (wg/wa—1)§ (Q— (wpwa) 12),
so that

dEc/dt=1rg2pBZh2S(wEwA) 112(N/L) 8 (Q— (wEwA) 172 )

This leads to the simple result mentioned in the
Introduction:

integrated strength of surface mode line
integrated strength of main AFMR line

=5(aSa/V) (0n/wa)'?,

where Sy is the total surface area of the sample and ¢
is the lattice constant.

This result has a simple physical interpretation. When
the surface mode is excited, we have seen that the spin
deviation decays exponentially with distance from the
surface. The mode penetrates a distance proportional
to a(wgs/wa)'? into the medium. Then if the mode is
excited by external radiation, a volume proportional to
aS4(wr/wa)'? is responsible for the energy absorption.
In bulk AFMR, energy is absorbed throughout the
crystal volume. The result exhibited in this last equa-
tion is the ratio of the two volumes just mentioned,
to within a factor of order unity.

We also remark that, in the present model, absorp-
tion of energy by the surface mode occurs for both
senses of circular polarization. The integrated strength
of the line is the same for both polarizations. This is an
artificial consequence of the bond-cutting procedure,
which produces one surface layer of 4 spins, and one
surface layer of B spins. If radiation incident on a (100)
surface of a semi-infinite medium is considered, absorp-
tion occurs only for one sense of circular polarization.
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