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Abstract 

Two-dimensional wall structures in ferro/antiferromagnetically exchange-coupled bilayers are calculated by means of 
numerical micromagnetic simulations. Extended wall tails occurring in non-compensated structures are duly accounted for 
via the introduction of a variable meshing along one space direction. Constant charge finite volumes and the application of 
general boundary conditions in the presence of interlayer exchange coupling and/or surface anisotropy further characterize 
the computation scheme. Simulated wall structures in zero field are compared with various approximate analytical models 
and the ranges of validity of the latter are made explicit. Hard-axis field intrinsic magnetization and hysteresis properties are 
outlined, and a sketch of the wall structure phase diagram is proposed for given material parameters and a specific geometry. 

1. Introduction 

Due to the possible occurrence of a large perpen- 
dicular anisotropy and exceptional transport proper- 
ties, magnetic multilayers are now well established 
candidates as potential media in information storage 
technology and field sensors. In both soft and hard 
ultrathin films, bilayers or multilayers, domain struc- 
tures have been observed by means of  electron trans- 
mission (DPC [1] and conventional Lorentz mi- 
croscopy [2]), optical reflection or transmission (e.g. 
[3-8] )  and spin-polarized secondary electrons 
(SEMPA, e.g. [9-11]). Wall structures in ultrathin 
films and multilayers are expected to differ markedly 
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from the wall structures to be found in conventional 
thin films due to a new balance between the various 
energy terms. For instance, coupled N6el walls are 
preferred to uncoupled walls in a bilayer due to an 
efficient charge compensation [12]; similarly, super- 
imposed N6el walls may, under the action of an 
in-plane hard-axis field, be transformed into complex 
structures made, in each layer, of  a N6el wall plus a 
quasi-wall [5,13]. Two other physical properties of  
artificial magnetic stacks may influence wall pro- 
files, namely, the possible existence of an interlayer 
exchange coupling and, as already stated, of a sur- 
face a n d / o r  interface anisotropy. According to the 
nature and thickness of the interlayer spacer, the 
former [4,14,15] may prove to be ferromagnetic (F) 
or antiferromagnetic (AF), or even biquadratic. The 
latter may become particularly strong in the case of  
very thin constitutive magnetic layers (e.g. [16,17]). 
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The first aim of this paper is to offer a means of 
numerically simulating from first principles the wall 
structures in bilayers or multilayers within the micro- 
magnetic approximation (Section 2). Interlayer ex- 
change coupling and/or  surface anisotropy are taken 
due account of, and the role of the new surface 
constraints deriving from those specific properties 
are emphasized. Selected examples of wall structures 
in symmetric bilayers as a function of the interlayer 
exchange coupling strength are given and discussed 
both in the F (Section 3) and the AF (Section 4) 
coupling regimes. Finally, Section 5 is devoted to 
intrinsic hysteretic properties of coupled walls in 
bilayers under the action of a hard-axis in-plane 
applied field. 

2. Numerical 

The code used in the present calculations mini- 
mizes the torque associated with the effective field 
Hoff acting on the magnetization m = M / M  s (m = 
(ot,/3,'y), Iml= 1). The effective field defined as 
minus the derivative of the total energy with respect 
to m, namely, Heff(r)= -OET/am comprises con- 
tributions from exchange, anisotropy, applied and 
demagnetizing field energies. At equilibrium, the 
equation 

m X Hef  t = 0 (1) 

should be satisfied at all mesh points within the 
magnetic volume. In this respect, the present compu- 
tations follow the original LaBonte-Brown scheme 
[18]. Compared with the codes initially developed 
[19,20], however, three main modifications have been 
introduced. The first concerns the incorporation of 
new surface constraints due to the existence of inter- 
layer exchange coupling and /o r  of surface 
anisotropy. The second involves a new discretization 
scheme introducing a variable meshing along one 
space direction for a proper description of the well 
known logarithmic tails of N6el walls [21] or, more 
generally, the extended tails of uncompensated struc- 
tures. A first account of the method was given in 
Ref. [22] and its application to N6el walls in very 
thin films was discussed in Ref. [23]. Finally, a 
bilinear variation of the magnetization distribution 
within each cell is assumed [24]. 

2.1. Surface constraints 

Along the outer surfaces of the magnetic stack 
and in the absence of surface anisotropy, the magne- 
tization should be stationary [25], a condition that 
reads 

On~On = O, (2) 

where n is a unit vector normal to the surface (OY 
axis). Eq. (2) would also apply to inner surfaces in 
the case of sole magnetostatic coupling. The set of 
equations (1) and (2) is usually referred to as the 
Brown micromagnetic equations [26]. 

More generally, however, the boundary condi- 
tions should be modified in the presence of: 

(i) an interlayer exchange coupling, amplitudes J1 
and J2, and energy density per unit surface: 

e j ( x l = J l [ 1 - m . m ' l + J 2 [ 1 - ( m . m ' ) 2 ] ,  (3) 

m and m' being magnetization vectors at the inner 
surfaces of the bilayer stack just facing each other 
(see Fig. 1). According to the usual definition, when 
"]2 = 0 or ]J2l <<]Jll ,  J1 > 0 and J1 < 0 mean a 
ferromagnetic (F) and antiferromagnetic (AF) ex- 
change coupling, respectively. When J1 = 0, a nega- 
tive J2 value leads to a biquadratric interlayer ex- 

m' ~. ~pacer J 

[ D P (x,y) P j '  
(x',y') 

Fig. 1. Bilayer geometry, including a schematic representation of 
the variable meshing along the OX space direction. 
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change coupling type [4]. Owing to the above defini- 
tion, a sole exchange interlayer coupling of the 
surface spins has been considered in the present 
simulations: the model reduces interactions to closest 
distance spins belonging to different and perfectly 
flat interfaces. Therefore, the interlayer exchange 
coupling contribution to the full energy only requires 
a single integration over X, where the OX axis is 
taken to be perpendicular to the wall elongation 
direction. 

(ii) A surface anisotropy along the normal to the 
layers K S with surface energy density 

~K(X) =Ks[1-(n.m)2]. (4) 

This last term should be integrated over X and the 
four surfaces (i = 1 ..... 4) of the bilayer stack, with 
potentially different magnitudes of the coefficient K S 
for the various interfaces between the magnetic ma- 
terial and a non-magnetic spacer or vacuum. 

Minimizing the total free energy through varia- 
tional calculus yields the Euler equations in the 
volume and along surfaces (see e.g. Ref. [27]). The 
volume equation is identical to Eq. (1), whereas the 
surface equation, now including not only the bulk 
exchange contribution (constant A) but also the sur- 
face anisotropy and the interlayer exchange coupling, 
reads 

2Am× ~ - 2 K s ( n . m ) ( m × n ) - J l ( m × m '  ) 

- 2 J 2 ( m . m ' ) ( m  X m') = 0, (5) 

where the first contribution leads to Eq.(2) in the 
absence of surface anisotropy and interlayer ex- 
change, while the existence of the two first contribu- 
tions (A and K s) gives rise to the Rado-Weertman 
relation [28] in the absence of interlayer exchange 
coupling. In the general case, the explicit new sur- 
face boundary condition reads 

0m J1 
On - 2A [(m.m')m-m']  

K s ( n . m ) [ n - ( n . m ) m ]  +-y 

J2 m' m' + ~ - ( m .  )[ --(m.m')m]. (6) 

2.2. Discretization 

The continuous magnetization distribution re(r) 
in the magnetic body is reduced to a finite number of 
magnetization vectors m(ri), with i = 1 ..... N, where 
N is the total number of nodes. Evaluating the 
non-local magnetostatic term requires the knowledge 
of difference vectors ( r  i - riO. Therefore, a periodic 
Cartesian grid is usually preferred since, due to the 
translational lattice invariance, one parameter only, 
namely ( i -  i'), suffices to characterize long-range 
force interactions between cells i and i'. In other 
words, the translational invariance reduces the size 
of the dipolar interaction coefficient matrices from 
Cvs(i,i') to C v s ( i - i ' ) ,  hence reducing memory 
requirements. 

Unfortunately, the physical problems treated be- 
low incorporate uncompensated structures such as 
parallel N6el walls with two characteristic lengths 
[21,29] of markedly different magnitudes. The short- 
est of these lengths describes the wall core width to 
be characterized by a rapid variation of m scaling 
with 61 =¢A/2"rrM~. The second characteristic 
length 62 = D/Q, where D is the thickness of an 
individual layer and Q is the usual quality factor, 
corresponds to the extended N6el wall tail width 
(Q =K/2'rrM 2, where K is the bulk anisotropy 
constant; Q << 1 in the case of soft magnetic layers). 
The condition 62 >> 61 applies in the cases consid- 
ered below. Therefore a fair description of both parts 
of the wall based on a periodic grid would require an 
extremely large number of nodes N, which in turn 
would prove unacceptable in terms of computation 
time. 

In the following, therefore, an adjustable meshing 
has been introduced along the X direction, as de- 
picted schematically in Fig. 1, keeping in mind that 
the choice of a non-periodic grid leads to an increase 
in the size of the Cvs interaction coefficient matrices. 
It should be mentioned that a variable meshing along 
the sample normal (OY in the present geometry) was 
introduced in Ref. [30] for a proper description of the 
internal structure of 180 ° walls in thick iron layers. 

Demagnetizing field 
Following recent developments [24,31], the pre- 

sent calculations use a scheme assuming constant 
magnetic volume charges within one cell and con- 
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stant magnetic surface charges per cell boundary at 
the free surfaces or interfaces. In addition to an 
improvement in accuracy compared with the classi- 
cal approach, assuming a constant magnetization 
within each discretization cell, mesh points are natu- 
rally introduced along the interfaces and/or  surfaces 
of the stack; this is a necessary condition for a 
proper description of surface constraints as empha- 
sized above (Section 2.1). 

In the present work, the demagnetizing field con- 
tribution to Her e in Eq. (1) is directly evaluated, 
knowing the distribution of volume, p, and surface 
charges, o'. Specializing to magnetization distribu- 
tions invariant along one space direction, OZ in the 
present geometry, the continuous expression for the 
demagnetizing field at location r reads (see Fig. 1) 

r r r-r '  
Hd(r ) = 2JJp ( r ' )~dx '  dy' 

r - -  r r 

(7) 

where r = r(x,y),  cr = Ms(re. n), and 

o ;  - M s d i v ( m )  --- -Ms ~x + 0y 

For each layer, the normal n points outwards, 
hence o-= + M  s ft. Assuming a regular meshing 
along the y-direction, the discretized equivalent to 
the volume contribution of the x-component of the 
demagnetizing field in Eq. (7) reads 

H2°I( I , J )  = y~ ~ p( Ir,J')C~ol( I , I ' , J  ' - J ) ,  
I' J' 

where 

Cv~o,( I , I ' , J  ' - J ) 

x'2 Y'2 X -- X' =2Ix :y (x - x ' )  2 + (y -y')2 

x = x (1 ) ,  y = y ( J ) ,  

x' 1 = x ' ( I ' ) ,  Y'I = Y ' ( J ' ) ,  

x '2=x ' ( l '  + l ) ,  y '2=y' (J '  + l ) ,  

p( I '  , J ' )  = -Ms(div (m) )r.J'. 

dx'  dy ' ,  

(8) 

In the case of a bilinear variation of the magnetiza- 
tion within each cell, the average volumic charge is 
expressed as (divergence theorem) 

(div(m))~t 

1 
= 2 [ x ( l +  1) - x ( 1 ) ]  (a(k+ 1, l+  1) 

+ a ( k +  1,l) - a ( k , l +  1) - a ( k , l ) )  

1 
+ 2 [ y ( k +  1) - y ( k ) ]  ( f l ( k +  1,1+ 1) 

+ f l ( k , l +  a ) - f l ( k +  l , l ) - f l ( k , l ) ) .  (9) 

Equivalent expressions hold for the y-component of 
the demagnetizing field arising from volume charges. 
Contributions from surface charges may be evaluated 
in a similar fashion. 

Finally, the stray field energy E d is calculated 
using the classical continuous expression (Eq. 10), 
assuming, within each cell, a bilinear variation of 
both the magnetization and the demagnetizing field: 

1 
E d = - z~-~/vH d . M d v .  (10) 

Exchange interactions 
The bulk exchange contribution to the effective 

field involves the computation of the second deriva- 
tives of the magnetization components versus space 
coordinates. Since a four-nearest-neighbour approxi- 
mation has, in the case of regular meshings [19], 
been found to be far superior to the conventional 
two-nearest-neighbour definition in terms of numeri- 
cal precision, the same approach is followed below. 
Considering five mesh points located at coordinates 
xi_2...xi+ 2 (see Fig. 2), Taylor expansion to the 
fourth order around the central mesh point provides a 
set of four linear equations in increasing order of the 
derivatives, f ' ,  f" ,  f " ,  fly of the function f, namely, 

(Xi+m --Xi) 2 
( X i + m - - x i ) f ' ( x i )  + 2! f " ( X i )  

(Xi+ m - - X i )  3 (Xi+ m - -X i )  4 
f m (  x i )  ...[_ f i v (  + 3! 4! xi) 

= f ( X i + m ) - f ( x i ) ,  m =  - 2 , + 2 ,  m ~ i .  
(11) 
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'I" 
xi_ 2 xi_ 1 x i Xi+l xi+ 2 

Fig. 2. Four-nearest-neighbour approximation as used in the eval- 
uation of bulk exchange interactions. 

Solving this system for the second-order derivative 
f" provides the sought-for answer. The solution for 
an arbitrary meshing reduces to the expression previ- 
ously utilized [19] when the distance between mesh 
points becomes constant. 

Implementation of boundary conditions 
Proper boundary conditions are simply inserted as 

a particular treatment of the exchange interactions 
when the mesh points are located either along one of 
the free surfaces or interfaces, or one mesh constant 
away from the former. 

When the mesh point is located along free sur- 
faces or interfaces, Taylor expansion around yy (see 
Fig. 3, right column) yields a set of three linear 
equations in the variables f",  f "  and f i r ,  duly 
incorporating boundary conditions f '  (yy), namely, 

( YJ-,, _ yj)2 ( YJ-, _ yj)3 
2! f"(YJ) + 3! f " (YJ)  

(y j_ ,  - - y i )  4 
+ 4! f i v (y j )  

=f (Yj -n )  - f (  Yj) - ( Yj - ,  - Y j ) f ' (  Yj), 

n = 1,3. (12) 

Similarly, for mesh points one mesh constant away 
from free surfaces or interfaces (Fig. 3, left column), 

Interface or Free S u r f a c e ~  

Yj .2 ~ 

Yj .3 

Yj 4 

Fig. 3. Geometry specific to mesh points located close to a free 
surface or an interface (see text for details). 

expansion around yj_ 1 followed by an evaluation of 
the first derivative at Yi provides the first equation: 

f ' (Y j -1 )  + (Y j - -Y j -1 ) f " (Y j  1) 

+ 2! (YY-')  

(Yj -Yj -1)  3 
+ 3! f iv(yj_ 1) = f ' ( y j ) .  (13a) 

The three other equations are just equivalent to the 
general equations (11), precisely: 

(Yy_, - Yj_l) 2 
f,,( ( Y j - n - Y j - 1 ) f ' ( Y j - 1 )  + 2! Yj-1) 

( y j_n - - y j  1) 3 
+ 3! f " ( Y j - 1 )  

(Yj-n - Y j - 1 )  4 fiv( 
+ 4! Yy-l) 

= f ( Y j - , )  - f ( Y j - 1 ) ,  

n = 0 ,+  3, n ~ j -  1. (13b) 

Thus, for those mesh points, similarly to the general 
case, a set of four linear equations in the variables 
f ' ,  f" ,  f "  and fir provide the value of the required 
second derivative. Because it includes the boundary 
condition, one equation plays a particular role. 

3. Wal l  s tructures  in the ferromagnet ic  exchange  
coupl ing reg ime  

In the case of a ferromagnetic type interlayer 
exchange coupling two structures may be envisaged. 
One is composed of superimposed walls with oppo- 
site core magnetizations [32], thus drastically reduc- 
ing the stray field energy (Fig. 4b). For large values 
of J, however, a second configuration made of 
parallel N6el walls (Fig. 4c) is expected to be ener- 
getically more stable. This section is primarily de- 
voted to a description of superimposed walls in zero 
field. All calculations assume magnetic parameters 
typical of standard permalloy films (uniaxial in plane 
volume anisotropy: K =  10 3 erg/cm3; volume ex- 
change constant A = 10 -6  erg/cm, saturation mag- 
netization M s = 800 emu/cm3). In Section 3.1 a 
single geometry is considered, namely, a bilayer with 
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a) b) c) 
0 Jcr 

I r - j  
AntiFerro. Ferro. 

Fig. 4. Schematic diagram of superimposed 180 ° walls in a 
bilayer: (a) antiferromagnetic interlayer exchange coupling (J < 
0); (b) ferromagnetic exchange coupling (J > 0); and (c) parallel 
N6el walls expected for larger J values. 

magnetic layers D = 8 nm thick separated by a 
non-magnetic spacer, thickness d = 2 nm. Wall pro- 
files are analyzed as a function of  J (-/2 = 0, J = J1). 
In Section 3.2, the results obtained as a function of  
D and J are compared with previously published 
data [5,12]. The section ends with a consideration of  
the relative stability of  these two structures versus J. 

3.1. Superimposed walls in zero field 

The calculation starts from an initial and arbitrary 
structure assumed, however, to be compatible with 
the superimposed wall structure of  Fig. 4(b). As long 
as J keeps a moderate value, the equilibrium struc- 
ture obtained in zero field is also composed of  
superimposed walls. Fig. 5 and Fig. 6 provide illus- 
trations of  the wall profile in one layer of  the stack. 

Fig. 5(a) shows the variation in m x measured at 
the interface level versus distance from the core of  
the wall. In order to emphasize the potential occur- 
rence of  far-reaching wall tails, all wall profiles are 
plotted using a logarithmic scale. An increase in the 
ferromagnetic exchange coupling J significantly re- 
duces the width W of the wall corresponding to 
regions where the magnetizations in adjacent layers 
have strong antiparallel components, in agreement 
with experimental data [33]. As explained below, for 
large values of  J ,  the m z component may be ex- 
pressed as m z ~. tanh(X/A),  where A = ~/A/Kcf f. 
The effective anisotropy K,ff = K + J / D ,  K being 
the uniaxial bulk anisotropy constant. The wall width 
then amounts to W = 2 A. 

The two-dimensional character of  the present 
computations allows for a precise determination of  
the variation of  the magnetization across the thick- 
ness of  each layer. The wall width proves to be depth 

(Y) dependent, being slightly larger at the free sur- 
faces of  the magnetic stack than at interfaces. Be- 
sides, a quantitative analysis of  the flux closure 
between the magnetic layers as schematically de- 
picted in Fig. 4(b) may be performed. Results are 
summarized in Fig. 5(b), where the normal magneti- 
zation component at the interface is plotted versus 
X, with J as a parameter. As expected, the amount 
of  flux closure remains moderate, the largest devia- 
tion angle not exceeding some 8 ° for the largest J 
considered. Furthermore, the variation of  my may 
also be followed throughout the stack at a given 
distance X from the wall core (Fig. 6). This last 
curve is also an illustration of  the general boundary 
conditions expressed by Eq. (6). In the vicinity of  the 

m X 
1 i i i 

j=0 
0.75 

0.5 .oi 

0 0 4  " ' ,  

0.25 

0 ° ' ° "  
1 2 3 

my 

a) 

X L 

Y x 

0 . .001 

0 1 2 3 4 

Fig. 5. Compensated 180 ° wall profiles versus XI~ at interface 
level with the interlayer exchange constant J (erg/cm 2) as 
a parameter. Xt. is a measure of the distance to the wall 
core (x = 0) owing to a log scale defined as: X L = 
(x/Ixl)loglo[l+ (Jxl/D)]. (a) mx magnetization component; 
(b) my (notice the dilated scale). Permailoy (NiFe) material 
parameters. [8/2/8] nm bilayer geometry. The dashed line repre- 
sents a N6el wall profile in a single NiFe film, 8 nm thick. 
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Fig. 6. Var ia t ion o f  the normal  componen t  m r versus  Y across  the 

b i layer  at the x posi t ion cor responding  to the m a x i m u m  m r 

ampl i tude in Fig, 5(b), J = 0.8 e r g / c m  2. 

outer surfaces and in the absence of surface 
anisotropy, the magnetization is clearly stationary as 
anticipated by Eq. (6), here reducing to Eq. (2). 
Along the inner surfaces, however, the non-zero 
slope of the profile is a clear indication of the 
presence of an interlayer exchange coupling. 

3.2. Energy considerations 

A model of the magnetization distribution in bi- 
layers was first proposed by Slonczewski [12,32]. 
The hypotheses intrinsic to this model are the follow- 
ing: (i) no exchange coupling between the magnetic 
layers ( J  = 0). The m x component is assumed to be 
(ii) a sole function of x and varies slowly on a scale 
measured by D. Furthermore, each magnetic layer 
must satisfy (iii) div(m) --- 0, all the magnetic charges 
being gathered at the interfaces, opposite charges 
facing each other. Finally, (iv) the classical bulk 
exchange contribution is neglected (A = 0). Owing 
to these assumptions, the wall structure is governed 
by an equilibrium between the stray field energy 
mainly concentrated in the non-magnetic spacer and 
the anisotropy energy in the magnetic layers. This 
model was later improved to include bulk exchange 
(A #: 0) and applied to the particular case of the 
so-called edge-curling walls [34]. Superimposed N6el 
walls, now including interlayer exchange coupling, 
could be treated on the same footing [33]. A 
parametrized (Ritz) extension of these analytical 
models, including both exchange coupling ( J  4: 0) 
and a more comprehensive treatment of demagnetiz- 
ing field effects, has also been developed in order to 

determine to a good degree of accuracy 180 ° wall 
profiles in bilayers [5]. 

In the case of very thin magnetic layers, the 
validity of assumption (iii) appears questionable. The 
present 2D model makes assumption neither on the 
shape of the wall nor on the location of the magnetic 
charges. Therefore, ranges of validity of given ap- 
proxirnations may be evaluated. 

Looking throughout the lower magnetic layer in 
the region of positive X (Fig. 4b), the total amount 
of magnetic charges over a volume with length L 
along the wall elongation direction (Z-axis) is, in 
view of the (Gauss) divergence theorem, equal to 

f f fpdV+ ff~ dS = +M~DL, (14) 

where p and o" are the magnetic volume and surface 
charge densities, respectively. Therefore, in units of 
(M~DL) -1, the following identity may written: 

qv +qis +qos = +1 ,  (15) 

where qv is the volume charge, the two other terms 
being the surface charges at the inner (iS) and outer 
(oS) surfaces of the magnetic layer, respectively. 
Within the given set of parameters and geometry 
used the total magnetic volume charge is found to be 
equal to qv = 0.818 for J = 0.8 erg /cm 2 and proves 
rather insensitive to J in the range 0.1-0.8 erg /cm 2. 
At the same time, qos and qis amount to ~ -0 .307  
and ~ +0.489 for . / =  0.8 erg /cm 2, respectively. 
Both integrated surface charges slightly increase in 
absolute value with decreasing J. It must be kept in 
mind, however, that an increase of J implies a 
drastic reduction of the area over which these charges 
are spread. Altogether, these results show that, 
charges are not solely located in the immediate 
vicinity of the inner surfaces of the stack. The reduc- 
tion of the stray field problem to that of a parallel- 
plane capacitor therefore hardly appears justified. 

In order to illustrate this problem, let us attempt 
to answer the following rather academic question: 
how is the charge distribution in the magnetic stack 
affected when, for a given thickness of the non-mag- 
netic spacer and a constant exchange coupling, the 
thickness of each magnetic layer increases?. Results 
are gathered in Fig. 7. For all values of D, relation 
(15) is fulfilled due to the symmetry of the problem 
with respect of the OX and OY axes (i.e. all equilib- 
rium profiles are such that m x = 1 or - 1 at x = 0 in 
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0.8 - 

0.6 

0.4 

q v  
0.2 

0 

-0.4 . . . . . . . . . . . . . .  D ( n m )  
0 8 16 24 32 

Fig. 7. Variation of the total amount of magnetic charges (reduced 
units) versus the thickness D of each magnetic layer, within the 
X _> 0 volume of a single layer, qv denotes volume charges, qis 
the surface charges at the interface, and qos the surface charges at 
the free surface. [D/2  n m / D ]  bilayer geometry, NiFe, J = 0.8 
erg/cm ~. 

both layers). When the thickness of each magnetic 
layer vanishes, no surface charges are expected. 
Increasing the thickness of each film leads to a 
decrease of in qv- Simultaneously, charges of oppo- 
site sign appear on the opposite surfaces of each 
magnetic layer, always fulfilling the inequality qis > 
I qos 1. This observation is the signature of a ripening 
of the interlayer magnetostatic coupling. For large 
values of D, qv still decreases towards zero, now 
together with I qos]. Conversely, qis tends towards 
unity. Stated differently, all the magnetic charges are 
gathered at the inner surfaces, thus delimiting the 
range of validity of Slonczewski's model. 

The corresponding variations in wall energy are 
plotted in Fig. 8(a-c) and are compared with the 
results of a model due to Tomfig et al. [5], as well as 
with the 4~/Agef  f approximation. This last approxi- 
mation may be obtained through the following crude 
model. Let us assume first that the stray field contri- 
bution is vanishingly small; second, that m always 
belongs to the plane of the films; while, third, that 
~b, the angle between m and the easy axis is a sole 
function of x. Taking into account the superimposed 
wall symmetry, namely, ~ b l ( x ) = - ~ 2 ( x )  = I ~ ) ( x ) ,  

where the subscripts 1 and 2 refer to the lower and 
upper layers, respectively, the total energy reads 

E = + K sin E ( fff{A(~x) 2 th)] dV 
+ f f2JsinZ(4,)dS. (16) 

Under the governing assumptions, a straightforward 
integration over the thickness of both magnetic lay- 
ers yields 

E=ff[2Da(~x)2+EDKsinE(qb)+EJsinE(qb)]dS, 

or 

e = 2 D  A + K o ,  s inE(4, )  dS. (17)  
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Fig. 8. Variation of the wall energy (a) versus J for a [ 8 / 2 / 8 ]  nm 
NiFe bilayer geometry; (b,c) versus D for a [D/2  n m / D ]  bilayer 
geometry. J = 0.8 erg/cm 2 (b), J = 0.1 erg/cm 2 (c). Full sym- 
bols correspond to computed values; curve 1 refers to the model 
of Ref. [7], and curve 2 to the E = ~/AKef f approximation (see text 
for details). 
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Due to the exact analogy with the energy of a pure 
Bloch wall, the following relationships are obtained 
at once: 

E=4¢AKet t with E A=EI% f = E / 2 ,  

m z = cos(,;b) = tanh(x /A) .  (18) 

In Fig. 8(a), for a given layer thickness D = 8 
nm, it is observed that Tomfig' Ritz model (curve 1) 
is in rather good agreement with our numerical 
calculations for moderate J values. On the other 
hand, if J increases beyond, say, 0.4 e rg /cm 2, the 
'crude' model excluding charges altogether becomes 
better. In this last situation the interlayer exchange 
coupling dominates the dipolar coupling and the set 
of relations (18) are in agreement with all features 
described in Section 3.1. Now, for thin layers and for 
a large range of J values (see Fig. 8b,c), the same 
conclusions may be drawn. This time the 1/D con- 
tribution in the effective anisotropy plays the leading 
role. 

3.3. Equilibrium structure 

In zero applied field, energy considerations show 
that parallel N6el walls are favoured for J values 
higher than Jcl = 0.08 erg /cm 2. However, from the 
very beginning of each micromagnetic calculation, 
one must choose an initial and arbitrary structure. If 
it is already compatible with the superimposed wall 
structure of Fig. 4(b), the equilibrium wall configura- 
tion is usually a superimposed structure too, a con- 
figuration obviously locked into a local energy mini- 
mum when J > J r .  An energy barrier associated to a 
quasi-topological transition must be overcome before 
parallel N6el walls can be nucleated [35]. Indeed, a 
continuous transition implies that one of the walls be 
temporally transformed into a Bloch type wall, an 
energetically extremely costly transition. Such a 
mechanism is only found to occur for J > Jc2 = 0.86 
e rg /cm 2 for the geometry considered. 

4. Wall structures in the antiferromagnetic ex- 
change coupling regime 

For an antiferromagnetic interlayer exchange cou- 
pling ( J  < 0), and in the absence of applied field, a 

mz J = +0.1 erg/cm z 
I 

~ b o t h  layers 

0 a) 

-0.5 

-1 XL 
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 
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0.5 I . . . .  laye~r ~ / [ 

o . . . . . . . . . . . . . . . . . . .  

-0.5 

-1 XL 
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 

Fig. 9. Wall profile (longitudinal magnetization component m z 
versus Xt) , emphasizing the different symmetries relating to (a) 
ferromagnetic interlayer exchange coupling, (b) antiferromagnetic 
coupling. [ 8 / 2 / 8 ]  nm NiFe bilayer geometry. 

single wall structure is expected (Fig. 4a) since the 
magnetization distribution is stabilized both by inter- 
layer exchange and magnetostatic coupling. The wall 
structure symmetry reads m z ( x , y l ) = - m z ( x , y  2) 
instead of mz(x,y  l) = +mz(x ,y  2) in the ferromag- 
netic coupling case, as illustrated in Fig. 9. The 
variation of J,  as long as J _< 0, has little effect on 
the equilibrium wall profile. In all cases the m r 
component proves rather small and decreases with 
decreasing J. Disregarding this component, equilib- 
rium structures are characterized by a perfect an- 
tiparallel alignment of the magnetizations, namely 
m I = - m 2 in spite of the fact that no symmetry was 
intentionally introduced in the code. 

Because of the local charge compensation, wall 
profiles in a symmetric bilayer satisfying J < 0 are 
expected to be narrower than a N6el wall in a single 
layer with thickness equal to that of a single layer of 
the stack, and wider than a Bloch wall totally de- 
prived of magnetostatic interactions. Simulations 
confirm this simple argument (Fig. 10). 
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Fig. 10. Comparison of (a) transverse m x and (b) longitudinal m z 
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pure Bloch wall in a single NiFe film, 8 nm thick, and a 
compensated wall in a NiFe [ 8 / 2 / 8 ]  nm symmetric bilayer with 
antiferromagnetic interlayer exchange coupling (J  = - 0 . 1  
erg/cm2).  

Compared with the ferromagnetic coupling case, 
where the exchange coupling energy plays a leading 
role in the total energy balance, the exchange cou- 
pling energy density proves roughly constant when 

W(nm) 
1000 7 • T -~ ~ . . . . .  

o - -  - ,  [8/2/8]nm 
750 - 

500 * 

250 
o 
t 

° ~ ' °  - - o  
0 -- ' ' ..... 9---' - • ~ -t , __ 

-0.2 0 0.2 0.4 0.6 0.8 
J(erg/cm 2) 

Fig. 11. Compensated 180 ° wall width versus J in a NiFe 
[ 8 / 2 / 8 1  nm bilayer. 

J < 0 and independent of x. Therefore, only a slight 
decrease in the wall width W, defined as 

W = 2 / ( 0 m z / 0 X  ) x = 0, (19) 

is observed in the antiferromagnetic coupling regime 
as a function of increasing J. When entering the 
ferromagnetic coupling regime, the wall width falls 
abruptly asymptotically following a W =  2~/A/Kef f 
law for large J values, as indicated in Section 3. 
Computational results are summarized in Fig. 11. 
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Fig. 12. Variation of the m x magnetization component versus X L 

at interface level across the upper and lower layer walls as a 
function of an hard axis field (reduced units) (a) h = 0, (b) 
h = 0.35, and (c) h = 1. Note the presence of logarithmic tails in 
(b) and (c). Weak ferromagnetic-type interlayer exchange cou- 
pling: J = 0.04 erg /cm 2. NiFe [ 8 / 2 / 8 ]  nm bilayer geometry. 
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5. Wall structures as a function of  a hard-axis 
field 

In a first step the virgin curve, i.e. the evolution 
of the wall pattern versus hard-axis field, is de- 
scribed in Section 5.1, each simulation starting from 
the equilibrium superimposed wall structure obtained 
when H = 0. In a second step the full hysteresis loop 
is considered in Section 5.2. The initial structure 
now corresponds to a saturated state. Intermediate 

wall structures include parallel N6el walls (J  >> 0), 
as well as walls + quasi-walls for low J > 0 values, 
and similar although more pronounced structures for 
J < 0 .  

5.1. Virgin curve: ferromagnetic coupling 

The calculation proceeds from the equilibrium 
superimposed wall structure described in Section 3.1. 
Under the action of an external field applied along 
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NiFe [8 /2 /8 ]  nm bilayer under the application of  a strong hard-axis field. (a) Ferromagnetic interlayer exchange coupling, (b) no exchange 
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+ O X  (in-plane hard axis) the magnetization inside 
each domain of the constitutive layers, initially ori- 
ented along OZ (m x = 0; m z = _ 1), is assumed to 
rotate freely towards the field direction according to 
the Stoner-Wohlfar th  model [36], namely, m x = + h, 
m z =  _ ( l - h 2 )  t/2 with h = H / H K ,  where H K is 
the usual anisotropy field 2 K / M  s. 

As soon as the field is applied, the overall mag- 
netic structure of  the stack becomes uncompensated. 
For the positive X part of  the bilayer the total charge 
(in reduced units) varies as - ( 1  + h) in one of the 
layers (here the upper layer), and as + (1 - h) [h _< 1] 
in the other. Charge non-compensation leads to a 
large increase in the wall width in the range h = 0-1 .  
Walls are now characterized by the presence of 
logarithmic tails (Fig. 12) similar to the well known 
N6el wall tails in conventional thin films. Such a 
mechanism was already pointed out in Ref. [5]. 

For h >_ 1, a 360 ° wall is nucleated in, owing to 
the present convention, the upper layer. Its width 
decreases with increasing field. Simultaneously, the 
second layer becomes gradually saturated. A small 
oscillation of M towards the film normal is, how- 
ever, still noticeable due to the strong demagnetizing 
field produced by the 360 ° wall. Moreover,  a compo- 
nent also develops along OZ because of exchange 
coupling (compare Fig. 13a and b). It increases with 
increasing J (not shown). 

As already stated, full saturation requires, within 
a 2D model, the formation of  a transient Bloch wall. 
This is achieved in a field ( H  c) substantially larger 
than H r .  The dependence of the critical field H c on 
J is depicted in Fig. 14. In fact, the energy barrier 
for such a transition is mainly governed by the 
demagnetizing energy which may be extremely large 
in soft materials leading to ultimately compressed 
magnetization distributions. It ensues that our simu- 
lated transition fields H c are strongly mesh depen- 
dent although remaining intrinsic [35]. As a conse- 
quence, transition fields are known to only a limited 
precision. Experimentally, huge fields have been 
shown necessary for the erasure of  a 360 ° wall in the 
case of  a sole dipolar interlayer coupling (the J = 0 
limit) [37]. It should be noticed, however, that, ac- 
cording to the same authors (see also Ref. [38]), the 
360 ° wall assumes a zigzag shape as soon as the 
field exceeds H K. The 2D aspect of  the present 
computations can include neither such an effect nor 

the possible influence of Bloch lines which may 
efficiently assist the transition [39], in spite of  a 
limited influence in very thin layers [40]. Therefore, 
care should be taken before applying the above 
results directly. 

5.2. Virgin curve: antiferromagnetic coupling 

Because the present calculations require fixed 
boundary conditions as x ~ _ 0% a precise knowl- 
edge of the exact magnetization direction in adjacent 
domains, as a function of the applied field, is first 
required. Assuming in a first step a uniform magneti- 
zation in the domains, noticeably along the film 
normal, the following total energy has to be mini- 
mized: 

E = 2KD sin 2 05 + 2 J ( 1  - sin 2 05) 

- 2 H a M  s D sin 05, (20) 

where 05 = 051 = 7 r -  052, 051 and 052 are the angles 
between M and the easy axis in layers 1 and 2, 
respectively. Minimizing the energy yields the equi- 
librium angle: 

m x = c~ = sin 05 = H a M J 2 K c f f ,  where 

Kef f = g + ]J I /D .  (21) 

h = H / H  x 
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Fig. 14. Computed phase diagram in an increasing field assuming 
a superimposed wall initial state. The saturation field lies in 
between the field values corresponding to the last numerical 
simulation, still yielding a 360o/0 ° wall configuration (open 
symbols) and the first computed saturated state (full symbols). 
The thin transition line only serves as a guide for the eye. NiFe 
[8/2/8] nm bilayer geometry. 
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exchange coupling. The dashed lines correspond to the assumption 
of a uniform m. NiFe [8 / 2 / 8 ]  nm bilayer geometry. J = -0 .1  
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Relation (21) shows that the state of saturation is 
reached for a field much higher than the anisotropy 
field (e.g. nsa t=320 Oe for J = - 0 . 1  e rg /cm 2, 
whereas H K = 2 .50e) .  The field must indeed over- 
come both the anisotropy and the interlayer ex- 
change coupling barriers before saturation may be 
reached. 

However, assuming that the exchange coupling is 
active only at the interface level (the present model), 
the magnetization distribution need not be uniform 
through the thickness of each layer. Rather, a better 
alignment of M with the field direction should be 
reached when moving from the interfaces (y  --- 0) to 
the free surfaces (y  = D). The following Euler equa- 
tion needs to be fulfilled at interfaces: 

j 2  
- - 0 t 2 ( 0 ) [ 1  -- or2(0)] = H a g s [ o t ( D  ) - 0~(0)] 
A 

- K [ a 2 ( D ) - a 2 ( O ) ] .  

(22) 

As shown in the computed profile in Fig. 15, relation 
(21), i.e. e~(O)= a(O)=HaMs/2Keff ,  which is 
valid in the limit of an infinite bulk exchange stiff- 
ness A, only proves to be some kind of average 
value, the real profile taking due account of the 
boundary conditions (22) at interfaces and the usual 
Ore/On = 0 boundary conditions at free surfaces. 
Although weak due to the limited thickness of the 
layers, a torsion of the magnetization across the 

layers thickness is clearly identified. The calculation 
of wall profiles has thus been performed as follows: 
during the first 100 or so iteration loops, the magne- 
tization vector m at both extremities of the computa- 
tion zone in both layers is fixed and follows the 
relationship depicted by Eq. (21). The essential fea- 
tures of the sought-for wall configuration are gath- 
ered during these initial iteration loops. The above 
constraints are then relaxed, yielding, provided that 
the computation region is large enough, the proper 
depth-dependent magnetization profile within do- 
mains. 

Results pertaining to antiferromagnetically cou- 
pled bilayers may be analyzed in the light of those 
obtained in the ferromagnetic exchange coupling 
regime. As soon as the hard-axis field exceeds 
2 K e f J M  ~, a 360°/0 ° wall structure is also nucle- 
ated. The m z component oscillation within the 0 ° 
wall is now compatible with the character of the 
exchange coupling (compare Fig. 13(c) and (a)). 
Besides, the transition field H c is increased com- 
pared with the ferromagnetic situation and can be 
obtained by a simple extrapolation of the H~ curve 
in Fig. 14 into the J < 0 region. 

5.3. Hysteresis curve 

The initial structure of the bilayer is assumed 
saturated along, say, + OX. As long as h > 1 (h > 
hsa t = [1 + [JI/KD]) in the ferromagnetic (antiferro- 
magnetic) coupling regime, this saturated state is 
preserved. Below those values, domain walls may be 
nucleated through the gradual rotation of the magne- 
tization within domains, ending up, for h = - 1  (h 
= - h s a t )  , with two superimposed 360 ° walls. For 
relatively large positive J values, the wall structure 
for Ihl-< 1 consists in two parallel N6el walls. As J 
decreases a different wall structure is found to nucle- 
ate, consisting in a wall plus a quasi-wall in each 
layer. Finally, in a large reverse field, full saturation 
along - O X  is achieved. For instance, the 3600/360 ° 
structure requires a field as high as H-:- - 6 0 H  K to 
be destroyed when J = +0.8 erg /cm 2 for the ge- 
ometry considered. It may be remarked that this field 
value amounts to roughly twice the corresponding 
critical field needed to erase a (3600/0 °) configura- 
tion (Section 5.1.1). The computational results are 
summarized in Fig. 16. Schematic hysteresis cycles 
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Fig. 16. Computed phase dia~am in a decreasing field. Conven- 
tions identical to those in Fig. 14. 

may now be completed by symmetry. It is seen that, 
in the limit of 2D magnetization distributions, ex- 
tremely strong intrinsic hysteresis phenomena con- 
fined to wall regions do take place in exchange-cou- 
pled bilayers. 

indicated above wall/quasi-wall structures 
occur either in a state of antiferromagnetic interlayer 
coupling or in a regime of weak ferromagnetic cou- 

Quasiwall Wall 
1 

up~r - -  t"  / t /  / / l'x----I \ --, - - /  
layer J X 

F 
lower ] Z 
layer - -  "f / 1--~'~ \ \ \ " ~  X "" - -  

Wall Quasiwall 
m x 

1 I i i i i / q  

: ', / /  J= +0.1 erg/cm 2 
: , / I h =  -20 

0.5 

lower , :  ', / ~  
0 layer : ', / ~  upper 

-1 
-3 -2 -1 0 2 3 
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corresponding variations of m in the sample plane (XOZ) in the 
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[ 8 / 2 / 8 ]  nm bilayer geometry. 
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Fig. 18. As Fig. 17 in the case of antiferromagnetic interlayer 
exchange coupling ( J  = - 0.1 e rg /cm 2, h = - 20). 

piing. These structures arise from a better charge 
compensation (pseudo-quadrupolar distribution) 
when compared to pure superimposed N6el walls 
[13] and/or  from exchange interactions when J < 0. 
Examples of wall/quasi-wall structures are exhibited 
in Fig. 17 (J  = +0.1) and Fig. 18 (J  = -0.1).  It is 
noteworthy that, when J < 0, due to the initial satu- 
ration, wall structures may not be free from sections 
with parallel magnetizations. Due to exchange inter- 
actions, however, the real wall sections of each 
wall/quasi-wall pair are subjected to repulsive 
forces. For the same reason, the quasi-wall section 
soon becomes fully developed. Finally, it may also 
be noted that, contrary to the J < 0 regime, the 
nucleation of the wall/quasi-wall twin pattern oc- 
curs only for a negative H x field when J > 0 in the 
range of thicknesses investigated (see also Re/. [5]). 

6. Conclusions 

Ab initio 2D numerical simulation of wall profiles 
in thin magnetic bilayers have been performed. Due 
to the introduction of an adjustable meshing, a fair 
description of the long-range tails usually encoun- 



M. Labrune, J. Miltat /Journal of Magnetism and Magnetic Materials 151 (1995) 231-245 245 

tered in uncompensa ted  structures has been  achieved.  

Wal l  structures to be found in fe r romagne t ic  and 

ant i fe r romagnet ic  exchange-coup led  layers have  been  

invest igated and the general  analyt ical  solut ion for 

boundary  condi t ions  derived.  The  widths  o f  super im- 

posed wal l  structures in zero f ield has been  shown to 

depend drast ically on the magni tude  of  the inter layer  

exchange  coupl ing  constant  in the J > 0 range,  and 

on the thickness  D of  each magne t ic  layer. Disre-  

garding the potential  presence  of  l ines wi th in  wal ls  

or wal l  z igzagg ing  effects  which,  obviously ,  cannot  

be included in a 2D descript ion,  intrinsic transit ions 

f rom super imposed  wal ls  to parallel  N~el wal ls  or to 

saturation under  the action of  an in-plane hard-axis  

external  field, h, have been successful ly  computed.  

For  a g iven  geomet ry  (i.e. [ 8 / 2 / 8 ]  nm), a sketch of  

the phase d iagram in the ( h , J )  space has been 

proposed.  Specia l  attention has been paid to the 

approach towards  saturation, especial ly  in the anti- 

f e r romagne t ic  range. Genera l ly  speaking,  s t rong in- 

tr insic hysteresis  effects  should be  expected.  
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