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Instabilities of an m-Vector Spin-Glass in a Field

Dinah M. Cragg and David Sherrington
Physics Department, Impevial College, London SW72BZ, England

and

Marc Gabay
Physique des Solides, Ecole Normale Supeévieuve, F-75231 Paris 05, France
(Received 16 February 1982)

Tt is demonstrated that for a vector spin-glass in a magnetic field, replica-symmetry
breaking, the theoretical indicator for magnetic irreversibility, occurs simultaneously
with transverse spin-glass ordering as the temperature is reduced. It is argued that
the irreversibility onset will be strong in the transverse direction, but only weak longi-
tudinally, with a crossover to strong longitudinal irreversibility at a lower temperature.
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There is currently great experimental and the-
oretical interest in spin-glasses,' partly because
randomness is an essential and not just a com-
plicating ingredient in their recipe, but even
more because they exhibit dramatic history de-
pendence and apparent breakdown of ergodicity.
As experimental evidence of the history depen-
dence we note that the magnetization response to
an applied field is very different if the field is
applied before or after cooling from the paramag-
netic state; the difference between the field-
cooled and the quasi-instantaneous zero-field-
cooled magnetization is referred to as the ir-
reversible magnetization and grows continuously
as the temperature is lowered past the spin-glass
temperature. The time taken to reach the ap-
propriate equilibrium (field-cooled) state grows

with the size of the system, causing nonergodicity.

A common theoretical approach to spin-glasses
is to map the physical disordered system into an
effective pure one involving replicated spins in-
teracting with one another through a more com-
plicated interaction. Intuitively one expects a
symmetry between replicas, but the breakdown
of this symmetry is now recognized as an indica-
tor for the history dependence mentioned above.
The model which has been the basis for most
analyses is an Ising one? in which the symmetry
between replicas is broken® as soon as one enters
the randomly frozen spin phase. Recently, how-
ever, Gabay and Toulouse (GT)* suggested that
the corresponding vector-spin model in an ex-
ternal field should have two transitions as the
temperature is lowered, first to a state with
transverse spin-glass-like ordering but with
symmetry between replicas and thus no history
effects, followed at a lower temperature by a
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transition in which the replica symmetry is bro-
ken and irreversibility ensues. This suggestion
has stimulated much experimental activity. In
fact, as we show below, the symmetry between
replicas is broken as soon as the transverse or-
dering occurs. Doubt is thus cast on the ex-
istence of a second transition, but we argue that
there is likely to be a crossover in the longitudi-
nal magnetic irreversibility from a weak onset
at the transverse ordering transition to a strong
form (analogous to the Ising case) by a tempera-
ture of the order of the lower one of GT. In con-
trast, strong transverse irreversibility is ex-
pected to commence immediately at the first
transition. These observations are of importance
to current experiments and suggest further tests
of spin-glass replica modeling.

As did GT, we base our theory on the m-vector
Sherrington-Kirkpatrick? (SK) model in a field,

- -

K==2und S8, -0 H S, (1)

where the J;; are quenched, independently ran-
dom exchanges distributed with zero mean and
variance J/VN. We choose units with J=kp =1,
|S|2=m. Mean-field theory is believed to be ex-
act for this model, and its solution yields the
mean-field solution to a short-range model. We
use the now-conventional replica analysis, treat-
ed within the replica-symmetric (RS) approxima-
tion with interreplica mode softening as the signal
for irreversibility. Because of the deficiencies
in the original GT treatment we provide sufficient
detail to enable the reader to check its correct-
ness.

Before making any RS assumptions, the free
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energy per spin is given by

f==Tlimn ' max{- %BZZ[% @, *PP+32 (@,%)?] -1nQ}, (2)
n —>0 u [e2
where
Q="Tr, exp{Bzz;{% 7,°?5,%5,°+33,9,%(, )Pl +pH L S,*1} . (3)
u o o

The subscripts p,v label Cartesian directions in m space, with the field direction being chosen as p
=1. o,p label replicas, and the notation (aB) refers to pairs of different labels. “max” signifies
maximization with respect to the ¢’s.

Within the replica-symmetric approximation we need only three parameters,’

q,°=lim (8,9, =1+@mb,, -1)x, ¢,P= 1in3<Su°‘S,,B>n =q+(q,-q)6,, - (4)
- n
In the absence of a field the quadrupolar parameter x is zero, while ¢ and ¢, are equal and become
nonzero continuously as 7T is lowered past unity into an isotropic spin-glass phase. In a field both x
and ¢q, are nonzero for all T, but ¢ has a phase transition at a field-dependent temperature, the higher
one of GT.®

Within the RS approximation any disorder-averaged product of thermodynamic averages is simply
related to an average in replica space”:

(68,0 (S =)y =lm (8,7 -+ (5,5 ++ 6,7+ 40,5 %,

.—.[: ".fHu{[dtu/(z'”)l/z]exp(—tuz/Z)} (Z‘la"+"'+“z/aa1’-°-aan") (5)

cee(z7tert Zfda ),
where
Z=Tr exp(Z”auSp +bS.?), a, =B[(qu)l/2tu +H6u,1] , b=p3%q —-q,+mx)/2. (6)

(+ ++) denotes a thermodynamic average of the real system, (-+*), a quenched average over the J distri-
bution, and (- *+), a thermal average in the replicated system.
Z reduces to a single integral,

m
Z=\/7—n(27r)""'”/2(|a|,,,_ 1)(3-m)/2f-1/’_n ds exp(aIS+bSZ)(m _32)(m-3)/41(m_3)/2(la|m_l(m _52)1/2)’ (7)

where |al,_,=(a2+* **+a,2)? and I, (z) is a modified Bessel function of the first kind.
A particular application of (5) in (4) yields self-consistency equations for x, ¢, and ¢,. The equation
for the phase line on which the ¢ =0 transition occurs is given by

(m - 1)2/g2= [ [dt,/(21)"/%] exp(= 1,2/2)(P 1o/ Poo)?, (8)
where

P, = f_ﬁ;‘ds exp(a,S +b S?)(m - S2)m=sm)/2g? b =gy —gq,)/2,
and x and ¢, are determined via

1+(m—1)x=["_lat,/(21)/2) exp(~1,2/2)(m =P /Poo), q,=J__ldt,/(2m)"%] exp(=t,2/2)(P 01/P o)’
To lowest order in H the phase line for transverse freezing is**°

T, =1=(m2+4m+2)H?/4(m + 2)*; (9)
the corresponding dominant behaviors of ¢, and x are

q,=|H|N2, x=H?/4. (10)

Let us now turn to the stability analysis. We expand the functions on the left-hand side of Egs. (4)
about their replica-symmetric extremal values and study the stability of the resulting free-energy
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functional to quadratic order in the deviations.® Explicitly, we take x*=x +€%, ¢q,*®=q,+n,®,

leading to the fluctuation Hamiltonian

A BI|| {e%}
L,=38%{e*} {n“?}] , (11)
BT C {n(aﬁ)}
where
A% =gm(m = 1) = (m*6*/{Lim (S,)%(S,%)?), - [1+ (m - 1P},
B,V = —%MBz{lifg (5,°)%8,%8, M), = [1+(m - 1)xlq,}, (12)

Cuv (aB) (y8) 6(0!5)(76) éul/ _le}li_l:ré <S”ocsu BSUYSV(S) -qqu] .
The eigenfunctions responsible for replica-symmetry breaking have all the €® zero and
cy; (ap)=(6,v,),
n,®={(2-n)"'c,; aorp=6, or v, but not both, (13)
2(2-n)""8-n)"tc,; a,B#6, »Wa

Their normal mode spectrum follows from the set of m equations

EU(GHV—XpU(z))CU=7\0p, (14)
where
Xpy(2)=62<(spsu>"<su> <Sy>)2).f, (15)

evaluated in the replica-symmetric approximation.

For T>T,, all the A are positive and replica symmetry is stable. At T=T,, one mode becomes soft
and for T < T, has a negative eigenvalue, signaling instability. Specifically, for T just less than T'
and H small,

X @ =1=-H%/T%q,+129,2/(m+2)*T° + ..., Xu ¥’ =1+12¢%/(m+2)*T¢+...; p#1,

(16)
Xow =4 +q,)/(m+ 2PT0 + .5 p#1, Xuw @ =47/ (me2PT0+ .5 ptvel,
so that to lowest order in g the lowest eigenvalue is
A==[4m+1)/(m + 22+ &2|H|(m - 1)/(m +2)*+0(H?)]q* 1am

and is negative. The corresponding eigenfunction is given by
(c,/c,)=2q(m =1)/(m +2)*; p#+1. (18)

As expected on physical grounds, the replica-symmetry breaking is symmetric in the hyperplane per-
pendicular to the field axis. Note also that, although (18) has its dominant components in p#1, there
is a component of symmetry breaking induced in the longitudinal direction for arbitrarily small q.

More generally, there are two eigenfunctions of (15) which are symmetric in the plane perpendicular
to the field. Their eigenvalues are given by

L=xu® =M1 =%y, P =0m=2)x,, P =A] =(m=1)(x,, ®)=0; p#v#l (19)

The lower of these eigenvalues is that discussed |

above. The other is essentially the mode con- At this temperature the two eigenfunctions satisfy

sidered by Gabay and Toulouse.® For small H, _ ’ _
the temperature at which it becomes zero is (er/e)e=m =1)/Gn+1), (er/ey)y == (m+1),
given by where U and L refer to upper and lower energy
. . eigenfunctions. We see that both modes have sig-
H2=8(1-T,,)°/(m+1)(m +2). (20) nificant longitudinal components at this tempera-
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ture.

Let us now try to interpret our results. As
soon as replica symmetry is broken, it becomes
a difficult task to perform any analytical calcula-
tions, as one knows from the Ising case,’ but
there is now at least a folklore of implications
on which we can draw. Replica-symmetry break-
ing appears to imply,® as its most direct physical
manifestation, a difference between the equilibri-
um and the reversible (linear response) suscepti-
bility. It would appear then that, below the trans-
verse freezing transition temperature T, the
magnetization might not rotate bodily, but lag,
when a small transverse field is applied (say, in
an ac experiment, in contradistinction to an equi-
librium measurement). In essence, it seems to
predict the onset of a spontaneeous effective dy-
namic anisotropy, with a restoring force pre-
venting free rotation of the magnetization (in the
absence of any anisotropic interaction in the
Hamiltonian).

A second aspect concerns the question of the
existence of a second transition at a lower tem-
perature. If the transverse freezing line went
continuously to the Ising instability line, when
m -1, there would remain little argument in
favor of a second transition. However, this is
not the case, Rather T, of Eq. (20) goes over
to the Ising line as m -~ 1, so that continuity argu-
ments alone would make it not inconceivable that
some sort of crossover will remain. The charac-
ter of the eigenfunctions suggests that such a
crossover is highly probable. Further circum-
stantial evidence supporting the crossover concept
comes from a study of a spin-glass with uniaxial
anisotropy, but this will be reported separately.™
The most likely physical effect associated with
the crossover would be a marked increase in the
difference between the two longitudinal suscepti-
bilities (equilibrium and reversible).

Toulouse'' has shown that the properties of a
spin-glass with a mean ferromagnetic exchange
can be deduced from those of a spin-glass with
zero mean exchange but in a field. Such an anal-
ysis leads to the corollary that in an m-vector

spin-glass system with mean ferromagnetic ex-
change there can occur a mixed ferromagnet-
spin-glass phase.* Our observations lead to the
conclusion that everywhere in such a phase rep-
lica symmetry will be broken, with its attendant
history dependence, remanence, and slow relax-
ation behavior. Our speculations concerning
crossover do, however, suggest that there is
likely to be a crossover in the longitudinal ir-
reversibility within the mixed-phase region,
along a line analogous to that which separates the
two mixed phases of Fig. 2 in Ref. 4.

In conclusion, once more, the mean-field the-
ory for spin-glasses appears to be subtler than
expected. For best use of its conclusions as
guides to the study of real materials, there are
two provisos: It is just a mean-field theory and,
despite continuous progress, it remains one
which is not completely resolved.
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