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Abstract. On the basis of the method of reduced Rayleigh equations we present a simple
and reciprocal theory of the coherent and incoherent scattering of x-rays from one- and two-
dimensional randomly rough surfaces, that appears to be free from the limitations of earlier
theories of such scattering based on the Born and distorted-wave Born approximations. In our
approach, the reduced Rayleigh equation for the scattering amplitude(s) is solved perturbatively,
with the small parameter of the theoryη(ω) = 1− ε(ω), whereε(ω) is the dielectric function
of the scattering medium. The magnitude ofη(ω) for x-rays is in the range from 10−6 to 10−3,
depending on the wavelength of the x-rays. The contributions to the mean differential reflection
coefficient from the coherent and incoherent components of the scattered x-rays are calculated
through terms of second order inη(ω). The resulting expressions are valid to all orders in
the surface profile function. The results for the incoherent scattering display a Yoneda peak
when the scattering angle equals the critical angle for total internal reflection from the vacuum-
scattering medium interface for a fixed angle of incidence, and when the angle of incidence
equals the critical angle for total internal reflection for a fixed scattering angle. The approach
used here may also be useful in theoretical studies of the scattering of electromagnetic waves
from randomly rough dielectric–dielectric interfaces, when the difference between the dielectric
constants on the two sides of the interface is small.

1. Introduction

The scattering of x-rays from rough surfaces and interfaces has been used extensively as a
powerful experimental tool for investigating surface and interface properties (see, e.g., the
recent review articles [1, 2] and references therein). A significant feature of x-ray scattering
from condensed media is that the dielectric function of the scattering mediumε(ω) in the
x-ray frequency region is close to, and a little smaller than, unity,ε(ω) = 1− η(ω). In
this frequency rangeη(ω) can be assumed to be real and positive, and its magnitude lies in
the range 10−6–10−3, depending on the wavelength of the x-rays. This can be seen most
directly by starting from the simple, free-electron form of the dielectric function of a metal,

ε(ω) = 1− ω2
p

ω(ω + iγ )
(1.1)

whereωp is the plasma frequency of the conduction electrons, andγ is an inverse electronic
relaxation time. It follows thatη(ω) in this case is given by

η(ω) = ω2
p

ω(ω + iγ )
∼=
ω2

p

ω2

(
1− i

γ

ω

)
= ω2

p

ω2

(
1− i

γ

ωp

ωp

ω

)
. (1.2)

0959-7174/97/030395+40$19.50c© 1997 IOP Publishing Ltd 395



396 T A Leskova and A A Maradudin

A typical value ofωp, in energy units, is 10 eV [3]. For 1 keV x-rays, the ratioωp/ω is
therefore of the order of 10−2. At the same time, the ratioγ /ωp is of the order of 10−2 or
smaller [3]. Consequently, the value of the imaginary part ofη(ω) in the x-ray frequency
range is four orders of magnitude smaller than the real part, which itself is of the order of
10−4 in this example. It follows, therefore, that to a very good approximation, the imaginary
part of η(ω) can be neglected in comparison with the real part; we shall therefore neglect
it in this paper.

Most of the attention in the existing experimental investigations of x-ray scattering from
rough surfaces has been paid to x-ray specular reflectivity measurements. Since the x-rays
are incident from an optically more dense medium onto an optically less dense medium,
the phenomenon of total internal reflection of x-rays occurs when the angle of incidenceθ0

equals the critical angleθc = arccos
√
η(ω). As a result, the reflectivity for grazing angles

of incidence tends to unity, and the intensity of the incoherent (diffuse) component of the
scattered x-rays tends to zero. For angles of incidence smaller than the critical angle for
total internal reflection, however, the coherent scattering rapidly tends to zero. As a result,
the incoherent scattering becomes dominant. In addition, the angular dependence of this
intensity displays a sharp asymmetric peak, called the Yoneda peak [4], at a scattering angle
θs equal to the critical angle for total internal reflection for a fixed angle of incidence (see
figure 1, taken from [5]), and at an angle of incidenceθ0 equal to the critical angle for
total internal reflection for a fixed scattering angle. The Yoneda peak has been observed in
x-ray scattering from rough solid and liquid surfaces, and from the interfaces in multilayer
structures [4–9].

Theories of x-ray scattering from surfaces and multilayered structures have been
constructed on the basis of the Born and distorted-wave Born approximations, which exploit
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Figure 1. The angular distribution of the total power reflected from a gold surface as a function
of the grazing scattering anglēθs = π/2−θs for several values of the grazing angle of incidence
θ̄0 = π/2−θ0 greater than̄θc = π/2−θc. The wavelength of the incident x-rays isλ = 1.54 Å.
θ̄c = 0.54◦. (After [4]).
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the weak interaction of x-rays and the scattering medium [1, 2, 7, 10–13]. The Born
approximation is valid for small angles of incidence and scattering, but breaks down in the
vicinity of the critical angle for total internal reflection, because in the initial and final states
of the scattering process the reflection from the interface is neglected. In the distorted-
wave Born approximation the basis for the perturbation approach is provided by the Fresnel
eigenstates, i.e. the solutions of the Fresnel problem for a flat interface, which take into
account the refraction of both the initial and final states. As a result, this approximation
provides a good description of the scattering of x-rays for angles of incidence in the vicinity
of the critical angle for total internal reflection. However, it fails at smaller angles. The
distorted-wave Born approximation yields an expression for the specular reflectivity that is
valid for grazing angles of incidence larger than the critical angle for total internal reflection
and for not very rough surfaces, i.e. surfaces for which

√
η(ω)(ω/c)δ < 1, whereδ is the

RMS height of the surface, in the form of the Fresnel reflectivity multiplied by a factor
similar to the Debye–Waller factor which accounts for the surface roughness [7, 10, 13].
From such a result only the RMS height of the surfaceδ can be deduced from experimental
data [7, 10, 13]. The second-order distorted-wave Born approximation yields a correction to
the reflectivity proportional to the surface height autocorrelation function [13]. The angular
dependence of the intensity of the incoherent component of the scattered x-rays obtained in
the distorted-wave Born approximation displays the Yoneda peak as a result of the strong
enhancement of the total field amplitude at the surface, which reaches a maximum value
that is twice that of the incident field at the critical angle for total internal reflection [7].

The modified Born approximation [2] also takes refraction into account. It thus improves
the Born approximation for grazing angles of incidence and yields the same results as the
distorted-wave Born approximation.

When the grazing angle of incidence or scattering is smaller than the critical angle
for total internal reflection, both the Born and distorted-wave Born approximations break
down: the reflectivity obtained in the Born approximation diverges instead of saturating at
the critical angle, while the reflectivity obtained in the distorted-wave Born approximation
is greater than unity or, for a weakly rough surface, exactly equal to unity.

The interaction of electromagnetic waves with a randomly rough surface is weak when
either the surface is weakly rough or the dielectric contrast between the medium of incidence
and the scattering medium is small, even if the interface between them is not weakly rough.
When this interaction is weak some form of perturbation theory can be used in the theoretical
study of the scattering of electromagnetic waves from a randomly rough surface. If the
roughness itself is weak, the perturbation theory is constructed on the basis of an expansion
of some quantity in the theory in powers of the surface profile function. For example, in
small-amplitude perturbation theory the scattering amplitude is expanded in powers of the
surface profile function [14]. In self-energy perturbation theory [15] it is the proper self-
energy entering the Green’s function through which the scattering amplitude is expressed
that is expanded in powers of the surface profile function. In phase perturbation theory [16]
it is the phase of the scattering amplitude that is expanded in powers of the surface profile
function.

If the dielectric contrastη(ω) between the medium of incidence and the scattering
medium is small, even if the interface between them is not weakly rough, as is the case
in the scattering of x-rays from rough surfaces and interfaces, it can be used as the small
parameter in a perturbation theory of such scattering, with no restrictions on the surface
roughness parameters except those inherent to the theoretical approach used.

In this paper we present a theory of x-ray scattering from one- and two-dimensional
randomly rough surfaces, based on the method of reduced Rayleigh equations [15],
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that possesses the advantages of the Born and distorted-wave Born approximations and
lacks their disadvantages. The method of reduced Rayleigh equations is based on the
Rayleigh hypothesis [17, 18], which is the assumption that only that part of the scattered
electromagnetic field that satisfies the (outgoing) boundary condition at infinity can be used
in satisfying the electromagnetic boundary conditions on the rough surface. In the method of
reduced Rayleigh equations the coupled integral equations for the amplitudes of the scattered
and refracted fields are decoupled to yield integral equations for the amplitudes of the
scattered field alone. In our approach, the scattering amplitude is calculated perturbatively
as an expansion in powers of the small parameterη(ω). The validity of the resulting
solution is restricted only by the condition for the validity of the Rayleigh hypothesis, i.e.
dζ(x1)/dx1 � 1 in the case of a one-dimensional random surface, and|∇ζ(x1, x2)| � 1
in the case of a two-dimensional random surface, whereζ(x1) (ζ(x1, x2)) is the surface
profile function which defines the position of the surface through the equationx3 = ζ(x1)

(x3 = ζ(x1, x2)) [19–21]. Moreover, in contrast with earlier theories of x-ray scattering
from randomly rough surfaces in which either the incident x-rays were assumed to be s-
polarized [7, 13] or the polarization of the incident and scattered x-rays was not taken into
account at all through a scalar wave treatment [10–12], the approach adopted here, in which
the x-rays are treated as electromagnetic waves, allows the polarizations of the incident
and scattered x-rays to be included readily in calculations of the contributions to the mean
differential reflection coefficients from both the coherent and incoherent components of the
scattered x-rays; we have included these contributions.

For the specular reflectivity to the lowest order inη(ω), i.e. O(η0(ω)), we obtain a
result in the form of the Fresnel reflectivity multiplied by a ‘Debye–Waller factor’ that is
consistent with the Debye–Waller factor obtained in [7, 10, 13]. We also obtain the lowest-
order correction to this result by summing an infinite subset of terms in the perturbation
series for the mean scattering amplitude, and find that it is of second order in the small
parameter of our theoryη(ω). The contribution to the mean differential reflection coefficient
from the incoherent component of the scattered x-rays is calculated to the lowest non-zero
order inη(ω), which is O(η2(ω)). It displays the Yoneda peak when the scattering angle
or the angle of incidence equals the critical angle for total internal reflection.

These results are obtained on the basis of the assumption that the scattering medium is
homogeneous on the length scale being probed, i.e. the atomic structure of the scattering
medium is ignored. This assumption is valid provided we deal with small angle scattering,
where the condition 4π(a/λ) sinθ � 1 is satisfied, where 2θ is the scattering angle,λ is
the wavelength of the x-rays, anda is a typical length scale for any inhomogeneity within
the scattering medium [7].

The outline of this paper is as follows. In section 2 we study the coherent and incoherent
scattering of p-polarized x-rays incident from vacuum onto a one-dimensional, randomly
rough metal surface, when the plane of incidence is perpendicular to the generators of this
surface. This simpler version of the problem already displays all the features present in the
theory of the scattering of x-rays from a two-dimensional randomly rough surface, without
the complications caused by the possibility of out-of-plane and cross-polarized scattering
present in the latter case. With the results of section 2 as a guide, in section 3 we present
a theory of the scattering of x-rays from a two-dimensional randomly rough, metal surface.
Numerical results calculated from the expressions derived in the preceding two sections are
presented in section 4, and conclusions drawn from them are presented and discussed in
section 5. Two appendices, in which results needed in the text are derived, conclude this
paper.
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2. A one-dimensional random surface

The physical system we consider here consists of vacuum in the regionx3 > ζ(x1), and the
scattering medium, which is characterized by an isotropic, complex, frequency-dependent
dielectric functionε, in the regionx3 < ζ(x1). The surface profile functionζ(x1) is assumed
to be a single-valued function ofx1 which is differentiable as many times as necessary. It
is also assumed to constitute a stationary, zero-mean, Gaussian random process, which is
defined by the properties

〈ζ(x1)〉 = 0 (2.1)

〈ζ(x1)ζ(x
′
1)〉 = δ2W(|x1− x ′1|) (2.2)

where the angular brackets denote an average over the ensemble of realizations ofζ(x1),
and δ =

√
〈ζ 2(x1)〉 is the RMS height of the surface. In the numerical work carried out

in this paper we shall assume for the surface height autocorrelation functionW(|x1|) the
Gaussian form

W(|x1|) = exp(−x2
1/a

2). (2.3)

The characteristic lengtha appearing in this expression is the transverse correlation length
of the surface roughness.

We assume that the random surface is illuminated from the vacuum side by a plane
electromagnetic wave which, for definiteness, we assume is p-polarized. The plane of
incidence is thex1x3-plane. In this scattering geometry there is no cross-polarized scattering,
and it is convenient to work with the single non-zero component of the magnetic vector. In
the vacuum regionx3 > ζ(x1)max it is the sum of an incident plane wave and the scattered
field,

H>
2 (x1, x3|ω) = eikx1−iα0(k)x3 +

∫ ∞
−∞

dq

2π
R(q|k)eiqx1+iα0(q)x3 (2.4)

where

α0(q) =
(
ω2

c2
− q2

)1/2

|q| < ω

c
(2.5a)

= i

(
q2− ω

2

c2

)1/2

|q| > ω

c
. (2.5b)

In writing equation (2.4) we have assumed a time dependence of the electromagnetic field
of the form exp(−iωt), and have suppressed explicit mention of this factor.

The angles of incidence(θ0) and scattering(θs), measured counterclockwise and
clockwise from thex3-axis, respectively, are related to the wavenumbersk andq by

k = ω

c
sinθ0 q = ω

c
sinθs. (2.6)

The differential reflection coefficient (DRC)∂R/∂θs is the fraction of the power in the
incident wave that is scattered into an angular interval of width dθs about the scattering
angleθs. Since the scattering surface is random, we are interested not in the differential
reflection coefficient itself, but in its average over the ensemble of realizations of the surface
profile function, 〈∂R/∂θs〉. This is given in terms of the scattering amplitudeR(q|k) by
[22] 〈

∂R

∂θs

〉
= 1

L1

ω

2πc

cos2 θs

cosθ0
〈|R(q|k)|2〉 (2.7)
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whereL1 is the length of thex1-axis covered by the random surface. The wavenumbersq

andk in equation (2.7) must be replaced by their equivalents given by (2.6).
As it stands, the expression given by equation (2.7) contains contributions from both

the coherent (specular) and incoherent (diffuse) components of the scattered electromagnetic
field. The former is given by〈

∂R

∂θs

〉
coh

= 1

L1

ω

2πc

cos2 θs

cosθ0
|〈R(q|k)〉|2. (2.8)

The latter is therefore given by〈
∂R

∂θs

〉
incoh

= 1

L1

ω

2πc

cos2 θs

cosθ0

[〈|R(q|k)|2〉 − |〈R(q|k)〉|2] . (2.9)

We now turn to the determination of the scattering amplitudeR(q|k).
The method of reduced Rayleigh equations [23], which is based on the Rayleigh

hypothesis [17, 18], Green’s second integral identity [24], and the extinction theorem [25],
yields the following integral equation satisfied by the scattering amplitudeR(q|k):∫ ∞
−∞

dp

2π

I (α(q)− α0(p)|q − p)
α(q)− α0(p)

[α(q)α0(p)+ qp]R(p|k)

= I (α(q)+ α0(k)|q − k)
α(q)+ α0(k)

[α(q)α0(k)− qk] (2.10)

where

α(q) =
[
ε
ω2

c2
− q2

]1/2

Reα(q) > 0 Imα(q) > 0 (2.11)

and

I (γ |Q) =
∫ ∞
−∞

dx1e−iQx1−iγ ζ(x1). (2.12)

We begin the solution of equation (2.10) by rewriting the functionI (γ |Q) in the form

I (γ |Q) = 2πδ(Q)+ J (γ |Q) (2.13)

where

J (γ |Q) =
∫ ∞
−∞

dx1e−iQx1(e−iγ ζ(x1) − 1). (2.14)

Equation (2.10) is transformed by this step into

R(q|k) = 2πδ(q − k)R0(k)+ η

d(q)
N(q|k)+ η

d(q)

∫ ∞
−∞

dp

2π
M(q|p)R(p|k) (2.15)

where

R0(k) = εα0(k)− α(k)
εα0(k)+ α(k) (2.16a)

N(q|k) = qk − α(q)α0(k)

α(q)+ α0(k)
J (α(q)+ α0(k)|q − k) (2.16b)

M(q|p) = qp + α(q)α0(p)

α(q)− α0(k)
J (α(q)− α0(p)|q − p) (2.16c)

d(q) = εα0(q)+ α(q). (2.16d)

In obtaining equation (2.15) we have accomplished two objectives. The first is that we have
explicitly separated from the scattering amplitudeR(q|k) the contribution 2πδ(q− k)R0(k)



X-ray scattering from a randomly rough surface 401

that describes the scattering from a planar surface (ζ(x1) ≡ 0). The remaining terms on the
right-hand side of equation (2.15) therefore arise from the surface roughness. The second
is that the terms arising from the surface roughness are explicitly proportional to the small
parameter of our theory,η.

We shall seek the solution of equation (2.15) in the form

R(q|k) = 2πδ(q − k)R0(k)+ B(q|k) (2.17)

where the functionB(q|k) satisfies the equation

B(q|k) = ηA(q|k)+ η
∫ ∞
−∞

dp

2π
m(q|p)B(p|k) (2.18)

with

A(q|k) = n(q|k)+m(q|k)R0(k) (2.19a)

m(q|k) = m̂(q|k)J (α(q)− α0(k)|q − k) (2.19b)

n(q|k) = n̂(q|k)J (α(q)+ α0(k)|q − k) (2.19c)

m̂(q|k) = qk + α(q)α0(k)

d(q)[α(q)− α0(k)]
(2.19d)

n̂(q|k) = qk − α(q)α0(k)

d(q)[α(q)+ α0(k)]
. (2.19e)

The iterative solution of equation (2.18) is formally an expansion ofB(q|k) in powers of
η:

B(q|k) = ηA(q|k)+ η2
∫ ∞
−∞

dp1

2π
m(q|p1)A(p1|k)

+η3
∫ ∞
−∞

dp1

2π

∫ ∞
−∞

dp2

2π
m(q|p1)m(p1|p2)A(p2|k)+ · · · . (2.20)

2.1. Coherent scattering

From equation (2.8) we see that the contribution to the mean DRC from the coherent
component of the scattered x-rays is expressed in terms of〈R(q|k)〉, where

〈R(q|k)〉 = 2πδ(q − k)R0(k)+ 〈B(q|k)〉. (2.21)

To obtain〈B(q|k)〉 we average equation (2.20) term by term:

〈B(q|k)〉 = η〈A(q|k)〉 + η2
∫ ∞
−∞

dp1

2π
〈m(q|p1)A(p1|k)〉

+η3
∫

dp1

2π

∫
dp2

2π
〈m(q|p1)m(p1|p2)A(p2|k)〉 + · · · . (2.22)

In view of equations (2.19a)–(2.19c) we see that thenth-order term in this expansion
contains the average of the product ofn J (γ |Q) functions. This average is given by

〈J (γ1|Q1)J (γ2|Q2) · · · J (γn|Qn)〉 =
n∏
j=1

2πδ(Qj )(e
− 1

2γ
2
j δ

2 − 1)

+θ(n− 2)
n∑

i,j=1
(i>j)

2πδ(Qi +Qj)e− 1
2 (γ

2
i +γ 2

j )δ
2



402 T A Leskova and A A Maradudin

×
∫ ∞
−∞

du e−iQiu(e−γiγj δ
2W(|u|) − 1)

n∏
k=1

(k 6=i,j)

2πδ(Qk)(e
− 1

2γ
2
k δ

2 − 1)

+ terms containing the product ofn− 2 or fewer delta functions (2.23a)

=
n∏
j=1

〈J (γj |Qj)〉 + θ(n− 2)
n∑

i,j=1
(i>j)

{
J (γi |Qi)J (γj |Qj)

} n∏
k=1

(k 6=i,j)

〈J (γk|Qk)〉

+ terms containing the product ofn− 2 or fewer delta functions (2.23b)

whereθ(n) = 1 for n > 1 andθ(n) = 0 for n < 0, and we have introduced the notation
that for any two random processesA andB

{AB} = 〈AB〉 − 〈A〉〈B〉 (2.24)

is the correlated part of the average of their product.
The significance of grouping terms in the average〈J (γ1|Q1) · · · J (γn|Qn)〉 according to

the number of delta functions they contain stems from the fact that the diagonal elements of
the functionsm̂(q|k) and n̂(q|k) defined by equations (2.19d) and (2.19e) are proportional
to η−1:

m̂(q|q) = −1

η
n̂(q|q) = R0(q)

η
. (2.25)

This result together with the result given by the first term on the right-hand side of equation
(2.23) means thateachterm on the right-hand side of equation (2.22) has a contribution of
order O(η0). Thus, in order to obtain the contribution to〈B(q|k)〉 that is of zero order inη
we have to sum the contribution of this order in each of the terms on the right-hand side of
equation (2.22). To obtain this contribution it suffices to replace the average in each term
on the right-hand side of equation (2.22) by the product of the averages of the individual
factors, according to equation (2.23). In this way, we obtain

〈B(q|k)〉(0) = 2πδ(q − k)[1−X(k)+X(k)2− · · ·]a(k) (2.26)

where we have used the results that

〈m(q|k)〉 = 2πδ(q − k)
[
−X(k)

η

]
(2.27a)

with

X(k) = e−
1
2 (α(k)−α0(k))

2δ2 − 1 (2.27b)

and

〈A(q|k)〉 = 2πδ(q − k)
[
a(k)

η

]
(2.28a)

with

a(k) = R0(k)[e
− 1

2 (α(k)+α0(k))
2δ2 − e−

1
2 (α(k)−α0(k))

2δ2
]. (2.28b)

It follows that

〈B(q|k)〉(0) = 2πδ(q − k)R0(k)[e
−2α0(k)α(k)δ

2 − 1]. (2.29)

To obtain the leading contribution to〈B(q|k)〉 that is of non-zero order inη we
have to take into account the contribution to the average in each term on the right-hand
side of equation (2.22) from the second term on the right-hand side of equation (2.23).
Operationally, the latter tells us that in each term (starting with the second) we have to pair
two factors and evaluate the correlated part of the average of their product, and then multiply
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the result by the product of the average of each of the remaining factors. In thenth-order
term two types of contributions arise. The first consists of then− 1 terms in which one of
them(pi |pj ) is paired withA(pn−1|k), while the remainingn − 2 factors ofm(pi |pj ) are
averaged individually; the second consists of the(n−1)(n−2)/2 terms in which two of the
m(pi |pj ) are paired, while the remainingn− 2 factors (includingA(pn−1|k)) are averaged
individually. The correlated part of the average of two factors contains no explicit power of
η in either case; the product of then− 2 averages of the remaining factors is proportional
to η−(n−2). Consequently, the leading correction to the result given by equation (2.29) is of
order O(η2).

Let us consider first the sum of all the terms on the right-hand side of equation (2.22),
starting with the second-order term, in which one of them(pi |pj ) is paired withA(pn−1|k),
and the product averaged, while the remaining factors are averaged individually. We find
that this is given by

〈B(q|k)〉(21) = η2[1−X(q)+X(q)2− · · ·]
×
∫ ∞
−∞

dp

2π
{m(q|p)[1−X(p)+X(p)2− · · ·]A(p|k)}. (2.30)

The first series, in powers of−X(q), is associated with the product of the averages of
the individualm(pi |pj ) which stand to the left of the factorm(pi |pj ) that is paired with
A(pn−1|k); the second series, in powers of−X(p), is associated with the product of the
averages of the individualm(pi |pj ) which stand between the factorm(pi |pj ) that is paired
with A(pn−1|k) andA(pn−1|k) itself.

We next consider the sum of all terms on the right-hand side of equation (2.22), starting
with the third-order term, in which two of them(pi |pj ) are paired and the correlated average
of their product evaluated, while the remaining factors are averaged individually. We find
that this is given by

〈B(q|k)〉(22) = η2[1−X(q)+X(q)2− · · ·]
×
∫ ∞
−∞

dp

2π

{
m(q|p)[1−X(p)+X(p)2− · · ·]m(p|k)}

×[1−X(k)+X(k)2− · · ·]a(k). (2.31)

Again, the first series, in powers of−X(q), is associated with the product of the averages
of the individualm(pi |pj ) which stand to the left of the factorm(pi |pj ) which is paired
with a second factorm(p′i |p′j ) which stands to its right; the series in powers of−X(p) is
associated with the product of the averages of the individualm(pi |pj ) which stand between
the paired factors; the series in powers of−X(k) is associated with the product of the
averages of the individual factors, includingA(pn−1|k), which stand to the right of the
second factorm(p′i |p′j ) in the pair.

Using the definitions ofA(q|k) andm(q|k) given by (2.19), the definitions ofX(k) and
a(k) given by equations (2.27b) and (2.28b), respectively, and the result that

{J (γ1|Q1)J (γ2|Q2)} = 2πδ(Q1+Q2)e
− 1

2 (γ
2
1+γ 2

2 )δ
2
∫ ∞
−∞

du e−iQ1u(e−γ1γ2δ
2W(|u|) − 1) (2.32)

we can rewrite equations (2.30) and (2.31) compactly as

〈B(q|k)〉(21) = 2πδ(q − k)η2[e−2α0(k)α(k)δ
2
Np(k)+ R0(k)Mp(k)] (2.33a)

and

〈B(q|k)〉(22) = 2πδ(q − k)η2[e−2α0(k)α(k)δ
2 − 1]R0(k)Mp(k) (2.33b)
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respectively, where the subscript p denotes p-polarization, and

Mp(k) =
∫ ∞
−∞

dp

2π
m̂(k|p)m̂(p|k)e−(α(p)−α(k))(α0(p)−α0(k))δ

2

×
∫ ∞
−∞

du e−i(k−p)u[e−(α(k)−α0(p))(α(p)−α0(k))δ
2W(|u|) − 1] (2.34a)

Np(k) =
∫ ∞
−∞

dp

2π
m̂(k|p)n̂(p|k)e−(α(p)−α(k))(α0(p)+α0(k))δ

2

×
∫ ∞
−∞

du e−i(k−p)u[e−(α(k)−α0(p))(α(p)+α0(k))δ
2W(|u|) − 1]. (2.34b)

Thus, the total contribution to〈B(q|k)〉 of second order inη is

〈B(q|k)〉(2) = 2πδ(q − k)η2e−2α0(k)α(k)δ
2 [
Np(k)+ R0(k)Mp(k)

]
. (2.35)

Using equations (2.21), (2.29), and (2.35), we obtain the result that

〈R(q|k)〉 = 2πδ(q − k)rp(θ0), (2.36)

where

rp(θ0) = exp

[
−2

(
ωδ

c

)2

cosθ0(cos2 θ0− η)1/2
]{
ε cosθ0− (cos2 θ0− η)1/2
ε cosθ0+ (cos2 θ0− η)1/2

+η2

[
Np

(ω
c

sinθ0

)
+ ε cosθ0− (cos2 θ0− η)1/2
ε cosθ0+ (cos2 θ0− η)1/2Mp

(ω
c

sinθ0

)]
+ o(η2)

}
(2.37)

and we have used the fact thatk = (ω/c) sinθ0. When the result given by equation (2.36)
is substituted into equation (2.8), and use is made of the relations

[2πδ(q − k)]2 = 2πδ(0)2πδ(q − k) = L12πδ(q − k) (2.38a)

δ(q − k) = c

ω

δ(θs− θ0)

cosθ0
(2.38b)

the contribution to the mean DRC from the coherent component of the scattered
electromagnetic field becomes〈

∂R

∂θs

〉
coh

= δ(θs− θ0)Rp(θ0) (2.39)

where the reflectivityRp(θ0) is given by

Rp(θ0) = |rp(θ0)|2. (2.40)

Up to now we have dealt only with the scattering of p-polarized x-rays. For completeness
we note that in the case where the random surface is illuminated by an s-polarized
electromagnetic wave the integral equation for the scattering amplitudeR(q|k) analogous
to equation (2.10) has the form [26]:∫ ∞

−∞

dp

2π

I (α(q)− α0(p)|q − p)
α(q)− α0(p)

R(p|k) = −I (α(q)+ α0(k)|q − k)
α(q)+ α0(k)

. (2.41)

The analysis presented here can be easily repeated starting from this equation. In this case
we obtain for the reflectivity

Rs(θ0) = |rs(θ0)|2 (2.42)
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where

rs(θ0) = exp

[
−2

(
ωδ

c

)2

cosθ0(cos2 θ0− η)1/2
]{

cosθ0− (cos2 θ0− η)1/2
cosθ0+ (cos2 θ0− η)1/2

+η2

[
Ns

(ω
c

sinθ0

)
+ cosθ0− (cos2 θ0− η)1/2

cosθ0+ (cos2 θ0− η)1/2Ms

(ω
c

sinθ0

)]
+ o(η2)

}
(2.43)

and the functionsMs(k) and Ns(k) are given by equations (2.34) in whicĥm(q|k) and
n̂(q|k) are replaced by

m̂s(q|k) = ω2

c2

1

[α(q)+ α0(q)][α(q)− α0(k)]
(2.44a)

n̂s(q|k) = ω2

c2

1

[α(q)+ α0(q)][α(q)+ α0(k)]
. (2.44b)

2.2. Incoherent scattering

When we substitute equation (2.17) into equation (2.9) we find that the contribution to
the mean DRC from the incoherent component of the scattered field can be expressed
equivalently as〈

∂R

∂θs

〉
incoh

= 1

L1

ω

2πc

cos2 θs

cosθ0
[〈|B(q|k)|2〉 − |〈B(q|k)〉|2]. (2.45)

To obtain〈|B(q|k)|2〉 we square the modulus of the right-hand side of equation (2.20), and
average the resulting series term by term:

〈|B(q|k)|2〉 = η2〈A(q|k)A∗(q|k)〉
+η3

[
〈A(q|k)

∫ ∞
−∞

dr1
2π
m∗(q|r1)A∗(r1|k)〉

+
〈∫ ∞
−∞

dp1

2π
m(q|p1)A(p1|k)A∗(q|k)

〉]
+ · · · . (2.46)

From the explicit expressions forA(q|k) andm(q|k) obtained from equations (2.19a)–
(2.19c), we see that the coefficient ofηn on the right-hand side of equation (2.46), where
n > 2, is the sum ofn − 1 terms, themth of which contains the average of a product
of m J(γ |Q)’s andn − m J ∗(γ |Q)’s. These averages are very similar to the average of
a product ofn J (γ |Q)’s encountered in obtaining the average〈B(q|k)〉. They consist of
the product of the averages of then individual factors, plus the sum of terms in which
two factors are paired, and the correlated part of the average of their product is multiplied
by the product of the averages of the remainingn − 2 factors, and so on. Since what
we really need is not〈|B(q|k)|2〉 but the difference〈|B(q|k)|2〉 − |〈B(q|k)〉|2, the first
category of averages described can be omitted, since it does not contribute to this difference.
The second category of averages does, but only if one of the factors in the pair whose
correlated average is evaluated is unconjugated while the second is a complex conjugate.
The n − 2 delta functions associated with the product of the averages of the remaining
n−2 factors that are unpaired yield a result that is proportional toη−(n−2) which, combined
with the factor ofηn multiplying thenth-order term produces a contribution of order O(η2)

to 〈|B(q|k)|2〉 − |〈B(q|k)〉|2 from each term on the right-hand side of equation (2.46).
Thus, an infinite series of terms must be summed to obtain the contribution to〈|B(q|k)|2〉
−|〈B(q|k)〉|2 of the lowest non-zero order inη, namely the second.
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Four classes of terms contribute to〈|B(q|k)|2〉 − |〈B(q|k)〉|2 in this order, defined by
the two factors that appear in the pair whose correlated average is evaluated. They can be
written schematically as{AA∗}, {mA∗}, {Am∗}, and{mm∗}. These four categories of terms
can be summed to yield the result that to O(η2)

〈|B(q|k)|2〉 − |〈B(q|k)〉|2
= η2[[1 −X(q)+X(q)2− · · ·]{A(q|k)[1−X∗(q)+X∗(q)2− · · ·]A∗(q|k)}
+[1−X(q)+X(q)2− · · ·]{m(q|k)[1−X(k)+X(k)2− · · ·]a(k)
×[1−X∗(q)+X∗(q)2− · · ·]A∗(q|k)}
+[1−X(q)+X(q)2− · · ·]{A(q|k)[1−X∗(q)+X∗(q)2− · · ·]m∗(q|k)}
×[1−X∗(k)+X∗(k)2− · · ·]a∗(k)
+[1−X(q)+X(q)2− · · ·]{m(q|k)[1−X(k)+X(k)2− · · ·]a(k)
×[1−X∗(q)+X∗(q)2− · · ·]m∗(q|k)}[1−X∗(k)+X∗(k)2− · · ·]a∗(k)]
= η2 1

|1+X(q)|2
1

|1+X(k)|2 {[A(q|k)(1+X(k))+m(q|k)a(k)]
×[A∗(q|k)(1+X∗(k))+m∗(q|k)a∗(k)]} (2.47)

where the curly bracket symbol has been defined in equation (2.24). The interpretation of
the various series that appear in these expressions is identical to that of the series appearing
in equations (2.30) and (2.31) in our calculations of〈B(q|k)〉(21) and 〈B(q|k)〉(22). Using
the explicit expressions forX(k) anda(k), equations (2.27b) and (2.28b), respectively, we
can rewrite equation (2.47) in the form

〈|B(q|k)|2〉 − |〈B(q|k)〉|2 = η2 eRe(α(q)−α0(q))
2δ2

eRe(α(k)−α0(k))
2δ2

×{[e− 1
2 (α

2(k)+α2
0(k))δ

2
b(q|k)][e− 1

2 (α
2(k)+α2

0(k))δ
2
b(q|k)]∗} (2.48a)

where

b(q|k) = cosh(α(k)α0(k)δ
2)[n(q|k)+m(q|k)R0(k)]

+ sinh(α(k)α0(k)δ
2)[n(q|k)−m(q|k)R0(k)]. (2.48b)

As it stands, the result given by equation (2.48) is not reciprocal. Reciprocity, which is
a consequence of the Lorentz reciprocity theorem [27], requires that the scattering matrix
S(q|k) defined by

S(q|k) = α
1/2
0 (q)

α
1/2
0 (k)

R(q|k) (2.49)

satisfies the relation [28]

S(q|k) = S(−k| − q). (2.50)

In view of equation (2.17) this condition requires that

〈|B(−k| − q)|2〉 − |〈B(−k| − q)〉|2 = α2
0(q)

α2
0(k)

[〈|B(q|k)|2〉 − |〈B(q|k)〉|2]. (2.51)

The result given by equation (2.48) does not satisfy this condition.
However, it is possible to transform equation (2.48) into a form that is manifestly

reciprocal. It is shown in appendix A that

n(q|k)+m(q|k)R0(k) = qk − α(q)α(k)
d(q)d(k)

J (α(q)+ α(k)|q − k)
α(q)+ α(k) 2α0(k)+O(η) (2.52a)

n(q|k)−m(q|k)R0(k) = qk − α(q)α(k)
d(q)d(k)

J (α(q)+ α(k)|q − k)
α(q)+ α(k) 2α(k)+O(η). (2.52b)
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Since we seek a result correct to the lowest order inη, we neglect the corrections to these
results of order O(η). When these results are used in equation (2.48b), we find that

e−
1
2 (α

2(k)+α2
0(k))δ

2
b(q|k) = qk − α(q)α(k)

d(q)d(k)

J (α(q)+ α(k)|q − k)
α(q)+ α(k)

×[(α0(k)+ α(k))e− 1
2 (α(k)−α0(k))

2δ2 + (α0(k)− α(k))e− 1
2 (α(k)+α0(k))

2δ2
]

= qk − α(q)α(k)
d(q)d(k)

J (α(q)+ α(k)|q − k)
α(q)+ α(k)

[
2α0(k)− (α2

0(k)− α2(k))

×
∞∑
n=1

1

n!

(
−δ

2

2

)n
[(α(k)− α0(k))

2n−1− (α(k)+ α0(k))
2n−1]

]
. (2.53)

However, sinceα2
0(k) − α2(k) = η(ω2/c2), the second term in brackets is of order O(η)

and we neglect it. Thus, finally,

〈|B(q|k)|2〉 − |〈B(q|k)〉|2 = η2eRe(α(q)−α0(q))
2δeRe(α(k)−α0(k))

2δ2

×
∣∣∣∣2α0(k)

qk − α(q)α(k)
d(q)d(k)

∣∣∣∣2{J (α(q)+α(k)|q − k)α(q)+α(k)
J ∗(α(q)+α(k)|q − k)

α∗(q)+α∗(k)
}
.

(2.54)

In this form, the reciprocity condition (2.51) is manifestly satisfied.
Using the result that

{J (γ |Q)J ∗(γ |Q)} = L1 e−
1
2 (γ

2+γ ∗2)δ2
∫ ∞
−∞

du e−iQu[e|γ |
2δ2W(|u|) − 1] (2.55)

together with the result given by equation (2.45), we can write the contribution to the mean
DRC from the incoherent component of the scattered x-rays to O(η2) as〈
∂R

∂θs

〉
incoh

= η2 1

8
√
π

(ωa
c

) 1

cosθ0

∞∑
n=1

(
ωδ

c

)2n e−(q−k)
2a2/(4n)

n!
√
n

|b̃p
n(θs, θ0)|2 (2.56a)

where

b̃p
n(θs, θ0) = exp

[
−1

2

(
ωδ

c

)2

[(cos2 θs− η)1/2+ (cos2 θ0− η)1/2]2

]

× exp

[
1

2

(
ωδ

c

)2

[(cos2 θs− η)1/2− cos2 θs]
2

]

× exp

[
1

2

(
ωδ

c

)2

[(cos2 θ0− η)1/2− cosθ0]2

]

×2 cosθs
sinθs sinθ0− (cos2 θs− η)1/2(cos2 θ0− η)1/2

[ε cosθs+ (cos2 θs− η)1/2][ε cosθ0+ (cos2 θ0− η)1/2]
2 cosθ0

×[(cos2 θs− η)1/2+ (cos2 θ0− η)1/2]n−1. (2.56b)

In obtaining the result given by equation (2.56) we have used the Gaussian form for the
surface height autocorrelation function given byW(|u|) = exp(−u2/a2).

We can simplify equation (2.56) somewhat if we note that

(cos2 θ0,s− η)1/2− cosθ0,s = −η
(cos2 θ0,s− η)1/2+ cosθ0,s

. (2.57)

Consequently, we can replace the second and third exponential factors on the right-hand
side of equation (2.56b) by unity, in the approximation we are maintaining here. These
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replacements are equivalent to the assumption that(ωδ/c)
√
η(ω)� 1. We can also replace

the explicit factor ofε in the denominator of equation (2.56b) by unity to the same degree
of approximation. As a result, we obtain, finally,

b̃p
n(θs, θ0) = exp

[
−1

2

(
ωδ

c

)2

[(cos2 θs− η)1/2+ (cos2 θ0− η)1/2]2

]

×2 cosθs
sinθs sinθ0− (cos2 θs− η)1/2(cos2 θ0− η)1/2]

[ε cosθs+ (cos2 θs− η)1/2][ε cosθ0+ (cos2 θ0− η)1/2]
2 cosθ0

×[(cos2 θs− η)1/2+ (cos2 θ0− η)1/2]n−1. (2.58)

In the case of the scattering of x-rays of s-polarization we can repeat the calculations
presented in this subsection starting from equation (2.41). As a result we obtain forb̃s

n(θs, θ0)

instead of equation (2.56b)

b̃s
n(θs, θ0) = exp

[
−1

2

(
ωδ

c

)2

[(cos2 θs− η)1/2+ (cos2 θ0− η)1/2]2

]

× exp

[
1

2

(
ωδ

c

)2

[(cos2 θs− η)1/2− cos2 θs]
2

]

× exp

[
1

2

(
ωδ

c

)2

[(cos2 θ0− η)1/2− cosθ0]2

]

× 2 cosθs

cosθs+ (cos2 θs− η)1/2
2 cosθ0

cosθ0+ (cos2 θ0− η)1/2
×[(cos2 θs− η)1/2+ (cos2 θ0− η)1/2]n−1. (2.59)

As in the case of the scattering of p-polarized x-rays, we can replace the second and third
exponential factors on the right-hand side of equation (2.59) by unity and finally obtain

b̃s
n(θs, θ0) = exp

[
−1

2

(
ωδ

c

)2

[(cos2 θs− η)1/2+ (cos2 θ0− η)1/2]2

]

× 2 cosθs

cosθs+ (cos2 θs− η)1/2
2 cosθ0

cosθ0+ (cos2 θ0− η)1/2
×[(cos2 θs− η)1/2+ (cos2 θ0− η)1/2]n−1. (2.60)

When bothθ0 and θs are close toπ/2, i.e. for small grazing angles of incidence and
scattering, the factor sinθs sinθ0− (cos2 θs− η)1/2(cos2 θ0− η)1/2 is close to unity, and the
expressions for the contribution to the mean DRC from the incoherent component of the
scattered x-rays of p- and s-polarizations coincide.

3. A two-dimensional random surface

With the results for the one-dimensional surface as a guide, we can obtain the corresponding
results for a two-dimensional randomly rough surface quite directly. The physical system we
consider in this section consists of vacuum in the regionx3 > ζ(x‖), wherex‖ = (x1, x2, 0)
is a position vector in the mean scattering planex3 = 0, and the scattering medium, which
is characterized by an isotropic, complex, frequency-dependent dielectric functionε(ω), in
the regionx3 < ζ(x‖). The surface profile functionζ(x‖) is assumed to be a single-valued
function ofx‖ that is differentiable with respect tox1 andx2 as many times as necessary.
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It also constitutes a stationary, zero-mean, isotropic Gaussian random process, which is
defined by the properties

〈ζ(x‖)〉 = 0 (3.1)

〈ζ(x‖)ζ(x′‖)〉 = δ2W(|x‖ − x′‖|) (3.2)

δ2 = 〈ζ 2(x‖)〉. (3.3)

For the surface height autocorrelation functionW(|x‖|) we shall again assume a Gaussian
form

W(|x‖|) = exp(−x2
‖/a

2). (3.4)

The contribution to the mean DRC when an incident electromagnetic wave ofβ-
polarization, whose wavevectork has the projectionk‖ = (k1, k2, 0) on the mean scattering
surface, is scattered into an electromagnetic wave ofα-polarization, within an element of
solid angle d�s about a wavevectorq whose projection on the mean scattering surface is
q‖ = (q1, q2, 0), is given in terms of the corresponding scattering amplitudeRαβ(q‖|k‖) by〈

∂R

∂�s

〉
αβ

= 1

S

( ω

2πc

)2 cos2 θs

cosθ0
〈|Rαβ(q‖|k‖)|2〉 (3.5)

whereS is the area of thex1x2-plane covered by the rough surface, while

k‖ = (ω/c) sinθ0× (cosφ0, sinφ0, 0)

q‖ = (ω/c) sinθs(cosφs, sinφs, 0)

where(θ0, φ0) and (θs, φs) are the polar and azimuthal angles of incidence and scattering,
respectively (see figure 2). The contributions to the mean DRC from the coherent and
incoherent components of the scattered electromagnetic field are〈

∂R

∂�s

〉
αβ

coh

= 1

S

( ω

2πc

)2 cos2 θs

cosθ0
|〈Rαβ(q‖|k‖)〉|2 (3.6)

and 〈
∂R

∂�s

〉
αβ

incoh

= 1

S

( ω

2πc

)2 cos2 θs

cosθ0

[〈|Rαβ(q‖|k‖)|2〉 − |〈Rαβ(q‖|k‖)〉|2] (3.7)

respectively.

x3

x2

x1

k||

q||

θs

θ0

φ0

φs

Figure 2. The scattering geometry for scattering
from a two-dimensional random surface.
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By the use of the method of reduced Rayleigh equations it is found that the scattering
amplitudesRαβ(q‖|k‖) satisfy the matrix integral equation [15]∫

d2p‖
(2π)2

I (α(q‖)− α0(p‖)|q‖ − p‖)
α(q‖)− α0(p‖))

M(q‖|p‖)R(p‖|k‖)

= − I (α(q‖)+ α0(k‖)|q‖ − k‖)
α(q‖)+ α0(k‖)

N(q‖|k‖), (3.8)

where

I (γ |Q‖) =
∫

d2x‖e−iQ‖·x‖e−iγ ζ(x‖) (3.9)

while the matricesM(q‖|p‖) andN(q‖|k‖) are given by

M(q‖|p‖) =
(

[q‖p‖ + α(q‖)q̂‖ · p̂‖α0(p‖)] −(ω/c)α(q‖)(q̂‖ × p̂‖)3
(ω/c)(q̂‖ × p̂‖)3α0(p‖) (ω2/c2)q̂‖ · p̂‖

)
(3.10)

N(q‖|k‖) =
(

[q‖k‖ − α(q‖)q̂‖ · k̂‖α0(k‖)] −(ω/c)α(q‖)(q̂‖ × k̂‖)3
−(ω/c)(q̂‖ × k̂‖)3α0(k‖) (ω2/c2)q̂‖ · k̂‖

)
. (3.11)

In these expressionŝk‖ = k‖/k‖, α0(q‖) = [(ω2/c2) − q2
‖ ]

1/2, with Reα0(q‖) > 0,
Imα0(q‖) > 0, andα(q‖) = [ε(ω2/c2) − q2

‖ ]
1/2, with Reα(q‖) > 0, Imα(q‖) > 0. In

equations (3.10) and (3.11) the rows and columns of the matrices are labelled by p and s,
with the pp-element in the upper left-hand corner.

To solve equation (3.8), we begin by rewriting the functionI (γ |Q‖) in the form

I (γ |Q‖) = (2π)2δ(Q‖)+ J (γ |Q‖) (3.12)

where

J (γ |Q‖) =
∫

d2x‖ e−iQ‖·x‖(e−iγ ζ(x‖) − 1). (3.13)

When equation (3.12) is substituted into equation (3.8), the result can be rearranged into

R(q‖|k‖) = (2π)2δ(q‖ − k‖)R(0)(k‖)+ ηn(q‖|k‖)+ η
∫

d2p‖
(2π)2

m(q‖|p‖)R(p‖|k‖) (3.14)

where

R(0)(k‖) =


εα0(k‖)− α(k‖)
εα0(k‖)+ α(k‖) 0

0
α0(k‖)− α(k‖)
α0(k‖)+ α(k‖)

 (3.15)

n(q‖|k‖) =


Npp(q‖|k‖)

εα0(q‖)+ α(q‖)
Nps(q‖|k‖)

εα0(q‖)+ α(q‖)
Nsp(q‖|k‖)

α0(q‖)+ α(q‖)
Nss(q‖|k‖)

α0(q‖)+ α(q‖)

 J (α(q‖)+ α0(k‖)|q‖ − k‖)
α(q‖)+ α0(p‖)

(3.16a)

≡ n̂(q‖|k‖)J (α(q‖)+ α0(k‖)|q‖ − k‖) (3.16b)

m(q‖|k‖) =


Mpp(q‖|k‖)

εα0(q‖)+ α(q‖)
Mps(q‖|k‖)

εα0(q‖)+ α(q‖)
Msp(q‖|k‖)

α0(q‖)+ α(q‖)
Mss(q‖|k‖)

α0(q‖)+ α(q‖)

 J (α(q‖)− α0(k‖)|q‖ − k‖)
α(q‖)− α0(k‖)

(3.17a)

≡ m̂(q‖|k‖)J (α(q‖))− α0(k‖)|q‖ − k‖). (3.17b)
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We shall seek a solution of equation (3.14) in the form

R(q‖|k‖) = (2π)2δ(q‖ − k‖)R(0)(k‖)+ B(q‖|k‖) (3.18)

where the 2× 2 matrix B(q‖|k‖) is the solution of the equation

B(q‖|k‖) = ηA(q‖|k‖)+ η
∫

d2p‖
(2π)2

m(q‖|p‖)B(p‖|k‖) (3.19)

where

A(q‖|k‖) = n(q‖|k‖)+m(q‖|k‖)R(0)(k‖). (3.20)

The iterative solution of equation (3.19) is

B(q‖|k‖) = ηA(q‖|k‖)+ η2
∫

d2p‖
(2π)2

m(q‖|p‖)A(p‖|k‖)

+η3
∫

d2p‖
(2π)2

∫ d2p′‖
(2π)2

m(q‖|p‖)m(p‖|p′‖)A(p′‖|k‖)+ · · · . (3.21)

3.1. Coherent scattering

We see from equation (3.6) that the calculation of the contribution to the mean DRC from
the coherent component of the scattered electromagnetic field requires the calculation of
the average of the matrixR(q‖|k‖) over the ensemble of realizations of the surface profile
function. From equation (3.18) we see that, in turn, this requires the determination of the
ensemble average of the matrixB(q‖|k‖). The latter is given formally by

〈B(q‖|k‖)〉 = η〈A(q‖|k‖)〉 + η2
∫

d2p‖
(2π)2

〈m(q‖|p‖)A(p‖|k‖)〉

+η3
∫

d2p‖
(2π)2

∫ d2p′‖
(2π)2

〈m(q‖|p‖)m(p‖|p′‖)A(p′‖|k‖)〉 + · · · . (3.22)

From the forms of the matricesA(q‖|k‖) andm(q‖|k‖) given by equations (3.15)–(3.17)
and (3.20), we see that thenth term in this expansion contains the average of a product of
n J (γ |Q‖) functions. This average is given by

〈J (γ1|Q(1)
‖ )J (γ2|Q(2)

‖ ) · · · J (γn|Q(n)
‖ )〉 =

n∏
i=1

(2π)2δ(Q(i)
‖ )(e

− 1
2γ

2
i δ

2 − 1)

+θ(n− 2)
n∑

i,j=1
(i>j)

(2π)2δ(Q(i)
‖ +Q(j)

‖ )e
− 1

2 (γ
2
i +γ 2

j )δ
2

×
∫

d2u‖ e−iQ(i)
‖ ·u‖(e−γiγj δ

2W(|u‖|) − 1)
n∏
k=1

(k 6=i,j)

(2π)2δ(Q(k)
‖ )(e

− 1
2γ

2
k δ

2 − 1)

+ terms containingn− 2 or few delta functions (3.23a)

=
n∏
i=1

〈J (γi |Q(i)
‖ )〉 + θ(n− 2)

n∑
i,j=1
(i>j)

{J (γi |Q(i)
‖ )J (γj |Q(j)

‖ )}
n∏
k=1

(k 6=i,j)

〈J (γk|Q(k)
‖ )〉

+ terms containingn− 2 or fewer delta functions. (3.23b)

We now note that the averages of the matricesA(q‖|k‖) and m(q‖|k‖) are diagonal and
inversely proportional toη,

〈A(q‖|k‖)〉 = (2π)2δ(q‖ − k‖)
[

a(k‖)
η

]
(3.24a)
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where

a(k‖) =
[
e−

1
2 (α(k‖)+α0(k‖))2δ2 − e−

1
2 (α(k‖)−α0(k‖))2δ2

]
R(0)(k‖) (3.24b)

while

〈m(q‖|k‖)〉 = (2π)2δ(q‖ − k‖)I
[
−X(k‖)

η

]
(3.25a)

with

X(k‖) = e−
1
2 (α(k‖)−α0(k‖))2δ2 − 1. (3.25b)

These results, together with the result expressed by the first term on the right-hand side
of equation (3.23), have the consequence that the contribution to〈B(q‖|k‖)〉 of zero order
in η is obtained by replacing each average on the right-hand side of equation (3.22) by the
product of the averages of the individual factors appearing in it. In this way we find that

〈B(q‖|k‖)〉(0) = (2π)2δ(q‖ − k‖)[1−X(k‖)+X(k‖)2− · · ·]a(k‖)
= (2π)2δ(q‖ − k‖)[e−2α0(k‖)α(k‖)δ2 − 1]R(0)(k‖). (3.26)

To obtain the leading contribution to〈B(q‖|k‖)〉 that is of non-zero order inη, according
to the second term on the right-hand side of equation (3.23), we must pair two of the factors
in each of the averages on the right-hand side of equation (3.22) in all possible ways, evaluate
the correlated average of that pair, and multiply the result by the product of the averages of
each of the remaining factors. As in the case of a one-dimensional surface, there are two
types of terms that arise innth order. In the first, the final factorA(p(n−1)

‖ |k‖) is paired

with one of the factorsm(p(i)‖ |p(j)‖ ) and the correlated average of their product is evaluated.

In the second, the final factorA(p(n−1)
‖ |k‖) is unpaired with any of them(p(i)‖ |p(j)‖ ), and

only its average appears. The contribution to〈B(q‖|k‖)〉 from all terms of the first type is

〈B(q‖|k‖)〉(21) = η2[1−X(q‖)+X(q‖)2− · · ·]

×
∫

d2p‖
(2π)2

{m(q‖|p‖)[1−X(p‖)+X(p‖)2− · · ·]A(p‖|k‖)}. (3.27)

The contribution to〈B(q‖|k‖)〉 from all terms of the second type is

〈B(q‖|k‖)〉(22) = η2[1−X(q‖)+X(q‖)2− · · ·]

×
∫

d2p‖
(2π)2

{m(q‖|p‖)[1−X(p‖)+X(p‖)2− · · ·]m(p‖|k‖)}
×[1−X(k‖)+X(k‖)2− · · ·]a(k‖). (3.28)

In obtaining these results we have exploited the fact that the average of the matrix
m(p(i)‖ |p(j)‖ ) is a multiple of the unit matrix.

Using the explicit expressions for the functionX(k‖) and the matricesm(q‖|k‖),
n(q‖|k‖), A(q‖|k‖), and a(k‖), given by equations (3.25b), (3.17), (3.16), (3.20), and
(3.24b), respectively, together with the result that

{J (γ1|Q(1)
‖ )J (γ2|Q(2)

‖ )} = (2π)2δ(Q(1)
‖ +Q(2)

‖ )

×e−
1
2 (γ

2
1+γ 2

2 )δ
2
∫

d2u‖ e−iQ(1)
‖ ·u‖(e−γ1γ2δ

2W(|u‖|) − 1) (3.29)

we can rewrite equations (3.27) and (3.28) in the forms

〈B(q‖|k‖)〉(21) = (2π)2δ(q‖ − k‖)η2[e−2α0(k‖)α(k‖)δ2
N(k‖)+M(k‖)R(0)(k‖)] (3.30)

and
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〈B(q‖|k‖)〉(22) = (2π)2δ(q‖ − k‖)η2[e−2α0(k‖)α(k‖)δ2 − 1]M(k‖)R(0)(k‖) (3.31)

respectively, where

N(k‖) =
∫

d2p‖
(2π)2

m̂(k‖|p‖)n̂(p‖|k‖)e−(α(p‖)−α(k‖))(α0(k‖)+α0(p‖))δ2

×
∫

d2u‖ e−i(k‖−p‖)·u‖(e−(α(k‖)−α0(p‖))(α(p‖)+α0(k‖))δ2W(|u‖|) − 1) (3.32)

M(k‖) =
∫

d2p‖
(2π)2

m̂(k‖|p‖)m̂(p‖|k‖)e−(α(p‖))−α(k‖))(α0(p‖)−α0(k‖))δ2

×
∫

d2u‖ e−i(k‖−p‖)·u‖(e−(α(k‖)−α0(p‖))(α(p‖))−α0(k‖))δ2W(|u‖|) − 1). (3.33)

The total contribution to〈B(q‖|k‖)〉 of second order inη is the sum of the contributions
given by equations (3.30) and (3.31), and is given by

〈B(q‖|k‖)〉(2) = (2π)2δ(q‖ − k‖)η2e−2α0(k‖)α(k‖)δ2
[N(k‖)+M(k‖)R(0)(k‖)]. (3.34)

We now note that the elements of the matrixm̂(k‖|p‖)n̂(p‖|k‖) are given by

pp :
[k‖p‖ + α(k‖)k̂‖ · p̂‖α0(p‖)][p‖k‖ − α(p‖)p̂‖ · k̂‖α0(k‖)]

dp(k‖)(α(k‖))− α0(p‖))dp(p‖)(α(p‖)+ α0(k‖))

− ω2c−2α(k‖)(k̂‖ × p̂‖)23α0(k‖)
dp(k‖)(α(k‖)− α0(p‖))ds(p‖)(α(p‖)+ α0(k‖))

(3.35a)

ps :
ω

c
(k̂‖ × p̂‖)3

{
[k‖p‖ + α(k‖)k̂‖ · p̂‖α0(p‖)]α(p‖)

dp(k‖)(α(k‖)− α0(p‖))dp(p‖)(α(p‖)+ α0(k‖))

− ω2c−2α(k‖)p̂‖ · k̂‖
dp(k‖)(α(k‖)− α0(p‖))ds(p‖)(α(p‖)+ α0(k‖))

}
(3.35b)

sp :
ω

c
(k̂‖ × p̂‖)3

{
α0(p‖)[p‖k‖ − α(p‖)p̂‖ · k̂‖α0(k‖)]

ds(k‖)(α(k‖)− α0(p‖))dp(p‖)(α(p‖)+ α0(k‖))

+ ω2c−2k̂‖ · p̂‖α0(k‖)
ds(k‖)(α(k‖)− α0(p‖))ds(p‖)(α(p‖)+ α0(k‖))

}
(3.35c)

ss :
ω2c−2α0(p‖)(k̂‖ × p̂‖)23α(p‖)

ds(k‖)(α(k‖)− α0(p‖))ds(p‖)(α(p‖)+ α0(k‖))

+ ω4c−4(k̂‖ · p̂‖)2
ds(k‖)(α(k‖)− α0(p‖))ds(p‖)(α(p‖)+ α0(k‖))

(3.35d)

while the elements of the matrix̂m(k‖|p‖)m̂(p‖|k‖) are

pp :
[k‖p‖ + α(k‖)k̂‖ · p̂‖α0(p‖)][p‖k‖ − α(p‖)p̂‖ · k̂‖α0(k‖)]

dp(k‖)(α(k‖)− α0(p‖))dp(p‖)(α(p‖)− α0(k‖))

+ ω2c−2α(k‖)(k̂‖ × p̂‖)23α0(k‖)
dp(k‖)(α(k‖)− α0(k‖))ds(p‖)(α(p‖)− α0(k‖))

(3.36a)

ps :
ω

c
(k̂‖ × p̂‖)3

{
[k‖p‖ + α(k‖)k̂‖ · p̂‖α0(p‖)]α(p‖)

dp(k‖)(α(k‖)− α0(p‖))dp(p‖)(α(p‖)− α0(k‖))

− ω2c−2α(k‖)p̂‖ · k̂‖
dp(k‖)(α(k‖)− α0(p‖))ds(p‖)(α(p‖)− α0(k‖))

}
(3.36b)



414 T A Leskova and A A Maradudin

sp :
ω

c
(k̂‖ × p̂‖)3

{
α0(p‖)[p‖k‖ + α(p‖)p̂‖ · k̂‖α0(k‖)]

ds(k‖)(α(k‖)− α0(p‖))dp(p‖)(α(p‖)− α0(k‖))

− ω2c−2k̂‖ · p̂‖α0(k‖)
ds(k‖)(α(k‖)− α0(p‖))ds(p‖)(α(p‖)− α0(k‖))

}
(3.36c)

ss :
ω2c−2α0(p‖)(k̂‖ × p̂‖)23α(p‖)

ds(k‖)(α(k‖)− α0(p‖))ds(p‖)(α(p‖)− α0(k‖))

+ ω4c−4(k̂‖ · p̂‖)2
ds(k‖)(α(k‖)− α0(p‖))ds(p‖)(α(p‖)− α0(k‖))

(3.36d)

wheredp(k‖) = εα0(k‖)+ α(k‖) andds(k‖) = α0(k‖)+ α(k‖). With the aid of these results
and the definitions (3.32) and (3.33) we can see that the matricesN(k‖) and M(k‖) are
diagonal and depend on the wavevectork‖ only through its magnitude. This follows from
the results that when the integrals over the azimuthal angle ofu‖ are carried out in equations
(3.32) and (3.33), the integrals over the magnitude ofu‖ become

2π
∫ ∞

0
du‖ u‖J0(u‖[k2

‖ − 2k‖p‖k̂‖ · p̂‖ + p2
‖]

1/2)

× (exp[−(α(k‖)− α0(p‖))(α(p‖)+ α0(k‖))δ2W(u‖)] − 1
)

(3.37a)

and

2π
∫ ∞

0
du‖ u‖J0(u‖[k2

‖ − 2k‖p‖k̂‖ · p̂‖ + p2
‖]

1/2)

× (exp[−(α(k‖)− α0(p‖))(α(p‖)− α0(k‖))δ2W(u‖)] − 1
)

(3.37b)

respectively, whereJ0(x) is a Bessel function. Thus they depend on the azimuthal
angles ofk‖ and p‖, φ0 and φp, respectively, only through the combinationk̂‖ · p̂‖ =
cos(φ0− φp). At the same time, the ps and sp elements of the matricesm̂(k‖|p‖)n̂(p‖|k‖)
and m̂(k‖|p‖)m̂(p‖|k‖) are proportional to(k̂‖ × p̂‖)3 = − sin(φ0 − φp), in addition to
containing a dependence on cos(φ0 − φp). As a result, the integral over the azimuthal
angle ofp‖ appearing in the definitions of these elements in equations (3.32) and (3.33)
vanishes, because it is an odd function ofφ0 − φp. Consequently the matrix〈B(q‖|k‖)〉(2)
is diagonal, as it should be. After the corresponding integrals in the expressions for the
diagonal elements of the matricesN(k‖) and M(k‖) have been carried out, their remaining
dependence on the wavevectork‖ is only through its magnitude.

It follows from this result, equation (3.18), and equation (3.26) that to order O(η2)

〈R(q‖|k‖)〉 = (2π)2δ(q‖ − k‖)
(
rp(k‖) 0

0 rs(k‖)

)
(3.38)

where

rp(k‖) = e−2α0(k‖)α(k‖)δ2

[
εα0(k‖)− α(k‖)
εα0(k‖)+ α(k‖)+η

2(Npp(k‖)+εα0(k‖)− α(k‖)
εα0(k‖)+ α(k‖)Mpp(k‖))

]
(3.39a)

rs(k‖) = e−2α0(k‖)α(k‖)δ2

[
α0(k‖)− α(k‖)
α0(k‖)+ α(k‖) + η

2(Nss(k‖)+ α0(k‖)− α(k‖)
α0(k‖)+ α(k‖)Mss(k‖))

]
. (3.39b)

When the result given by equations (3.38) is substituted into equation (3.6), and use is made
of the results that in two dimensions

[(2π)2δ(q‖ − k‖)]2 = (2π)2δ(0)(2π)2δ(q‖ − k‖) = S(2π)2δ(q‖ − k‖) (3.40a)
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and that

δ(q‖ − k‖) =
( c
ω

)2 δ(θs− θ0)δ(φs− φ0)

cosθ0 sinθ0
(3.40b)

we obtain 〈
∂R

∂�s

〉
pp
coh

= δ(θs− θ0)δ(φs− φ0)

sinθ0
Rp(θ0) (3.41a)〈

∂R

∂�s

〉
ss

coh

= δ(θs− θ0)δ(φs− φ0)

sinθ0
Rs(θ0) (3.41b)

where the reflectivities for p- and s-polarized electromagnetic radiation,Rp(θ0) andRs(θ0),
respectively, are given by

Rp,s(θ0) =
∣∣∣rp,s(ω

c
sinθ0

)∣∣∣2. (3.42)

3.2. Incoherent scattering

We now turn to the study of the incoherent scattering of x-rays from a two-dimensional,
randomly rough surface. If we substitute equation (3.18) into equation (3.7) we find that
we can express the contribution to the mean DRC from the incoherent component of the
scattered field in the form〈
∂R

∂�s

〉
αβ

incoh

= 1

S

( ω

2πc

)2 cos2 θs

cosθ0
[〈|Bαβ(q‖|k‖)|2〉 − |〈Bαβ(q‖|k‖)〉|2]. (3.43)

The average〈|Bαβ(q‖|k‖)|2〉 is given formally by

〈|Bαβ(q‖|k‖)|2〉 = η2〈Aαβ(q‖|k‖)A∗αβ(q‖|k‖)〉

+η3

[〈
Aαβ(q‖|k‖)

∫ d2r
(1)
‖

(2π)2
[m∗(q‖|r(1)‖ )A∗(r(1)‖ |k‖)]αβ

〉

+
〈∫ d2p

(1)
‖

(2π)2
[m(q‖|p(1)‖ )A(p(1)‖ |k‖)]αβA∗αβ(q‖|k‖)

〉]
+ · · · . (3.44)

To obtain the difference〈|Bαβ(q‖|k‖)|2〉 − |〈Bαβ(q‖|k‖)〉|2 to the lowest non-zero order in
η, the second, in each term on the right-hand side of equation (3.44) we must pair one of
the unconjugated matrix elements with one of the elements in complex conjugate form in
all possible ways, calculate the correlated average of their product, and then multiply the
result by the product of the average of each of the remaining matrix elements. In so doing
we recall that the average ofm(p(i)‖ |p(j)‖ ) is diagonal inp(i)‖ andp(j)‖ and is a multiple of

the unit matrix, and that the average of the matrixA(p(i)‖ |k‖) is diagonal inp(i)‖ andk‖ and
is a diagonal matrix. In this way we find that

〈|Bαβ(q‖|k‖)|2〉 − |〈Bαβ(q‖|k‖)〉|2

= η2

[
[1−X(q‖)+X(q‖)2− · · ·]{Aαβ(q‖|k‖)[1−X∗(q‖)

+X∗(q‖)2− · · ·]A∗αβ(q‖|k‖)}
+[1−X(q‖)+X(q‖)2− · · ·]{mαβ(q‖|k‖)[1−X(k‖)
+X(k‖)2− · · ·]aββ(k‖)[1−X∗(q‖)+X∗(q‖)2− · · ·]A∗αβ(q‖|k‖)}
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+[1−X(q‖)+X(q‖)2− · · ·]{Aαβ(q‖|k‖)[1−X∗(q‖)+X∗(q‖)2− · · ·]
×m∗αβ(q‖|k‖)}[1−X∗(k‖)+X∗(k‖)2− · · ·]a∗ββ(k‖)
+[1−X(q‖)+X(q‖)2− · · ·]{mαβ(q‖|k‖)[1−X(k‖)+X(k‖)2− · · ·]
×aββ(k‖)[1−X∗(q‖)+X∗(q‖)2− · · ·]m∗αβ(q‖|k‖)}

×[1−X∗(k‖)+X∗(k‖)2− · · ·]a∗ββ(k‖)
]

= η2 1

|1+X(q‖)|2
1

|1+X(k‖)|2 {[Aαβ(q‖|k‖)(1+X(k‖))+mαβ(q‖|k‖)aββ(k‖)]
×[A∗αβ(q‖|k‖)(1+X∗(k‖))+m∗αβ(q‖|k‖)a∗ββ(k‖)}. (3.45)

Using the explicit expressions forX(k‖) andaββ(k‖) given by equations (3.25b) and (3.24b),
respectively, we can rewrite equation (3.45) in the form

〈|Bαβ(q‖|k‖)|2〉 − |〈Bαβ(q‖|k‖)〉|2 = η2eRe(α(q‖)−α0(q‖))2δ2
eRe(α(k‖)−α0(k‖))2δ2

×{[e− 1
2 (α

2(k‖)+α2
0(k‖))δ

2
bαβ(q‖|k‖)][e− 1

2 (α
2(k‖)+α2

0(k‖))δ
2
bαβ(q‖|k‖)]∗} (3.46)

where

bαβ(q‖|k‖) = cosh(α(k‖)α0(k‖)δ2)[nαβ(q‖|k‖)+mαβ(q‖|k‖)R(0)β (k‖)]
+ sinh(α(k‖)α0(k‖)δ2)[nαβ(q‖|k‖)−mαβ(q‖|k‖)R(0)β (k‖)] (3.47)

and

R(0)p (k‖) = εα0(k‖)− α(k‖)
εα0(k‖)+ α(k‖) (3.48a)

R(0)s (k‖) = α0(k‖)− α(k‖)
α0(k‖)+ α(k‖) . (3.48b)

The result given by equation (3.46) is not manifestly reciprocal.
In scattering from a two-dimensional rough surface the elements of the scattering matrix

Sαβ(q‖|k‖) defined by

Sαβ(q‖|k‖) = α
1/2
0 (q‖)

α
1/2
0 (k‖)

Rαβ(q‖|k‖) (3.49)

satisfy the reciprocity relations [15]

Spp(q‖|k‖) = Spp(−k‖| − q‖) (3.50a)

Sss(q‖|k‖) = Sss(−k‖| − q‖) (3.50b)

Sps(q‖|k‖) = − Ssp(−k‖| − q‖). (3.50c)

These conditions require that

〈|Bαβ(−k‖| − q‖)|2〉 − |〈Bαβ(−k‖| − q‖)〉|2

= α2
0(q‖)
α2

0(k‖)
[〈Bβα(q‖|k‖)|2〉 − |〈Bβα(q‖|k‖)〉|2]. (3.51)

The result given by equation (3.46) does not satisfy this condition.
However, as in the one-dimensional case, it is possible to transform equation (3.46) into

a form that is manifestly reciprocal. It is shown in appendix B that

n(q‖|k‖)±m(q‖|k‖)R(0)(k‖)

= P(q‖|k‖)J (α(q‖)+ α(k‖)|q‖ − k‖)
α(q‖)+ α(k‖)

(
2α0(k‖)
2α(k‖

)
+O(η) (3.52)
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where

P(q‖|k‖) =


q‖k‖ − α(q‖)q̂‖ · k̂‖α(k‖)

dp(q‖)dp(k‖)
−ω
c

α(q‖)(q̂‖ × k̂‖)3
dp(q‖)ds(k‖)

−ω
c

(q̂‖ × k̂‖)3α(k‖)
ds(q‖)dp(k‖)

ω2

c2

q̂‖ · k̂‖
ds(q‖)ds(k‖)

 . (3.53)

Note that the matrixP(q‖|k‖) satisfies the reciprocity conditions (3.50). It follows, therefore,
that

e−
1
2 (α

2(k‖)+α2
0(k‖))δ

2
b(q‖|k‖) =

[
(α0(k‖)+ α(k‖))e− 1

2 (α0(k‖)+α(k‖))2δ2

+(α0(k‖)− α(k‖))e− 1
2 (α0(k‖)+α(k‖))2δ2

]
J (α(q‖)+ α(k‖)|q‖ − k‖)

α(q‖)+ α(k‖) P(q‖|k‖)

=
[

2α0(k‖)− (α2
0(k‖)− α2(k‖))

∞∑
n=1

1

n!

(−δ2

2

)n
×[(α(k‖)− α0(k‖))2n−1− (α(k‖)+ α0(k‖))2n−1]

]
×J (α(q‖)+ α(k‖)|q‖ − k‖)

α(q‖)+ α(k‖) P(q‖|k‖). (3.54)

However, in view of the relation

α2
0(k‖) = α2(k‖)+ η(ω2/c2) (3.55)

the second term in brackets is of order O(η), and we neglect it. Thus, finally, we have the
result that

〈|Bαβ(q‖|k‖)|2〉 − |〈Bαβ(q‖|k‖)〉|2 = η2eRe(α(q‖)−α0(q‖))2δ2
eRe(α(k‖)−α0(k‖))2δ2

×|2α0(k‖)Pαβ(q‖|k‖)|2
{
J (α(q‖)+ α(k‖)|q‖ − k‖)

α(q‖)+ α(k‖)

×J
∗(α(q‖)+ α(k‖)|q‖ − k‖)

α∗(q‖)+ α∗(k‖)
}
. (3.56)

In this form the reciprocity condition (3.51) is manifestly satisfied.
The result that

{J (γ |Q‖)J ∗(γ |Q‖)} = S e−δ
2Re(γ 2)

∫
d2u‖ e−iQ‖·u‖ [e|γ |

2δ2W(|u‖|) − 1]

= S πa2e−δ
2Re(γ 2)

∞∑
n=1

δ2n|γ |2n
n n!

e−(a
2/4n)Q2

‖ (3.57)

where we have used equations (3.4) and (3.40a), enables us to write the contribution to the
mean DRC from the incoherent component of the scattered x-rays to order O(η2) as〈
∂R

∂�s

〉
αβ

incoh

= 1

4π

(ωa
2c

)2 1

cosθ0
η2
∞∑
n=1

1

n n!

(
δω

c

)2n

× exp

{
−1

n

(ωa
2c

)2
[sin2 θs− 2 sinθs sinθ0 cos(φs− φ0)+ sin2 θ0]

}
×|b̃(n)αβ (θs, φs|θ0, φ0)|2 (3.58)
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where

b̃
(n)
αβ (θs, φs|θ0, φ0) = e−

1
2 (ωδ/c)

2[(cos2 θs−η)1/2+(cos2 θ0−η)1/2]2

×e
1
2 (ωδ/c)

2[(cos2 θs−η)1/2−cosθs]2
e

1
2 (ωδ/c)

2[(cos2 θ0−η)1/2−cosθ0]2

×2 cosθsPαβ(θs, φs|θ0, φ0)2 cosθ0[(cos2 θs−η)1/2+(cos2 θ0− η)1/2]n−1 (3.59)

with

Ppp(θs, φs|θ0, φ0) = sinθs sinθ0− (cos2 θs− η)1/2 cos(φs− φ0)(cos2 θ0− η)1/2
[ε cosθs+ (cos2 θs− η)1/2][ε cosθ0+ (cos2 θ0− η)1/2]

(3.60a)

Pps(θs, φs|θ0, φ0) = (cos2 θs− η)1/2 sin(φs− φ0)

[ε cosθs+ (cos2 θs− η)1/2][cosθ0+ (cos2 θ0− η)1/2]
(3.60b)

Psp(θs, φs|θ0, φ0) = sin(φs− φ0)(cos2 θ0− η)1/2
[cosθs+ (cos2 θs− η)1/2][ε cosθ0+ (cos2 θ0− η)1/2]

(3.60c)

Pss(θs, φs|θ0, φ0) = cos(φs− φ0)

[cosθs+ (cos2 θs− η)1/2][cosθ0+ (cos2 θ0− η)1/2]
. (3.60d)

As in the one-dimensional case we can simplify the result given by equations (3.58)–
(3.60) using equation (2.57) and replacing the explicit factors ofε by unity in the
denominators in the expressions (3.60) for thePαβ(θs, φs|θ0, φ0). In this way we obtain

b̃
(n)
αβ (θs, φs|θ0, φ0) = exp

{
−1

2

(
ωδ

c

)2

[(cos2 θs− η)1/2+ (cos2 θ0− η)1/2]2

}

× (2 cosθs)pαβ(θs, φs|θ0, φ0)(2 cosθ0)

[cosθs+ (cos2 θs− η)1/2][cosθ0+ (cos2 θ0− η)1/2]

×[(cosθs− η)1/2+ (cos2 θ0− η)1/2]n−1 (3.61)

with

ppp(θs, φs|θ0, φ0) = sinθs sinθ0− (cos2 θs− η)1/2 cos(φs− φ0)(cos2 θ0− η)1/2 (3.62a)

pps(θs, φs|θ0, φ0) = (cos2 θs− η)1/2 sin(φs− φ0) (3.62b)

psp(θs, φs|θ0, φ0) = sin(φs− φ0)(cos2 θ0− η)1/2 (3.62c)

pss(θs, φs|θ0, φ0) = cos(φs− φ0). (3.62d)

4. Results

In section 2 we have obtained explicit expressions for the contributions to the mean scattering
amplitude〈R(q|k)〉 for a one-dimensional random surface that are of zero and second order
in η(ω). The contribution to the reflectivity from the zero-order term, for the scattering
of p-polarized x-rays, given by the first term in equation (2.37), and for the scattering of
s-polarized x-rays by the first term in equation (2.43),

Rp(θ0) =
∣∣∣∣ε cosθ0− (cos2 θ0− η)1/2
ε cosθ0+ (cos2 θ0− η)1/2

∣∣∣∣2 exp

[
−4

(
ωδ

c

)2

cosθ0Re(cos2 θ0− η)1/2
]

(4.1a)

Rs(θ0) =
∣∣∣∣cosθ0− (cos2 θ0− η)1/2
cosθ0+ (cos2 θ0− η)1/2

∣∣∣∣2 exp

[
−4

(
ωδ

c

)2

cosθ0Re(cos2 θ0− η)1/2
]

(4.1b)

has the form of the Fresnel reflectivity multiplied by a factor similar to the Debye–Waller
factor, and coincides with the result obtained in [7, 10, 13]. However, while in [7, 13] this
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result was obtained in the first-order distorted-wave Born approximation as an approximate
result, valid only for relatively weakly rough surfaces,(δ/λ) cosθ0 � 1, we have summed
all the terms in the perturbation series for the mean scattering amplitude which are of zero
order inη(ω) without imposing any restrictions on the RMS height of the surface beyond
that implied by our adoption of the Rayleigh hypothesis.

For a lossless medium the reflectivities given by equations (4.1) become equal to unity
when the angle of incidenceθ0 is equal to or greater than the critical angle for total internal
reflectionθc = arccos

√
η, at which the term(cos2 θ0−η)1/2 goes to zero, and then becomes

purely imaginary forθc < θ0 < π/2. This is because the Fresnel reflectivity is unity in this
range of angles of incidence, while the exponent of the Debye–Waller factor vanishes or
is purely imaginary. In view of the smallness ofη(ω) the difference between the Fresnel
reflectivities for the scattering of p- and s-polarized x-rays is small. In figure 3(a) the
reflectivity given by equation (4.1a), calculated for a one-dimensional, randomly rough
gold surface, is plotted for different values of the roughness parameters as a function of
the grazing angle of incidencēθ0 = π/2− θ0. We see that it is equal to unity for̄θ0 < θ̄c,
whereθ̄c is the grazing critical angle for total internal reflection, and then decreases rapidly
for θ̄0 > θ̄c, the rate of decrease increasing with increasing surface roughness.

The lowest-order correction to the reflectivity given by equations (4.1) is of second
order in η(ω), and is given by the second term in equations (2.37) and (2.43). Although
this correction is small, it is important because it describes the decrease of the reflectivity
from unity in the regime of total internal reflection. In addition, since this correction
depends on the surface height autocorrelation functionW(|x1|), in contrast with the result
given by equation (4.1) which does not, and which can therefore be used to determine only
the RMS height of the surface, an experimental determination of it affords the possibility of
determiningW(|x1|), or at least the transverse correlation lengtha of the surface roughness.

To illustrate the content of this result it is necessary to calculate the integrals given by
equations (2.34). The functions

g1(p|k) = e−(α(p)−α(k))(α0(p)−α0(k))δ
2

×
∫ ∞
−∞

du e−i(k−p)u
[
e−(α(k)−α0(p))(α(p)−α0(k))δ

2W(|u|) − 1
]

(4.2a)

g2(p|k) = e−(α(p)−α(k))(α0(p)+α0(k))δ
2

×
∫ ∞
−∞

du e−i(k−p)u
[
e−(α(k)−α0(p))(α(p)+α0(k))δ

2W(|u|) − 1
]

(4.2b)

appearing in the integrands are often encountered in scattering problems, and can be
calculated in a standard manner by expanding the exponential in the integrand in a Taylor
series and evaluating the Fourier transforms of the Gaussian height autocorrelation function:

g1,2(p|k) = e−(α(p)−α(k))(α0(p)∓α0(k))δ
2

×
∞∑
n=1

(−1)nδ2n

n!
√
n
(α(k)− α0(p))

n(α(p)∓ α0(k))
n exp

[
− (p − k)

2a2

4n

]
. (4.3)

The resulting sums converge slowly even for comparatively weak roughnesses [29]. Several
approaches to improve the convergence of the series have been proposed [29, 30]. We note
that because the factor exp[−(α(p) − α(k))(α0(p) ± α0(k))δ

2] in the functionsg1,2(p|k)
becomes exp(p2δ2) in the limit |p| → ∞ it may appear that the integrals overp in
equations (2.34) diverge. In fact, this is not the case. The sums in equations (4.3) cancel
this exponential increase ofg1,2(p|k). However, in order to effect this cancellation an
infinite number of terms in the series must be summed, so that the poor convergence of the
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Figure 3. (a) The reflectivity (4.1a) of a one-dimensional randomly rough gold surface
illuminated by p-polarized x-rays of wavelengthλ = 1.54 Å, as a function of the grazing angle
of incidenceθ̄0 = π/2− θ0. The surface roughness is characterized by a transverse correlation
lengtha = 20λ, and two values of the RMS height,δ = λ (solid line) andδ = 2λ (dashed line).
(b) The reflectivity of a one-dimensional randomly rough gold surface illuminated by p-polarized
x-rays of wavelengthλ = 1.54 Å, calculated by including both the zero- and second-order terms
in equation (2.43), as a function of the grazing angle of incidenceθ̄0 = π/2− θ0. In the inset
a plot of 1− R(θ̄0) is shown for grazing angles of incidence smaller than, and slightly larger
than,θ̄c. The surface roughness is characterized by a transverse correlation lengtha = 20λ, and
two values of the RMS height,δ = λ (solid line) andδ = 2λ (dashed line). (c) The same as
figure 3(b), but for the scattering of s-polarized x-rays.
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Figure 3. (Continued)

series makes the direct calculation of the integrals in equations (2.34) a difficult problem.
To improve the behaviour of the functionsg1,2(p|k) we rewrite them in the form

g1,2(p|k) = exp
[−(α(p)−α(k))(α0(p)∓α0(k))δ

2
]

exp
[−(α(k)−α0(p))(α(p)∓α0(k))δ

2
]

×
∫ ∞
−∞

du exp[−i(k − p)u]

{
exp

[
(α(k)−α0(p))(α(p)∓ α0(k))δ

2[1−W(|u|)]
− exp

[
(α(k)− α0(p))(α(p)∓ α0(k))δ

2
]}
. (4.4)

As a result the exponential factor multiplying the integral does not grow withp→∞. To
calculate the Fourier integral we now expand the exponentials in the integrand in a Taylor
series

exp
[
(α(k)−α0(p))(α(p)∓α0(k))δ

2[1−W(|u|)]]− exp
[
(α(k)−α0(p))(α(p)∓ α0(k))δ

2
]

=
∞∑
n=0

δ2n

n!
(α(k)− α0(p))

n(α(p)± α0(k))
n
{
[1−W(|u|)]n − 1

}
. (4.5)

Making use of the binomial representation of [1−W(|u|)]n and integrating overu we obtain

g1,2(p|k) = exp
[−(α(p)−α(k))(α0(p)∓α0(k))δ

2
]

exp
[−(α(k)−α0(p))(α(p)∓α0(k))δ

2
]

×
∞∑
n=1

n∑
m=1

δ2n

(n−m)!m!
√
m
(α(k)− α0(p))

n(α(p)± α0(k))
ne−(p−k)

2a2/4m.

(4.6)

Despite the double summation, the series in equation (4.6) converges faster than that in
equation (4.3). What is more important, the identical transformation we have used to
calculate the integral (4.3) allows us to evaluate easily the integrals overp in equations
(2.34).

In figures 3(b) and (c) we present the reflectivities of a one-dimensional random surface
calculated for the case of the scattering of p-polarized x-rays from equation (2.40) with
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the use of equation (2.37) and for the case of the scattering of s-polarized x-rays from
equation (2.42) with the use of equation (2.43), respectively. Although the contribution to
the reflectivity of second order inη(ω) is small, it is important as it describes the losses
in the regime of total internal reflection. Since the reflectivity drops from unity to almost
zero in a very narrow range of angles of incidence, in the insets to figures 3(b) and (c) the
deviation of the reflectivity from unity, 1−R(θ̄0), is shown for grazing angles of incidence
smaller than the grazing critical angle for total reflectionθ̄c.

The reflectivity of a two-dimensional random surface has been obtained in section 3 and
is given by equations (3.38) and (3.39). It has the form of a sum of the Fresnel reflectivity
and the correction of the lowest order inη(ω), η2(ω), multiplied by a Debye–Waller factor.
As in the case of a one-dimensional random surface, the correction contains integrals, given
by equations (3.32) and (3.33), which can be calculated in the manner described above or,
in contrast to the one-dimensional case, by the method proposed in [30].

In figure 4 we present the reflectivity for p- and s-polarized x-rays scattered from a
two-dimensional randomly rough gold surface. We note that, as pointed out in section 2,
in the case of interest to us, namely that of grazing incidence, the difference between the
results for p- and s-polarizations is unobservable.

We now turn to the contribution to the mean DRC from the incoherent component of
the scattered x-rays of p- and s-polarizations, given for a one-dimensional random surface
by equations (2.56), (2.58) and equations (2.59)–(2.60), respectively. It has been calculated
to the lowest order inη(ω) (the second), and its reciprocal forms, given by equations (2.58)
and (2.60), have been derived in the limit(δ/λ)

√
η(ω)� 1. In this case, our result for the

contribution to the mean DRC from the incoherent component of the scattered x-rays of
s-polarization, given by equation (2.60), coincides with the results obtained in the first-order
distorted-wave Born approximation, or the modified Born approximation, in the limit of a
weakly rough surface(δ/λ) cosθ0� 1 [2, 7]. As in the case of the reflectivity, our results
for the incoherent scattering are not limited by this condition. However, at small grazing
angles of incidence and scattering where our results coincide with the results of the first-order
distorted-wave Born approximation [7], or the modified Born approximation [2], the two
limiting conditions are practically identical, because for such angles cosθ0,s 6

√
η(ω). We

note, however, that the expressions (2.56b) and (2.59) remain valid even when the inequality
(δ/λ)

√
η(ω)� 1 breaks down, and for arbitrary angles of incidence and scattering.

The contribution to the mean DRC from the incoherent component of the x-rays scattered
from a one-dimensional random gold surface, plotted as a function of the grazing scattering
angle for different grazing angles of incidence, is shown in figure 5(a), and for different
values of the roughness parameters in figure 5(b) for a fixed grazing angle of incidence. In
figure 6 the contribution to the mean DRC from the incoherent component of the scattered
x-rays is plotted as a function of the angle of incidence for a fixed angle of scattering.
The plots in figures 5 and 6 show the sharp asymmetric peak atθs = θc, and atθ0 = θc,
respectively, called the Yoneda peak [3]. This peak arises from the sharp feature atθs,0 = θc

in the factors ∣∣∣∣∣ 2 cosθ0,s

ε cosθ0,s+
√

cos2 θ0,s− η(ω)

∣∣∣∣∣
2

(4.7)

present in the functioñbn(θs, θ0), which are the Fresnel transmission coefficients that
determine the electromagnetic field at the surface.

The contribution to the mean DRC from the incoherent component of the x-rays scattered
from a two-dimensional random surface is given by equations (3.58)–(3.62). As in the case
of a one-dimensional random surface, while the expressions (3.61) and (3.62) have been
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Figure 4. The reflectivity of a two-dimensional randomly rough gold surface illuminated by
x-rays of wavelengthλ = 1.54 Å, calculated by including both the zero- and second-order terms
in equation (3.39), as a function of the grazing angle of incidence. The surface roughness is
characterized by a transverse correlation lengtha = 20λ, and two values of the RMS height,
δ = λ (solid line) andδ = 2λ (dashed line). (a) Rpp(θ̄0) and (b) Rss(θ̄0).

obtained in the limit(δ/λ)
√
η(ω) � 1, the expressions (3.59) and (3.61) are valid when

this inequality breaks down and for arbitrary angles of incidence and scattering.
In the in-plane (φs = φ0 = 0◦), co-polarized (p→ p, s→ s) scattering of x-rays from

a two-dimensional random surface the contribution to the mean DRC from the incoherent
component of the scattered x-rays, shown in figures 7(a) and (b), also displays a Yoneda
peak when the grazing polar scattering angleθ̄s equals the grazing critical anglēθc, and
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Figure 5. The contribution to the mean DRC from the incoherent component of the scattered
x-rays as a function of the grazing scattering angleθ̄s = π/2− θs, when p-polarized x-rays
of wavelengthλ = 1.54 Å are incident on a one-dimensional randomly rough gold surface
characterized by a transverse correlation lengtha = 10λ. (a) For several grazing angles of
incidence,θ̄0 = 0.4◦ (solid line), θ̄0 = 0.52◦ (dashed line), and̄θ0 = 0.7◦ (dash-dotted line), and
the RMS heightδ = λ. (b) For a fixed grazing angle of incidencēθ0 = 0.4◦, for three values
of the RMS height;δ = λ (solid line), δ = 2λ (dashed line), andδ = 3λ (dash-dotted line).

the curves for p→ p scattering coincide with those for s→ s scattering. However, for
slightly out-of-plane (φ0 = 0◦, φs = 2◦), cross-polarized (p→ s, s→ p) scattering, the
results are qualitatively different in the two cases. For p→ s scattering (figure 8(a)) a
Yoneda peak occurs for̄θs = θ̄c for grazing angles of incidencēθ0 smaller and greater
than θ̄c. The intensity of this peak, however, is nearly eight orders of magnitude lower
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Figure 6. The contribution to the mean DRC from the incoherent component of the scattered
x-rays as a function of the grazing angle of incidenceθ̄0 = π/2 − θ0, when p-polarized x-
rays of wavelengthλ = 1.54 Å are incident on a one-dimensional randomly rough gold surface
characterized by the RMS heightδ = 1λ and a transverse correlation lengtha = 10λ, for several
grazing angles of scattering,̄θs = 0.4◦ (solid line), θ̄s = 0.52◦ (dashed line), and̄θs = 0.7◦
(dash-dotted line).

than the intensity of the Yoneda peak observed in in-plane p→ p and s→ s scattering.
When the grazing angle of incidencēθ0 exactly equals the grazing critical angleθ̄c, the
contribution to the mean DRC vanishes due to the presence of the factor

√
cos2 θ0− η in

equation (3.62c). In contrast, in s→ p scattering (figure 8(b)), instead of a Yoneda peak
when θ̄s equalsθ̄c, the contribution to the mean DRC vanishes there instead, for grazing
angles of incidence smaller than, equal to, and greater thanθ̄c due to the presence of the
factor

√
cos2 θs− η in equation (3.62b). The magnitude of this contribution to the mean

DRC is lower by nearly seven orders of magnitude than the contribution from in-plane
p → p and s→ s scattering. In view of the weakness of the cross-polarized scattering,
it will be a very difficult experimental problem to observe the features displayed by the
corresponding contributions to the mean DRC.

5. Conclusions

We have presented in this paper a simple reciprocal theory of the scattering of x-rays
from one- and two-dimensional, randomly rough surfaces. This has been accomplished by
obtaining a solution of the reduced Rayleigh equation for the scattering of electromagnetic
waves from such surfaces not as an expansion in powers of the surface profile function,
but as an expansion in powers of the small parameterη(ω) = 1 − ε(ω). However, in
carrying out this expansion we have been careful not to expand the functionsα(k) =
(ω/c)(cos2 θ0 − η(ω))1/2 andα(q) = (ω/c)(cos2 θs− η(ω))1/2 appearing in the solution in
powers ofη(ω). This is because it is the vanishing of these functions when the angle of
incidenceθ0 and the scattering angleθs equal the critical angle for total internal reflection,
θc = arccos

√
η(ω), and their transformation into purely imaginary quantities forθ0 or θs
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Figure 7. The contribution to the mean DRC from the incoherent component of the scattered
x-rays as a function of the grazing scattering angleθ̄s = π/2− θs, when x-rays of wavelength
λ = 1.54 Å are incident on a two-dimensional randomly rough gold surface characterized by an
RMS heightδ = 2λ and a transverse correlation lengtha = 20λ, for several grazing angles of
incidence,θ̄0 = 0.4◦ (solid line), θ̄0 = 0.52◦ (dashed line), and̄θ0 = 0.7◦ (dash-dotted line), for
in-plane co-polarized (a) p→ p and (b) s→ s scattering.

exceedingθc, that gives rise to the Yoneda peaks in the angular distribution of the intensity
of the scattered x-rays.

For both one- and two-dimensional randomly rough surfaces our zero-order result for
the reflectivity coincides with that obtained earlier by Nevot and Croce [10] by a rather
different approach. It equals unity for grazing angles of incidenceθ̄0 smaller than the grazing
critical angle for total internal reflection̄θc, and decreases rapidly asθ̄0 increases beyond̄θc.
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Figure 8. The contribution to the mean DRC from the incoherent component of the scattered
x-rays as a function of the grazing scattering angleθ̄s = π/2− θs, when x-rays of wavelength
λ = 1.54 Å are incident on a two-dimensional randomly rough gold surface characterized by an
RMS heightδ = 2λ and a transverse correlation lengtha = 20λ, for several grazing angles of
incidence,θ̄0 = 0.4◦ (solid line), θ̄0 = 0.52◦ (dashed line), and̄θ0 = 0.7◦ (dash-dotted line), for
out-of-plane (φ0 = 0◦, φs = 2◦) cross-polarized (a) p→ s and (b) s→ p scattering.

However, we have also obtained the leading correction to this result, which is of O(η(ω)2).
It shows that for 0< θ̄0 < θ̄c the surface roughness decreases the reflectivity slightly below
unity, with the deviation of the reflectivity from unity increasing with increasing roughness.
The surface roughness also shifts the grazing critical angle for total internal reflection to
larger values. This latter result has also been obtained recently [31] by an application of
self-energy perturbation theory [15], which will be reported elsewhere.
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Figure 9. The contribution to the mean DRC from the incoherent component of the scattered
light as a function of the grazing scattering angleθ̄s = π/2− θs, when p-polarized light of
wavelengthλ = 632.8 nm is incident from a dielectric medium with an index of refraction
n1 = 1.61 onto the one-dimensional, randomly rough interface between it and a second dielectric
medium with an index of refractionn2 = 1.52. The RMS heightδ = 0.1λ, and the transverse
correlation lengtha = 5λ for several grazing angles of incidence,θ̄0 = 12◦ (solid line),
θ̄0 = 19.25◦ (dashed line), and̄θ0 = 24◦ (dash-dotted line).θc = 70.75◦.

We note that our results for the contribution to the mean DRC from the incoherent
component of the scattered x-rays, once the approximations given by equations (2.57) have
been made, coincide with the results of the distorted-wave Born approximation [6]. Without
these approximations the results given by equations (2.56), (2.59) and (3.58)–(3.60) should
be more accurate than those of the distorted-wave Born approximation for larger values of
η(ω) than those corresponding to the x-ray frequency range. Moreover, the approach used
in the present work provides a direct and simple way of obtaining corrections to the results
given by equations (2.56), (2.59) and (3.58)–(3.60) of higher order inη(ω), e.g. of order
O(η3) and O(η4). Such calculations will be reported elsewhere.

The results obtained here are valid at small angles of incidence and scattering, like the
results of the Born approximation but, unlike the Born approximation, are also valid in the
vicinity of the critical angle for total internal reflection at the interface between vacuum and
the scattering medium. In their validity for small grazing angles of incidence and scattering,
our results also contrast with the results of the distorted-wave Born approximation.

Although the derivation of the results obtained here has been carried out in the context of
the scattering of electromagnetic waves from solid surfaces, the results can also be applied
to the scattering of x-rays from liquid surfaces, if the corresponding power spectrum for the
surface roughness is used. The latter has the form [32]

g(|k‖|) =
∫

d2x‖W(|x‖|) e−ik‖·x‖ = kBT

γ

θ(kc− |k‖|)
κ2+ k2

‖
(5.1)

whereγ is the surface tension of the liquid at the absolute temperatureT , kB is Boltzmann’s
constant, andκ = (gρ/γ )1/2 is the gravitational cutoff, withρ the mass density of the
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liquid andg the acceleration due to gravity.θ(x) is the Heaviside unit step function, and
the wavenumberkc is the upper wavevector cutoff for the thermally excited surface waves
(surface ripplons) whose amplitudes roughen the liquid surface. The value ofkc is of the
order of the reciprocal of a few atomic diameters [33].

Finally, it seems likely that the approach used here, namely the expansion of the
scattering amplitude in powers ofη(ω), may also be useful in theoretical studies of the
multiple scattering of electromagnetic waves incident from one dielectric medium onto
its randomly rough interface with a second dielectric medium, when the differenceη(ω)

between their dielectric constants is small, of the order of a few tenths. The functionη(ω)

would then serve as a new small parameter in the theory of the scattering of electromagnetic
waves from such interfaces. As an illustration of this application of our approach, we present
in figure 9 the contribution to the mean DRC from the incoherent component of the scattered
light, when p-polarized light of wavelengthλ = 632.8 nm is incident from a dielectric
medium with an index of refractionn1 = 1.61 onto the one-dimensional, randomly rough
interface between it and a second dielectric medium with an index of refractionn2 = 1.52,
obtained from a second-order result analogous to the one given by equation (2.56). The
critical angle for total internal reflection in this case isθc = 70.75◦. We see a well defined
Yoneda peak at this value of the scattering angle. No evidence of enhanced backscattering is
present in this result. However, the addition of the leading corrections (of order O(η3) and
O(η4)) to the terms of second order inη(ω) obtained here for the contribution to the mean
DRC from the incoherent component of the scattered light may be sufficient to reproduce the
enhanced backscattering of light from such interfaces that has been observed in the results of
computer simulation studies of such scattering [34]. This possibility is now being explored.
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Appendix A.

In this appendix we show how the results given by equations (2.52) are obtained.
Using the following expansion of the functionJ (γ |Q) defined by equation (2.14),

J (γ |Q) =
∞∑
n=1

(−iγ )n

n!
ζ̂ (n)(Q) (A.1)

where

ζ̂ (n)(Q) =
∫ ∞
−∞

dx1 e−iQx1ζ n(x1), (A.2)

and the explicit expressions forR0(k) given by equation (2.16a) and form(q|k) andn(q|k)
given by equations (2.19b) and (2.19c), respectively, we find that

n(q|k)±m(q|k)R0(k) = 1

d(q)d(k)

∞∑
n=1

(−i)n

n!
ζ̂ (n)(q − k)

×
[
(qk − α(q)α0(k))(εα0(k)+ α(k, ω))(α(q)+ α0(k))

n−1

±(qk + α(q)α0(k))(εα0(k)− α(k, ω))(α(q)− α0(k))
n−1

]
. (A.3)
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We next note that

α2
0(k) = α2(k)+ η(ω2/c2) (A.4)

and

ε = 1− η (A.5)

so that

(qk−α(q)α0(k))(εα0(k)+α(k, ω))
= qk(εα0(k)+α(k, ω))−α(q)(εα2

0(k)+α0(k)α(k, ω))

= qk(α0(k)+ α(k, ω))− α(q)α(k, ω)(α0(k)+ α(k, ω))
−ηqkα0(k)+ ηα(q)α2(k)− η(1− η)(ω2/c2)α(q). (A.6)

However, since the contribution to〈|B(q|k)|2〉 − |〈B(q|k)〉|2 given by equation (2.47) is
already proportional toη2, we shall neglect all terms on the right-hand side of equation
(A.6) that are explicitly proportional toη as of higher order inη than the order to which
we are working. Thus, we find that

(qk − α(q)α0(k))(εα0(k)+ α(k, ω))
= (qk − α(q)α(k, ω))(α0(k)+ α(k, ω))+O(η). (A.7)

In exactly the same way we find that

(qk+α(q)α0(k))(εα0(k)−α(k, ω))
= qk(α0(k)−α(k, ω))+α(q)α(k, ω)(α(k, ω)−α0(k))

−ηqkα0(k)− η α(q)α2(k)+ η(1− η)(ω2/c2)α(q)

= (qk − α(q)α(k, ω))(α0(k)− α(k, ω))+O(η). (A.8)

When the results given by equations (A.6)–(A.7) are substituted into equation (A.3), the
latter becomes

n(q|k)±m(q|k)R0(k) = qk − α(q)α(k, ω)
d(q)d(k)

∞∑
n=1

(−i)n

n!
ζ̂ (n)(q − k)

×[(α0(k)+ α(k, ω))(α(q)+ α0(k))
n−1

±(α0(k)− α(k, ω))(α(q)− α0(k))
n−1] +O(η). (A.9)

To simplify the notation we introduce the definitions

α(q) = x α(k, ω) = y α0(k) = z (A.10)

together with the functions(n > 1)

Fn = (z + y)(x + z)n−1+ (z − y)(x − z)n−1 (A.11a)

Gn = (z + y)(x + z)n−1− (z − y)(x − z)n−1. (A.11b)

The functionFn is associated with the+ sign in parentheses on the right-hand side of
equation (A.9), whileGn is associated with the− sign in these parentheses. The functions
Fn andGn satisfy a pair of coupled finite-difference equations:

Fn+1 = xFn + zGn Gn+1 = xGn + zFn (A.12a)

with

F1 = 2z G1 = 2y. (A.12b)
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On the basis of these results we define new functionsfn andgn by

Fn = 2zfn Gn = 2gn. (A.13)

These functions satisfy the finite-difference equations

fn+1 = xfn + gn (A.14a)

gn+1 = xgn + z2fn (A.14b)

subject tof1 = 1, g1 = y. However, from the definitions (A.10) we find that

z2 = y2+ η(ω2/c2). (A.15)

We seek results forFn andGn that contain no terms explicitly proportional toη, for the
reason given following equation (A.6).

We therefore drop the second term on the right-hand side of equation (A.15), and rewrite
equation (A.14b) as

gn+1 = xgn + y2fn. (A.16)

To solve equations (A.14a) and (A.16) we introduce the generating functions

f (t) =
∞∑
n=1

tnfn g(t) =
∞∑
n=1

tngn. (A.17)

They satisfy the pair of coupled equations

f (t) = xtf (t)+ tg(t)+ t g(t) = xtg(t)+ y2tf (t)+ yt (A.18)

whose solutions are

f (t) = t

1− (x + y)t =
∞∑
n=1

tn(x + y)n−1 (A.19a)

g(t) = yt

1− (x + y)t =
∞∑
n=1

tny(x + y)n−1. (A.19b)

It follows from equations (A.10), (A.13), (A.17), and (A.19), that

Fn = 2z(x + y)n−1 = 2α0(k)(α(q)+ α(k, ω))n−1 (A.20a)

Gn = 2y(x + y)n−1 = 2α(k, ω)(α(q)+ α(k, ω))n−1 (A.20b)

where the terms neglected in obtaining these results are at least of order O(η).
When the results given by equations (A.20) are used in equation (A.9), we find that

n(q|k)±m(q|k)R0(k) = qk − α(q)α(k, ω)
d(q)d(k)

×
∞∑
n=1

(−i)n

n!
(α(q)+ α(k, ω))n−1ζ̂ (n)(q − k)

{
2α0(k)

2α(k, ω)
(A.21a)

= qk − α(q)α(k, ω)
d(q)d(k)

J (α(q)+ α(k, ω)|q − k)
α(q)+ α(k, ω)

{
2α0(k)

2α(k, ω)
(A.21b)

where we have used equation (A.1) once more. These are the results given by equations
(2.52).
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Appendix B.

In this appendix we derive the result given by equation (3.52).
Our starting point is the expansion

J (γ |Q‖) =
∞∑
n=1

(−i)n

n!
γ nζ̂ (n)(Q‖), (B.1)

where

ζ̂ (n)(Q‖) =
∫

d2x‖e−iQ‖·x‖ζ n(x‖). (B.2)

Using this we can write the matricesn(q‖|k‖)±m(q‖|k‖)R(0)(k‖) in the form

n(q‖|k‖)±m(q‖|k‖)R(0)(k‖) =
∞∑
n=1

(−i)n

n!
ζ̂ (n)(q‖ − k‖)

×




Npp(q‖|k‖)[εα0(k‖)+ α(k‖)]
dp(q‖)dp(k‖)

Nps(q‖|k‖)[α0(k‖)+ α(k‖)]
dp(q‖)ds(k‖)

Nsp(q‖|k‖)[εα0(k‖)+ α(k‖)]
ds(q‖)dp(k‖)

Nss(q‖|k‖)[α0(k‖)+ α(k‖)]
ds(q‖)ds(k‖)


×[α(q‖)+ α0(k‖)]n−1

±


Mpp(q‖|k‖)[εα0(k‖)− α(k‖)]

dp(q‖)dp(k‖)
Mps(q‖|k‖)[α0(k‖)− α(k‖)]

dp(q‖)ds(k‖)

Msp(q‖|k‖)[εα0(k‖)− α(k‖)]
ds(q‖)dp(k‖)

Mss(q‖|k‖)[α0(k‖)− α(k‖)]
ds(q‖)ds(k‖)



×[α(q‖)− α0(k‖)]n−1

. (B.3)

We examine the numerators of each of the matrix elements in turn, with the use of the results
given by equations (3.10)–(3.11). In so doing we shall make repeated use of equation (3.55),
and replace explicit factors ofε by unity, to obtain results to the lowest order inη. In what
follows the first entry followingαβ: is the numerator of the corresponding element of the
first matrix on the right-hand side of equation (B.3); the second entry is the numerator of
the corresponding element of the second matrix.

pp : [q‖k‖ − α(q‖)q̂‖ · k̂‖α0(k‖)][εα0(k‖)+ α(k‖)]
= q‖k‖[α0(k‖)+ α(k‖)] − α(q‖)q̂‖ · k̂‖[α2

0(k‖)+ α0(k‖)α(k‖)] +O(η)

= q‖k‖[α0(k‖)+ α(k‖)] − α(q‖)q̂‖ · k̂‖α(k‖)[α(k‖)+ α0(k‖)] +O(η)

= [q‖k‖ − α(q‖)q̂‖ · k̂‖α(k‖)][α(k‖)+ α0(k‖)] +O(η) (B.4a)

[q‖k‖ + α(q‖)q̂‖ · k̂‖α0(k‖)][εα0(k‖)− α(k‖)]
= q‖k‖[α0(k‖)− α(k‖)] + α(q‖)q̂‖ · k̂‖[α2

0(k‖)− α0(k‖)α(k‖)] +O(η)

= q‖k‖[α0(k‖)− α(k‖)] + α(q‖)q̂‖ · k̂‖α(k‖)[α(k‖)− α0(k‖)] +O(η)

= [q‖k‖ − α(q‖)q̂‖ · k̂‖α(k‖)[α0(k‖)− α(k‖)] +O(η) (B.4b)
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ps : −ω
c
(α(q‖)(q̂‖ × k̂‖)3[α0(k‖)+ α(k‖)] (B.5a)

− ω
c
α(q‖)(q̂‖ × k̂‖)3[α0(k‖)− α(k‖)] (B.5b)

sp : −ω
c
(q̂‖ × k̂‖)3α0(k‖)[εα0(k‖)+ α(k‖)]

= − ω
c
(q̂‖ × k̂‖)3[α2

0(k‖)+ α0(k‖)α(k‖)] +O(η)

= − ω
c
(q̂‖ × k̂‖)3α(k‖)[α(k‖)+ α0(k‖)] +O(η) (B.6a)

ω

c
(q̂‖ × k̂‖)3α0(k‖)[εα0(k‖)− α(k‖))]

= ω

c
(q̂‖ × k̂‖)3[α2

0(k‖)− α0(k‖)α(k‖)] +O(η)

= ω

c
(q̂‖ × k̂‖)3α(k‖)[α(k‖)− α0(k‖)] +O(η) (B.6b)

ss :
ω2

c2
q̂‖ · k̂‖[α0(k‖)+ α(k‖)] (B.7a)

ω2

c2
q̂‖ · k̂‖[α0(k‖)− α(k‖)]. (B.7b)

Collecting these results, we can rewrite equation (B.3) in the form

n(q‖|k‖)±m(q‖|k‖)R(0)(k‖) =
∞∑
n=1

(−i)n

n!
ζ̂ (n)(q‖ − k‖)

×P(q‖|k‖)[(α0(k‖)+ α(k‖))(α(q‖)+ α0(k‖))n−1

±(α0(k‖)− α(k‖))(α(q‖)− α0(k‖))n−1] +O(η) (B.8)

where the matrixP(q‖|k‖) has been defined by equation (3.53). With the aid of the results
given by equations (A.10), (A.11), and (A.20), equation (B.8) becomes

n(q‖|k‖)±m(q‖|k‖)R(0)(k‖) =
∞∑
n=1

(−i)n

n!
ζ̂ (n)(q‖ − k‖)

×P(q‖|k‖)
(

2α0(k‖)
2α(k‖)

)
(α(q‖)+ α(k‖))n−1+O(η)

= P(q‖|k‖)J (α(q‖)+ α(k‖)|q‖ − k‖)
α(q‖)+ α(k‖)

(
2α0(k‖)
2α(k‖)

)
+O(η) (B.9)

where we have used equation (B.1) again. This is the result expressed by equation (3.52).
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