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Abstract. On the basis of the method of reduced Rayleigh equations we present a simple
and reciprocal theory of the coherent and incoherent scattering of x-rays from one- and two-
dimensional randomly rough surfaces, that appears to be free from the limitations of earlier
theories of such scattering based on the Born and distorted-wave Born approximations. In our
approach, the reduced Rayleigh equation for the scattering amplitude(s) is solved perturbatively,
with the small parameter of the theonyw) = 1 — ¢(w), wheree(w) is the dielectric function

of the scattering medium. The magnitudeng) for x-rays is in the range from 16 to 103,
depending on the wavelength of the x-rays. The contributions to the mean differential reflection
coefficient from the coherent and incoherent components of the scattered x-rays are calculated
through terms of second order if(w). The resulting expressions are valid to all orders in

the surface profile function. The results for the incoherent scattering display a Yoneda peak
when the scattering angle equals the critical angle for total internal reflection from the vacuum-
scattering medium interface for a fixed angle of incidence, and when the angle of incidence
equals the critical angle for total internal reflection for a fixed scattering angle. The approach
used here may also be useful in theoretical studies of the scattering of electromagnetic waves
from randomly rough dielectric—dielectric interfaces, when the difference between the dielectric
constants on the two sides of the interface is small.

1. Introduction

The scattering of x-rays from rough surfaces and interfaces has been used extensively as a
powerful experimental tool for investigating surface and interface properties (see, e.g., the
recent review articles [1, 2] and references therein). A significant feature of x-ray scattering
from condensed media is that the dielectric function of the scattering mediwinin the
x-ray frequency region is close to, and a little smaller than, urity) = 1 — n(w). In
this frequency range(w) can be assumed to be real and positive, and its magnitude lies in
the range 10°-1073, depending on the wavelength of the x-rays. This can be seen most
directly by starting from the simple, free-electron form of the dielectric function of a metal,
a)2
ew=1-—"__ (1.1)
w(@+1y)

wherewy is the plasma frequency of the conduction electrons,jaigan inverse electronic
relaxation time. It follows thatj(w) in this case is given by
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A typical value ofwy, in energy units, is 10 eV [3]. For 1 keV x-rays, the ratig/w is
therefore of the order of I3. At the same time, the ratip/wy, is of the order of 10% or
smaller [3]. Consequently, the value of the imaginary party@$) in the x-ray frequency
range is four orders of magnitude smaller than the real part, which itself is of the order of
10“in this example. It follows, therefore, that to a very good approximation, the imaginary
part of n(w) can be neglected in comparison with the real part; we shall therefore neglect
it in this paper.

Most of the attention in the existing experimental investigations of x-ray scattering from
rough surfaces has been paid to x-ray specular reflectivity measurements. Since the x-rays
are incident from an optically more dense medium onto an optically less dense medium,
the phenomenon of total internal reflection of x-rays occurs when the angle of inciéence
equals the critical anglé, = arccosy/n(w). As a result, the reflectivity for grazing angles
of incidence tends to unity, and the intensity of the incoherent (diffuse) component of the
scattered x-rays tends to zero. For angles of incidence smaller than the critical angle for
total internal reflection, however, the coherent scattering rapidly tends to zero. As a result,
the incoherent scattering becomes dominant. In addition, the angular dependence of this
intensity displays a sharp asymmetric peak, called the Yoneda peak [4], at a scattering angle
0s equal to the critical angle for total internal reflection for a fixed angle of incidence (see
figure 1, taken from [5]), and at an angle of inciderfizeequal to the critical angle for
total internal reflection for a fixed scattering angle. The Yoneda peak has been observed in
x-ray scattering from rough solid and liquid surfaces, and from the interfaces in multilayer
structures [4-9].

Theories of x-ray scattering from surfaces and multilayered structures have been
constructed on the basis of the Born and distorted-wave Born approximations, which exploit
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Figure 1. The angular distribution of the total power reflected from a gold surface as a function
of the grazing scattering anglg = /2 — 6 for several values of the grazing angle of |nC|dence
90 = /2 — 6o greater tha, = 7/2—6.. The wavelength of the incident x-raysis= 1. 54A.

= 0.54°. (After [4]).
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the weak interaction of x-rays and the scattering medium [1, 2, 7, 10-13]. The Born
approximation is valid for small angles of incidence and scattering, but breaks down in the
vicinity of the critical angle for total internal reflection, because in the initial and final states
of the scattering process the reflection from the interface is neglected. In the distorted-
wave Born approximation the basis for the perturbation approach is provided by the Fresnel
eigenstates, i.e. the solutions of the Fresnel problem for a flat interface, which take into
account the refraction of both the initial and final states. As a result, this approximation
provides a good description of the scattering of x-rays for angles of incidence in the vicinity
of the critical angle for total internal reflection. However, it fails at smaller angles. The
distorted-wave Born approximation yields an expression for the specular reflectivity that is
valid for grazing angles of incidence larger than the critical angle for total internal reflection
and for not very rough surfaces, i.e. surfaces for whiéh(w)(w/c)8 < 1, wheres is the

RMS height of the surface, in the form of the Fresnel reflectivity multiplied by a factor
similar to the Debye—Waller factor which accounts for the surface roughness [7, 10, 13].
From such a result only the RMS height of the surfa@an be deduced from experimental
data [7, 10, 13]. The second-order distorted-wave Born approximation yields a correction to
the reflectivity proportional to the surface height autocorrelation function [13]. The angular
dependence of the intensity of the incoherent component of the scattered x-rays obtained in
the distorted-wave Born approximation displays the Yoneda peak as a result of the strong
enhancement of the total field amplitude at the surface, which reaches a maximum value
that is twice that of the incident field at the critical angle for total internal reflection [7].

The modified Born approximation [2] also takes refraction into account. It thus improves
the Born approximation for grazing angles of incidence and yields the same results as the
distorted-wave Born approximation.

When the grazing angle of incidence or scattering is smaller than the critical angle
for total internal reflection, both the Born and distorted-wave Born approximations break
down: the reflectivity obtained in the Born approximation diverges instead of saturating at
the critical angle, while the reflectivity obtained in the distorted-wave Born approximation
is greater than unity or, for a weakly rough surface, exactly equal to unity.

The interaction of electromagnetic waves with a randomly rough surface is weak when
either the surface is weakly rough or the dielectric contrast between the medium of incidence
and the scattering medium is small, even if the interface between them is not weakly rough.
When this interaction is weak some form of perturbation theory can be used in the theoretical
study of the scattering of electromagnetic waves from a randomly rough surface. If the
roughness itself is weak, the perturbation theory is constructed on the basis of an expansion
of some quantity in the theory in powers of the surface profile function. For example, in
small-amplitude perturbation theory the scattering amplitude is expanded in powers of the
surface profile function [14]. In self-energy perturbation theory [15] it is the proper self-
energy entering the Green’s function through which the scattering amplitude is expressed
that is expanded in powers of the surface profile function. In phase perturbation theory [16]
it is the phase of the scattering amplitude that is expanded in powers of the surface profile
function.

If the dielectric contrast)(w) between the medium of incidence and the scattering
medium is small, even if the interface between them is not weakly rough, as is the case
in the scattering of x-rays from rough surfaces and interfaces, it can be used as the small
parameter in a perturbation theory of such scattering, with no restrictions on the surface
roughness parameters except those inherent to the theoretical approach used.

In this paper we present a theory of x-ray scattering from one- and two-dimensional
randomly rough surfaces, based on the method of reduced Rayleigh equations [15],
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that possesses the advantages of the Born and distorted-wave Born approximations and
lacks their disadvantages. The method of reduced Rayleigh equations is based on the
Rayleigh hypothesis [17, 18], which is the assumption that only that part of the scattered
electromagnetic field that satisfies the (outgoing) boundary condition at infinity can be used
in satisfying the electromagnetic boundary conditions on the rough surface. In the method of
reduced Rayleigh equations the coupled integral equations for the amplitudes of the scattered
and refracted fields are decoupled to yield integral equations for the amplitudes of the
scattered field alone. In our approach, the scattering amplitude is calculated perturbatively
as an expansion in powers of the small parametgr). The validity of the resulting
solution is restricted only by the condition for the validity of the Rayleigh hypothesis, i.e.
d¢(xq1)/dx; <« 1 in the case of a one-dimensional random surface, |&gdx1, x0)| < 1

in the case of a two-dimensional random surface, whghe) (¢(x1, x2)) is the surface
profile function which defines the position of the surface through the equagien (x1)

(x3 = ¢(x1, x2)) [19-21]. Moreover, in contrast with earlier theories of x-ray scattering
from randomly rough surfaces in which either the incident x-rays were assumed to be s-
polarized [7, 13] or the polarization of the incident and scattered x-rays was not taken into
account at all through a scalar wave treatment [10-12], the approach adopted here, in which
the x-rays are treated as electromagnetic waves, allows the polarizations of the incident
and scattered x-rays to be included readily in calculations of the contributions to the mean
differential reflection coefficients from both the coherent and incoherent components of the
scattered x-rays; we have included these contributions.

For the specular reflectivity to the lowest orderjiw), i.e. On°(w)), we obtain a
result in the form of the Fresnel reflectivity multiplied by a ‘Debye-Waller factor’ that is
consistent with the Debye—Waller factor obtained in [7, 10, 13]. We also obtain the lowest-
order correction to this result by summing an infinite subset of terms in the perturbation
series for the mean scattering amplitude, and find that it is of second order in the small
parameter of our theomy(w). The contribution to the mean differential reflection coefficient
from the incoherent component of the scattered x-rays is calculated to the lowest non-zero
order inn(w), which is Qn?(w)). It displays the Yoneda peak when the scattering angle
or the angle of incidence equals the critical angle for total internal reflection.

These results are obtained on the basis of the assumption that the scattering medium is
homogeneous on the length scale being probed, i.e. the atomic structure of the scattering
medium is ignored. This assumption is valid provided we deal with small angle scattering,
where the condition A(a/1) sind « 1 is satisfied, whereRis the scattering angle, is
the wavelength of the x-rays, amrdis a typical length scale for any inhomogeneity within
the scattering medium [7].

The outline of this paper is as follows. In section 2 we study the coherent and incoherent
scattering of p-polarized x-rays incident from vacuum onto a one-dimensional, randomly
rough metal surface, when the plane of incidence is perpendicular to the generators of this
surface. This simpler version of the problem already displays all the features present in the
theory of the scattering of x-rays from a two-dimensional randomly rough surface, without
the complications caused by the possibility of out-of-plane and cross-polarized scattering
present in the latter case. With the results of section 2 as a guide, in section 3 we present
a theory of the scattering of x-rays from a two-dimensional randomly rough, metal surface.
Numerical results calculated from the expressions derived in the preceding two sections are
presented in section 4, and conclusions drawn from them are presented and discussed in
section 5. Two appendices, in which results needed in the text are derived, conclude this
paper.
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2. A one-dimensional random surface

The physical system we consider here consists of vacuum in the regisrt (x1), and the
scattering medium, which is characterized by an isotropic, complex, frequency-dependent
dielectric functiore, in the regiomnkz < ¢(x1). The surface profile function(x;) is assumed

to be a single-valued function afi which is differentiable as many times as necessary. It

is also assumed to constitute a stationary, zero-mean, Gaussian random process, which is
defined by the properties

(¢(x1)) =0 (2.1)

(¢ (rD)E () = 82 W (Ix1 — xi]) (2.2)
where the angular brackets denote an average over the ensemble of realizajéng ,of
ands§ = /(¢2(x1)) is the RMS height of the surface. In the numerical work carried out

in this paper we shall assume for the surface height autocorrelation furigtipri|) the
Gaussian form

W (lx1l) = exp(—x}/a®). (2.3)

The characteristic length appearing in this expression is the transverse correlation length
of the surface roughness.

We assume that the random surface is illuminated from the vacuum side by a plane
electromagnetic wave which, for definiteness, we assume is p-polarized. The plane of
incidence is theyxs-plane. In this scattering geometry there is no cross-polarized scattering,
and it is convenient to work with the single non-zero component of the magnetic vector. In
the vacuum regionrs > ¢ (x1)max it is the sum of an incident plane wave and the scattered
field,

o g S
H2> (x1, x3l@) = gkx1—iao(k)xs + / qu(CIM)éleH%(q)XS (24)
where
0)2 1/2 w
ao(q) = <2 — qz) gl < = (2.59)
c c
_ w2\ Y2 »
=i (cf -~ 2> gl > —. (2.5)
c c

In writing equation (2.4) we have assumed a time dependence of the electromagnetic field
of the form exg—iwtr), and have suppressed explicit mention of this factor.

The angles of incidenc&6fy) and scattering(6s), measured counterclockwise and
clockwise from thexz-axis, respectively, are related to the wavenumlieasidg by

k=2 sinfg qg= @ sings. (2.6)
C C

The differential reflection coefficient (DRG)R/d0s is the fraction of the power in the
incident wave that is scattered into an angular interval of widthabout the scattering
anglefs. Since the scattering surface is random, we are interested not in the differential
reflection coefficient itself, but in its average over the ensemble of realizations of the surface
profile function, (dR/36s). This is given in terms of the scattering amplitutég|k) by
[22]

(IR(q1k)1?) (2.7)

R\ 1 o cos6s
9605/ Lqi2mc costy
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whereL; is the length of ther;-axis covered by the random surface. The wavenumpers
andk in equation (2.7) must be replaced by their equivalents given by (2.6).

As it stands, the expression given by equation (2.7) contains contributions from both
the coherent (specular) and incoherent (diffuse) components of the scattered electromagnetic
field. The former is given by

R\ 1 o cog6s
00s coh_ L, 2mc coSty
The latter is therefore given by

IR 1 o cosbs
30s[incon L1 27c COSHp
We now turn to the determination of the scattering amplitide k).

The method of reduced Rayleigh equations [23], which is based on the Rayleigh
hypothesis [17, 18], Green’s second integral identity [24], and the extinction theorem [25],
yields the following integral equation satisfied by the scattering ampliiidex):

/"" dp I(a(g) —ao(p)lg — p
—00 2T a(g) — ao(p)

(R (qlk))I2. (2.8)

[(IR(qIK)[%) — [{R(q|k))[*] . (2.9)

)[a(q)ao(p) +qp]R(plk)

I(a(q) + ao(k)lqg — k)
= k) — gk 2.10
2 (@) + ook) [ee(q)exo(k) — gk] (2.10)
where
2 1/2
alg) = |:62 — qz] Rea(g) >0 Ima(g) >0 (2.11)
c
and
I(y|0) = / dxyg el (2.12)
We begin the solution of equation (2.10) by rewriting the functigp|Q) in the form
I(y|Q) =218(Q) + J(¥1Q) (2.13)
where
Jy10) = / deye @0 (e 1) _ 1), (2.14)
Equation (2.10) is transformed by this step into
~d
Rigl) = 27(q — W1Ro) + 1Nl + - [ P malpR(plb) (2.15)
d(q) d(q) J - 27
where

_ ean(k) —a(k)
Rok) = eao(k) + a(k)
_ gk — a(g)ao(k) 3
N(qlk) = mJ(W(Q) + ag(k)lqg — k) (2-163)
Miglp) = PPTHDUD) 10y — ao(p)lg - p) (2.16)
a(g) — ap(k)

d(q) = eap(q) + a(q). (2.16d)

In obtaining equation (2.15) we have accomplished two objectives. The first is that we have
explicitly separated from the scattering amplitukley |k) the contribution 28(q — k) Ro(k)

(2.160)
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that describes the scattering from a planar surfa¢e;{ = 0). The remaining terms on the
right-hand side of equation (2.15) therefore arise from the surface roughness. The second
is that the terms arising from the surface roughness are explicitly proportional to the small
parameter of our theory;.

We shall seek the solution of equation (2.15) in the form

R(qlk) = 28(q — k)Ro(k) + B(qlk) (2.17)

where the functiomB(¢|k) satisfies the equation
* d

Bglk) = nA(glk) + 1 / S miglp)B(plb) (2.18)
with

A(qlk) = n(qlk) + m(qlk)Ro(k) (2.1%)

m(qlk) = m(qlk)J (a(q) — ao(k)|lg — k) (2.1%)

n(qlk) = n(glk)J (e(q) + ao(k)lq — k) (2.1%)

. gk + a(g)ao(k)

k) = 2.1%
a0 = G lalq) — ao®)] (213
Alglky = 4%~ @@ 2.1%)

— d(@)a(q) + ao®)]’
The iterative solution of equation (2.18) is formally an expansioB@f|k) in powers of
n:

©d
B(qlk) =nA(qlk) + 772/ %m(qlpl)A(pllk)

> d *d
+n3/ ﬁ/ Em(q|Pl)m(1!71|172)A(Pz|k)+-~-. (2.20)
oo 2T J_o 21

2.1. Coherent scattering

From equation (2.8) we see that the contribution to the mean DRC from the coherent
component of the scattered x-rays is expressed in terniR @f|k)), where

(R(qlk)) = 27 8(q — k) Ro(k) + (B(glk)). (2.21)

To obtain(B(g|k)) we average equation (2.20) term by term:
*d
(B(qlk)) = n(A(qlk)) + n2/ %(m(qlpl)A(pllk»

d d
i1 [ 2 [ Ll pompalpa) Apall) + - (2.22)
T 27

In view of equations (2.19—(2.1%) we see that the:th-order term in this expansion
contains the average of the productxof (y|Q) functions. This average is given by

(110D (121 02) - T (vl Q) = [ [ 280 (€727 — 1)
j=1

J

+0(n—2) ) 2n8(Q; + Qe 20T

i)
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x/ du g1 (g Wb _ 1) ]_[ 275(Qp) (e 2 — 1)

(k#x /)
+ terms containing the product ef— 2 or fewer delta functions  (2.23

H (J 107 +9(n—2)Z JTilenIlen} TT ol Qi)

ij=1 k=1
i) (k#i, j)

+ terms containing the product ef— 2 or fewer delta functions (2.2}

whered(n) =1 forn > 1 andd(n) = 0 for n < 0, and we have introduced the notation
that for any two random processdsand B

{AB} = (AB) — (A)(B) (2.24)
is the correlated part of the average of their product.
The significance of grouping terms in the averagéy | Q1) - - - J (v, Q,)) according to
the number of delta functions they contain stems from the fact that the diagonal elements of
the functionsni(g|k) andn(q|k) defined by equations (2.d9 and (2.19) are proportional
to n_l:
Ro(q)

1
m(glg) = - n(gqlg) = (2.25)

This result together with the result given by the first term on the right-hand side of equation
(2.23) means thatachterm on the right-hand side of equation (2.22) has a contribution of
order Q»°). Thus, in order to obtain the contribution {8(¢|k)) that is of zero order iy

we have to sum the contribution of this order in each of the terms on the right-hand side of
equation (2.22). To obtain this contribution it suffices to replace the average in each term
on the right-hand side of equation (2.22) by the product of the averages of the individual
factors, according to equation (2.23). In this way, we obtain

(B(qlk)) o = 2m8(g — b)[1 — X (k) + X (k)* — - Ja(k) (2.26)
where we have used the results that

(m(qlk)) = 2w8(q — k) [—Xr()k)} (2.27a)
with

X (k) = g 2@®ol)s* (2.27)
and

(AgIk)) = 278(q — k) [“;")} (2.289)
with

a(k) = Ro(k)[e*%<“(k>+"°(k>>252 _ eﬁ(a(k%rxo(k))?sz]. (2.28)
It follows that

(B(qlh)) 0 = 278(g — k) Ro(k)[e~20®*®* _ 1], (2.29)

To obtain the leading contribution t0B(g|k)) that is of non-zero order im we
have to take into account the contribution to the average in each term on the right-hand
side of equation (2.22) from the second term on the right-hand side of equation (2.23).
Operationally, the latter tells us that in each term (starting with the second) we have to pair
two factors and evaluate the correlated part of the average of their product, and then multiply
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the result by the product of the average of each of the remaining factors. hthttarder
term two types of contributions arise. The first consists ofithel terms in which one of
the m(p;|p;) is paired withA(p,_1|k), while the remaining: — 2 factors ofm(p;|p;) are
averaged individually; the second consists of the- 1)(n — 2) /2 terms in which two of the
m(p;|p;) are paired, while the remaining— 2 factors (includingA(p,-1|k)) are averaged
individually. The correlated part of the average of two factors contains no explicit power of
n in either case; the product of the— 2 averages of the remaining factors is proportional
to n~ =2, Consequently, the leading correction to the result given by equation (2.29) is of
order Qn?).

Let us consider first the sum of all the terms on the right-hand side of equation (2.22),
starting with the second-order term, in which one of thig;|p,) is paired withA(p,_1lk),
and the product averaged, while the remaining factors are averaged individually. We find
that this is given by

(B(@lk)) @y = n’[1 — X (@) + X (@)% — -]
© d
x/ S PIL = X(p) + X(p)? = -+ 1A, (2.30)

The first series, in powers of X (¢q), is associated with the product of the averages of
the individualm (p;|p;) which stand to the left of the facton(p;|p,) that is paired with
A(pa—1lk); the second series, in powers ofX(p), is associated with the product of the
averages of the individuak(p;|p;) which stand between the facter(p;|p;) that is paired
with A(p,_1lk) and A(p,_1/k) itself.

We next consider the sum of all terms on the right-hand side of equation (2.22), starting
with the third-order term, in which two of the(p;|p;) are paired and the correlated average
of their product evaluated, while the remaining factors are averaged individually. We find
that this is given by

(B(qlk)) 22 = n*[1 — X (q) + X(¢)* — -]

> d
X/ o Am@IPIL = X () + X (p)? = - Im(pll)}
x[1 = X (k) + X (k)> — - - Ja(k). (2.31)

Again, the first series, in powers efX (¢), is associated with the product of the averages
of the individualm(p;|p;) which stand to the left of the facton(p;|p;) which is paired
with a second factom(p;|p;.) which stands to its right; the series in powers-eX (p) is
associated with the product of the averages of the individual | p;) which stand between
the paired factors; the series in powers-oX (k) is associated with the product of the
averages of the individual factors, includim)p,—1lk), which stand to the right of the
second factom(p;|pj’.) in the pair.

Using the definitions ofA(g|k) andm(g|k) given by (2.19), the definitions of (k) and
a(k) given by equations (2.2 and (2.28), respectively, and the result that

Tnl0DT (121 02)) = 218(01 + Qp)e H0E+7D / du 10 (g WD _ 1) (2,32)

we can rewrite equations (2.30) and (2.31) compactly as

(B(qlK)) @ = 218(q — kynle" 20O Nk + Ro(Mp(k)]  (2.330)
and

(B(q1K)) 2z = 278(q — kyn?le 200« ®% _ 1] Ro(k) My (k) (2.3%)
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respectively, where the subscript p denotes p-polarization, and

< d
Mp(k) :/ Epr;l(k|p)r;l(p|k)e—(vt(P)—Dt(k))(do(P)—Oto(k))SZ

o0
x /.oo du efi(kfp)u[ef(a(k)fao(P))(Ot(p)fao(k))ﬁzW(Iu\) —1] (2.34%)
00 dp R R B _ 2
Np(k) = —mk|p)n(plk)e (a(p)—a (k) (ao(p)+ao(k))d
P oo 21
% /00 du efi(kfp)u[ef(ot(k)fao(p))(a(p)wo(k))ézW(Iu\) —1]. (2.3%)
—00
Thus, the total contribution t¢B(gq|k)) of second order im is
(B(qlk)) ) = 278(q — k)ynPe O O [Ny(k) + Ro()Mp(k)] . (2.35)
Using equations (2.21), (2.29), and (2.35), we obtain the result that
(R(qlk)) = 2m8(q — k)rp(6o), (2.36)

where

? — _N12
rp(6o) = exp[—Z(af) c0SHo(COS fp — n)l/z} { € costy — (COS G — 1)

€ C0SHy + (coF Gy — n)1/2
) o . € oSty — (coS 6y — n)Y/? w . )
Np [ — sing My [ — SIng o]
+ [ p(c 0)+ecoseo+(co§90—n)l/2 p(c 0) +00)
(2.37)

and we have used the fact that= (w/c) sinfy. When the result given by equation (2.36)
is substituted into equation (2.8), and use is made of the relations

[278(q — K)]? = 278(0)278(q — k) = L1278(q — k) (2.3%)
5(q — k) = <00~ %) (2.3%)
(g =k = ® Cosf '

the contribution to the mean DRC from the coherent component of the scattered
electromagnetic field becomes

dR
<> = 8(6s — 60) Rp(fo) (2.39)
805 coh
where the reflectivityR,(6p) is given by
Rp(60) = lrp(60)I*. (2.40)

Up to now we have dealt only with the scattering of p-polarized x-rays. For completeness
we note that in the case where the random surface is illuminated by an s-polarized
electromagnetic wave the integral equation for the scattering ampliRéglg) analogous
to equation (2.10) has the form [26]:

/"" dp I(a(q) — ao(p)lg — p) R(plk) = — I(a(q) + ao(k)lg — k)
—o00 27 a(q) — ao(p) a(gq) + ao(k)

The analysis presented here can be easily repeated starting from this equation. In this case
we obtain for the reflectivity

Rs(Ao) = |rs(60) |2 (2.42)

. (2.41)
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where
5\ 2 costy — (oS o — )2
60) = expl =2 — ) cosho(cof by — n)Y/?
rs(6o) IO[ ( C ) o o =) costy + (o2 6y — n)1/2
cosfo — (CoS o — n)Y/?

€0Sfp + (COS Gy — n)/2

+n? [NS (% sin@o) + M (% sineo)} + o(nz)}
(2.43)

and the functionsMg(k) and Ns(k) are given by equations (2.34) in which(g|k) and
n(q|k) are replaced by

w2 1
ol @ 2.443
ms(q k) e? [a(q) + ao(@)][a(g) — ao(k)] ( )
) w2 1
ns(qlk) = e

2 [a(g) + ao(@la(q) + aok)]

2.2. Incoherent scattering

When we substitute equation (2.17) into equation (2.9) we find that the contribution to
the mean DRC from the incoherent component of the scattered field can be expressed
equivalently as

IR 1 o cogbs
30s[incon L1 27c €OSHp

To obtain(|B(g|k)|?) we square the modulus of the right-hand side of equation (2.20), and
average the resulting series term by term:

(IB(q1k)[%) = n?*(A(qlk)A*(qlk))

3 © drl * *
n [(A(quc) / L gl A" 110
oo 2T

[IB(qk)1?) — [(B(glk))|?]. (2.45)

“d
+</ ;;m(QIpl)A(pllk)A*(qlk)ﬂ o (2.46)

From the explicit expressions fot(¢|k) andm(q|k) obtained from equations (2.48-
(2.1%), we see that the coefficient gf on the right-hand side of equation (2.46), where
n > 2, is the sum ofn — 1 terms, themth of which contains the average of a product
of m J(y|Q)'s andn —m J*(y|Q)'s. These averages are very similar to the average of
a product ofn J(y|Q)'s encountered in obtaining the averag®g|k)). They consist of
the product of the averages of theindividual factors, plus the sum of terms in which
two factors are paired, and the correlated part of the average of their product is multiplied
by the product of the averages of the remaining- 2 factors, and so on. Since what
we really need is not|B(g|k)|?) but the difference(|B(q|k)|?) — |(B(qlk))|?, the first
category of averages described can be omitted, since it does not contribute to this difference.
The second category of averages does, but only if one of the factors in the pair whose
correlated average is evaluated is unconjugated while the second is a complex conjugate.
The n — 2 delta functions associated with the product of the averages of the remaining
n — 2 factors that are unpaired yield a result that is proportiongté—2 which, combined
with the factor ofy” multiplying thenth-order term produces a contribution of orde®
to (|B(qlk)|?) — |(B(glk))|?> from each term on the right-hand side of equation (2.46).
Thus, an infinite series of terms must be summed to obtain the contributio® (g|k)|?)
—|(B(g|k))|? of the lowest non-zero order i, namely the second.
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Four classes of terms contribute ¢ (q|k)|?) — |(B(g|k))|? in this order, defined by
the two factors that appear in the pair whose correlated average is evaluated. They can be
written schematically afA A*}, {mA*}, {Am*}, and{mm™*}. These four categories of terms
can be summed to yield the result that to;©

(IBqlk)?) = [(B(qlk))[?
=l — X(@) + X (@)% — - HA@IO[L - X*(9) + X*(¢)* = - 1A% (glk))
+H1 - X(@) +X(@)* - Hm@lO[L - X(*) + X (K)* — - - Jak)
x[1 - X*(q) + X*(9)* — - - 1A (qlk)}
+H1 - X (@) + X(@)? = - HA@IBIL = X* () + X*(@)* = - Im*(g1k)}
x[1 = X* (k) + X* (k)% — - - ]a* (k)
1 - X(g@) + X (@)* — - Hm@l[1 — X (k) + X (k)* — - Ja(k)
x[1 = X*(q) + X*(9)* — - - Im*(ql)}[1 — X*(k) + X*(k)* — - - Ja* (k)]
= n2|1+ ;(q”z T xaop (A@h A+ XE) +mqha)]
x[A*(glk) (L + X*(k)) + m*(glk)a* (k)]} (2.47)
where the curly bracket symbol has been defined in equation (2.24). The interpretation of
the various series that appear in these expressions is identical to that of the series appearing
in equations (2.30) and (2.31) in our calculations(B{g|k))21y and (B(g|k))z2. Using

the explicit expressions faX (k) anda(k), equations (2.27) and (2.28), respectively, we
can rewrite equation (2.47) in the form

i 252 a(k)—a 252
(IBqIk)I) = [(B(glk))|? = ? efeamen@ et ety

x{[e 2@ WG p (g )] [e 2D +aB0NTp g | 1)] ) (2.4%)
where
b(qlk) = costia(k)ao(k)3)[n(glk) + m(glk) Ro(k)]

+ sinh(a(k)ao(k)8%)[n(g|k) — m(g|k) Ro(k)]. (2.48)

As it stands, the result given by equation (2.48) is not reciprocal. Reciprocity, which is
a consequence of the Lorentz reciprocity theorem [27], requires that the scattering matrix
S(g|k) defined by
1/2

oy (q)
S(qlk) = 35— R(glk) 2.49
q 20 q (2.49)
satisfies the relation [28]
S(qlk) = S(—k| — q). (2.50)
In view of equation (2.17) this condition requires that
2
2 050(4)

(| B(—k| — @)1?) = [(B(=k| — @)

2y 2
= o{g(k)UlB(Cll/’C)l ) — [(B(gqlk))|7]. (2.51)

The result given by equation (2.48) does not satisfy this condition.
However, it is possible to transform equation (2.48) into a form that is manifestly
reciprocal. It is shown in appendix A that
gk — a(q)a(k) J(a(g) + a(k)lg — k)
d(q)d(k) alg) + ak)
gk —a(q)a(k) J(a(g) + a(k)lg — k)
d(q)d (k) a(g) + (k)

n(q k) +m(qlk)Ro(k) =

200(k) + O(n) (2.52)

n(qlk) —m(qlk)Ro(k) =

2a(k) + O(n). (2.5%)
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Since we seek a result correct to the lowest ordey,ime neglect the corrections to these
results of order @). When these results are used in equation (@.48e find that

e 301G W0 ey = gk —a(q)a(k) J(a(q) + a(k)lg — k)
d(q)d(k) a(qg) + ak)
X[(Olo(k) + a(k))e—%(a(k)—ao(k))zﬁz + (ap(k) — Ol(k))e_%(a(k)+a°(k))
_ gk —a(@ak) J(@(g) +ak)lg — k) |:2ao(k) — (@Rk) — &’(K))

252

]

d(q)d (k) alg) + a(k)
© 1 82\"
X ; o (—2) [(a(k) — ao(k))® ™ — (au(k) + ao<k>)2"1]] (2.53)

However, sincex3(k) — a?(k) = n(w?/c?), the second term in brackets is of orde(n®
and we neglect it. Thus, finally,
(IB(qIR)I?) — [(B(qlk))|* = nPeRee@ el gfetetimeot)®

k —a(g)ak) [? { J(a(g)+a(k)lqg — k) J*(a(g)+a(k)lg — k) }

q
200(k
2o dm) a(q)+a(k) (@) o (0

X

(2.54)

In this form, the reciprocity condition (2.51) is manifestly satisfied.
Using the result that

1O (y|Q)) = Lyg 20+ / du e71Qu[elr " Wb _ 1] (2.55)

together with the result given by equation (2.45), we can write the contribution to the mean
DRC from the incoherent component of the scattered x-rays(ig)Cas

IR 2 1 (wa 1 & [ ws\2 e/

9605 incon I — ) - B6s. 60)? 2 560
<895>incoh 7 Sﬁ ( c ) COS@O ;( c > Vl'\/ﬁ | n( S O)l ( )
where

Cc

2
bP(6s, 60) = exp[—; (“’5> [(co$ 65 — )Y + (coS 6y — 77)1/2]2}
2
x exp[; (?) [(cog 6s — n)Y/? — cog 95]2]

1/ws\?
x exp|:2 (C> [(cog 6y — Y2 — cos@o]z}

sinfssinfy — (cos 6s — n)Y2(cos 6y — n)Y/?
[€ costs + (c0Z 05 — 1n)1/2][€ costp + (COF Oy — 17)1/2]
x[(co€ 6s — mY? + (cog 6o — m¥3" L. (2.560)
In obtaining the result given by equation (2.56) we have used the Gaussian form for the

surface height autocorrelation function given By(|u|) = exp(—u?/a?).
We can simplify equation (2.56) somewhat if we note that

X2 COYs 2cosy

co< Oo.s — n)Y? — coshys = — ) 2.57
( O,S '7) O,S (CO§ 90’5 _ r])l/2 + COS@O!S ( )

Consequently, we can replace the second and third exponential factors on the right-hand
side of equation (2.99 by unity, in the approximation we are maintaining here. These
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replacements are equivalent to the assumption(th@tc)/n(w) < 1. We can also replace
the explicit factor ofe in the denominator of equation (2&6by unity to the same degree
of approximation. As a result, we obtain, finally,

2
bP(0s, 6o) = exp[—; ("f) [(cog 65 — m)*? + (cog 6 — n)l/zlz}

sSinéssinfy — (cos 6s — n)Y2(cos 6y — n)Y/?]
[€ costs + (c0Z Os — n)V/2][€ coshy + (COF by — 1)1/
x[(cog s — m*? + (cog 6y — n)¥?" 2. (2.58)
In the case of the scattering of x-rays of s-polarization we can repeat the calculations

presented in this subsection starting from equation (2.41). As a result we obté,fmefgreo)
instead of equation (2.5%

X 2 COSHs 2co9

wd

2
bS (s, o) = exp[—;(0> [(co€ 65 — )Y + (cog 6y — n)“ﬂ

1/ w8\?
x exp[2 (C> [(cog 6s — n)Y/? — cod 95]2]

1/ ws\?
x exp|:2 <C> [(cog 6y — n)Y? — cos@o]z}

2 CO, 2 c0Hg
X
€0Sfs + (coL 05 — 1n)1/2 coshy + (coF Gy — n)1/2
x[(cog s — mY? + (cog 6y — n)¥?" 2. (2.59)

As in the case of the scattering of p-polarized x-rays, we can replace the second and third
exponential factors on the right-hand side of equation (2.59) by unity and finally obtain

2
bS(0s, 6o) = exp[—i(‘”a) [(cog 65 — m)*? + (cog 6 — n)“ﬂ

C

» 2 coSYs 2 cosYy
€0Sfs + (cog b5 — 1n)1/2 cosfy + (coF Gy — n)1/2
x[(co€ 6s — m*? + (co o — m¥?" L. (2.60)

When bothd, and 65 are close tar/2, i.e. for small grazing angles of incidence and
scattering, the factor sl sinfy — (cos’ 6s — n)Y/?(cos 6y — n)*/? is close to unity, and the
expressions for the contribution to the mean DRC from the incoherent component of the
scattered x-rays of p- and s-polarizations coincide.

3. A two-dimensional random surface

With the results for the one-dimensional surface as a guide, we can obtain the corresponding
results for a two-dimensional randomly rough surface quite directly. The physical system we
consider in this section consists of vacuum in the regips ¢ (x)), wherex; = (x1, x2, 0)

is a position vector in the mean scattering plage= 0, and the scattering medium, which

is characterized by an isotropic, complex, frequency-dependent dielectric fum¢apnin

the regionxs < ¢(x)). The surface profile function(x) is assumed to be a single-valued
function of x that is differentiable with respect to, andx, as many times as necessary.
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It also constitutes a stationary, zero-mean, isotropic Gaussian random process, which is
defined by the properties

(¢(@))) =0 (3.1)
(g () = W (|lzy — x))) (3.2)
82 = (¢3(zy)). (3.3)

For the surface height autocorrelation functidi(|x|) we shall again assume a Gaussian
form

W (lzyl) = exp(—x?/a?). (3.4)

The contribution to the mean DRC when an incident electromagnetic wavg- of
polarization, whose wavevectérhas the projectiotk; = (k1, k2, 0) on the mean scattering
surface, is scattered into an electromagnetic wave-pblarization, within an element of
solid angle &5 about a wavevectog whose projection on the mean scattering surface is
q) = (q1, 92, 0), is given in terms of the corresponding scattering amplitRge(q, k) by

<§£S>aﬁ = % (%)2 Cccc)i@is(lRaﬂ(qlku)lz) (3.5)
whereS is the area of thax,-plane covered by the rough surface, while

k) = (w/c)sinfy x (COSgo, Singg, 0)

q) = (w/c) Sinfs(cosgs, sings, 0)

where (0g, ¢o) and (6s, ¢s) are the polar and azimuthal angles of incidence and scattering,
respectively (see figure 2). The contributions to the mean DRC from the coherent and
incoherent components of the scattered electromagnetic field are

9R 1/ w \2cos0bs ,
<39s> 23(%) cosg, | Res(@lk)] (3.6)

ap
coh

and

IR 1 2 co 65
<BQ >ﬂ =5 (ons) ogic [0Rap @) ~ 1 Rep(a k)] (37)

incoh

respectively.

Figure 2. The scattering geometry for scattering
1 from a two-dimensional random surface.
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By the use of the method of reduced Rayleigh equations it is found that the scattering
amplitudesR,z(q,| k) satisfy the matrix integral equation [15]

&py (g — ao(pplg — py)
(2n)2 a(gy) — ao(py))
I(a(qy) + aolklgy — k)

M(qylpR(p)lk))

= — N k), 3.8
a(gy) + aolk) (alk) (3.8)
where

1()/|Q||) — /dzxue Qx| —W!(wu) (3_9)

while the matricesM(q,|p;) andN(q,|k;) are given by

_ | laypy +a(@)q) - proo(p))] —(@/c)e(q)(@ x pp)s )
Maalpn = (1 e @2/ - fy (340
N(qylky) = ( lq1k) — Ol(flu)f}u; kyoro (k)] —(w/c)a(q\\)(q\\ x ky)3 ) . (3.11)
—(w/c)(q) x kj)soo(ky) (@?/cA)g) - Ky

In these expressiong, = k;/k;, aolq) = [(@?/c?) — gf1Y?, with Reao(g)) > O,
Imag(g)) > 0, anda(g)) = [e(@?/c?) — ]1/2, with Rea(q”) > 0, Ima(gy) > 0. In
equations (3.10) and (3.11) the rows and columns of the matrices are labelled by p and s,
with the pp-element in the upper left-hand corner.

To solve equation (3.8), we begin by rewriting the functibfy |Q)) in the form

1(y1Q)) = 2m)3(Q)) + J(¥1Q)) (3.12)
where

J(V|Q||) — /‘dz)CH efiQ”-mH (efi}/f(z“) —1. (313)

When equation (3.12) is substituted into equation (3.8), the result can be rearranged into

d2
R(qylk)) = (27)%8(q) — kRO (k) + nn(gq;lky) + 1 / (Z—:)mempu)R(p.nk”) (3.14)

where
60[0(](“) — O((kH) 0
RO (k) = eoto(ku) +a(k)) wotky) — alhy) (3.15)
Olo(k”) + O{(k”)
Npp(q)lk)) Nps(q k)
n(aylky) = eao(q)) +alg) eaolqp +oalq) | J(a(g)) + aotk)lq — ky) (3.16)
Nsp(qy k) Nss(qylky) a(qy) + ao(py)
aolq)) +alg)  aolq)) +algy)
= N(qylk))J (ee(q)) + ok gy — k) (3.160)
Mpp(qy k) Mps(qy|ky)
m(qilky) = eao(q)) +alg)) €aolq)) +alq) | J(a(g) — aolk)lq — k) (3.17)
Msp(qy k) Mss(qy|ky) a(qy) — aolky)
aolgqp) +alq)  aolq) +alg)

m(q |k J (a(g)) — aolk)lq, — k). (3.1)
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We shall seek a solution of equation (3.14) in the form
R(qylk)) = (20)?5(q) — kR (k) + B(qy lk)) (3.18)
where the 2« 2 matrix B(q|k)) is the solution of the equation

d2
B(qlk)) = nA(qlk)) + 77/ T;f)uzm(q” lp))B(py k) (3.19)
where

Algylky) = n(gylk;) + m(gylkPRO (k). (3.20)
The iterative solution of equation (3.19) is

d2
B(qylk)) = nAlglk)) + nz/ (2:)”2”‘(‘1” IpDAP 1K)

!

3 dzl?u dzP” , ,
o /(27'[)2/(Zn)zm(q”|p”)m(p”|pH)A(pll|kH)+"'- (3.21)

3.1. Coherent scattering

We see from equation (3.6) that the calculation of the contribution to the mean DRC from
the coherent component of the scattered electromagnetic field requires the calculation of
the average of the matriR(q;|k;) over the ensemble of realizations of the surface profile
function. From equation (3.18) we see that, in turn, this requires the determination of the
ensemble average of the matéXq,|k;). The latter is given formally by

d?
B(@ilk) = n(A@lk)) +0° | :)”2(m(qulp||)A(pH|k”))
d2 d2p/
o (275)”2 (2;1)”2 (m(@ylppm @y lPPAP) k) + - (3.22)

From the forms of the matrice’s(qy |k;) andm(q,|k;) given by equations (3.15)—(3.17)
and (3.20), we see that theth term in this expansion contains the average of a product of
n J(y|Q)) functions. This average is given by

TIQM I (21QP) -+ T (1 1Q™)) = [J2m)%8(Q(") (e — 1)
i=1

+0(1—2) Y (20)°8(@Q] + Q))e 2t
i,j=1
(i>])

% \/‘dzuH e—iQ:‘i).uH (efyiyjazw(\um) _ 1) 1_[ (Zn)Za(Q‘(‘k))(e,%ykZ(Sz _ 1)
k=1

(ki j)
+ terms containing: — 2 or few delta functions (3.28
= [TVmie) +60 -2 3 170i1Q" T (11Q™) H (J Q)
=t & dan
+ terms containing: — 2 or fewer delta functions. (3.p3

We now note that the averages of the matriéeg |k,) and m(q|k;) are diagonal and
inversely proportional tay,

(A(glk)) = (21)28(q) — k) [

a(k)} (3.24)
n
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where

alky) = [e*%(a(k”)Jrao(kH))zBZ _ efé(ot(ku)fao(k”))zﬁz] RO (k) (3.240)
while

(m(qylk))) = 27)%8(q) — k)l [—X(nk”)] (3.2m)
with

(ky) = e 2@kn—aok)?® _ 1 3.2
X I (k) —ao(ky))28? [50)

These results, together with the result expressed by the first term on the right-hand side
of equation (3.23), have the consequence that the contributi¢B (g |k,)) of zero order
in n is obtained by replacing each average on the right-hand side of equation (3.22) by the
product of the averages of the individual factors appearing in it. In this way we find that

B(qlkp) o = 2m)8(qy — kp[L — X (k) + X (k? — - Jalk))
= (2m)25(qy — ky)[e 2ok ® P _ 1RO (k). (3.26)
To obtain the leading contribution {8 (g |k;)) that is of non-zero order in, according
to the second term on the right-hand side of equation (3.23), we must pair two of the factors
in each of the averages on the right-hand side of equation (3.22) in all possible ways, evaluate
the correlated average of that pair, and multiply the result by the product of the averages of

each of the remaining factors. As in the case of a one-dimensional surface, there are two

types of terms that arise inth order. In the first, the final facto@&(pl(l"’lﬂku) is paired
with one of the factorsn (pl(l” |p‘(‘j)) and the correlated average of their product is evaluated.

In the second, the final factm((pl(l”’l)|k”) is unpaired with any of th&n(p‘(‘i)|p|(|j)), and
only its average appears. The contribution B(q,|k)) from all terms of the first type is

(B(qylk) 2y = n’[1 — X(q)) + X (g)*— -]

d2
X / (z,f)uz{m(qu lpDIL — X (py) + X (p? — - JA(py k). (3.27)

The contribution to(B (g |k;)) from all terms of the second type is
(B(glk)@a = n’[1 — X (g + X (g =]

d2
X/(2775)';{m(qmpl|)[1—X(PH)""X([)H)Z— - Im(pylk))}

x[1 = X (k) + X (k)% — - - Jacky). (3.28)

In obtaining these results we have exploited the fact that the average of the matrix
m(pl(li) |p‘(‘j)) is a multiple of the unit matrix.

Using the explicit expressions for the functiofi(k;) and the matricesn(gylk)),
n(qylk;), A(glky), anda(ky), given by equations (3.2%, (3.17), (3.16), (3.20), and
(3.24), respectively, together with the result that

{J(VllQﬁl))J(le(lZ))} - (277)25(Q|(|1) n Ql(lz))

Xe*%(hzﬂ/zz)tsz f d2u|| e*iQ‘(‘l)‘uu (e*V1V252W(|Uu\) -1 (3_29)

we can rewrite equations (3.27) and (3.28) in the forms
(B(gylk) 2y = (27)%8(qy — ky)n[e 2o 0 O N(ky) + M(ky)R® (k)] (3.30)
and
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(Bl k)20 = (27)%5(qy — ky)n[e20® 0@ — 1IM(k))R® (k) (3.31)
respectively, where
2
N = (Olzyf)uzm("-?uIpn)ﬁ(lou|k?u)e*(‘”(‘””)*‘)‘(k“))(‘)‘0("””D‘"(‘””))S2
x / dzuH e iki—p-yy (e*(ﬂt(kn)*Oto(PH))(Dt(Pn)+6¥0(ku))52W(|uu\) -1 (3.32)
& p) 2
M(ky) = @ )2m(k“ |pH)rﬁ(p”|kH)e*(a(Pu))*a(ku))(ao(Pn)*ao(ku))B
T
X f dzuH oG 2R (e*(a(kn)*ao([?\\))(Ot([’n))*ao(ku))lszw(\un|) —1). (3.33)

The total contribution taB(gy|k;)) of second order im is the sum of the contributions
given by equations (3.30) and (3.31), and is given by
(Blaylkp)e = 20)°5(q) — kypne o COV Ny + MR (k). (3.34)
We now note that the elements of the matfixk, |p,)fi(p,|k;) are given by
[kypy + a(kpky - preo(ppllpiky — e(py) py - kjeo(ky)]
dp(ky) (e (ky)) — ao(p)dp(py) (e (py) + aolky))
_ w?eZa(ly) (k) x py)3aolk)
dp(ky) (ee(ky) — eo(py))ds(py) (ee(py) + ao(ky))
[k py + a(kpky - prao(pplapy)
dp (k) (o (ky) — ao(py))dp(py) (@(py) + aolky))
_ w?c%alky) py - ky }
dp(ky) (ee(ky) — aa(py))ds(p) (ee(py) + eolky))
ao(pPlpiky — a(p)p - kjeo(k))]
ds(ky) (e (k) — ao(p)))dp(p)) (a(py) + ao(ky))
+ w?c %k - preolky) }
ds(ky)(a (k) — ao(p))ds(p (e (py) + aolk)))
w?c2ao(py) (ky x pde(py)
ds(ky) (e (k) — ao(py))ds(py)(ee(py) + colky))
n ey - p))?
ds(ky) (e (k) — ao(p))ds(p) (ee(py) + aolk)))
while the elements of the matriki (k|p))M(p|k) are
[kypy + akpky - preo(ppll piky — e(py) py - kyeo(ky)]
dp(ky) (e (ky) — ao(p))dp(p)(a(py) — aolky))
n w?eZa(ly) (k) x py3aolk)
dp(ky) (e (ky) — ao(k)ds(pp) (e (py) — aolky))
[k py + a(kpky - prao(pplapy)
dp (k) (o (ky) — ao(py))dp(py) (@(py) — aolky))
_ w?c%alky) py - ky }
dp(ky) (ee(ky) — eo(py))ds(py) (ee(py) — ao(ky))

(3.3%)

o~
ps: C(kXP)S{

(3.3%)

® A~
sp: ;(ku X P)s{

(3.3%)

SS .

(3.35)

pp:

(3.36)

® A~
ps: ;(ku X P)s{

(3.30)
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ao(pLpiky + a(py) py - kjeo(ky)]
ds(ky) (e (k) — ao(py))dp(p)) (a(py) — aolky))

@ A ~
sp: ;(ku X P)s{

B a)2C72iC\|| . [3||050(kH) } (336:)
ds(ky) (o (k) — ao(p)ds(py) (a(py) — ao(k)))
. w?c2ao(p)) (k) x ppiep))
" ds(ky) (@ (k) — ao(p)ds(py)(@(py) — aolk)))
a)4cf4(/2|| - pp)? (3.36d)

T dsk) @ k) — aolp)ds(py) @(py) — aolky)

whered, (k) = eag(ky) + a(k)) andds(k)) = ao(ky) + a (k). With the aid of these results
and the definitions (3.32) and (3.33) we can see that the matN¢ey and M(k;) are
diagonal and depend on the wavevedtgronly through its magnitude. This follows from
the results that when the integrals over the azimuthal anglg afe carried out in equations
(3.32) and (3.33), the integrals over the magnitudespbecome

o0
o fo ey ey Jouy [k§ — 2Ky pyky - py + pi1™%)

x (expl—(a(k)) — ao(py)) (@ (p)) + aolky)8*W ()] — 1) (3.37)
and

21 /0 duey uy JoGuy (k3 — 2k pyky - py + p71Y?)

x (expl—(a (k) — ao(p) (@ (py) — k)8 W (u))] — 1) (3.3M)

respectively, where/y(x) is a Bessel function. Thus they depend on the azimuthal
angles ofk; and pj, ¢o and ¢,, respectively, only through the combinatidp - p;, =
cod¢o — ¢p). At the same time, the ps and sp elements of the matrio@s |p))f(py k)
and M (k; |p)h (py|k;) are proportional tak; x pj)z = —sin(go — ¢p), in addition to
containing a dependence on 6fs— ¢p). As a result, the integral over the azimuthal
angle of p;, appearing in the definitions of these elements in equations (3.32) and (3.33)
vanishes, because it is an odd functionggf— ¢,. Consequently the matritB(q;lk))) )
is diagonal, as it should be. After the corresponding integrals in the expressions for the
diagonal elements of the matricBkk;) andM(k;) have been carried out, their remaining
dependence on the wavevectgyis only through its magnitude.

It follows from this result, equation (3.18), and equation (3.26) that to ordgf)O

k 0
Realip) = @i~k (7506 ) (3.39)
where
rp(ky) = e 2oknatny® [E“O(k)_“(k)

EOlo(kH) —+ Ol(kH)

Gao(kH) — Ol(kH)
E()lo(kH) —+ O[(kH)

_ 2 ky) — alky)) ao(ky) — a(ky)
(k) = e 2otkpatkps |:a0( I 174 2 Nss(ky) + b od L ] Mok ] 3.3%
rs(k)) =€ wolky) + o (kp) n°(Nss(ky) wotky) + alky) (k1)) ( )

When the result given by equations (3.38) is substituted into equation (3.6), and use is made
of the results that in two dimensions

[(27)%8(q) — k1% = (27)25(0)(27)8(q — ky) = S(27)%8(q; — k) (3.408)

+n*(Npp(ky)+ Mpp(kll)):| (3.3%)



X-ray scattering from a randomly rough surface 415

and that
S(q —kp = (£>2 s ;Oi(;?)oss(iq:]s@o_ 20 (3.400)
we obtain
Y . T R (3.412)
e L am)

coh
where the reflectivities for p- and s-polarized electromagnetic radiakigify) and Rs(6o),
respectively, are given by

Ros(60) = ‘rp,s (% sin90> ‘2. (3.42)

3.2. Incoherent scattering

We now turn to the study of the incoherent scattering of x-rays from a two-dimensional,

randomly rough surface. If we substitute equation (3.18) into equation (3.7) we find that
we can express the contribution to the mean DRC from the incoherent component of the
scattered field in the form

IR 1 2 co b5
< > =< (o) T S UBapa@lk ) — |(Basa ) . (3.43)

092 2mc/  COSHy

incoh

The average| B (q|k))|%) is given formally by
(| Bap(qy 1k 1%) = n*(Aap(qylk)) ALy (q 1 Ky))

o2
+n3[< aﬂ(qH|kll)/ 2 )2[m (Q|||7“||1))A*(1“|(|1)|k)]a,s>

2 (€
< / G ')2[m<q”|pl>>A<p<>|k..>]aﬁAﬁ<q|k”>>] : (3.44)

To obtain the difference|B,s(qlk))|?) — |(Bas(qlk)))|? to the lowest non-zero order in

n, the second, in each term on the right-hand side of equation (3.44) we must pair one of
the unconjugated matrix elements with one of the elements in complex conjugate form in
all possible ways, calculate the correlated average of their product, and then multiply the
result by the product of the average of each of the remaining matrix elements. In so doing
we recall that the average mi(p”’)|pH”) is diagonal |np(’) andp(’) and is a multiple of

the unit matrix, and that the average of the mam}p(’)lku) is diagonal inp{’ andk; and
is a diagonal matrix. In this way we find that

(1Bug (qy 1R — 1(Bas (qy 1K) 12
= nz[[l — X(qp) + X(q?* — - - HAap(gylkD[L — X*(q))
+X*(q))? — 1ALk}

+[1 - X (gqp) + X(q”>2 — - Hmap(qylkIL — X (ky)
+X (k)2 = -+ Jagg (kL — X*(q)) + X*(q)* — - 1A%5(qy )}
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+HL = X (g + X(@n? = - HAap (@ 1kpIL — X*(q)) + X (g% =]
xmgg(qylk)H1 — X* (k) + X*(kp)? — - Jagg (ky)

+L = X(g)) + X (@? — - Hmap(@lkPIL — X (k) + X (ky)® — -]
xapgg(k[L — X*(q)) + X*(q))? — - - Im}5(qy Ky}

x[1— X*(ky) + X* (k2 — - -]aZﬁ(ku)}

1
= 772|1+ X@P L+ X(k”)|2{[Arxﬂ(qn|k||)(1+ X (k) + map(qylky)ags (k)]
x[Agp(qylk)) (L + X* (k) + myg(qylky)ags (ky)}. (3.45)

Using the explicit expressions fof (k) andagg (k) given by equations (3.2§ and (3.24),
respectively, we can rewrite equation (3.45) in the form

— 252 _ 2
(1B (@1 o) ) — | (B (qy e )2 = n?eRe(o(00=aolan gttty —onth 52

X {[e—% (az(kl\)+0‘c2)(k\l))52baﬂ (q) |kH )][e—%(az(ku)+a§(k”))52baﬂ (q |k:||)]*} (3.46)
where
bap (qylky) = costier(ky)ao(ky)8*) nas (qylky) + map (g 1Fep) R (k)]

+ sinh(a (ko (k)82 [0 (qy ey) — map(qylky) RE (k)] (3.47)
and

O (1) = can(ky) — alky) 3.48
Ry’ (ky) caolly) + athy) (3.489)
RO () = 2otn) — k) (3.48)

ao(ky) + alky)
The result given by equation (3.46) is not manifestly reciprocal.
In scattering from a two-dimensional rough surface the elements of the scattering matrix
Saﬁ(q”|ku) defined by

CD)
Sup(qlk)) = —15—— Rap(qylKy) (3.49)
ay " (ky)
satisfy the reciprocity relations [15]
Spp(qy k) = Spp(—Fky| — q)) (3.5(m)
Sss(qylky) = Sss(—kKyl — q)) (3.5M)
Sps(qy k) = — Ssp(—Fy| — qy- (3.5()

These conditions require that

(| Bap (k] = a@)1?) = [(Bag (=K | — @) I?
a5(q))
= ST By (ay k12 — [(Bpalayle) 2]: (3.51)
ag(ky)
The result given by equation (3.46) does not satisfy this condition.
However, as in the one-dimensional case, it is possible to transform equation (3.46) into
a form that is manifestly reciprocal. It is shown in appendix B that
n(qylky) = m(gy kPR (k)

. J(a(qy) +alk)lq) — k) (200(k))
= Plalky) a(gy) + a(k)) < 20 (ky

) + 00 (352)
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where

aiky — a(@Dd) - kietk) o alg)@ x ks
— dp(q))dp(ky) ¢ dp(gqyds(ky)
¢ ds(q))dp(ky) c? ds(q))ds(ky)

Note that the matri¥ (g | k) satisfies the reciprocity conditions (3.50). It follows, therefore,
that

e*%(ﬂtz(kuﬂag(ku))ézb(qH ky) = |:(C(o(k) + a(kH))e*%(ao(ku)ﬂt(ku))zﬁz

1 252 | J (a(qy) + alky g — k)
ki) — a(k 5 (@o(ky)+a(k)))=s i| P k
+(aolky) —alk)))e oan) + o (k) (qylky)

5 ) o0 1 _82 n
= [Zao(k||) — (g (k) — a(ky)) Z ] < )
n=1""

2
X[(Ol(k”) — Olo(kH))anl _ (O[(k”) + ao(k”))an]]

k -k
><J(Ot(6]||)+0£( nlq H)P(q”IkH).
a(qy) + alky)
However, in view of the relation

(3.54)

ag (k) = a?(ky) + n(w?/c?)

(3.55)
the second term in brackets is of ordefs@ and we neglect it. Thus, finally, we have the
result that

— 252 _ 292
(| Bag (@R 1%) — |(Bug (1K) |7 = n?eRe(ean—eo@ns” gheteti) =eo@pyo

2| J(e(q)) +alkplq — k)
x| 200 (ky) Pop (q1k))] { a(qy) +alk)

L el +atkplgy — ky) }
o*(qy) + o (k)

(3.56)

In this form the reciprocity condition (3.51) is manifestly satisfied.
The result that

U@IQNI (rIQp) = se R / Puy e ' [gl Vb — 9]

(3.57)
nn!

where we have used equations (3.4) and @ 4€nables us to write the contribution to the
mean DRC from the incoherent component of the scattered x-rays to o(gér &

OR 1 (a)a)2 1 Zi 1 [sw\?
092 _m‘!h_47T 2c COS@OT7 “—~ nn!

c

2.—6%Re(y?) S —(a?/4n) 02
= Sma’e RN e [
n=1

2
X exp{ —}( a) [sin? 6s — 2 sinds SinBp COYhs — o) + SIr? 90]}
n\2c

x| (Bs, bslfo. do)|? (3.58)
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where
b (B, bsl6o, do) = € 2@/ 1(C0S bomi)!%+(c03 o) J?
 @2(@3/)?[(c0S =) Y2 —cost? o (8/ ) (COS to—n)*/?—costio]?
X2 COSs Pag (65, Psl60, $0)2 COHo[(COF s—1) Y2+ (coS g — 1)Y/?]" 1 (3.59)
with
sinfssinby — (cog 65 — n)2 cod¢pps — o) (COF By — n)/?

Poo(6s. dsl6. do) = [€ cOSOs + (COZ Bs — 1) ¥2][€ COSOy + (COL by — )7 (3.60)
B (cos b5 — m)Y/? sin(¢s — ¢o)

Pos(0s. $sl6. do) = [€ COSOs + (COF Bs — 1) ¥2][cOSby + (COL b — n)/2] (3.6(0)
B sin(¢s — ¢o) (cOS 6y — )"/

Psp(Os, ¢sl6, o) = [COSOs + (COZ 05 — 1) 2][€ COSHp + (COL 6o — )] (3.6x)

Psy(0s, ¢s|th, do) = codds — go) (3.6(1:1)

[cosbs + (coZ b5 — 1)Y/2][cosby + (COL By — n)Y/?]’

As in the one-dimensional case we can simplify the result given by equations (3.58)—
(3.60) using equation (2.57) and replacing the explicit factorse dby unity in the
denominators in the expressions (3.60) for Mg (6s, ¢sl6o, ¢o). In this way we obtain

1/ws
c

2
b3y (0s. dslfo. do) = exp{—2< ) [(cos 65 — m)' + (cos 6 — m)™/?]?

o (2 cOHs) pagp (bs, ds|6o, Po) (2 COSp)
[cosfs + (coS 65 — n)1/2]|[cosby + (coF Oy — n)1/2]

x[(cosfs — n)Y? + (cog 6y — n)¥?] 1 (3.61)
with
Pop(Bs. Bslfo. do) = Sindssindo — (COS' O — )% cos(gps — o) (cOS o — mY?  (3.629)
Pps(Bs, dsl00. Po) = (COS s — n)™? sin(¢ps — o) (3.62)
Pep(fs, Bsl00, po) = Sin(s — o) (COS 6 — )"/ (3.62)
Pss(s, ¢sl60, po) = COSps — ¢o). (3.620)
4. Results

In section 2 we have obtained explicit expressions for the contributions to the mean scattering
amplitude(R(¢q|k)) for a one-dimensional random surface that are of zero and second order
in n(w). The contribution to the reflectivity from the zero-order term, for the scattering
of p-polarized x-rays, given by the first term in equation (2.37), and for the scattering of
s-polarized x-rays by the first term in equation (2.43),

€ costy — (cof b — )2 |? w8 \?
Rp(60) = ec0592+2c0 §9§_Z;1/2 exp|:—4<c> cosgpoRe(cos by — Y2 |  (4.1a)
_ |costy — (cos 6 — n)*? 2 w8\ ? 12
Rs(6o) = cosdy + (0200 — 12| &P —4( costoRe(cog by — 1) (4.1b)

has the form of the Fresnel reflectivity multiplied by a factor similar to the Debye—Waller
factor, and coincides with the result obtained in [7, 10, 13]. However, while in [7, 13] this
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result was obtained in the first-order distorted-wave Born approximation as an approximate
result, valid only for relatively weakly rough surfac€s/1) cosfy <« 1, we have summed

all the terms in the perturbation series for the mean scattering amplitude which are of zero
order inn(w) without imposing any restrictions on the RMS height of the surface beyond
that implied by our adoption of the Rayleigh hypothesis.

For a lossless medium the reflectivities given by equations (4.1) become equal to unity
when the angle of incidena® is equal to or greater than the critical angle for total internal
reflectiond, = arccos,/7, at which the ternicos’ 6, — )2 goes to zero, and then becomes
purely imaginary foM. < 6y < 7 /2. This is because the Fresnel reflectivity is unity in this
range of angles of incidence, while the exponent of the Debye—Waller factor vanishes or
is purely imaginary. In view of the smallness pfw) the difference between the Fresnel
reflectivities for the scattering of p- and s-polarized x-rays is small. In figuag tBe
reflectivity given by equation (4d), calculated for a one-dimensional, randomly rough
gold surface, is plotted for different values of the roughness parameters as a function of
the grazing angle of incidendg = /2 — 6p. We see that it is equal to unity fép < 6,
whered, is the grazing critical angle for total internal reflection, and then decreases rapidly
for 6y > 6, the rate of decrease increasing with increasing surface roughness.

The lowest-order correction to the reflectivity given by equations (4.1) is of second
order inn(w), and is given by the second term in equations (2.37) and (2.43). Although
this correction is small, it is important because it describes the decrease of the reflectivity
from unity in the regime of total internal reflection. In addition, since this correction
depends on the surface height autocorrelation funclitx,|), in contrast with the result
given by equation (4.1) which does not, and which can therefore be used to determine only
the RMS height of the surface, an experimental determination of it affords the possibility of
determiningW (]x1|), or at least the transverse correlation lengibf the surface roughness.

To illustrate the content of this result it is necessary to calculate the integrals given by
equations (2.34). The functions

g1(plk) = e (@(p)—a (k) (@o(p)—ao(k)s®

oo
% / dy e~ 1 k=P [ef(a(k)wo(p))(a(p)wo(k))szwuun _ 1] (4.20)
—00

— e*(ot(P)7a(k))(ao(1?)+a0(k))32

oo
x / du e ik=pu [e—(a(k)—ao(p))<a(p)+ao<k)>62W(\u|) — 1] (4.20)
—00

g2(plk)

appearing in the integrands are often encountered in scattering problems, and can be
calculated in a standard manner by expanding the exponential in the integrand in a Taylor
series and evaluating the Fourier transforms of the Gaussian height autocorrelation function:

g12(plk) = g (@(p)—a (k) (ao(p)Fao(k))82
5 ) — aolp) () F ooty exp - P (s
X n:lm(a( ) — ao(p)" (ee(p) F ao(k)) p e .

The resulting sums converge slowly even for comparatively weak roughnesses [29]. Several
approaches to improve the convergence of the series have been proposed [29, 30]. We note
that because the factor expla(p) — a(k))(ao(p) % ap(k))8?] in the functionsgy 2(plk)
becomes ex{p?s?) in the limit |p| — oo it may appear that the integrals over in
equations (2.34) diverge. In fact, this is not the case. The sums in equations (4.3) cancel
this exponential increase @fi2(plk). However, in order to effect this cancellation an
infinite number of terms in the series must be summed, so that the poor convergence of the
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Figure 3. (a) The reflectivity (4.Z) of a one-dimensional randomly rough gold surface
illuminated by p-polarized x-rays of wavelength= 1.54 A, as a function of the grazing angle

of incidencefly = /2 — #p. The surface roughness is characterized by a transverse correlation
lengtha = 201, and two values of the RMS heigtst,= 1 (solid line) ands = 2i (dashed line).

(b) The reflectivity of a one-dimensional randomly rough gold surface illuminated by p-polarized
x-rays of wavelengtih = 1.54 A, calculated by including both the zero- and second-order terms
in equation (2.43), as a function of the grazing angle of incidélace /2 — 6. In the inset

a plot of 1— R(fp) is shown for grazing angles of incidence smaller than, and slightly larger
than,6.. The surface roughness is characterized by a transverse correlationdeadthy., and

two values of the RMS heigh8, = A (solid line) ands = 2 (dashed line). @) The same as
figure 3p), but for the scattering of s-polarized x-rays.
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Figure 3. (Continued)

series makes the direct calculation of the integrals in equations (2.34) a difficult problem.
To improve the behaviour of the functiogs 2(p|k) we rewrite them in the form

g1.2(plk) = exp[—(a(p)—a (k) (ao(p) Fao(k))s*] exp[ —(a(k)—ao(p)) (a(p) Fao(k))s?]

X/ du exp[—i(k — p)u] {GXD[(a(k)—ao(p))(a(p) F ao(k)§?[1—W (Ju])]

— exp[(a (k) — ao(p))(@(p) F ao(k))8?] } (4.4)

As a result the exponential factor multiplying the integral does not grow with co. To

calculate the Fourier integral we now expand the exponentials in the integrand in a Taylor
series

exp| (e (k)—ao(p)) ((p)Fao (k)8 [1—W (Ju])]] — exp[ (e (k) —eo(p)) (e (p) F eto(k))?]
3 211

= Z —_(a(k) — ao(p))" (@(p) £ aok))" {[L — W(uD)" — 1} (4.5)

Making use of the binomial representation of{W (|u|)]" and integrating ovex we obtain
gr2(plk) = exp[—<a<p>—a(k))(ao(mq:ao(k))sZ] exp[—(@ (k) —ao(p)) (@ (p) Fao(k))8%]

X Z Z = m),m, =yt i @) — @0(P))" ((p) aro(k))" e PR A,

n=1m=1
(4.6)

Despite the double summation, the series in equation (4.6) converges faster than that in
equation (4.3). What is more important, the identical transformation we have used to
calculate the integral (4.3) allows us to evaluate easily the integrals pwerequations
(2.34).

In figures 3b) and €) we present the reflectivities of a one-dimensional random surface
calculated for the case of the scattering of p-polarized x-rays from equation (2.40) with
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the use of equation (2.37) and for the case of the scattering of s-polarized x-rays from
equation (2.42) with the use of equation (2.43), respectively. Although the contribution to
the reflectivity of second order in(w) is small, it is important as it describes the losses

in the regime of total internal reflection. Since the reflectivity drops from unity to almost
zero in a very narrow range of angles of incidence, in the insets to figuogai3d €) the
deviation of the reflectivity from unity, & R(6p), is shown for grazing angles of incidence
smaller than the grazing critical angle for total reflectian

The reflectivity of a two-dimensional random surface has been obtained in section 3 and
is given by equations (3.38) and (3.39). It has the form of a sum of the Fresnel reflectivity
and the correction of the lowest ordersjw), n%(w), multiplied by a Debye—Waller factor.

As in the case of a one-dimensional random surface, the correction contains integrals, given
by equations (3.32) and (3.33), which can be calculated in the manner described above or,
in contrast to the one-dimensional case, by the method proposed in [30].

In figure 4 we present the reflectivity for p- and s-polarized x-rays scattered from a
two-dimensional randomly rough gold surface. We note that, as pointed out in section 2,
in the case of interest to us, namely that of grazing incidence, the difference between the
results for p- and s-polarizations is unobservable.

We now turn to the contribution to the mean DRC from the incoherent component of
the scattered x-rays of p- and s-polarizations, given for a one-dimensional random surface
by equations (2.56), (2.58) and equations (2.59)—(2.60), respectively. It has been calculated
to the lowest order im(w) (the second), and its reciprocal forms, given by equations (2.58)
and (2.60), have been derived in the lifiyA)/n(w) < 1. In this case, our result for the
contribution to the mean DRC from the incoherent component of the scattered x-rays of
s-polarization, given by equation (2.60), coincides with the results obtained in the first-order
distorted-wave Born approximation, or the modified Born approximation, in the limit of a
weakly rough surfacés/A) cosfy <« 1 [2, 7]. As in the case of the reflectivity, our results
for the incoherent scattering are not limited by this condition. However, at small grazing
angles of incidence and scattering where our results coincide with the results of the first-order
distorted-wave Born approximation [7], or the modified Born approximation [2], the two
limiting conditions are practically identical, because for such anglegogos +/n(w). We
note, however, that the expressions (2)58nd (2.59) remain valid even when the inequality
(8/M)/n(w) < 1 breaks down, and for arbitrary angles of incidence and scattering.

The contribution to the mean DRC from the incoherent component of the x-rays scattered
from a one-dimensional random gold surface, plotted as a function of the grazing scattering
angle for different grazing angles of incidence, is shown in figue), ®nd for different
values of the roughness parameters in figut®) &r a fixed grazing angle of incidence. In
figure 6 the contribution to the mean DRC from the incoherent component of the scattered
x-rays is plotted as a function of the angle of incidence for a fixed angle of scattering.
The plots in figures 5 and 6 show the sharp asymmetric pe&k &ato., and atéy = 6,
respectively, called the Yoneda peak [3]. This peak arises from the sharp feafyse-ab.

in the factors

2
2C0% s

€ COStp s + co¥ Oo,s — n(w)

present in the functiorb, (s, 69), which are the Fresnel transmission coefficients that
determine the electromagnetic field at the surface.

The contribution to the mean DRC from the incoherent component of the x-rays scattered
from a two-dimensional random surface is given by equations (3.58)—(3.62). As in the case
of a one-dimensional random surface, while the expressions (3.61) and (3.62) have been

4.7)




X-ray scattering from a randomly rough surface 423

(a)

e
2 N\
o -2 - N\
g N\
N
N
N
N
3+ N
AN
N
N
~N
~
-4 |
0 1 2
78, [deg]
0 (b)
-1 -
e
\
o L \
g N\
N
N
N
N
3 - RN
AN
~N
N
N
~N
-4 |
0 1 2
6, [deg]

Figure 4. The reflectivity of a two-dimensional randomly rough gold surface illuminated by
x-rays of wavelengtih = 1.54 A, calculated by including both the zero- and second-order terms

in equation (3.39), as a function of the grazing angle of incidence. The surface roughness is
characterized by a transverse correlation length 20x, and two values of the RMS height,

8 = A (solid line) ands = 21 (dashed line). & Rpp(do) and b) Rss(fo).

obtained in the limit(§/1)+/n(@w) < 1, the expressions (3.59) and (3.61) are valid when
this inequality breaks down and for arbitrary angles of incidence and scattering.

In the in-plane ¢s = ¢o = 0°), co-polarized (p—> p, S— S) scattering of x-rays from
a two-dimensional random surface the contribution to the mean DRC from the incoherent
component of the scattered x-rays, shown in figureg§ Z0d ), also displays a Yoneda
peak when the grazing polar scattering an@jeequals the grazing critical anglg, and
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Figure 5. The contribution to the mean DRC from the incoherent component of the scattered
x-rays as a function of the grazing scattering angle= 7/2 — 6s, when p-polarized x-rays

of wavelengthh = 1.54 A are incident on a one-dimensional randomly rough gold surface
characterized by a transverse correlation lengte: 101. (a) For several grazing angles of
incidencefo = 0.4° (solid line),dp = 0.52° (dashed line), andy = 0.7° (dash-dotted line), and

the RMS heights = A. (b) For a fixed grazing angle of incidendg = 0.4°, for three values

of the RMS heights = 1 (solid line),§ = 2» (dashed line), and = 3) (dash-dotted line).

the curves for p— p scattering coincide with those for-s s scattering. However, for
slightly out-of-plane ¢o = 0°, ¢s = 2°), cross-polarized (p~> s, s— p) scattering, the
results are qualitatively different in the two cases. Forps scattering (figure &j) a
Yoneda peak occurs fos = 6. for grazing angles of incidencé, smaller and greater
than 6.. The intensity of this peak, however, is nearly eight orders of magnitude lower
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Figure 6. The contribution to the mean DRC from the incoherent component of the scattered
x-rays as a function of the grazing angle of incidemge= /2 — 6y, when p-polarized x-
rays of wavelength. = 1.54 A are incident on a one-dimensional randomly rough gold surface
characterized by the RMS height= 1) and a transverse correlation length= 104, for several
grazing angles of scatterings = 0.4° (solid line), s = 0.52° (dashed line), ands = 0.7°
(dash-dotted line).

than the intensity of the Yoneda peak observed in in-plane p and s— s scattering.
When the grazing angle of incidendg exactly equals the grazing critical anglg the
contribution to the mean DRC vanishes due to the presence of the tg(ctm’- 6o — 1 in
equation (3.62). In contrast, in s— p scattering (figure &)), instead of a Yoneda peak
when s equalsf,, the contribution to the mean DRC vanishes there instead, for grazing
angles of incidence smaller than, equal to, and greater halue to the presence of the
factor \/co2 6s — n in equation (3.68). The magnitude of this contribution to the mean
DRC is lower by nearly seven orders of magnitude than the contribution from in-plane
p — p and s— s scattering. In view of the weakness of the cross-polarized scattering,
it will be a very difficult experimental problem to observe the features displayed by the
corresponding contributions to the mean DRC.

5. Conclusions

We have presented in this paper a simple reciprocal theory of the scattering of x-rays
from one- and two-dimensional, randomly rough surfaces. This has been accomplished by
obtaining a solution of the reduced Rayleigh equation for the scattering of electromagnetic
waves from such surfaces not as an expansion in powers of the surface profile function,
but as an expansion in powers of the small paramgte) = 1 — ¢(w). However, in
carrying out this expansion we have been careful not to expand the funeti@s=
(w/c)(€og by — n(w))Y? anda(q) = (w/c)(cos bs — n(w))Y/? appearing in the solution in
powers ofn(w). This is because it is the vanishing of these functions when the angle of
incidenced, and the scattering anglg equal the critical angle for total internal reflection,

6. = arccos,/n(w), and their transformation into purely imaginary quantities dgrmr 0
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Figure 7. The contribution to the mean DRC from the incoherent component of the scattered
x-rays as a function of the grazing scattering arfile= /2 — 6s, when x-rays of wavelength

2 = 1.54 A are incident on a two-dimensional randomly rough gold surface characterized by an
RMS heights = 2i and a transverse correlation length= 20x, for several grazing angles of
incidencego = 0.4° (solid line),dp = 0.52° (dashed line), andy = 0.7° (dash-dotted line), for
in-plane co-polarizeda) p — p and p) s — s scattering.

exceeding., that gives rise to the Yoneda peaks in the angular distribution of the intensity
of the scattered x-rays.

For both one- and two-dimensional randomly rough surfaces our zero-order result for
the reflectivity coincides with that obtained earlier by Nevot and Croce [10] by a rather
different approach. It equals unity for grazing angles of incidégeanaller than the grazing
critical angle for total internal reflectiof, and decreases rapidly égincreases beyong.
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Figure 8. The contribution to the mean DRC from the incoherent component of the scattered
x-rays as a function of the grazing scattering arfgle= 7/2 — s, when x-rays of wavelength

2 = 1.54 A are incident on a two-dimensional randomly rough gold surface characterized by an
RMS heights = 2) and a transverse correlation length= 20, for several grazing angles of
incidence g = 0.4° (solid line),dp = 0.52° (dashed line), andy = 0.7° (dash-dotted line), for
out-of-plane ¢o = 0°, ¢s = 2°) cross-polarizedd) p — s and b) s — p scattering.

However, we have also obtained the leading correction to this result, which i&o&3).

It shows that for O< 6y < 6. the surface roughness decreases the reflectivity slightly below
unity, with the deviation of the reflectivity from unity increasing with increasing roughness.
The surface roughness also shifts the grazing critical angle for total internal reflection to
larger values. This latter result has also been obtained recently [31] by an application of
self-energy perturbation theory [15], which will be reported elsewhere.
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Figure 9. The contribution to the mean DRC from the incoherent component of the scattered
light as a function of the grazing scattering anfle= 7/2 — 6s, when p-polarized light of
wavelengthh = 6328 nm is incident from a dielectric medium with an index of refraction

n1 = 1.61 onto the one-dimensional, randomly rough interface between it and a second dielectric
medium with an index of refraction, = 1.52. The RMS heighs = 0.1), and the transverse
correlation lengtha = 5x for several grazing angles of incidenc& = 12° (solid line),

fp = 19.25° (dashed line), andy = 24° (dash-dotted line)d, = 70.75°.

We note that our results for the contribution to the mean DRC from the incoherent
component of the scattered x-rays, once the approximations given by equations (2.57) have
been made, coincide with the results of the distorted-wave Born approximation [6]. Without
these approximations the results given by equations (2.56), (2.59) and (3.58)—(3.60) should
be more accurate than those of the distorted-wave Born approximation for larger values of
n(w) than those corresponding to the x-ray frequency range. Moreover, the approach used
in the present work provides a direct and simple way of obtaining corrections to the results
given by equations (2.56), (2.59) and (3.58)—(3.60) of higher ordexndn, e.g. of order
O(»®) and Qn*). Such calculations will be reported elsewhere.

The results obtained here are valid at small angles of incidence and scattering, like the
results of the Born approximation but, unlike the Born approximation, are also valid in the
vicinity of the critical angle for total internal reflection at the interface between vacuum and
the scattering medium. In their validity for small grazing angles of incidence and scattering,
our results also contrast with the results of the distorted-wave Born approximation.

Although the derivation of the results obtained here has been carried out in the context of
the scattering of electromagnetic waves from solid surfaces, the results can also be applied
to the scattering of x-rays from liquid surfaces, if the corresponding power spectrum for the
surface roughness is used. The latter has the form [32]

ksT (ke — k)

— 5.1
v k2+kf &1

g(lkHD = /d2x||W(|m”|) e*ik:HJ:” —

wherey is the surface tension of the liquid at the absolute temperdtukg is Boltzmann's
constant, and = (gp/y)Y? is the gravitational cutoff, witho the mass density of the
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liquid and g the acceleration due to gravity.(x) is the Heaviside unit step function, and
the wavenumbet; is the upper wavevector cutoff for the thermally excited surface waves
(surface ripplons) whose amplitudes roughen the liquid surface. The valkeigfof the
order of the reciprocal of a few atomic diameters [33].

Finally, it seems likely that the approach used here, namely the expansion of the
scattering amplitude in powers @f(w), may also be useful in theoretical studies of the
multiple scattering of electromagnetic waves incident from one dielectric medium onto
its randomly rough interface with a second dielectric medium, when the differetee
between their dielectric constants is small, of the order of a few tenths. The fumgtion
would then serve as a new small parameter in the theory of the scattering of electromagnetic
waves from such interfaces. As an illustration of this application of our approach, we present
in figure 9 the contribution to the mean DRC from the incoherent component of the scattered
light, when p-polarized light of wavelength = 6328 nm is incident from a dielectric
medium with an index of refraction; = 1.61 onto the one-dimensional, randomly rough
interface between it and a second dielectric medium with an index of refragtien1.52,
obtained from a second-order result analogous to the one given by equation (2.56). The
critical angle for total internal reflection in this casefis= 70.75°. We see a well defined
Yoneda peak at this value of the scattering angle. No evidence of enhanced backscattering is
present in this result. However, the addition of the leading corrections (of ordgy @nd
O(n*)) to the terms of second order if(w) obtained here for the contribution to the mean
DRC from the incoherent component of the scattered light may be sufficient to reproduce the
enhanced backscattering of light from such interfaces that has been observed in the results of
computer simulation studies of such scattering [34]. This possibility is now being explored.
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Appendix A.

In this appendix we show how the results given by equations (2.52) are obtained.
Using the following expansion of the functioh(y|Q) defined by equation (2.14),

110 =3 T g0 g) (A1)
n=1 -
where
") = / drg €792 (xy), (A.2)

and the explicit expressions f@y(k) given by equation (2.1 and form(q|k) andn(g|k)
given by equations (2.1 and (2.19), respectively, we find that

o0

1 —i)" .
n(qlk) £ miglbRok) = oo Z(n',) ¢ g — k)
n=1 )

X [(qk — a(q)ao(k)) (ean(k) + a(k, w))(a(q) + ag(k))"™*

+(gk + a(g)ao(k)) (eao(k) — alk, w))(a(q) — Olo(k))”l]~ (A.3)
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We next note that
ag(k) = o?(k) + n(@?/c?) (A.4)
and
e=1—n (A.5)
so that
(gk—a(g)ao(k))(eao(k)+o(k, w))
= gk(eao(k)+a(k, w)—a(g)(cas(k)+aok)ak, )
= gk(ao(k) + a(k, ) — a(q)ak, w)(ao(k) + a(k, ®))
—ngkao(k) + na(g)a?(k) — n(L - n(@?/c*a(g). (A.6)
However, since the contribution t9B(g|k)|?) — |(B(glk))|? given by equation (2.47) is
already proportional tg)?, we shall neglect all terms on the right-hand side of equation
(A.6) that are explicitly proportional tg as of higher order im; than the order to which
we are working. Thus, we find that
(gk — a(q)ao(k))(eao(k) + a(k, w))
= (gk — a(@)a(k, w))(ao(k) + a(k, w)) + O(n). (A7)

In exactly the same way we find that

(gk+a(q)ao(k)) (eap(k)—a(k, ))
= gk(ao(k)—a(k, ) +a(q)alk, w)(ak, ®)—ao(k))
—ngkao(k) — na(q)a?(k) + (1 —n)(@?/cPalq)
= (gk — a(q)a(k, w))(ao(k) — a(k, w)) + O(n). (A.8)

When the results given by equations (A.6)—(A.7) are substituted into equation (A.3), the
latter becomes

n(glh) % mq o Ro(k) = 45 _d?;)qc)l‘(x,f)k ) ; (;'!)” £ (q — k)
x[(@o(k) + a(k, w))(a(q) + aok))"
£(ao(k) — alk, ®))(a(q) — ao(k))" ] + O(). (A.9)
To simplify the notation we introduce the definitions
alg) =x atk,w)=1y aok) =z (A.10)
together with the functiong: > 1)
Fo=C+)x+2)" +@—-n&-—2""! (Al1a)
Gi=@GC+)a+2)"T—z-»x-2"" (A.11b)

The function F,, is associated with the- sign in parentheses on the right-hand side of
equation (A.9), whileG,, is associated with the- sign in these parentheses. The functions
F, and G, satisfy a pair of coupled finite-difference equations:

Foi1=xF, +zG, Gui1=xG, +zF, (A.129)
with
F, =2z G1=2y. (A.12b)
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On the basis of these results we define new functifnandg, by
F, = 2zf, G, = 2g,. (A.13)

These functions satisfy the finite-difference equations

fn+l = xfn + &n (A14a)

8n+1 = Xx&n + szn (A14b)
subject tof; = 1, g1 = y. However, from the definitions (A.10) we find that

22 = y? 4 n(@?/c?). (A.15)

We seek results foF, and G, that contain no terms explicitly proportional tg for the
reason given following equation (A.6).

We therefore drop the second term on the right-hand side of equation (A.15), and rewrite
equation (A.14) as

8n+1=Xgn + yzfn~ (A16)
To solve equations (A.14 and (A.16) we introduce the generating functions

fO=)1"f, )= t"g. (A.17)
n=1

n=1

They satisfy the pair of coupled equations
f@O =xtf@) +1g@0)+1  g) =x18(t) + y’1f (1) + yt (A.18)

whose solutions are

_ t _ > n n—1
f(t)—il_(ﬁy)t —;r (x+y) (A.193)
_ yt _ = n n—1
gt =1 v ;t y(x + )"t (A.19b)
It follows from equations (A.10), (A.13), (A.17), and (A.19), that
Fy=2(x +y)" " = 2a0(k) (e (q) + a(k, w))" " (A.208)
G, =2y(x + )"t = 2a(k, w)(a(q) + ak, 0))" " (A.20b)

where the terms neglected in obtaining these results are at least of angler O
When the results given by equations (A.20) are used in equation (A.9), we find that

gk — a(q)a(k, w)
d(q)d (k)
200(k)

= (_I)n n—=1%2(n
x; (@@ Fak o) e )(q_k){Za(k,w) (A.21a)

n(qlk) £ m(qlk)Ro(k) =

(A.21b)

gk —a(@ak, ) J(a(g) + ak, w)lg — k) | 200(k)
- d(q)d (k) a(q) + alk, o) 2u(k, )

where we have used equation (A.1) once more. These are the results given by equations
(2.52).
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Appendix B.

In this appendix we derive the result given by equation (3.52).
Our starting point is the expansion

Jv1Qy) =Z%V"f(")(QH), (B.1)
n=1 )
where
E(H)(Q”) — /dsze_iQ”'m”gn(iL‘”). (BZ)
Using this we can write the matricesqy |k;) = m(q;|k))R© (k) in the form
n(gy lky) £ m(gylkPRO k) =) (;II) ¢ (qy — Ky
n=1 .
Npp(qylkpleaoky) + ak)]  Nps(qylky)[aoky) + a (k)]
dp(q))dp(ky) dp(q))ds(ky)
Nsp(qylkpleao(k)) + a(k)]  Nss(qylklaolk)) + o (k)]
ds(q))dp(ky) ds(q))ds(k))

x[a(qy) + aolkp]" ™t
Mpp(qylk[eao(ky) — alk)]  Mps(qlk))[aolk)) — (k)]

dp(q))dp(k)) dp(q))ds(k))
Msp(qy|kp[eao(ky) —alk)]  Mss(q)lkplaolk)) — alk))]
ds(qy)dp(k)) ds(q)ds(ky)
x[a(qy) — aokp]™ ™ | (B.3)

We examine the numerators of each of the matrix elements in turn, with the use of the results
given by equations (3.10)—(3.11). In so doing we shall make repeated use of equation (3.55),
and replace explicit factors ef by unity, to obtain results to the lowest ordersinIn what
follows the first entry followingas: is the numerator of the corresponding element of the
first matrix on the right-hand side of equation (B.3); the second entry is the numerator of
the corresponding element of the second matrix.

PP lanky — gy - kyorolkp]leao(ky) + (k)]
= qiky[oo(ky) + a (k)] — ag))dy - kyled (ky) + ok (k)] + On)
= qykyleoky) + (k)] — a(gdy - kyerkplee(ky) + eo(k] + OGn)
= [qiky — a(q)qy - kyartkpllee(ky) + o (k)] + On) (B.4a)
[qiky + a(q)dy - kjeotkpllecok)) — a (k]
= gikyleotky) — a (k] + a(g)g) - kileg (k) — aolky)a k)] + O(n)
= qiky[oo(ky) — alkp] + a(g))dy - ke (kleky) — ao(k)] + O(n)
= [aqiky — (g))qy - kyar(kp)oro(ky) — ex(kyD] + OCn) (B.4b)
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ps: =" (@lg(@ x kpaleotky) + (k)] (B.52)
~ Zalg)@ x kpslaotk)) - atiy)] (B.50)
w . ~
sp: —;(QH x ky)zoo(ky)[ean(ky) + a(ky)]

= — %(én x ky)alad (k) + aolkpak))] + O

= — 2@ x kpsateplat) + aolkp] + O (B.63)
%G1 x kysaro(kp[eantky) — (k)]
= %(C}n x ky)alad(ky) — aolky)a(ky)] + O@)
= 2@y x kpaaylathy) - aolkp] +O() (B.6b)
(,()2 ~
Ss: ;f?u < ky[aolk)) + a(k))] (B.79)
@? .
?q” . kH[Oto(k”) — O[(k”)]. (B?b)
Collecting these results, we can rewrite equation (B.3) in the form
n(glky) £ m(g kPR (k) =D (_nl,) ¢ (qy — ky)
n=1 :
xP(qy [k [(aolky) + a(ky))(a(g)) + aolky))" ™
+(ao(ky) — (k) (a(gqy) — aok))" ] + O(n) (B.8)

where the matriXP (g |k;) has been defined by equation (3.53). With the aid of the results
given by equations (A.10), (A.11), and (A.20), equation (B.8) becomes

n(gylky) = m(gylkPRO Kk = > (:l) £ (q) — ky)
n=1 :
20(0(/(“) n—1
XP(Q|||k)<2a(k”)>(0€(4)+01(k)) + O

= P(qlk))

J(a(q)) +alkplq — k) (20lo(k||)) o B.9
alqy) +aky) 20 (kyy) +Ot) (8.9)

where we have used equation (B.1) again. This is the result expressed by equation (3.52).
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