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Soliton and 2D Domains in Ultrathin Magnetic Films
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We show that manytwo dimensionaldomain patterns observed in Monte Carlo simulations
can be obtained from themany soliton solutions of the imaginary time sine Gordon equation.
This opens the door to analytic quantitative understanding of the micromagnetics in ultrathin
films. [S0031-9007(97)02536-2]
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There has been much experimental interest recently
the magnetism of ultrathin films [1,2], partly motivated b
the possible integration of the semiconductor microele
tronics technology with magnetic elements [1] and possib
device applications with the giant magnetoresistive (GMR
effect. From a fundamental physics viewpoint, these sy
tems present opportunities for studying new phenome
that are beginning to be uncovered. The interaction e
ergy between the spins at positionsR, R0 is

H ­ 0.5
X

ij­xyz,RR0

VijsR 2 R0dSisRdSjsR0d , (1)

where V ­ Vd 1 Ve 1 Va is the sum of the dipolar
energy VdijsRd ­ g=i=js1yjRjd; the exchange en-
ergy Ve ­ 2JdsR ­ R0 1 dddij; and the crystalline
anisotropy energyVa. Hered denotes the nearest neigh
bors. g and J are coupling constants. The form of the
anisotropy energy depends on the material of intere
It can be uniaxial (e.g.,Va ­ 2K

P
i S2

ix) or fourfold
symmetric (e.g.,Va ­ 2K

P
i fS2

ix 2 S2
iyg2y4), with the

easy or hard axis aligned along specific directions. T
dipolar interaction often leads to the formation of domain
The pattern of the domains has recently received cons
erable interest under the context of the “self-assemble
systems whereelectric dipoles lead to the formation
of domains in Langmuir films. Whereas the electri
dipoles are always perpendicular to the film plane in th
case, the magnetic dipoles can be parallel or perpendi
lar to the plane [2–6]. For discussions in this paper, w
restrict our attention to those cases so that the spins lie
the plane of the film, the case of experimental interest
sensor type applications.

The domain pattern depends on the shape of the sam
which is especially important for small structures. Th
physics of the pattern of domains in small magnetic stru
tures is the subject of the present paper. We have b
studying the physics of spin reversals of different sma
structures [7], such as monolayer films with perpendic
lar [8] and fourfold in-plane [9] anisotropy, nanowires an
particles [10], coupled films [11], and the shape of the n
cleus [12]. This paper reports our findings that much
the domain patterns observed in the numerical simulatio
can be reproduced as theanalytic many solitonsolutions of
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the imaginary time sine-Gordon equations. This is illu
trated by two examples in Figs. 1 and 2 where we show
simulation and analytic results side by side. These analy
results have the potential for greatly improving understan
ing quantitatively the domain structure and the switchin
process in small structures. Thus analytic calculations c
be performed to predict trends as the system parameters
changed. These analytic results can be used as a sta
point of a simulation, considerably shortening the simul
tion time; sometimes the simulations become entirely u
necessary. We now explain our results in detail.

Mathematically in the continuum approxi
mation, the dipolar energy Ed ø 1

2

R
dR 3

dR0 SisRdSjsR0d=i=js1yjR 2 R0jd can be written in
terms of the magnetic charges= ? S after two inte-
grations by parts and neglecting the boundary ter
as Ed ø 1

2

R
dR dR0= ? SsRd= ? SsR0d s1yjR 2 R0jd.

Thus the dipolar energy is reduced if the “magnet
charges” are as small as possible. This is usua
achieved when lines of dipoles form closed loops. T
orientation of the spin is determined by its anglef. For
example, when the azimuth angleu can be described as
a vortex withf ­ u 2 py2 the dipolar energy is min-
imized. When this type of global constraint is satisfie
the domain structure is usually determined by minimizin
the exchange and the anisotropy energy; we obtain
equation

=2f 2 0.5K sin4fyJ ­ 0 . (2)
Here J ø zJy4 is the effective exchange.z is the
number of nearest neighbors. It comes from co
verting the discrete model to the continuum appro
imation. The exactly soluble sine-Gordon equatio
s≠2

x 2 ≠2
t df 2 0.5K sin4fyJ ­ 0 is formally the

same as the above Eq. (2) if we transform they co-
ordinate into the imaginary timeit. In this way, we
can generate a 90± domain wall “soliton” solution as
f ­ tan21 expf2

p
2KyJ xg where the anglef changes

by 90± as the wall is traversed andx changes sign. This
solution is one dimensional and is well known [13].

Many soliton solutions are known but have never be
exploited in the understanding of domain structures.
general two-soliton solution of the sine-Gordon equati
has the form ([14])
© 1997 The American Physical Society
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f ­ tan21
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Here x0 ­ x
p

2KyJ , t0 ­ t
p

2KyJ. This solution
has four arbitrary constants, u1, u2, x1, and
x2. Using the transformation u1 ­ iy, u2 ­
2iy, t0 ­ is y0 2 y0

1d, x0
1 ­ x0

2, and choosing x0
1 ­

flns1yyd 2 ipy2gyg 1 x0
0, y0

1 ­ 2ipys2ygd 1 y0
0, we

obtain the two-soliton solution in the form

f ­ tan21 ssssinhfgy

q
2KyJ s y 2 y0dg

3 h2y sinhfg
q

2KyJ sx 2 x0dgjddd , (4)

wherey is a parameter,g ­ 1y
p

1 1 y2. This describes
a closure domain. An example is shown in Fig. 1(B)
a triangular lattice of 3600 spins forK ­ 0.2 andJ ­ 2.
A closure domain can be viewed as the space-time
jectory of two solitons coming together and eventua
moving apart. The parametery describes the orientatio
of the domain wall. To fit into a sample of aspect r
tio r, one expectsy ­ r , as we have verified directly b
numerical calculation. For a triangular lattice, the ce
ter of the defectsx0, y0d for the lowest energy configu
ration sits in the middle of the triangle. This type
domain wall is often observed in simulations in syste
in zero external magnetic field. A typical finite temper
ture simulation result [11] is also shown in Fig. 1(A) f
finite
ition of
on one
FIG. 1. Closure domain configuration for a rectangle from a two-soliton solution. The analytic results are in (B). The
temperature Monte Carlo results observed in Ref. [11] are shown in (A). A triangular lattice can be viewed as a superpos
two rectangular lattices shifted by a unit translation vector with respect to each other. To save space, only half of the spins
of the rectangular lattices were shown.
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the same value ofJ and K and g ­ 1, obtained from
cooling a high temperature configuration that starts o
with all spins aligned in thex direction. To study the
possible effect of the dipolar interaction and the accu
racy of the analytic formula, we have numerically min-
imized the total energy of the system starting from the
configuration given by the analytic formula and using
quasi-Newton algorithm for a system with 400 spins. W
have explored different values ofg less than 1 and find
that the mean square difference between the initial an
final azimuthal angles is less than 0.1 rad, out of a po
sible range ofp. Thus the accuracy is 3%; the analytic
formula is indeed a good approximation. With this an
alytic formula, it is much easier to investigate the phys
ical properties of closure domainsquantitatively. For
example, we have investigated the size dependence
the energy difference between the closure domain a
that with uniform magnetization along thex direction.
The difference in energy divided by the effective cou
pling constants (g for the dipolar energy and

p
JK for

the sum of the exchange and the anisotropy energ
is shown in Fig. 3 below as a function of the sampl
size. For a rectangular sample of a triangular lattice wit
an aspect ratio of 0.866 andx dimensionL1, the dipolar
2225
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viewed
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FIG. 2. Edge domain configuration for a rectangle from a two-soliton solution. The analytic results are in (B). The
temperature Monte Carlo results observed in Ref. [11] for a two layer system are shown in (A). A triangular lattice can be
as a superposition of two rectangular lattices shifted by a unit translation vector with respect to each other. To save spa
half of the spins on one of the rectangular lattices were shown.
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energy differenceDEp can be fitted by the formula
gs109.5 2 10.54L1d with an error of less than 4%,
whereas the sum of the anisotropy and exchange ene
DEw can be fitted by the formula

p
JK s28.76 1 2.64L1d

with an error of less than 0.3%. The closure doma
is lower in energy than the uniformly magnetized sta
when the sum of these two energies becomes negat
For a film of thicknessd, we expect that approximately
g ­ g0d2, J ­ J0d, andK ­ K0d where the subscript 0
refers to the bare coupling per spin. Thus the closure d
main is lower in energy for sample sizesL1 . s109.5 1

2.876
p

J0K0yg0ddys10.54 2 2.64
p

J0K0yg0dd. This can
only happen if the denominator is positive; i.e.,d . dc ­
0.25

p
J0K0yg0. As an example, consider bcc Fe whe

g0 ø 0.254K , K0 ø 0.038K , andJ0 ø 500K. Thus the
closure domain is lower in energy for thicknessesd .

4.3 layers.
The solution (4) is, strictly speaking, applicable to in

finite samples. The consideration of the domain pa
terns in small structures requires the imposition of fini
boundary conditions. Solutions of Eq. (2) which satis
these boundary conditions can be obtained starting fr
the ansatz suggested by Lamb [15] for the solution
the sine-Gordon equation. We seek solutions of Eq.
having the formfsx, yd ­ tan21f fsx0dgs y0dg, where f
and g are, in general, Jacobian elliptic functions define
by [16] s f 0d2 ­ af4 1 bf2 2 g and sg0d2 ­ 2gg4 2

sb 2 1dg2 1 a with a, b, and g arbitrary constants,
x0 ­

p
2KyJ x, y0 ­

p
2KyJ y. As an example, we con-

sider configurations corresponding to edge domains w
2226
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the boundary conditions that the spins point up (down
on the left (right) edge and horizontally on both the top
and the bottom edge,

f ­ tan21

"
A tnsVx0, lfd

cnsy
q

1 1 k2
g y0, k1gd

dnsy
q

1 1 k2
gy0, k1gd

#
, (5)

where k2
g ­ fA2V2s1 2 A2dgyfV2s1 2 A2d 2 1g, k2

1g ­
A2V2s1 2 A2dyfV2s1 2 A2d 2 1g, l

2
f ­ fA2 1 V2s1 2

A2d2gyfV2s1 2 A2dg, and y2 ­ fV2s1 2 A2d2 2

1gyf1 2 A2g. The parametersA and V can be de-
termined by requiring that the component ofS normal to
the surface boundary be zero so that the dipolar energy
minimized.

Figure 2(B) shows the edge domain pattern obtained b
using Eq. (5) for a triangular lattice 3600 spins forJ ­ 2
and K ­ 0.2. In Fig. 2(A) we show the Monte Carlo
result [11] for a bilayer system for a triangular lattice
of 3600 spins for the same value ofJ andK and g ­ 1.
Similar domain patterns are also seen in the zero fie
remnant state for a system with a single layer [9].

To study the possible effect of the dipolar interaction an
the accuracy of the analytic formula, we have numericall
minimized thetotal energy of the system starting from
the configuration given by the analytic formula and us
ing a quasi-Newton algorithm for a system with 400 spins
When the dipolar interaction is too small, our algorithm
recovers the minimum energy state of uniform magnet
zation. As long as the dipolar interaction is big enough
the minimum energy configuration from our algorithm is
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FIG. 3. The energy difference between the domain configu
tion and that with uniform magnetization as a function of th
linear dimension of the sample. These energy differences
normalized by the coupling constants, as is described in
text.

essentially independent of the strength of the dipolar int
action. We obtain a state that resembles our analytic
sults. The mean square difference between the initial a
final azimuthal angles is less than 10%. The analytic fo
mula is indeed a good approximation, even though it is n
as good as that for the closure domains. With this analy
formula, we have investigated the size dependence of
energy difference between the edge domain and that w
uniform magnetization along thex direction. The results
are shown in Fig. 3. For a rectangular sample of a tria
gular lattice with an aspect ratio of 0.866 andx dimension
L1, the dipolar energy differenceDEp can be fitted by the
formulags52.87 2 3.97L1d with an error of less than 5%,
whereas the sum of the anisotropy and exchange ene
DEw can be fitted by the formula

p
JK s10.46 1 1.9L1d

with an error of less than 1%. The edge domain is thus
lower energy when the sum of these two energies becom
negative. As expected, when compared with the clos
domains, the dipolar energy gained is less while the cos
the anisotropy and exchange energy is comparable. F
film of thicknessd, the edge domain is lower in energy fo
sample sizesL1 . s52.87 1 10.46

p
J0K0yg0ddys3.97 2

1.9
p

J0K0yg0dd. This can only happen if the denomina
tor is positive; i.e.,d . dec ­ 2

p
J0K0yg0. For bcc Fe,

dec ­ 8.2 layers.
In this paper we have discussed two examples of analy

solutions for domain patterns. Many possibilities rema
to be explored. For example, consider

f ­ tan21 sss cosfgy

q
2KyJ s y 2 y0dg

3 hy sinhfg
q

2KyJ sx 2 x0dgjddd , (6)

whereg ­ 1y
p

1 2 y2. This solution can be considered
the analytic continuation of the solution (4) with an imag
a-
e
are
he

r-
re-
nd
r-
ot
tic
the
ith

n-

rgy

of
es
re
in
r a

-

tic
in

-

naryy. Wheny is small, this solution describes two 90±

domain walls separated by a distance2 lns2yyd
p

Jy2Kyg.
As y is increased from zero, two separated 90± do-
main walls merge to become a 180± domain wall with
vortices in between. This type of solution is not the
lowest energy configuration in zero magnetic field but oc
curs as a rate limiting step in spin reversal processes
a finite magnetic field. Our solution provides for con-
figurations that are local extrema of the exchange an
anisotropy energy. The ordinary 180± domain wall in
zero field, which consists of two 90± domain walls, is
not a local extrema of the exchange and anisotropy en
ergy. It is only stabilized by the magnetoelastic or dipola
energy [5,13].

In summary, we have provided examples of how
the many soliton solutions can be used to understan
the domain structures in ultrathin films. This opens
the door to analytic quantitative understanding of th
micromagnetics in these systems.
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