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Abstract

Theoretical investigations of phase transitions in magnetic multilayer structures are presented. We suppose that
biquadratic and Heisenberg exchange energy between adjacent layers is of the same order of magnitude. Anisotropy
energy is cubic. Our consideration is close to the Fe/Cr(0 0 1} superlattice. An investigation is given showing that two
phases with noncollinear orientation of magnetization in adjacent layers can represent the ground state. In the case being
considered external magnetic field aligned perpendicular to the layers direction induces a spin-reorientation transition.

Other types of anisotropy are also discussed. © 1997 Elsevier Science B.V. All rights reserved.
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1. Introduction

Presently, exchange interaction of magnetic thin
layers via a nonmagnetic spacer is widely discussed.
The main term of this interaction has a Heisenberg
form Jymm;.; where n; is a unit vector in the
direction of magnetization in the ith magnetic
layer. By virtue of the fact that J, changes sign as
spacer thickness increases [1-3] the presence of
a biquadratic term [4-6] J,(mn, ) holds much
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physical significance. Experimental observations of
noncollinear orientation of magnetization in adjac-
ent layers [, 7] provide support for this view.
The Heisenberg exchange tends to align magnet-
ization in adjacent layers parallel or antiparallel
depending on the sign of J, being negative or
positive. According to theoretical treatment and
experimental observations J, is always positive.
Thus biquadratic exchange tends to align magnet-
ization of adjacent layers in perpendicular direc-
tions. The joint action of the Heisenberg and
biquadratic exchange brings into existence phases

with noncollinear orientation of the magnetization
in neighboring layers.
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In the case being considered, in the zero aniso-
tropy approximation, phase transitions in magnetic
multilayers are studied in Refl, [8]. Nevertheless,
results obtained in Ref. [8] have only a qualitative
meaning. In the real multilayers of magnetic
materials the anisotropy energy has at least the
same order of magnitude as exchange energy.
A uniaxial anisotropy in the plane of magnetic
layers is taken into account in Ref [9]. But this
paper discusses only phase transitions under the
action of an external field parallel to the magnetic
layers.

The present paper is devoted to the theoretical
investigation of the spin-reorientation transitions
in fields perpendicular to the plane of the layers.
We examine the case of cubic anisotropy. Our
study revealed that there are two phases with non-
collinear orientation in adjacent layers. A magnetic
field gives rise to spin-reorientation transitions
in a superlattice. The case under consideration
is analogous to the Fe/Cr(001) superlattice
structure,

2. Energy functional and phase diagram at zero field

Let us consider N magnetic layers mediated by
N —1 spacer layers with antiferromagnetic in-
teraction between adjacent layers. In the case of
infinite layers, N> 1, or a spin-wave structure,
N = 2, the energy functional has the form of a two-
sublattice magnet. It differs from that of a classical
antiferromagnet by the biquadratic exchange term.
For the sake of definiteness, we take the z-axis
perpendicular to the layers’ plane and the x-
axis along one of the two easy axes in the layers’
plane.

Table 1
Properties of phases which minimize energy functional (2)

The energy functional of such a system can be
written as

2
F =3 Tk[(nfn))* + ind)? + (nfnd)?] + dm (nF)?
=

— )] + 3 ) + 3 ). (1)

Here J, is the Heisenberg exchange energy, J, the
biquadratic exchange energy, & the energy of cubic
anisotropy, h the Zeeman energy in external mag-
netic field, m the demagnetizing energy. All the
energies are measured in the units of magnetic
field.

It is convenient to change the variables from
rectangular #; to polar coordinates 0; and ¢,, where
#; measures the angle between z-axis and vector
n; and the azimuthal angle ¢; measures the angle
between the »; projection on the x~y plane and the
x-axis. Thus the energy functional depends on four
variables 0y, ¢, 6, and ¢,.

At zero external field a strong demagnetization
field prevents any deviation of magnetization
from the plane. Thus sabstituting in Eq. (1)
§, =8, = w/2 we have

F=3Jicos(p; —@3) +3J,008 (@, — @)

+4k i sin? 2¢; . (2)

i=1
The energy functional, Eq. (2), has its minimum
when the set of ¢, ¢, is equal to one of the four sets
are presented in Table 1.
Minimum conditions and energy values for each
set are displayed in Table 1 also. For definiteness

sake it is assumed that linear exchange interaction
between adjacent layers is antiferromagnetic (ie.

Phase Stability condition Energy
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J; > 0). The case J; <0 will be briefly discussed
below. Then depending on k,J,,J, only one of
three phases (I, I11, IV) can represent a global min-
imum of Eq.(2). Two of them are noncollinear.
Fig. 1 shows the phase diagram in variables J,/J;
and k/J;.

3. Field-induced spin-reorientation transitions

There is evidence that magnetization departs
from the layers plane under the action of an ex-
ternal field directed in the perpendicular direction.
As this takes place, the problem of energy func-
tional [Eq. (1)] minimization becomes consider-
ably more complex. It has not proved feasible to
obtain an analytical solution of this problem in the
general case. In actual conditions, an exchange field
and anisotropy field are far less than the demag-
netization field. For a superlattice Fe/Cr, as an
example, anisotropy and exchange fields are less
than or equal to [ kOe and the demagnetization
field on the order of 10-20 kQOe. Then we can find
from equations 0F/00; =0 and 0F/30, =0 to a
good approximation

8, = 0, = arccos(/i/m). (3)
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Fig. 1. Phase diagram in variables k/2J,, J,/2J;. Roman num-
bering of phases are in agreement with Table 1. The solid line
corresponds to the first order phase transitions and the dashed
line corresponds to the second order phase transitions.

Substitution of these expressions into Eq. (1)
gives an energy functional in the form of Eq. (2),
where J4, J,, k are replaced by renormalized values

72 2?2
Jy(h) = <1 - —2> <J1 L, —12>
m ) m

2N\ 2 2N\ 2
Jz(h)=<1—h:> , k<h>=k<1—h—,> @
m m-

respectively. With this the equilibrium values of
o(h) and @,(h) can be defined using the expressions
in Table 1, provided that instead of J,, J,., k the
expressions in Eq. (4) are taken. As h—m,
k(h)/J ((h) and J 5(h)/J 1(h) tend to zero. Then accord-
ing to the data in Table 1 |@,(h) — @,(h) = as
h=m. I ¢,(m) and @,(m) differ from ¢,(0), ¢,(0)
then the applied external magnetic field causes
a spin-reorientation phase transition as h increases

from 0 to m.

To take an example we consider the case when at
zero field the phase I'V is suited to the requirements
of an energy functional minimization. In particular
this 1s true for J, > J,. In view of the fact that
k(h}/J,(h) = const. (see Eq. (4)) we can easily calcu-
late the critical fields of a spin-reorientation phase
transition. If 3k > J, then at h = h; occurs a first-
order phase transition to the antiferromagnetic
phase II where

m /
hy = —=———=—=—=—==1[8J,02J, - J,)
8J,(4J, + 3k)

+ k(AT — Ty — 4T, + 2J,) Sk(k + J5) 712
(5)

In the case of 3k < J, transition to phase II occurs
in two steps. Initially the first order phase
transition from phase IV to phase III takes place at
h=h, and thereupon the second order phase
transition from phase III to phase II occurs at
h = hs. Expressions for h,, h; are as follows:

hZ =

N [ 20 —J3 = J1J5)+(Jy +275) /205 — kz)} 12

72(71\’2 + J%)i -

20, =2k —J, "
]13 =}71|:—2(2W} . (6)
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We take as our example a Fe/Cr(0 0 1) spin-valve
structure with J, = 90 Oe, k = 560 Oe. Thus ac-
cording to Eq. (1) we find that for J; > 93 Qe the
ground state is antiferromagnetic. If J, = 50 Oe we
have a spin-reorientation phase transition at
h = 0.4m from angle phase IV to antiferromagnetic
phase IL

The main conclusion |@(h) — @,(h) » rash—n
remains unchanged for other types of anisotropy.
This fact can be explained as follows. If the angle
between n; and n;.; exceeds m/2 then Heisenberg
exchange acts as the repulsive force and biquad-
ratic exchange as the attractive force. Otherwise
both of these forces act as repulsive. Thus if the
deviation of magnetization from the basal plane
exceeds /4 then exchange forces tend to align the
magnetization of adjacent layers so that the angle
between the projection of magnetization in adjac-
ent layers equals m. Our calculations for uniaxial
anisotropy give support for this view.

The case of ferromagnetic Heisenberg exchange
J4 < 0 can be investigated in the same manner as
the antiferromagnetic one. The expressions in
Table 1 remain true. Consequently, one of the three
phases (I, 111, IV) can represent the global min-
imum of Eq. (2) for J; < 0. Here we do not present
detailed considerations for this case but it is signifi-
cant that the renormalized exchange constant J,(h)
changes sign as h increases if J, > |J4].

In conclusion, the equilibrium distribution of
magnetization in a magnetic superlattice has been
investigated. Two of the three ground state phases
at zero field are noncollinear. An external magnetic
field aligned perpendicularly to the layers direction
was demonstrated to induce reorientation (ransitions.
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