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The phase transition of a semi-infinite Heisenberg ferromagnet having easy-axis (perpendicular) an-
isotropy of the form —D,(S?)* (D, >0) in the surface and easy-plane anisotropy of the form — D,(S?)?
(D, <0) in the bulk is studied by the molecular-field approximation. For a fixed D,, three ordered
phases, i.e., canted spin, in-plane ordering, and perpendicular ordering phases, are obtained depending
on the temperature and the strength of the surface anisotropy D;.

The direction of the magnetization of films and semi-
infinite magnets has attracted much attention recently.
In general, the preferred direction of magnetization in
such materials is parallel to the surface because of a
shape anisotropy. Surfaces, however, can have perpen-
dicular anisotropy in consequence of the reduced symme-
try,' and if the magnitude is large enough to overcome
the shape anisotropy, the spins may exhibit a perpendicu-
lar ordering or have vertical components. In recent ex-
perimental and theoretical analyses, large perpendicular
surface anisotropy and perpendicular magnetization were
in fact found in films and semi-infinite magnets,? ® and
several theories considering the interplay between the
perpendicular anisotropy and the shape anisotropy have
been proposed.”1°

There have been many investigations on the thermo-
dynamic properties of Ising and Heisenberg semi-infinite
magnets.'"12 Tt is well established that the surface spins
with weak exchange coupling are driven by the bulk and
hence have the same transition temperature as the bulk.
On the other hand, if the surface exchange coupling is
greater than a critical value, the surface region can order
even when the bulk is paramagnetic and has a transition
temperature higher than the bulk one. As the tempera-
ture is lowered, the bulk also becomes ordered at the bulk
transition temperature. Recently, the study of Ising
semi-infinite ferromagnets has been extended to include a
single-ion anisotropy, in particular, that of the easy-plane
type.'>!* Such a system undergoes first-order transitions
as well as second-order ones.

Most of the theoretical studies on semi-infinite magnets
have been concerned with the case where the surface and
the bulk have the same easy direction of magnetization.
If the surface anisotropy is noncollinear with the bulk, as
encountered in the system with dominant perpendicular
surface anisotropy, spin canting will appear near the sur-
face. Mills,” and O’Handley and Woods® have shown in a
continuum approach that the ground-state spin orienta-
tion near the surface changes from an in-plane to a cant-
ed one when the perpendicular surface anisotropy
exceeds a certain critical value.

In this paper we treat a semi-infinite Heisenberg fer-
romagnet with a single-ion surface anisotropy whose easy
direction is noncollinear with the bulk single-ion anisot-
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ropy and compute the phase diagram and magnetization
profiles at finite temperatures. Since the thermodynamics
of semi-infinite magnets have been described qualitatively
within the framework of the molecular-field theory, we
also apply it to our model Hamiltonian. This would be
inadequate for very thin films with noncollinear anisotro-
py axes because a soft mode, which will appear at the
phase boundary, yields an isotropic quasi-two-
dimensional feature to the thermodynamic properties.'®
The semi-infinite ferromagnet considered here has a
simple-cubic structure with a free surface. The z-axis is
normal and the xy plane is parallel to the surface. The
bulk spins are assumed to lie in xy plane, while the sur-
face spins orient preferentially to the z direction. To de-
scribe such a system, we set up a model Hamiltonian,

H=-J 3 8,8~ 3D(S})?, (1)
<Ll'j'> Ij

where J denotes the nearest-neighbor ferromagnetic ex-
change constant (hereafter we shall use units of J=1),
and / the layer index; / =1 is the surface layer, [ =2,3,...
the inner layers, and j denotes lattice points in xy plane.
The perpendicular surface anisotropy is represented by
taking D, (=D,) to be positive, while we take D, (=D;)
to be negative for the bulk.

Our model will allow for the possibility of three types
of ordered states, i.e., canted spin, in-plane ordering, and
perpendicular ordering states. Since the latter two are a
special case of the former, we here develop the formula-
tion for the canted spin state, where both the parallel
component  <Sj;> =S) and the perpendicular one
<Sf > =S have finite values. Then the Hamiltonian (1)
is written in the molecular-field approximation,

Hy=Y Hy; ,
li

2

Hyy=—(K,;Sj+ES;)—D|(Sf)*+C , @

where

E;=4S{+S}_ | +S}i4, ,

K, =48] +S)_,+5,, , o
C,=LK,S|+ES}), @)
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where S§=S[=0 by the boundary condition at the sur-
face. For the spin-1 system considered here, the energy
eigenvalues €;,=A; —D,+C; (i=1,2,3) of H,y, is ob-
tained from the roots of the secular equation

A, —DAL—(K}+EDA; +DE}=0. (5)

Using the corresponding eigenstates, we have layer mag-
netizations in the canted spin state,

S)=—2K, S hhi By P ©)
' 2 e g kA AED
3 7‘1‘
S}=—2EK} S : (7)

(A2 —E}P+KMAL+ED

i=1

with
py=— S PN ®
i§1 exp(—pBA,)
and the free energy
F.=N, S |c-D,~B ' i exp(—BAy) | 9

=1 i=1

where N means the number of atoms in a plane, and
B=1/T, with T as the absolute temperature scaled by
J /kpg, with kp as the Boltzmann constant.

The layer magnetization and the free energy of the in-
plane ordering state can be obtained by setting E; =0 in
Eqgs. (5), (6), and (9):

B 4K, sinh(BX, /2)
X,{2cosh(BX,/2)+ exp(BD,/2)} ’

N (10)

Fy=N, 121 [(K;S)—D))/2
—B 'In{2cosh(BX,/2)+ exp(BD, /2)} ],
an
with

X, =V D}+4K} . (12)

On the other hand, in the perpendicular ordering state
they can be obtained by setting K; =0 in Egs. (5), (7), and
9):
§ie 2sinh(BE,)
' 2cosh(BE,)+ exp(—BD,) ’

(13)

F /=N, 3 [ES}/2
=1

—B 'In{2exp(BD,)cosh(BE,))+1}] . (14)

The formulation developed here is a generalization of
that for the infinite uniaxial ferromagnets, studied by
Khajehpour, Wang, and Kromhout,'® in the case of a
semi-infinite ferromagnet, and then all the quantities be-
come layer dependent. The bulk magnetization S} is
computed from Eq. (10) by omitting the layer depen-
dence.
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We now turn our attention to the phase diagram. For
the numerical calculations, we use N-layer approxima-
tion, i.e., the layers with / = N+ 1 are assumed to be the
bulk and the bulk magnetization S} forces a molecular-
field boundary condition to the Nth layer. This would be
a good approximation if we choose N large enough to
satisfy S| =S/, and in this paper we take N=16. In Fig.
1 a representative phase diagram in the (7,D;) plane is
shown for D, = —1. The phase designated by C, ||, 1, and
P refer to canted spin, in-plane ordering, perpendicular
ordering, and paramagnetic phases, respectively. In the
canted spin phase in Fig. 1, Egs. (6), (7), (10), and (13)
have respective solutions, but among them the canted
spin state has the lowest free energy. Since the exchange
interaction in the Hamiltonian (1) is assumed to be isotro-
pic, the transition lines shown in Fig. 1 are of second or-
der. This is not the case if we introduce anisotropic ex-
change interaction'® or consider the Ising model with
easy-plane single-ion anisotropy.'*'*

For D, smaller than DJ,, the canted arrangement turns
into the in-plane ordering as the temperature increases,
and then a transition to the in-plane ordering state takes
place. This feature is shown in Fig. 2 for the case with
D,=2, where the canting angle 6, is measured with
respect to the xy plane, and S,=v/(S)*+(5})%. The
curves S; for [ 24 lie between the curves S; and the bulk
and are omitted in the figure. It follows that a significant
canting of spins appears within four layers from the sur-
face, and the canting angle 6, remains almost unaltered
until the temperature approaches near the transition tem-
perature to the in-plane ordering state. For D, smaller
than D{, all the spins are parallel to the surface for any
temperature below T;. The analytic form of the phase
boundary between the phases || and C is given using the
following procedure. By expanding the roots of the secu-
lar equation (5) into power series in S}, and substituting
them into Egs. (7) and (9), we get a set of homogeneous
equations,

0
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FIG. 1. (T,D,) phase diagram for D,=—1. C, ||, 1, and P
designate canted spin, in-plane ordering, perpendicular order-
ing, and paramagnetic phases, respectively. T} is the bulk tran-
sition temperature.
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FIG. 2. Temperature dependence of S;=V/(S))>+(S})? and
the canting angle 6, measured with respect to xy plane for the
case D,=—1 and D;=2. The number attached to the curves
represent the layer ordering number from the surface and
dashed line represents the bulk magnetization curve. Tj is the
bulk transition temperature.

2

K} [ PY P}, D,
St+2|— |———-——— |+—P% |E,=0, (15)
S A NP U R A PY AT e e

where P{(i=1,2,3) is the probability given by Eq. (8) of

1.0
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FIG. 3. Same as in Fig. 2 but for D, = 14.
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FIG. 4. Critical values D, and DS as a function of D,.

the three energy states of the in-plane ordering state;
AL =(D,—X,)/2, A),=0, and A;=(D,;+X;)/2. In the
N-layer approximation, the coefficient matrix of Eq. (15)
can be truncated, and the condition that the determinant
of the coefficient matrix be zero gives the phase bound-
ary. The boundaries between other phases are also found
by a similar expansion for a small value of S} or s).

For D, larger than DJ,, as shown in Fig. 3 in the case
with D, =14, the canted arrangement turns into the per-
pendicular ordering as the temperature increases. The
curves S, for [ >4 lie between the curves S5 and the bulk
except around T} and are omitted. As in the case D; =2,
the canted arrangement appears only near the surface,
and 0, remains almost unaltered until the temperature
approaches near T;. Above T}, the perpendicular order-
ing takes place.

Finally, we discuss the phase diagrams for other selec-
tion of D,. In Fig. 4 critical values Dy, and Dy, are plot-
ted as a function of D,. In the corresponding phase dia-
grams, the features of the in-plane ordering and the cant-
ed spin phases are qualitatively the same as shown in Fig.
1, but whether the perpendicular ordering phase exists or
not depends sensitively on D,. For —2.247>D,
> —8.268 no perpendicular ordering occurs, and in this
range of D, the canted spins turn into the in-plane orien-
tation as the temperature approaches Tj;. The appear-
ance of the perpendicular ordering state for D, < —8.268
is due to a decrease in T, which is characteristic of the
system with easy-plane single-ion anisotropy.'® Since the
saturation magnetization of the bulk almost vanishes
near D, =—12, and consequently T; becomes very low,
the molecular-field approximation fails to determine the
phase diagram in such a region. In this case, we should
employ a method accurately taking into account a quasi-
two-dimensional aspect of the surface.

Though in this paper we have not treated the dipole-
dipole interactions directly and have confined ourselves
within the framework of the molecular-field theory, we
believe that the phase diagram shown in Fig. 1 exhibits
the essential features of the semi-finite Heisenberg fer-
romagnet with perpendicular surface anisotropy.
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