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Abstract

Ž . Ž .X-ray reflectivity XRR studies of thin layers 3 to 120 nm thick were performed for the determination of layer
thickness, density and roughness. The simulations of X-ray reflectivity measurements were performed using Parrat’s
recursive algorithm, while those of the reflection of X-rays from interfaces were performed using Fresnel formulae. Using
this approach, the roughness of the interface was described by intensity damping by gaussian type functions. This allowed
for the determination of layer thickness and density and average interface roughness. As an extension of this simple model,
an enhanced theoretical description of rough interfaces proposed by Sinha was applied, where the X-ray reflection from
interfaces was separated into a direct fraction and a diffuse scattered one with the use of the first Born approximation. A
simulation procedure, calculating both fractions of the reflection was developed, that enabled the detailed characterisation of
layers and inner layers. The complementary information required for proper adjusting of input simulation parameters was
obtained from SFM measurements of the investigated surfaces. Surface roughness was described using fractal surface
functions instead of simple gaussian peaks. A comparison between this method and SFM measurement shows a reasonable
agreement, particularly in the estimation of shapes of interface structures. q 1999 Published by Elsevier Science B.V. All
rights reserved.
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1. Theoretical background

X-ray reflectivity technique is a relatively simple,
but powerful method for the determination of thin
layer density, thickness and layer interface rough-
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ness. It allows also nondestructive studies of inner
layers. Standard simulation methods of such X-ray
spectra use a simple, but functional term for the
description of the interface roughness in a form of
X-ray intensity damping.

X-ray reflections from multilayer systems of ny1
layers and n interfaces may be calculated using

w xParrat’s recursive formulae 1,2 . The idea of this
approach is presented in Fig. 1.
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Fig. 1. The idea of the recursive approach: X-rays coming from
Ž .medium 0 air or vacuum are scattered and deflected at the first

Ž .interface medium 1 . The scattered fraction is again scattered and
deflected at the next interface. This mechanism is reproduced until
the last significant layer is reached. Every reflected fraction
interferes with fractions reflected at previous interfaces, producing
finally a measurable pattern.

For the ith interface the Fresnel factors f arei
Ž .defined by Eq. 1 , while Fresnel coefficients Fi j

Ž . Ž .where js iq1 are calculated using Eq. 2 .

2(f s u y2d y2 ib , 1Ž .i i i

where u is an incident angle, d is the dispersion
factor and b represents absorption.

n sin u yn sin u f y fi i j j i j
F s s . 2Ž .i j n sin u qn sin u f q fi i j j i j

ŽThe distance d between interfaces and thereforen
.also the thickness of layer n may be described using

the exponential thickness factor a defined as fol-n

lows:

a seyi k1 f n g n r2 seŽ ip rl. f n dn , 3Ž .n

Žwhere k is the wave vector in z-direction per-n
.pendicular to the surface and l is the X-ray wave-

length.
Therefore, the thickness factor a represents then

attenuation of X-rays passing twice through layer n
of thickness d . The thickness factor of medium 0 isn

neglected, i.e., a s1.0

The final recursion formula constructed with the
Ž . Ž .use of Eqs. 1 – 3 has the form:

R qFn ,nq1 ny1,n4R sa , 4Ž .ny1,n ny1 R F q1n ,nq1 ny1,n

where:

f y fn ny1
F s , 5Ž .ny1,n f q fn ny1

The X-ray reflection calculations should be started
Žat the lowest significant layer n i.e., for the layer

.number nq1 the factor R s0 and a s`nq1 nq1

and performed upwards until the topmost layer is
reached.

2. Interface roughness—Nevot’s model´

The simple model presented above describes only
ideal interfaces: flat, homogeneous and isotropic. In
real measurements, such conditions are not met: in
general, the real surfaces are rough, inhomogeneous
and anisotropic, while the most significant role is
played by interface roughness.

The first simple description of interface roughness
w xwas presented by Nevot et al. 3 , where Gaussian´

functions were used for roughness modeling. Ac-
cording to their model, the rough interface may be
approximated by a gaussian distribution of peaks and

Ž .valleys with respect to the mean surface Fig. 2 .

Fig. 2. Interface roughness according to Nevot. The distribution of´
peaks and valleys on a mean interface level is described using the
gaussian function and its s parameter.
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Thus, the roughness coefficient may be calculated
w x3 as:

s 2
n

z sexp y8p f f , 6Ž .n n ny12ž /l

Ž .and the recursion from Eq. 4 should be corrected
w x4 to the form:

RX sR z . 7Ž .ny1,n ny1,n n

3. Fractal approach—Sinha’s model

The simulation of real interfaces with the use of
roughness coefficients z is only a rough approxima-n

tion. Its weakness is particularly significant for non-
gaussian type of roughness, for example, for surfaces

w xwith steps, periodical changes, etc. 5 . The simple
model does not include the diffuse scattering from a
rough surface, which may be significant. The model

w x w xproposed by Sinha 6,7 and Palasantzas 8 brings a
vast improvement of the simple model by separating
the reflected X-ray beam into two fractions: specular
and diffuse:

RsR qR . 8Ž .spec diff

The specular part corresponds to Fresnel equa-
tions for smooth surface, while the roughness influ-
encing the diffuse fraction is described by a separate
equation and treated as perturbation.

As a calculation tool serves the Born approxima-
Ž .tion for large reflection angles or Distorted Wave

Ž .Born Approximation DWBA, for small angles . In
this way, it becomes possible to introduce into the
theoretical model the interfaces described by growth

Žfunctions obtained, for example, by simulations of
.molecular beam epitaxy processes or by dedicated

interface functions used in the Kardar–Parisi–Zhang
w xmodel 9,10 . In particular, it is possible to apply

w x w xperiodical 5,7 or fractal functions 11,12 . Fractal
type surfaces may be characterized by their scaling

Ž .property. Surface z r is considered to be self-affine
if the following simple equation is fulfilled:

s L ;Lh , 9Ž . Ž .
Ž .where L represents the length scale system size

and s is a well-known root-mean-square value of
2 ² 2Ž .:the surface height variable s s z r . The Hurst

Ž .exponent h 0FhF1 contains information about

the type of surface: low h values represent sharply
formed surfaces, while higher h values correspond to
mild curvatures.

Self-affine property may be introduced into X-ray
reflectivity formulas through the definition of the

Ž .mean-square height-deviation function G R :
2² :G R s z r yz rqR , 10Ž . Ž . Ž . Ž .

closely related to a height–height correlation func-
Ž .tion C R :

² :C R s z r =z rqR , 11Ž . Ž . Ž . Ž .
by:

2G R s2 s yC R . 12Ž . Ž . Ž .
In reality, for large separations R™`, it is desir-

able to introduce the physical distance limitation, the

Fig. 3. TOF-RBS spectra of CorAg thin layers deposited on a Si
Ž . Ž .substrate at 108C left and 1308C right . The measured mass

Ždensity values are shown in figure insets numbers in parentheses
.represent values expected from deposition conditions .
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Ž .Fig. 4. XRR spectra and simulations performed according to Nevot’s and Sinha’s algorithms for the following layers deposited on a Si substrate: a 7.3 nm Cor4.4 nm Ag´
Ž . Ž . Ž . Ž . Ž . Ž . Ž .double layer Table 1, sample 1 , b 96 nm Alr16 nm Ti double layer sample 9 , c 19 nm single In layer sample 5 , d 21 nm single Sn layer sample 8 . Layers’ thickness

were obtained from simulation following either Nevot’s or Sinha’s model.´
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Table 1
The comparison of roughness parameters obtained for several selected samples from XRR and SFM measurements

Ž .Sample Layer Thickness Roughness nm Roughness
Ž . Ž . Ž . Ž .nm NsNevot, SsSinha nm SFM´

Ž .1. CorAg on Si, evaporation at 108C Co 7.4"0.7 0.29"0.04 NS 2.06"0.4
Ž .Ag 4.44"0.4 2.11"0.32 NS
Ž .Si – 0.85"0.13 NS
Ž .2. CorAg on Si, evaporation at 108C Co 8.1"0.8 0.33"0.05 NS 2.57"0.5
Ž .Ag 4.98"0.5 2.01"0.30 NS
Ž .Si – 0.93"0.14 NS
Ž .3. CorAg on Si, evaporation at 1308C Co 4.2"0.4 1.36"0.20 S 1.67"0.6
Ž .Ag 3.96"0.4 0.30"0.05 S
Ž .Si – 0.5"0.07 S
Ž .4. Al O rSn on Si, magnetron sputtering Al O 99.4"14.9 2.79"0.56 S 3.71"0.742 3 2 3
Ž .Sn 19.9"3.0 2.63"0.53 S
Ž .Si – 1.19"0.24 S
Ž .5. In on Si, magnetron sputtering In 19.2"1.9 0.79"0.12 S 3.91"0.78
Ž .Si – 2.29"0.34 S
Ž .6. Al O on Si, magnetron sputtering Al O 16.4"1.6 1.17"0.18 N 1.32"0.272 3 2 3
Ž .Si – 0.71"0.11 N
Ž .7. Ti on Si, magnetron sputtering Ti 17.1"1.7 1.40"0.21 S 1.88"0.38
Ž .Si – 0.47"0.07 S
Ž .8. Sn on Si, magnetron sputtering Sn 21.06"2.1 2.63"0.53 S 1.93"0.39
Ž .Si – 1.38"0.28 S
Ž . Ž .9. AlrTi on Si, magnetron sputtering Al 96.5"14.5 2.54"0.5 NS 35"3 !
Ž .Ti 15.8"2.4 0.75"0.15 NS
Ž .Si – 1.04"0.21 NS

Layer thickness values were calculated from the XRR data analysis.

Ž .cutoff length j . In the simplest model, G R and
Ž .C R functions may be represented by:

2 hR
2g R s2s 1yexp y ,Ž . ž /ž /j

2 hR
2C R ss exp y , 13Ž . Ž .ž /ž /j

Then, using the previously mentioned mixture of
the Born approximation and DWBA, the reflection

Ž .described by Eq. 7 should be modified to the form:

2XR (R z qR z 1yFŽ .n ,ny1 n ,ny1 n ,ny1 n ,ny1 n ,ny1 n ,ny1

= exp f 2 C R y1 J R R d R ,Ž . Ž .Ž .Ž .H n 0

14Ž .

Ž .where J R is the Bessel function and integration is0

Ž .performed over the full sample area. Eq. 14 was
used as the computational basis for the X-ray reflec-
tivity simulation and analysis software, DiffTool
w x 113 . The examples of its application are presented
in the experimental part of the actual paper. The

Ž .height–height correlation function C R or mean-
Ž .square height-deviation function G R may be ob-

tained from complementary measurements, and ap-
plied to X-ray reflectivity calculations. The most
straightforward method for this purpose seems to be

1 DiffTool is a complete application software for X-ray reflec-
Ž .tion XRR analysis and simulation, with the use of different

simulation algorithms. The package contains also the correction
Ž .and analysis tools for X-ray diffraction XRD , small angle

diffraction and rocking curve scans. DiffTool 1.01beta is freeware
and can be downloaded from http:rrpikp15.uni-muenster.der.
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Fig. 5. Topography of four samples presented in Fig. 4 measured using SFM in air.

Ž .the scanning force microscopy SFM , providing the
real, three-dimensional topographical data. In this

Ž . Ž .way both, C R andror G R functions may be
computed directly from the SFM data. The calcu-
lated functions may serve as a check of X-ray spec-
tra simulation correctness and as a source of inde-
pendently measured input values for the simulation
procedure. Similar comparison was performed in a

w xrecently published work of Wang 14 .

4. Experimental

The above approach was used for the characteri-
zation of several tens of metal and metal oxide
layers, deposited on silicon substrates with the use of

Ž .physical vapor deposition PVD and magnetron
sputtering techniques. In order to assure diversified
deposition conditions, deposition was performed at
different temperatures, ranging from 10 to 1308C.
Full results of all measurements and analyses are

w xpresented in Ref. 4 . In the present paper, several
example cases will be presented.

Most of the samples were characterized by the
time-of-flight Rutherford backscattering technique
Ž . qTOF-RBS using 300 keV He ions. The RBS
technique provided independent measurements of

Ž 2 .layers mass density in mgrcm and profile. Fig. 3
shows the TOF-RBS spectra of two double layer
cobaltrsilver structures evaporated on silicon sub-
strate: the first one evaporated at 108C and the
second one at 1308C. Both measurements yield quite
close values of cobalt and silver mass densities. Fig.

Ž4 presents XRR measurements logarithm of counts
.vs. detection angle and simulations performed using

Nevot’s and Sinha’s algorithms of four selected sam-´
ples.

XRR spectra deliver more information than the
TOF-RBS measurements: from simulations it is pos-
sible to gain both the layer thickness and the inter-
face roughness, as is presented in Table 1. It is
desirable however, that simulation should be justified
using complementary measurements. Therefore, as
the next step of experimental procedure, the SFM

Ž .images of the same samples were collected Fig. 5 ,
w xusing a home built scanning force microscope 15 .
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Ž . Ž . ŽFig. 6. A comparison of surface fractal scaling properties of four example surfaces Figs. 4 and 5 measured using SFM directly and XRR simulation according to Sinha’s
.model .
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All SFM data were obtained in air. The surfaces of
samples show quite different character, depending
not only on layer composition but also on deposition
conditions.

Table 1 presents several comparisons between the
root-mean-square surface roughness obtained from
XRR spectra fitting and from SFM measurements.
Both methods produce usually roughness values of
the same range, where XRR data are usually smaller.
Very often, for double layers with a relatively thin

Ž .topmost layer not exceeding 5–10 nm , estimated
by XRR as very smooth, the SFM roughness corre-
sponds to XRR simulation for the second, more
rough layer. In several cases one can notice, how-
ever, that the SFM results are significantly higher

Žthan the corresponding XRR data cf. position 9 in
.Table 1 . This situation occurs always when a rela-

tively flat surface is covered with more or less
Žprominent islands cf. Fig. 5b corresponding to posi-

.tion 9 . In such case, X-rays are partially reflected
Ž .from the surface islands base and partially from the

Ž .islands upper regions flat peaks , just like in case of
existence of an additional thin layer, corresponding
to peaks area. As a result, the surface roughness
determined by XRR method is significantly dimin-
ished. This effect influences the range of applicabil-
ity of XRR technique for surface roughness determi-
nation.

Ž . Ž .As it was shown in Eqs. 13 and 14 , using
XRR simulations performed according to Sinha’s
model and three dimensional topographic data ob-
tained by SFM, it is possible to compare directly the
fractal scaling properties of the surface studied by

Ž .both methods. Fig. 6 shows a comparison of G R
function calculated from XRR and SFM data.

Ž .It is convenient to display the G R function in a
log–log scale. Then, the linear part of the plot
represents the region of applicability of the surface

Žscaling property it is also the mean lateral structure
.size as illustrated in Fig. 5 and the linear slope is the

measure of the Hurst exponent h. At some distances,
Ž .linearity breaks down and the G R function reaches

slowly saturation. This length is a measure of the
cutoff distance j and gives an estimate of the mean
lateral extension of the surface structures.

In the case of SFM measurements it is possible to
Ž . Ž .compute the G R directly, according to Eq. 12 .

Then, the cutoff distance j and the Hurst exponent h

may be obtained by simple fitting. For XRR mea-
Ž .surements the definition of the G R function from

Ž .Eq. 13 must be used and the values of j and h are
Ž .a result of fitting the XRR spectrum by Eq. 14 .

Ž .15

However, a reasonable agreement between SFM
and XRR results was obtained in almost all cases,
independent of deposition method and conditions.
One can also notice that the range of mean lateral
distance between the surface structures observed in
SFM images corresponds to the cutoff distance j .

5. Conclusion

XRR and SFM measurements may be performed
Ž .nondestructively in a very short time ;5 min and

do not require any special sample preparation. By
obtaining surface roughness and scaling parameters
from SFM measurements and applying them to simu-
lations using the models of Nevot and Sinha, it is´
possible to determine the following properties of
layers and their interfaces:

Ø The average layer thickness for single- and
multi-layer systems, taking into account sample

Žporosity which influences the simulation through
.lowering the film density . The range of applicability

covers thicknesses from single nanometers to 200
nm, while the resolution of the fitting procedure is
not worse than 10%. Best fits are obtained in the
range of 10–100 nm.

Ø The average global interface roughness may be
obtained, also for inner interfaces and buried layers.
However, as the interface roughness influences
strongly the interference conditions, it should not
exceed the limit of ;10 nm.
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