PHYSICA

ELSEVIER Physica A 250 (1998) 453-469

On the mean-field theory of magnetic multilayers
with bilinear and biquadratic Heisenberg exchange

Svetislav Lazarev®*, Mario Skrinjar®, Darko Kapor®,

Stanoje Stojanovic¢®
3 Higher School of Chemistry and Technology, Sabac, Yugoslavia
b fustitute of Physics, Faculty of Sciences, Trg Dositeja Obradovica 4, 21 000 Novi Sad, Yugoslavia

Received 7 April 1997

Abstract

A system consisting of several layers of magnetic ions interacting by both bilinear and bi-
quadratic Heisenberg exchange is studied within the framework of the mean-field approximation.
It is shown that for S = | there exist two types of ordering: ferromagnetic and ferroquadrupolar.
The stability of phases as the function of temperature, biquadratic exchange and surface exchange
is discussed analytically and numerically and it was shown that similar to bulk samples there
appear first- and second-order transitions and a tricritical point may appear depending on system
parameters. € 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

During the last several years the research on thin magnetic films and multilayer
structures has been intensified both from the experimental and theoretical point of view.
Modern experimental techniques, especially low-energy electron diffraction (LEED) and
nuclear magnetic resonance (NMR) enable precise measurements of quantities of local
character like magnerization or susceptibility, which gives an additional impetus to
the research. There exists also a rising interest for the application of these materials
especially in the magretic recording industry. For example, multilayer magnetic systems
with a non-magnetic metallic spacer became the basis for production of various new
devices, in particular, ultrasmall memory sensors which make use of the phenomenon
of giant magnetoresistance [1].
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In an excellent review article [2] J.C.S. Levy reviews all the experimental techniques
suitable for the study of magnetic films, surfaces and interfaces. He also presents some
theoretical results for the magnetic films of Heisenberg magnet with bilinear interaction,
taking into account the variation of the anisotropy parameter on the surface (with
respect to the bulk). There also exist papers analyzing the magnetic characteristics of
the films on the basis of the Ising model, taking into account that some physical and
chemical conditions at the surface can change the surface exchange parameter /s # [
(see, e.g., Ref. [3] and the references cited therein).

The aim of this paper is to study the properties of thin magnetic films where the
spins interact not only by bilinear, but also by biquadratic interaction.

The presence of biquadratic interaction in bulk magnetics was established relatively
long-time ago ([4—6]). The important role of the biquadratic exchange term in the spin
Hamiltonian of some magnetic insulators was stressed by Harris and Owen [7], Joseph
[8] and Rodbell et al. [9]. The effects of the biquadratic exchange were analyzed in
numerous papers using various theoretical approaches (MF, GF, etc), to mention just
some; Refs. [ 10—15] etc.

On the other hand, diquadratic exchange between the spins of ultrathin ferromagnetic
films (in multi-layerec magnetics and sandwich structures) was observed only recently.
First, in the sandwich structure Fe|Cr|Fe with a wedge spacer, it was discovered that
the sign and magnituce of the exchange interaction changes oscillatory with the spacer
width by using scanning electron microscopy (SEM) [16] and Brillouin-light scatter-
ing (BLS) [17]. Furtaermore, in the intermediate ranges between ferromagnetic and
antiferro-magnetic bilinear interaction, rather unusual domain samples were detected
by magneto-optical Kerr effect (MOKE) [18,19]. These unusual characteristics were
ascribed to the existence of canting between the directions of the magnetization in
two Fe slabs, which could not be explained in terms of the conventional ferro- or
antiferromagnetic bilinear interaction between layers. The introduction of biquadratic
interaction between layers [18] can explain the magnetization dependence on the field
at 7 = 0K and it was shown that the canting angle depends on the ratio of bilinear
and biquadratic interactions. More recently, using surface MOKE and ferromagnetic
resonance (FMR) measurements in the three-layer sample Fe|Cu|Fe [20] the simulta-
neous existence of both bilinear and biquadratic interactions between magnetic layers
was established.

Quite recently, MOKE and BLS were used to demonstrate the existence of both bilin-
ear and biquadratic interactions in the epitaxial Fe|Cr|Fe|Ag|GaAs(100) structures [21],
then biquadratic interaction in Fe|Zn superlattices ([22] by FMR and vibrating-sample
magnetometer VSM), while in Fe|FeSi multilayers [23] the transition from antiferro-
magnetic biquadratic interaction was shown with temperature decrease.

The possible physical origins of the biquadratic interaction in general are discussed
thoroughly in now-a-days classical work of Nagaev [24]. Its origin in multilayer
magnetic systems in particular, was first discussed by Slonczewski [25], who suggested
an essentially macroscopic model, in which the biquadratic interaction arises due to
spatial fluctuation of the bilinear interaction caused by “terraced” width fluctuations
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(at the monolayer scale) of the nonmagnetic spacer. After that, Barnas and Griinberg
[26,27] elaborated twc possible microscopic mechanisms which lead to biquadratic
interaction even in the case of ideally flat interfaces. According to the first mecha-
nism, the biquadratic term appears as a result of the competition between the inter-
and intra-layer exchange interaction, while the second mechanism is based on the fact
that the electron wave functions responsible for the interaction, depend on the relative
orientation of the magnetization in the ferromagnetic films.

One should necessarily mention the work of Erickson et al. [28] in which the ex-
change interaction between the ferromagnetic films and the films of transition metals
separated by a paramagnetic spacer was treated within the framework of the free-
electron model. The model was applied to three-layer films, such as Fe|Cr|Fe or
Co|Ru|Co, where the minority-spin () energy bands are matched with the ones in
the paramagnetic spacer, while the majority-spin (1) electrons experience the repulsive
potential (barrier with the height proportional to the exchange energy gap). caused
due to insufficiency of the corresponding states in the spacer. It was shown within the
framework of this model that the expansion of the coupling leads to an infinite se-
ries of terms corresponding to bilinear, biquadratic and higher-order couplings between
magnetic moments in the ferromagnet. The coefficients corresponding to bilinear (4;,)
and biquadratic (B;2) exchange oscillate with spacer width, so that in some ranges of
spacer width it is possible that B, becomes larger than A4,,.

The above-mentioned experimental and theoretical results inspired us to analyse some
characteristic properties of thin magnetic films which depend on the relation between
bilinear and biquadratic exchange interaction. We shall study a simplified model with
simple cubic structure in the nearest-neighbours approximation where both types of
interactions between spins exist both between the layers and within the layers.

The structure of the paper is as follows: The model Hamiltonian of the system is
defined in Section 2, together with some thermodynamic properties of the film in the
mean-field (MF) approximation. The results of theoretical analysis are presented in
Section 3, while numerical calculations are discussed in Section 4 together with final
remarks.

2. Model and the mean-field approximation

We have mentioned above that we shall study the ferromagnetic film with N layers,
with translational symmetry in XY-plane and z-axis perpendicular to the film. The
interaction between magnetic moments is both bilinear Heisenberg exchange (/) and
biquadratic exchange (K,» = al.m). We shall consider the simplest case where we
consider only the nea-est neighbours’ interaction which will be set equal to / in the
bulk and between the surface layers and the bulk. The influence of surfaces will be
expressed by the variation of the surface interaction with respect to the bulk (& = 1;//
and ey = Iy/I), which is definitely a simplification of the real situation, but our own
aim is to study the influence of the biquadratic interaction on the system properties.
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The Hamiltonian of the system can be written in the form [10,29]
1 a 2 ;s z
H:—ilzjaysf&—igz,-j(si%) ~gHs A 3] (1)

where we have introduced also the Zeeman term of the interaction with the external
field along quantization axis (z-axis), which, in fact, introduces “Ising-type” symmetry
into the Hamiltonian. We shall introduce, besides the operators of the dipole magnetic
moments (S‘X,S" ).,S'z) also the operators of the quadrupole moments [10]:

A0 ~Z A2 AX A ~y ~af A% AfS AP Ax
0, =38~ SS+ 1) 0,=E )~ O =8.8,+35,5,

(x# B =x.y,2) (2)

and in this way the Hamiltonian takes the form convenient for the analysis in the
mean-field approximation:

N 1 a a L 0.0 1.2.2 1 ~aff Aaff
H:—§Z:I,-j (1 - E) 5:5; — EZI;,- 0:0; +50;0; +§§Q,— 0;
g /) a
—gus# Y _S; . 3)

The mean-field Hamiltonian will be introduced in the standard manner (/f = (AA)MF—F
(A—{A)yr) = (A)ygr + 4 and neglecting the terms of the form (d4)?), having in mind
that due to the Ising symmetry and translational symmetry in the XY -plane (i = (n,z =
na,)): (S5 = (S =0, (0) = {0M) = 0, (S5} = 0, Q) = g (n = 1,2....,N)

Hyr = Hy— Y{H,), 4)

where

N
Ho= N2 S (S + A w0 (5)

n=1

N; represents the number of the sites in XY-plane and the average fields #, and A,
for free-boundary conditions, have the form

n=1:

Hy = (1 - g) (41,01 + I02) + gug # .
Ay = 2@ha +lg).

n=~N:

N .
Hy = (1 - ;/l (4lyay + oy 1) + gus#

5 |
|

a
= 8(41,\,'9’,\' +Ign_1).
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2<n<N —1:

Fn=(1- g) (46, + Gpit + Gus) + gus .

- a
'%/n - 81(4‘]n + In+1 + qn—l) . (6)

The constant term in Eq. (4) does not influence the eigenvalues of the Hamiltonian,
of course, but it is thz part of the free energy (F) and in this way influences the
self-consistent magnetization of the system, which depends both on the average dipole
(0,) and average quadrupole (g,) moments.

We shall discuss further on the particular case of the spin S = | since, in this case,
in the bulk system (with Ising symmetry) there arise two types of ordering [10]:

(a) ferromagnetic ore, for 0 < a < 1, characterized by the parameters ¢, # 0 and
gn #0 for 0T <7, end

(b) ferroquadrupolar, for a > 1, characterized by the parameters ¢, =0 and ¢, # 0
for 0T <T,.

We shall see later that even in thin films with Ising symmetry, there also appear
two types of ordering.

The free energy of the system in MFA can be found from the partition sum Z of
the Hamiltonian H (@ = ksT):

F=-0mnz, — }{H), (7)

where

N LB
Zo = (H :Z,) . (8)
i=1

Simple calculation leads to the free energy per site in the layer:

F (A ; .
F=—=-0Y {— +1Infe 3¢ 42 cosh(.%f’,,/@)]}
Nz — e

=1
1 AN _
+ 5 ;(Gn%ﬁ + qﬂ'%il) (9)

and the ground-state energy (7 =0 K):

o & - . ,
fo=3 =3 g [62(0) 4(0) + ga(0)A,(0)] . (10)

In the case of the ferromagnetic (FM) ground state (S = 1), 0,(0) =1 and g,(0) = 1,

it follows from Eq. (10) (for 5 = 0)

1 a
i Ga— - = N N —10)]. 11
& 5 (1 3) [41) + &Iy +1(6 )] (1)



458 S. Lazarer et al. | Physica A 250 (1998) 453--469

For ferroquadrupolar (FQ) ground state ¢, = () = 0; ((S?)°) = 0 and ¢, = —2,
we obtain

&0 = _2[41. +4ly +1(6N — 10)] . ()

From Eqs. (11) and (12), it follows that at 7 = 0 for 0<a < 1, the system is in the
ferromagnetic state, while for @ > 1 it is in the ferroquadrupolar state, For @ = 1 there
occurs a degeneraticn, since both states possess the same energy, which agrees with
the results for bulk [10].

At temperatures 7" # 0, the average dipole ¢,(7) and quadrupole g,(7) moment per
layer is obtained from the condition of minimal free energy:

oF )
FE o F oy,
éoy, oqy
giving
2sinh(#,/0)
Op = (13)

T e 370 4 D cosh(H,/O)

6 cosh(H#,/6) .
= _— — — 2 =30, coth(#,/0) -2 14
1 e 34/® L 2 cosh(H,/O) ( ) (14

for n = 1,2,...,N.
The above expressions turn into the bulk relations for ¢ and ¢ [10], if we set the
following values for the average fields

Hy = H, (1 - g) J(O)o; A = %J(O)q; J(0) = 61 .

The complex formr. of Eqs. (13) and (14) clearly indicates that they can be solved
only numerically in the whole range of temperatures (0<7 < 7,.), which shall be done
in the next section. An analytical solution can be obtained only by expansion in the
vicinity of a phase transition. In this way, we shall be able to deduce for which values
of a there appear various types of ordering and a tricritical point in the film. An
alternative procedure would be to diagonalize first the quadratic part of the free energy
in the vicinity of a phase transition, yet due to the existence of biquadratic interaction,
this seem to be a rather formidable task. We shall now study the phase transitions in
the system, first analytically, then numerically.

3. Phase transitions in the system

Let us now return to the case of N-layered film. First we linearize the Eqs. (13) and
(14) in terms of g, which enables us to find the possible values of critical temperatures.
The linearization of Eq. (13) in terms of a, (g, ~ o¢2) in the vicinity of the
phase-transition temperature (6, =~ 0, g, ~ 0, @©<E¢) leads to the following
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system (for #° = 0):
Dye =0, (15)
where Dy = iy — An,

4, 100---000 0
1 410..-000 0 ai
0 141---000 0 a2

Ay = Lo e , 0= . (16)
0 00d02---141 0
0000---014 1
0 000 ---001 4ey

[y is a unit (N x N) matrix and § = 360/1(2 — a).

If the system is to possess spontancous magnetization (g, # 0 even for vanishing
external field for @ <Oc¢), the determinant Dy = det |[)N\ must vanish, the condition
which provides us with the possible values of phase-transition temperatures:

2 -a)

Y= B,
L= B

yv=12,...,N, (17)
where f, are roots of the equation Dy = 0:

D(p) = Tn(p) + (1 + ) Tv—1(p) + 71w T —2(p) - (18)

The above polynomia of Nth order can be expressed in terms of either B or p =
B—4 pi=4Hl—2a) w= 4(1 — ey ) where Tw(p) is Chebyshev’s polynomial of the
second kind:

p =1 0 0 0 0 0 0
“1p —10 0 0 0 0
0 -1 p -1---0 0 0 0
Tvip) =1 . R I (19)
0 0 0 0 --—1p =10
00 0 0 -0 —1p —1
000 0 --0 0 —1p

It is important to stress that according to the definition of Dy, B, are the eigenvalues
of the matrix Ay so they depend solely on the parameters & and ey since they are the
only system parameters involved in the definition of the matrix Ay. Exact analytical
solution can be found only for N =2 and N = 3, and some particular sets of parameters
for higher N, but here we shall present some general properties of the solutions.

According to Gershgorin’s theorem [30], the number of positive eigenvalues depends
on the matrix elemeats and in our particular case, for & > 0.25 and ey > 0.25, all
eigenvalues f3, are positive. For smaller values of &, and ey, there can arise for ¥ =3




460 S. Lazarev et al. | Physica A 250 (1998 453-469

at most two negative roots, while for N = 2, one root is always positive and the other
is negative.

To each root f, there corresponds one ordered phase @) with its set of 2N pa-
rameters (0},63,...,0y) and (g],45,...,qy). The most stable phase (in fact, the single
stable phase for 0 <@ <O¢) is the phase corresponding to the maximal temperature
©¢ which we denote by f; (or @). We are going to demonstrate this at the end of
this section after presenting the simplified expression for the free energy. However, it
is important to stress that according to Perron’s theorem [30] which deals with posi-
tive matrices (all matrix elements positive) which is our case, there exists always one
positive root larger than the modulus of all others, to which there corresponds positive
eigenvector (all components positive). This means that all o, corresponding to this
phase are positive, s it corresponds to ferromagnetic ordering in each of the layers.
Due to hermicity of the matrix and the orthogonality of eigenvectors, it follows that
phases corresponding to other eigenvectors do not manifest ferromagnetic ordering in
all layers.

One can easily deduce the following relations from Eq. (15) (in the vicinity of each
temperature @ ~ O ):

Sp = Pon, (20)
where we have introduced the following notation:

Sy =40, 4641+ 0,1, On=4G + @1 +qu-1, nF LN,

S =4de101+0y, O =4eq1 +9q2,

Sy =4denoy +on—1, Ov =4engn +qn-1. (21)

In order to determine the possible types of ordering (ferromagnetic or ferroquadrupo-
lar) and possible types of transitions (first or second order), we must expand
Egs. (13) and (14) up to terms of order ¢® using the Eq. (20). The first step is
to express O, in terms of ¢2. It foll ows from Eq. (14) that

|
i 0 3 s (22)

s

—a

where o« = .

Using the rcclilations between O, and ¢, and Eq. (22), we shall obtain the systems
of equations which express Q, in terms of S? (i.e. (6,)*) and which can be put into
the matrix form

o 3x .
An(x)Q = TXANO'Z ; (23)
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where
An(x) = xfy — Ay ; (24)
o O
pl
02 (&)
6’ = N 0= C x=af. (25)
a3 On

An important comment is necessary here. The matrices Ay(x) and Dy(B) have the
same form, so that their determinants have similar form:

Dy =T[B-8%  av=]]x— 8.

where f, are the solutions of Dy = 0.

The relation (23) enables us to conclude when the system transits to the ferro-
quadrupolar ordering. Obviously, when Ay vanishes, ¢ must vanish too, otherwise, Q
would diverge.

Expanding Eq. (13) up to order o7 and using Egs. (17) and (22), one gets

9, 3 5 By )

—et—-—0,=312-1]), 26

8o-n 2xQ” (B ) ( )
or in the matrix form

3. 1 v

ZINOJ - ;INQ =2 (% - 1) 1y, (27)

where we distinguish the unit matrix Iy and the column matrix 1y with all elements
equal to 1. From (23) it follows that

0- %A;'A“Nal (28)

Combining (27) and (28), we obtain

~(N 8 R
Ay e = = (B, — Brdnly (29)
38
where we have introduced
A = Ay — Ay =xly — 24y | (30)

The condition for the appearance of the tricritical point is

~(N .
det| 4| = 4V =0, 31

since then one cannot determine 2 = f(O¢ — @).
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In the most general case, since the equation Af,y(x) = 0 has the solutions x, = f,
(v=12,....N) ie. if

Av(B) = Bl — An| =0, (32)
then also A‘O’V)(x =2f,) = 0. It can be easily proved, since
APy = 1280y — 24y = 2" |Budy ~ Av| = 2Y An(B) = 0. (33)

This means that the relation
N
Avx) =[x = B0
v=1
implies the relation
7 v
45 = e - 280
=1
Formally, one can conclude that for any phase @# there appear N ftricritical points
in the (f,%) plane: (f,,%; = 2f./B,). If we introduce the notation gy > f > -
where ) = (30L/(2 — a)l) corresponds to the transition point of the stable phase
(defined in the range 0< @ < ©}.), then there appears maximal value of the parameter
% 3‘;11 = 2f1/B, leading to the highest value for the tricritical point of the given
phase. This means, that during the decrease of x, the change of the character of the
transition occurs at this point, so all lower values of x are irrelevant. Since we are
mostly interested in the stable phase corresponding to f3,, we see that tricritical point
occurs for x = 2.
Similar reasoning can be repeated for the transition to ferroquadrupolar ordering
(An(x) = 0), leading to the conclusion that it occurs for 2 = 1 in the stable phase.
Let us finally analyze the free energy for any phase @, near the critical temperature
B.. Expanding the free energy in the vicinity of @} in terms of {,} up to order at,
N

n 2—a)l 2—a)l . /
’7:’\' :50_"\1(0) '1"2 [:(% - ( 6@“) Sn) ( za) Sn + (qz — ——Q,,) %Qn

n=1

2 - c!)4l4 1 la
36-2103 7" 302 6

— 0,8, + 0(0(‘)} (34)
and using

2-—aYl* , 3 o

la
-, ——8, = —58,, = Bioy,
qn 39Qn 12@2 Sn 4ﬂ2 n S, ﬁ Ox
we have
o 2 —a)l? a o, 3Q-a)lp a)Iﬁ
F N —f/'N(O)'+ Z [ 26 (/)7 ﬁ )[)) O- zQ"O-n 4. 42 O

n=1

:f,v(OHZ{(z LB~ oo + Zﬁoﬁ(%ﬁoi—Qn)]- (35)

n=1
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Finally, using Eq. (26), the total free energy in the vicinity of @ ~ @, for the phase
PV is

P = (2—a)l al 2 P
Fn=FN0) = (B =)D 0 < Fu(0). (36)
n=\

Let us now discuss “his expression in more detail. It is obvious that the free en-
ergy corresponding to the phase with highest transition point (@) is the lowest till
temperatures @ <OL. 1t is rather difficult to compare this free energy with the one
corresponding to some phase with lower transition point (@} < @L.), yet all numerical
studies indicate that it is lower, so this is the reason why we assume this phase to be
the only stable one.

Let us now look at some numerical examples.

4. Numerical study of the phase transitions

The numerical study was based on the numerical solving of the coupled system of
nonlinear equations, Eqs. (13) and (14) under the condition of minimal free energy. The
results agree with our analytical study in the sense that main conclusions concerning
the character of ordered phases and transition points are confirmed.

Our main interest was to study numerically the influence of the boundaries and the
change of order parameters ¢, and g, along the layers, since these are difficult to
obtain analytically.

To be more specific, the values of order parameters ¢, and ¢, depend on the layer in-
dex (n =1,2,...,N), the boundary conditions (&, &y ), the parameter of the biquadratic
exchange (a) and the temperature, here expressed in terms of the dimensionless tem-
perature t = kpT/I. We are going to present some of the plots obtained for selected
parameters.

Fig. 1 shows the values of the magnetization and quadrupole moment over the layers
of the symmetric film (N =10), in different phases and for different values of the
surface parameters at the temperature ¢ = 2.5. Fig. la describes the ferromagnetic
phase (¢ = 14) when o, > ¢, > 0, and the Fig. 1b treats the ferroquadrupolar phase
(a = %) when o, = 0; ¢, < 0. In both phases. the values of the order parameters are
smaller at the film surfaces if ¢ < % These differences manifest themselves in the first
34 surface layers. One should note that for ¢ = } order parameters obtain the same
value at all film layers. This is simply the consequence of the fact that in this case
the total exchange interaction in surface layers 4« +/ has the same value 6/ as in the
bulk. Finally, for ¢ > % order parameters have larger values at the surfaces than in
the bulk.

A more detailed analysis of the influence of the surface parameters (Fig. 2) shows
that their decrease can cause a drastic reduction of the order parameter value at the
film surfaces. For example, for ¢ = 0.1, the magnetization in the surface layer is about
10% of the bulk value, while for the quadrupole moment it is 30%. In inner layers
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<Sz> <Qo> <Qo>

o 1t 2 3 4 5 6 7 8 9
(@) n {b) n

Fig. 1. The magnetization (%) (upper plots) and average quadrupole moment (0% (lower plots) in various
layers of symmetric film at the temperature kgT// = 2.5, for several values of &:¢ = % thin solid line; ¢ = 1

solid line; ¢ = % dotted line and & = % dashed line. (a) Ferromagnetic phase a = 0.25; (b) ferroquadrupolar
phase, a = 1.25.

<8z> <Qo> <Qo>

12 (——ﬁ~ e

| ! i ! [ :,,,,J | S L ! | &
£ -2

0 025 05 078 1 125 18 175 2 0 025 05 0.75 1 128 15 175 2
(a) (b)

Fig. 2. The magnetization (57) (upper plots) and average quadrupole moment {Q%) (lower plots) in various
layers of symmetric film versus surface parameter ¢ for kgT/I = 2:n = l-solid line; » = 2-thin solid line
and # = 3-dotted line. (a) Ferromagnetic phase, @ = 0.25; (b) ferroquadrupolar phase, a = 1.25.
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<Sz> <Qo>

FQ

Fig. 3. The magnetization ($°} (solid line) and average quadrupole moment {Q°) (dotted line) for the first
two layers (n = 1,2) versus biquadratic exchange parameter a, for N = 10 layer film with free surfaces
(& = 1) at the temperature kg7/{ = 2.

this influence is decreased and becomes negligeable after the third layer. The plots all
intersect for ¢ = 1.25, since in this case the order parameters are the same in all layers.
Further increase of the surface parameter (¢ > %) has not so pronounced influence on
order parameters.

Using the mean-field Eqs. (13) and (14), we have also studied the influence of the
biquadratic exchange parameter. The results of this analysis for ten-layer film (N =
10) with free surfaces (¢ = ¢y = 1) at the temperature 1 = 2 are shown at the
Fig. 3. One can see from the plot that the increase of the biquadratic interaction (a)
in the ferromagnetic phase leads to the decrease of the order parameters. There arise
two degenerate sets of solutions for @ = 1 just as the case of bulk ferromagnetic with
biquadratic interaction. For one set, order parameters have the same values at particular
film layers (6, = g,), while for the other one g, = 0, g, < 0 at each layer. Both
sets lead to the same free energy and coexist at all temperatures below the critical
one. For a > 1, the system transits to the ferroquadrupolar phase where the increase of
biquadratic exchange leads to a sudden decrease and then a saturation of the average
quadrupolar moments.

Using Egs. (13) and (14) we have finally studied the temperature dependence of the
order parameters for various film layers. This dependence is for the sake of simplicity
plotted for the case of five-layered film with asymmetric boundary conditions (¢, = 0.5,
&y = 1.5) in the ferromagnetic phase (¢ = 0.25). It can be seen from the Fig. 4 that
the order parameters in various layers might have the values smaller or higher than
the bulk ones, depending exclusively on the boundary conditions. Another important
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tSz)
1.2 17—

(b)

Fig. 4. The temperature desendence of the magnetization (a) and quadrupole moment (b) in the ferromagnetic
phase (a = 0.25, N = 5) of the asymmetric film (& = 0.5, &y = 1.5). Solid line represents bulk quantities.
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{Sz) {Qo)
1.2 S 1.2
i
0.8}
0.6
04~
0.2
!
0 1 :
9 3 3.5 4
(@)
(Qo)
o
_05 ‘,
F
1.5
..2 |-
1] 0.5 1 L5 2 2.5 3 3.5 4
c) KT/1

Fig. 5. The temperature dependence of the magnetization (a) and quadrupole moment (b) in the ferromagnetic
phase (@ = 0.8, N = 5) of the asymmetric film (¢; = 0.5, ey = 1.5), (c) ferroquadrupolar phase (a = 1.25).

conclusion is that opposite to the case of semi-infinite structure, there occurs a unique
phase-transition temperature in the thin films. The values of transition temperatures
agree with the analytical estimates (Eq. (17)).

Fig. 5 represents the temperature dependence of the magnetization and quadrupole
moment under the sarne conditions except for ¢ = 0.8. The influence of the surface
parameters is similar as in the previous example. However, in this case the order
parameters vanish abruptly in the vicinity of the transition temperature, indicating to
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Fig. 6. Phase diagram of the N = 10 layer symmetric system, 1 —¢ = 0.25, 2 —bulk, 3 — & = 1.5.

the change of the character of phase transitions for a > % This phenomenon was
already discussed ana ytically in the previous section. )

First-order transitions also occur in the ferroquadrupolar phase, as can be seen from
Fig. Sc, where the temperature dependence of the quadrupolar moment over the film
layers is presented for @ = 1.25. All other conditions are the same as for the previous
two figures.

All conclusions are summarised by the phase diagram (Fig. 6) where kT¢I is
plotted versus biquadratic parameter a, so that the tricritical point corresponds to a =
% and transition to ferroquadrupolar ordering corresponds to a = 1.

Finally, let us note that the expansion of Eq. (36) is meaningfull only for o > 2, i.e.
when second-order transition occurs. For the analytical study of first-order transition,
an expansion of the free energy to higher orders of o, would be necessary. We have
avoided this by studying this region only numerically.
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