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Probing interface roughness by X-ray scattering
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Abstract

X-ray scattering at glancing angles can be exploited to probe interface roughness. Various theories for this technique
will be reviewed. The applicability of the theories is shown to depend on the relevant length scales of sample and X-rays.
Approximations are discussed and improvements of the theory are suggested. Both specular reflection, diffuse scattering and
absorption of X-rays will be discussed. It will be shown that relevant roughness parameters, like root-mean-square roughness,
lateral and perpendicular correlation lengths and the degree of jaggedness can be extracted from the experiments. Possible
forms for the roughness correlation function are discussed. As an example, it is shown how the interface roughness of an

oxidic multilayer has been probed by X-ray scattering.

1. Introduction

In the last decade there has been a growing interest to
manipulate the properties of materials by depositing them
as thin layers or multilayers on a substrate. The properties
of the resulting devices are determined to a large extent by
the roughness of the interfaces.

As can be concluded from the previous conferences in this
series [1, 2], X-ray scattering at glancing angles is a pow-
erful tool to probe interface roughness. Specular reflectivity
is sensitive to the depth profile of a sample and can yield
the root-mean-square (rms) roughness. The diffuse scatter-
ing measured in non-specular directions can give informa-
tion on the nature of the roughness along the interfaces.

In this paper we will give a review of the physical back-
ground of these measurements. We will compare various
theories and indicate their applicability and limitations. An
example will be given of the determination of roughness
parameters for a multilayered sample and we will refer to
other examples from the literature.

2. Scattering theory

We will give an overview of the theory for glancing-
incidence X-ray scattering from a sample with rough inter-
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faces. Most of the theory will apply to neutron scattering
as well, although for neutrons one generally can neglect ab-
sorption. An extensive treatment of the theory in the case of
small roughness correlation lengths was published recently
[3]. Here we will concentrate more on the applicability of
the theory.

First we will discuss the case of very small correlation
lengths, where diffuse scattering can be neglected. Then we
will show how perturbation theory can be used in the case
of larger correlation lengths. We will find that this approach
breaks down if the correlation lengths are too large. Other
limitations may be encountered if the rms roughness is too
large, in which case another starting point for the perturba-
tion theory can be used favourably. Finally, we will discuss
an approach which is valid for large correlation lengths.

At small scattering angles, where it is allowed to neglect
the polarisation of the X-rays, the electric fields ¢ are solu-
tions of the wave equation

(VP 4+ =V)p=0, (1)

where & = 2m// is the magnitude of the wave vector of the
incident X-rays with wavelength A and the effective poten-
tial is ¥ = k*(1 — n?), where the refractive index n depends
on the position in the sample. We will not be concerned
with the atomic structure of the material, which is justified
as long as // sin # is much larger than the atomic distances,
where 6 is the angle of incidence with the sample surface.
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We will assume that a rough interface can be char-
acterised by an rms roughness ¢ and a lateral roughness
correlation length . The lateral distance over which the
interface height fluctuations have to be averaged to obtain
o is approximately equal to the X-ray coherence length. If
the interface roughness profile is viewed as a Fourier series,
the roughness correlation length £ can be seen as a largest
typical period in it.

It is instructive to consider first X-ray scattering at an
interface with the shape of a simple grating with grating
period D. If an X-ray beam with wavelength 4 impinges
on such a grating at incidence angle 8, there will be
diffracted beams at angles 6, fulfilling the grating equation
ni = D(cos g — cos 8). Since the smallest period which
can give diffraction is that for which 83 = 0, no diffraction
is possible if D < 4/(1 — cos ). On the other hand, if
D > /(1 — cos 6), many diffraction peaks will occur very
close to the specular condition 64 = 6.

A rough interface profile contains many periods and the
diffraction peaks will merge into a diffuse scattering peak.
Analogously to the above situation, the diffuse scattering
will be small if ¢ < 4/(1 — cos 0) and can be neglected if
& < A/(1 — cos 0). In the opposite case, ¢ > A/(1 — cos 8),
the diffuse scattering will be large but will occur very close
to the specular condition.

In the case & < A/(1 —cos0) it is allowed to use a
laterally averaged refractive-index depth profile. That is,
the situation is that of a graded interface. If the interface
has a normal distribution of height deviations, the depth
profile is an error function. For that case the wave equa-
tion cannot be solved exactly, but a numerical solution
can be obtained using the slice method [4]. Below also
an approximate solution for this case will be discussed,
Eq. (5).

In the following we will assume that the potential of
Eq. (1) can be written as

V="V+ Vi, 2)

where ¥y has no lateral dependence and ¥, describes the lo-
cal interface position. Here we will consider two situations
for Vy: that corresponding to flat interfaces and that corre-
sponding to graded interfaces.

Formally, the solution of Eq. (1) now can be written as

¢ = ¢o+ GoV19, (3)

where ¢p is the solution of Eq. (1) for the potential Vj
and Gy is the corresponding Green’s function. The formal
notation of the last term in Eq. (3) implies an integral over
all space. However, only the interfacial regions contribute
to the integral, since V) is zero elsewhere.

First we will consider the case in which ¥, corresponds
to the situation of flat interfaces (which are assumed to be
parallel in a multilayer). Then, for an interface located at

z = 0, the solution for ¢y is
[exp (ikoz ) + 1} exp (—ikoz )] exp ik - x)

for z=0,
bo=9 . . 4)
t exp(ikiz)exp (ik)| - x)

for z<0,

where k| is the component of the wave vector parallel to
the interfaces, ko and 4; are its perpendicular components
above and below the interface, respectively, and #{ and £}
are the Fresnel coefficients for reflection and transmission,
respectively.

First we will consider the case ¢ < /(1 — cos 8) [5-7],
that is, diffuse scattering is neglected. To solve Eq. (3), it is
assumed that the solution ¢ can be written analogously to
Eq. (4), but with a refiection coefficient ; and a transmission
coefficient #, which have to be found in a self-consistent
way. To perform the integral which is implicit in Eq. (3),
the fields in the interfacial regions are approximated by just
one of the two expressions of Eq. (4). This is justified up to
O(kia?) and up to O(k2/k3), where k. is the critical wave
vector (equal to the real part of VO"Z). Then one obtains,
after configurational averaging over a normal distribution of
height deviations:

Fro= r,l\.) exp (—2kok: o° ),
=1 expl(ko — k1 ¥ o>/2] if ¢ < i/(1 —cosB).  (5)

For » the answer does not depend on which of the two
expressions in Eq. (4) is taken. For # a somewhat different
expression can be found [7], which is the same as Eq. (5)
up to the order indicated above and, moreover, gives nearly
the same numerical values for other ko values. Expressions
like Eq. (5) are also valid for each interface in a multilayer
[9], provided that for all interfaces & < 4/(1 — cos ).

As was mentioned above, the same expressions, Eq. (5),
are valid for a graded error-function profile. There is a good
agreement with the values calculated using the slice method.
For the reflectivity |r;|> this can be seen in Fig. 1, where
the solid line has been calculated using the slice method and
the dotted line using the self-consistent solution, Eq. (5).
The case of transmission will be discussed below (Fig. 4).
To see the effect of the approximations made, we show in
Fig. 2 the electric-field intensity as a function of depth for
a case where koo is not small and ko is close to the critical
wave vector. It is seen that, not too close to the interface,
there is a good agreement between the fields calculated using
the slice method (solid line) and the self-consistent solution
(dotted). At the position of the flat interface, however, the
self-consistent solution exhibits a discontinuity, whereas that
calculated with the slice method is continuous, as it should.
This means that one has to be very careful in applying the
self-consistent solution close to an interface.
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Fig. 1. Specular reflectivity versus perpendicular incident wave
vector for CuK« radiation scattered from a rough platinum sample
with rms roughness ¢ = 1.5 nm. (Dashed line) no roughness; (solid
line) calculated for error-function profile; (dotted line) calculated
using Eq. (5); (widely dashed line) calculated using Eq. (11) with
¢ = 100 nm; (dot-dashed line) calculated using Eq. (12).
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Fig. 2. Relative intensity versus depth near the surface of a
platinum sample with ¢ = .5 nm due to CuKx radiation with
ky = 0.38 nm~—!. (Dot-dashed line) no roughness; (dotted line)
calculated using Eq. (5); (solid line) calculated for error-function
profile; (dashed line) continuous interpolation of dotted line in in-
terfacial region.

Next we consider the case in which & is larger and diffuse
scattering cannot be neglected. Then one can use perturba-
tion theory to obtain an approximate solution of Eq. (1).
Considering V| as a perturbation on ¥y, one can write

¢ = o+ GoVido + GoV1GoVigho + - - (6)

This approach is called the distorted-wave Born approxima-
tion (DWBA), whereas in the case ¥y = 0 it is called the
Born approximation.

The diffuse-scattering intensity can be calculated using
the first-order term (Go¥1 ¢ ) of Eq. (6). Again, in the inter-
facial region, the fields are approximated by one of the two
expressions (that for z<0) of Eq. (4). For a single rough
interface, the result for the differential cross section 8] is
do
o =APS(p, — ky. p1 + k). N
where k is the incident wave vector, p is the scattered wave
vector, A4 is the irradiated detected sample area and the pre-
factor is

P =i\ = n* P15y /(1677 (8)

In the case of a normal distribution of height deviations
h(x), the structure factor is

S(q.91) = lexp(-qL0"/2)/q. [
X /deexp(iq” X){exp[lg_|’C(X)] — 1},

)

where C(X) = (h(x)h(x + X)) is the height-height corre-
lation function of the rough interface (the averaging is over
x). Below we will discuss possible forms of C(X), but in
general it has the value ¢° at X = 0 and decays to zero for
large | X|, with ¢ as characteristic decay length. In the case
that g ¢ is small, S(q“, q 1) is approximately equal to

C(q,) = /deexp(iq“ - X)C(X), (10)

i.e., the power spectral density of the rough interface.

Other structure factors are more appropriate for non-
normal distributions of height deviations, such as interfaces
decorated with islands [10]. In the case of stepped inter-
faces also another structure factor can be derived, but often
Eq. (9) effectively describes the roughness [11].

For multilayers the diffuse scattering can be calculated in
a similar way [12], leading to a rather complicated result
[13]. The formula for the cross section contains a double
sum over all interfaces of eight structure factors similar to
Eq. (9) with correlation functions between the height de-
viations of interfaces i and j, C;y(X) = (hi(x) hj(x + X)).
Each structure factor has a prefactor like Eq. (8) which
involves the transmitted and reflected fields at the various
interfaces. The presence of these factors gives rise to inter-
ference effects which modulate the diffuse scattered inten-
sity (see Section S).

In the case of the Born approximation (Vy = 0), similar
expressions are obtained. Since refraction is neglected, the
transmission coefficients in the prefactor of Eq. (7) are equal
to 1, whereas the structure factor is Sp - ky, po + ko) [8].
For a multilayer the expression is much simpler than in the
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Fig. 3. Reflectivity versus perpendicular incident wave vector for CuKx radiation scattered from a rough platinum sample with rms roughness
¢ = 1.5 nm and large lateral correlation length. (a) Calculated using the DWBA: (dashed line) specular reflectivity, Eq. (5); (dot-dashed
line) total diffusely reflected intensity from Eq. (7) (relative to incident intensity); (solid line) sum of specular and diffuse reflection.
(b) Calculated using Rayleigh approach: (dashed line) specular reflectivity, Eq. (12): (dot-dashed line) total diffusely reflected intensity
from Eq. (14) (relative to incident intensity); (solid line) sum of specular and diffuse reflection.

DWBA, but still contains a double sum of structure factors
[10, 14].

Eq. (7) and its counterpart for multilayers are widely
used to describe diffuse scattering measurements. However,
one has to be aware of the limitations. If ¢ is large and ¢
is appreciable, Eq. (7) can give total scattered intensities
exceeding the incident intensity, especially in the total re-
flection region. This is illustrated in Fig. 3(a), showing
scattering from a rough platinum surface with & > /(1 —
cos 61). Below we will discuss a method which does not give
this anomaly.

Eq. (7) describes the diffuse scattering intensity up to
O(kj> &%), whereas the second- and higher-order terms of
Eq. (6) give corrections which are of higher order in A 6°.
For the specular case the situation is different. The expres-
sions for the reflection and transmission coefficient obtained
from the first-order term of Eq. (6) are, up to O(k3 a* ), equiv-
alent to those of Eq. (5). However the second-order term
of Eq. (6) also gives a contribution of O(kZa?) [15], unless
¢ = 0. Inclusion of this term [16] yields

1

= kok*(1 — %)
=

Fe =y exp[— 2koky o — 5
X/dlpn/(Pu +p)C(py ~k )],
f =t exp [(ko — ki Yel2 #(ko — kKA1 — )

X/dzpu/(]’o + PI)C(PH —k|)]~ (11)

Although within the perturbation-theory approach these
expressions are only correct up to O(kis?), they are

also correct for large kjo? in the limits of either very small
or very large ¢. In the limit ¢ > 4/(1 — cos f) the integrals
over the power spectral density in Eq. (11) can be performed,
yielding

re = r,? exp (— 2/(5 o’ ),

o=ty exp[—(ko — ki1 Y’'6?/2] if &> 4/(1 — cos0).
(12)

As we will see below, the expressions for this limit can also
be obtained in another way.

In Fig. 1 the reflectivity calculated with Eq. (11) is shown
for finite &, as well as for & > 4/(1 — cos 8). In the latter
case (dot-dashed line) the reflectivity is significantly smaller
than that calculated with Eq. (5) (dotted line), whereas for
finite ¢ (widely dashed line) there is a cross over from one
regime to the other.

For multilayers the situation is more complicated, since
the second-order contribution of Eq. (6) implies a correla-
tion between the radiation scattered from all interfaces. We
have found an expression for the specular reflectivity of a
multilayer which is valid for general &, but only for small
koo [17]. If all interfaces are perfectly conformal and all lat-
eral correlation lengths are much larger than 4/(1 — cos ),
a general result is obtained, which will be discussed below.

Now we will take a closer look at the transmitted radiation.
Part of it will be absorbed in the sample and this effect can be
registered even element specifically by glancing-incidence
X-ray fluorescence (GIXRF), i.e. by measuring the X-ray
fluorescence (XRF) intensities as a function of incidence
angle [18-20]. If an X-ray beam of unit intensity impinges
on a sample surface area A4 at an angle 6, the amount of
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Fig. 4. Absorbed intensity x sin {// sin | versus perpendicular in-
cident wave vector kg for CuKx radiation incident on a platinum
sample with an rms roughness of 1.5 nm. (Dashed line) no rough-
ness; (dot-dashed line) calculated with flat interfaces as a starting
point; (solid line) calculated using error-function graded interface;
(dotted line) calculated using new method (see text).

absorbed radiation is

T = 1/(A4sin 0)/d2x/dzy|<b

where p is the linear absorption coefficient, the first integral
is over the sample surface area 4 and the second integral
over the depth of the sample in which the relevant absorb-
ing atoms are present.

If there is no roughness, the absorption in a bulk sample
is 7 = |¢/}* sin 01/ sin B, where 6, is the refraction angle in
the sample.

If roughness is present, we have to include the absorp-
tion of diffusely scattered radiation, although this effect can
be neglected in the limit ¢ < 4/(1 — cos #). Another effect
is that locally the interface will deviate from the flat po-
sition, implying different integration limits in Eq. (13). As
an example, Fig. 4 shows T sin 6/sin 6, for a bulk sample
if ¢ < 4/(1 — cos 8) (dot-dashed line). In the case without
roughness, the dashed line is obtained. We also show the
result obtained with the slice method (solid line), which is
significantly different. Referring to Fig. 2 we can understand
the reason of this discrepancy: in the perturbation theory
we used the unperturbed fields (dot-dashed curve) to calcu-
late the absorption in the interfacial region, which clearly
is not correct. As we will show now, a better approximate
approach is possible. Below we will also discuss the case
&> A1 — cos0).

In the case of small £, a better starting point for the per-
turbation theory than that of flat interfaces is that where ¥,
corresponds to graded interfaces. As we mentioned, how-
ever, in the case of an error-function profile Eq. (1) is not ex-
actly solvable. A possible approach is to use another graded

2
’

(13)

profile, e.g. a tangent hyperbolicus, which is exactly solv-
able [3, 7, 12]. However, this solution is complicated and,
moreover, deviates from the error-function profile at large
ko. The slice method, on the other hand, may work well for
the above case of absorption, but is not very manageable to
calculate diffuse-scattering.

Another possibility is to use an approximate solution for
Vo as a starting point. For instance, one can use the self-
consistent fields with the coeflicients of Eq. (5). For the
diffuse-scattering intensity, this approach would lead to the
substitution of the transmission coefficients in Eq. (8) by
those of Eq. (5). This formula has also been suggested in
the literature [21, 22]. However, from Fig. 2 we see that
these fields (dotted line) may deviate even more drasti-
cally from the correct ones (solid line) than the unperturbed
ones.

We suggest a different approach, assuming that the self-
consistent fields are correct except in the interfacial regions.
In these regions we simply interpolate continuously between
the self-consistent fields at both sides of the interface [17].
The resulting intensity is shown in Fig. 2 (dashed line) and is
in good agreement with that obtained using the slice method
(solid line). The dotted line of Fig. 4 shows the result for
absorption in the case & < A/(1 — cos ). It is seen that the
agreement with the slice method is excellent. We found that
this approach yields good results for multilayers as well
[17].

This approach can also be used to calculate diffuse scat-
tering intensities by using the equations for the multilayer
case with in the prefactors the interpolated fields. As an ex-
ample, in Fig. 5 we compare results for a glancing-incidence
rocking curve (see Section 4) of a rough silicon sample. It
was assumed that the correlation function of the rough in-
terface can be described by Eq. (15). The results obtained
in the two approaches differ significantly, the solid line be-
ing for the old approach and the dashed line for the new
one. Moreover, it is possible to obtain similar curves in
the new approach (dotted line), but with different sets of
parameters.

A different approach than the above-mentioned perturba-
tion theory can be used if ¢ > 4/(1 — cos ). This is the
Rayleigh approach [23], where the interface is considered
to be locally flat, so that the field and its derivative can be
assumed to be locally continuous. For a single interface the
result for the specular case is that the reflection and trans-
mission coefficients are given by Eq. (12). For a multilayer
with perfectly conformal interfaces, all having an rms rough-
ness ¢, the result also is that the reflection coefficient calcu-
lated for flat interfaces has to be multiplied by exp(—2kga?).
The transmission coefficient in layer j has to be multiplied
by exp [~ (ko — k;)*6?/2], where k; is the wave vector in
layer ;.

For the general case of a multilayer, the calculation of the
diffuse-scattering intensity is complicated [24]. For a single
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Fig. 5. Scattered intensity (relative to incident intensity) ver-
sus parallel wave vector transfer ¢ = k(cos )y — cos () at con-
stant perpendicular wave vector transfer gy = 0.5 nm~"! for X-rays
with & =45nm~! at a silicon sample with ¢ =4 nm. (Solid
line) ¢ = 400 nm, H = 1, calculated using Eq. (7); (dashed line)
¢ =400 nm, H =1, calculated using new method; (dotted line)
¢ =800 nm, H = 1, calculated using new method.

interface we found [25] the simple expression

d L
d—g = APS(p, — kyko + po) if &> 2/(1—cos ),

(14)

that is, an expression very similar to Eq. (7), but with a per-
pendicular wave-vector transfer ko + po instead of &1 + p1.

In Fig. 3(b) we show the results obtained from Eq. (14)
for a rough platinum surface with ¢ > 4/(1 — cos ). In
contrast to Fig. 3(a), showing results obtained from Eq. (7),
now the scattered intensity does not exceed the incident
intensity, but the total (diffuse + specular) intensity is equal
to that in the case without roughness.

With the same method the transmitted intensity absorbed
in the sample can be calculated, using Eq. (13). Now the
absorption of the diffusely scattered radiation also has to be
taken into account. It is found that the total absorption is
equal to that in the case with no roughness (dashed line in
Fig. 4). The same results arc obtained in the DWBA up to
O(kia?).

3. The roughness correlation function

In many cases it has been found that an interface can be
described as a self-affine fractal over many decades of X
[26]. That is, the interface has a fractal dimension 3 — H,
where H is the Hurst parameter (0 < H < 1). This param-
eter can be seen as a jaggedness parameter: for H close to 1
the interface is smooth, whereas for H close to O the inter-
face is very jagged. An intersection (“skyline”) of the inter-
face, as probed in the case of integration perpendicular to the

scattering plane (see Section 4), has dimension 2 — H. The
correlation length ¢ can be considered as the upper length
scale up to which the interface is fractal.

An often used form for the correlation function [8] is

C(X) = ¢” exp [-(|X]/¢F"1. (15)

This formula has the right behaviour, with C(0) = 62, and
describes fractal behaviour for | X] < & Inthe imit # = 1it
is a simple Gaussian (which, however, is not fractal), giving
a Gaussian power spectral density. For H = % it is a simple
exponential, leading to C’(q“) =2n6? &3 (1 + g, [Pe2y=32,

There are other functions which also give the right
limiting behaviour. An interesting one is the so-called
K-correlation function [27-29]:

C(X) = B | X" Ku(|1X)/2), (16)

where B is a constant related to ¢ (see below), and Ky is
the modified Bessel function of order H. (The function pro-
posed in Ref. [28] uses a slightly different definition of the
constants B and £.) The corresponding power spectral den-
sity is C(g,) = C(0) (1 + |g,[*¢)~" " For H = § this is
equivalent to that following from Eq. (15). If there is no
lower cut-off length for C(X), the relation between ¢ and
Bisa® = BEH2H-r(1 + HY/H and C(0) = 4nHs*E . In
the limit H = 0, Eq. (16) diverges logarithmically for small
X. We will assume that the interface has a smallest consti-
tuting element (atom or cluster) of size xo. Then one finds
ot = %Bln(l + ¢*/x3) and C(0) = 2*21 £’ B. Generalising
to H # 0 and taking a correlation function with x¢ as lower
cut-off length, one obtains o = B -Ir(1 + HYy/H[I —
(1 + &) "1 and C(0) = 2" =l (1 + H)BE,

The above model is in agreement with existing mod-
els for film growth [26]. For H # 0 and (xo/E) < 1,
we have ¢ ~ & and both ¢ and ¢ can be assumed to in-
crease with the film thickness 7 according to power laws. For
H = 0and xp/¢ < 1, we have 6° ~ In . Assuming again a
power-law growth for ¢ with ¢, we find ¢* ~ In¢, in agree-
ment with the well-known Edward—Wilkinson growth model
{30].

These considerations seem to give the K -correlation func-
tion, Eq. (16), more physical justification than Eq. (15).
However, for small H values, Eq. (15) yields a more cusp-
like structure factor than Eq. (16), which we found often to
be in better agreement with experimental data.

For a multilayer we also need the correlation function
C,; between the roughnesses of different interfaces. In the
Edward—Wilkinson modetl [31] one can derive

C"./’(‘IU) = C/'>(q;])5iJf(q” ) (17)

where j> denotes the interface / or j which is closest to
the substrate and ¢;; is the replica factor for the rough-
ness. In general, the replica factor will decrease with in-
creasing lateral frequency ¢,. Often, however, a simple
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frequency-independent form is appropriate: E,f (g = c,f =
exp(—di;/¢1), where d;; is the distance between interfaces
i and j and ¢ is the perpendicular correlation length. It
is important to note that not all parameters can be chosen
independently (see Note 43 of Ref. [32]).

Other correlation functions given in the literature often
have a more phenomenological character. For instance, for
an ion-etched molybdenum-—silicon multilayer it was found
that C(X) = 1/(1 + | X|*/&%), with a g 1-dependent ., can
give a good description of the measured data [33].

Furthermore, as was indicated above, one can obtain an
estimate of C(X) by Fourier transforming the measured data
if interference effects can be neglected. For instance, this
method has been applied for a gold film on GaAs [34].
Finally, as discussed in Section 2, in some cases it may be
more appropriate to express the structure factor in another
way than using the correlation function.

4. Scattering geometries

The set-up which is most often used for X-ray scattering
experiments has a geometry where the detector is located in
the scattering plane, i.e., the plane formed by the incident
wave vector and the normal to the sample. In most cases,
both the sample and the detector can be rotated to change the
incidence angle and the detection angle. (Instead of a rotat-
able detector also a position-sensitive detector can be used
to obtain information as a function of detection angle.) The
divergence of both incident and detected beam is typically
Af ~ 3 x 10™* and the resolutions in reciprocal space are
Ako >~ kAG and Ak = ke AD.

Often a slit is placed before the detector which is long in
the direction perpendicular to the scattering plane. In that
case the measured diffusely scattered intensity is integrated
over the perpendicular direction. Denoting this direction
by y, the diffusely scattered intensity for a single interface
is proportional to

/ dg, S(g).4.) = 2n|exp(~q’L072)/q [’

x / d*X exp (ig X Mexp [lgo 'CLX)] — 1},

where Eq. (9) was used.

For small ¢,o this is proportional to C'(qH) =
f dX exp (ig X ) C(X), the Fourier transform in the scat-
tering plane of the one-dimensional correlation function
C(X). Note that C(X) may differ in different directions
along the sample surface. Examples are machined surfaces
[19] and interfaces with steps in one direction [11, 35].

Close to the specular condition one will measure the sum
of true specular reflection and diffuse scattering. If the spec-
ular reflectivity is fitted, the diffuse scattering should be

subtracted. In principle, the ratio of the diffuse scattering in-
tensity to the specular contribution contains relevant infor-
mation on correlation lengths, etc. In practice, it is difficult
to obtain this very accurately, since it is determined by the
details of the optics of the instrument, which is influenced
by the size and flatness of the sample.

The diffuse scattering can be measured in various possible
scans. In a rocking (or transverse) scan both the source
and the detector are fixed, whereas the sample is rocked
from zero incidence angle to zero detection angle. In such
a scan the perpendicular wave vector transfer go = po + ko
is essentially constant. If the angle between the incident
beam and the detected beam is 26, length scales down to
//(1 — cos 0) are probed. An example of such a scan was
given in Fig. 5.

Other possible scans are: an offset scan, i.e. a coupled
scan of sample and detector with the angle between detected
beam and sample surface equal to the incidence angle plus
an offset angle; a detector scan, where only the detection
angle is scanned at fixed sample and source positions; a
source scan, where the incidence angle is scanned at fixed
sample and detector positions. A complete mapping of the
scattered intensity results in a reciprocal-space map, i.e., a
contour plot of constant intensities in the g—qo plane. An
example will be given in Fig. 6.

A larger part of reciprocal space can be probed if the
detector can move out of the scattering plane, as in glancing-
incidence diffraction [36]. In that case it is possible to reach
larger |g | values and C(X) can be probed down to smaller
values of | X| [37]. Moreover, if it is assumed that the Born
approximation is valid, C(X) can be obtained by Fourier
transformation of the diffuse-scattering intensities, provided
that C(0) is known, e.g. from the specular data [37].

5. Example

An example of an experiment for which we were able
to describe the diffuse-scattering data and to extract mate-
rial parameters, is shown in Fig. 6. These data, measured
with the detector in the scattering plane, are for a multi-
layer consisting of 20 periods of approximately 10 nm mag-
netite (Fe304) and approximately 3 nm magnesium oxide
on a magnesium aluminate substrate [38]. From a fit of the
specular reflectivity we found that between the Fe;O4 and
MgO layers intermixed layers are formed, presumably con-
sisting of MgFe;04. The influence of the roughness on the
specular scattering was described using Eq. (5). We found
¢ = 0.6 nm for most interfaces, whereas the top interfaces
are slightly rougher.

In the reciprocal-space map of Fig. 6 the vertical line g =
0 denotes the specular scan, with the total-reflection region
up to go ~ 0.45nm™" and the first three multilayer Bragg
peaks at gp ~ 0.64, 1.05 and 1.51 nm ™. The white regions,
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left and right, are part of the hemicircles which cannot be
reached in reflection geometry.

In the diffuse-scattering distribution we see two kinds of
structure: circle-like ridges approximately parallel to those
hemicircles and banana-shaped sheets through the Bragg
peaks. The former ridges are due to interference effects aris-
ing from the prefactors in the formulas for diffuse scattering.
It is well known that, if either the incident angle or the de-
tection angle equals the critical angle for total reflection, an
enhanced diffuse scattering is seen (“Yoneda wings” [39]),
since the transmission coefficients in Eq. (8) are maximum
at the critical angle. In Fig. 6 this phenomenon gives rise
to the circle-like ridges crossing the line ¢ = 0 at gy ~~
0.45 nm ™. Similar ridges are crossing the line g = Ointhe
first Bragg peak (those corresponding to higher-order Bragg
peaks have a too low intensity to be seen here). Along these
lines either the incident or the detection angle is close to the
Bragg angle, resulting in a severe modulation of the pre-
factors. A similar phenomenon is present for one or
a few layers on a substrate. Then the specular reflec-
tivity exhibits Kiessig fringes. In the diffuse scatter-
ing a corresponding modulation of the intensity is seen
[32, 40].

It is interesting to realise that the angle can be tuned
to give less or more intensity at a particular set of inter-
faces. This provides a tool to distinguish between the rough-
ness of different interfaces. In the underlying case we found
that all interfaces can be described with the same parame-
ters (apart from the higher rms roughness for the top inter-
faces).

The banana-shaped sheets are due to perpendicular
correlation in the multilayer [13, 14, 41]. In the case that
c,f = 0, they are absent. Qualitatively, they can be under-
stood as follows: if the incidence angle with respect to
the average interfaces does not equal a Bragg angle, part
of the rough interfaces yet may be at the Bragg angle. If
the successive rough interfaces are highly conformal, the
waves scattered by the mentioned part of the interfaces
can interfere constructively. This implies that the wave
vector transfer in the sample obeys the Bragg condition.
This yields essentially horizontal sheets which, because of
refraction, are bended upwards.

From Fig. 6 we found that for this sample we can assume
¢ii =1 for all interfaces, implying that the perpendicular
correlation length is larger than the thickness of the whole
multilayer stack.

We were able to simulate the data of Fig. 6 by assum-
ing furthermore that all interfaces have the same lateral cor-
relation length & and the same Hurst parameter H. Good
agreement with experiment was obtained with & = 100 nm
and H = 0.3 [38]. For the calculation we used the formu-
las valid for small ¢. Indeed, in the region where the inten-
sity is high enough to make a comparison, we have ¢ < 4/
(1 —cos ).

1.0~

qo (nm™)

00 ,
~40 20 0 20 40
qr (um™)

Fig. 6. Reciprocal-space map showing contours of constant inten-
sity measured for scattering of CuKa radiation from a multilayer
consisting of 20 periods of Fe;O4 and MgO on MgAl,O4.

6. Conclusions

In Section 2 we gave an overview of scattering theories,
from which the following can be concluded. If ¢ is not
too large, which in practice often is the case, Eq. (5) can
be used for specular reflection and transmission, also for
each interface in a multilayer. If ¢ is large, Eq. (12) has
to be applied. In the case of intermediate ¢, Eq. (11) can
be used for the specular reflection and transmission by a
single interface. For multilayers only approximate formulas
are available [17], valid if kyo is small.

To calculate diffuse scattering for the case of not too
large &, Eq. (7) and its counterpart for multilayers can be
used if koo is not too large. Otherwise the new description
discussed above is applicable. In the case of large &, the
diffuse scattering is described by Eq. (14) for a single inter-
face. For a multilayer, approximate numerical methods valid
in this limit are given in the literature [24]. Up to now, no
general method is available to calculate diffuse scattering at
intermediate ¢. In the case that interference effects can be
neglected, the Born approximation can be used [8, 14].

Possible forms for the roughness correlation function were
described in Section 3. We indicated that there are sev-
eral ways to describe self-affine fractal interfaces, which
may give somewhat different results. Because of the various
scattering theories, the competing forms for the correlation
function and experimental uncertainties (cf. Section 4), we
believe that the obtained values of ¢ in general have an un-
certainty of about a factor of two. Also the £ values proba-
bly have to be considered as indicative. The rms-roughness
values can be determined much more accurately, especially
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in the case of small ¢. Despite the uncertainties, valuable
information on the nature of interface roughness can be ob-
tained by X-ray scattering measurements, for instance, in
the example of Section 5.
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