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Soliton and 2D Domains in Ultrathin Magnetic Films
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We show that manytwo dimensionaldomain patterns observed in Monte Carlo simulations
can be obtained from thenany soliton solutions of the imaginary time sine Gordon equation.
This opens the door to analytic quantitative understanding of the micromagnetics in ultrathin
films. [S0031-9007(97)02536-2]

PACS numbers: 75.60.Ch, 75.10.Hk, 75.70.—i

There has been much experimental interest recently ithe imaginary time sine-Gordon equations. This is illus-
the magnetism of ultrathin films [1,2], partly motivated by trated by two examples in Figs. 1 and 2 where we show the
the possible integration of the semiconductor microelecsimulation and analytic results side by side. These analytic
tronics technology with magnetic elements [1] and possible@esults have the potential for greatly improving understand-
device applications with the giant magnetoresistive (GMR)ng quantitatively the domain structure and the switching
effect. From a fundamental physics viewpoint, these sysprocess in small structures. Thus analytic calculations can
tems present opportunities for studying new phenomenhbe performed to predict trends as the system parameters are
that are beginning to be uncovered. The interaction enehanged. These analytic results can be used as a starting
ergy between the spins at positidRsR’ is point of a simulation, considerably shortening the simula-

tion time; sometimes the simulations become entirely un-
H=05 > ViR—-R)S;RS;R), (1) necessary. We now explain our results in detail.
ij=xyz,RR’ Mathematically in  the continuum  approxi-

where V.=V, + V, + V, is the sum of the dipolar mation, the dipolar energy E; = 3 J ar x
energy Vy;(R) = gV;V,;(1/IR]); the exchange en- dR’S;(R)S;(R)V;V;(1/[R —R'|) can be written in
ergy V., = —J8(R = R’ + d)8;;; and the crystalline terms of the magnetic charge_@ - S after two inte-
anisotropy energy,. Hered denotes the nearest neigh- grations b}/ parts and neglecting the boundary terms
bors. g andJ are coupling constants. The form of theas E; =~ 5 [ dRdR'V - S(R)V - S(R') (1/IR — R/|).
anisotropy energy depends on the material of interesfThus the dipolar energy is reduced if the “magnetic
It can be uniaxial (e.g.V, = —K Y, S%) or fourfold charges” are as small as possible. This is usually
symmetric (e.9..V, = —K 3, [SA — S%,]2/4), with the  achieved when lines of dipoles form closed loops. The
easy or hard axis aligned along specific directions. Th@rientation of the spin is determined by its angle For
dipolar interaction often leads to the formation of domains€xample, when the azimuth anglecan be described as
The pattern of the domains has recently received consid vortex with¢ = 6 — /2 the dipolar energy is min-
erable interest under the context of the “self-assembledimized. When this type of global constraint is satisfied,
systems whereelectric dipoles lead to the formation the domain structure is usually determined by minimizing
of domains in Langmuir films. Whereas the electricthe exchange and the anisotropy energy; we obtain the
dipoles are always perpendicular to the film plane in thagquation B
case, the magnetic dipoles can be parallel or perpendicu- VZ¢ — 0.5K sind¢/J = 0. (2)
lar to the plane [2—6]. For discussions in this paper, welere J = zJ/4 is the effective exchange.z is the
restrict our attention to those cases so that the spins lie inumber of nearest neighbors. It comes from con-
the plane of the film, the case of experimental interest irverting the discrete model to the continuum approx-
sensor type applications. imation.  The exactly soluble sine-Gordon equation
The domain pattern depends on the shape of the sample)2 — 3?)¢ — 0.5K sidgp/J =0 is formally the
which is especially important for small structures. Thesame as the above Eq. (2) if we transform theo-
physics of the pattern of domains in small magnetic strucordinate into the imaginary timé. In this way, we
tures is the subject of the present paper. We have bearan generate a 90domain wall “soliton” solution as
studying the physics of spin reversals of different small¢ = tan ' exd —+/2K/J x] where the anglep changes
structures [7], such as monolayer films with perpendicuby 90° as the wall is traversed andchanges sign. This
lar [8] and fourfold in-plane [9] anisotropy, nanowires andsolution is one dimensional and is well known [13].
particles [10], coupled films [11], and the shape of the nu- Many soliton solutions are known but have never been
cleus [12]. This paper reports our findings that much ofexploited in the understanding of domain structures. A
the domain patterns observed in the numerical simulationgeneral two-soliton solution of the sine-Gordon equation
can be reproduced as thealytic many solitorsolutions of  has the form ([14])
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1 — l—uluz—\/(l—u%)(l—u%) exp{_x’*xf*ult’ i x’*xé*uzt’}
l*u1u2+\/(1*uf)(1*u§) \/lfu? 1—13

¢ = tan ! . (3)
]

! !
x'=x;—ut’ X' =X, —upt’
exp{——} + ex;{——
\/l—uf Vl—u%

_ _ I
Here x' = x+2K/7,t' = t\2K /7. This solution the same value ofl and K and g = 1, obtained from
has four arbitrary constants, u;, up, x;, and cooling a high temperature configuration that starts off

X7. Using the transformation u; = iv, u =  with all spins aligned in thex direction. To study the
—iv, ' =i(y’ — y}),x] = x5, and choosing x; = possible effect of the dipolar interaction and the accu-
[In(1/v) — imw /2]y + x,y1 = —iw/Quy) + y;, We racy of the analytic formula, we have numerically min-
obtain the two-soliton solution in the form imized thetotal energy of the system starting from the
L — configuration given by the analytic formula and using a
¢ = tan " (sinHyv2K/J (y = yo)] quasi-Newton algorithm for a system with 400 spins. We

X {—v sin{y/2K/T (x — x0)1}), (4) have explored different values gfless than 1 and find

that the mean square difference between the initial and
wherev is a parametery = 1/4/1 + v2. This describes final azimuthal angles is less than 0.1 rad, out of a pos-
a closure domain. An example is shown in Fig. 1(B) forsible range ofr. Thus the accuracy is 3%; the analytic
a triangular lattice of 3600 spins fé&¢ = 0.2 andJ = 2.  formula is indeed a good approximation. With this an-
A closure domain can be viewed as the space-time traalytic formula, it is much easier to investigate the phys-
jectory of two solitons coming together and eventuallyical properties of closure domainguantitatively. For
moving apart. The parameterdescribes the orientation example, we have investigated the size dependence of
of the domain wall. To fit into a sample of aspect ra-the energy difference between the closure domain and
tio r, one expecty = r, as we have verified directly by that with uniform magnetization along the direction.
numerical calculation. For a triangular lattice, the cen-The difference in energy divided by the effective cou-
ter of the defect(xy, yo) for the lowest energy configu- pling constants  for the dipolar energy and/JK for
ration sits in the middle of the triangle. This type of the sum of the exchange and the anisotropy energy)
domain wall is often observed in simulations in systemss shown in Fig. 3 below as a function of the sample
in zero external magnetic field. A typical finite tempera-size. For a rectangular sample of a triangular lattice with
ture simulation result [11] is also shown in Fig. 1(A) for an aspect ratio of 0.866 anddimensionL;, the dipolar
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FIG. 1. Closure domain configuration for a rectangle from a two-soliton solution. The analytic results are in (B). The finite
temperature Monte Carlo results observed in Ref. [11] are shown in (A). A triangular lattice can be viewed as a superposition of
two rectangular lattices shifted by a unit translation vector with respect to each other. To save space, only half of the spins on one
of the rectangular lattices were shown.
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FIG. 2. Edge domain configuration for a rectangle from a two-soliton solution. The analytic results are in (B). The finite
temperature Monte Carlo results observed in Ref. [11] for a two layer system are shown in (A). A triangular lattice can be viewed
as a superposition of two rectangular lattices shifted by a unit translation vector with respect to each other. To save space, only
half of the spins on one of the rectangular lattices were shown.

energy differenceAE, can be fitted by the formula the boundary conditions that the spins point up (down)

g(109.5 — 10.54L,) with an error of less than 4%, on the left (right) edge and horizontally on both the top

whereas the sum of the anisotropy and exchange energnd the bottom edge,

AE,, can be fitted by the formul@/JK (28.76 + 2.64L,) cn(vy/1 + K2y, ki)

with an error of less than 0.3%. The closure domain ¢ = tan‘1|:Atn(Qx’,Af) } (5)

is lower in energy than the uniformly magnetized state dn(v /1 + k2y', kig)

when the sum of these two energies becomes negative.

For a film of thicknessd, we expect that approximately where k2 = [A2Q%(1 — A2)]/[Q2(1 — A?) — 1], ki, =

g = god?, J = Jod, andK = K,d where the subscript 0 A2Q2(1 — A%)/[Q2(1 — A%) — 1], A7 = [A% + Q%(1 -

refers to the bare coupling per spin. Thus the closure do42)2]/[Q2(1 — A2)], and v =[Q%1 — A%)? -

main is lower in energy for sample sizés > (109.5 + 11/[1 — A%]. The parametersA and Q can be de-

2.876 \/JoKo/god)/(10.54 — 2.64 \/JoKo/god). Thiscan termined by requiring that the component®hormal to

only happen if the denominator is positive; i€.> d. =  the surface boundary be zero so that the dipolar energy is

0.25 \/JOKo/gQ. As an example, consider bcc Fe whereminimized.

go =~ 0.254K, K, = 0.038K, andJ, = 500K. Thus the Figure 2(B) shows the edge domain pattern obtained by

closure domain is lower in energy for thicknesses>  using Eq. (5) for a triangular lattice 3600 spins for= 2

4.3 layers. and K = 0.2. In Fig. 2(A) we show the Monte Carlo
The solution (4) is, strictly speaking, applicable to in-result [11] for a bilayer system for a triangular lattice

finite samples. The consideration of the domain patof 3600 spins for the same value dfandK andg = 1.

terns in small structures requires the imposition of finiteSimilar domain patterns are also seen in the zero field

boundary conditions. Solutions of Eq. (2) which satisfyremnant state for a system with a single layer [9].

these boundary conditions can be obtained starting from To study the possible effect of the dipolar interaction and

the ansatz suggested by Lamb [15] for the solution othe accuracy of the analytic formula, we have numerically

the sine-Gordon equation. We seek solutions of Eq. (2jninimized thetotal energy of the system starting from

having the form¢(x,y) = tan '[ f(x")g(y")], where f  the configuration given by the analytic formula and us-

andg are, in general, Jacobian elliptic functions defineding a quasi-Newton algorithm for a system with 400 spins.

by [16] (f')*> = af* + Bf? — y and(g)* = —yg* —  When the dipolar interaction is too small, our algorithm

(B — Dg* + a with a, B, and y arbitrary constants, recovers the minimum energy state of uniform magneti-

x' =+2K/Jx, y) =+2K/Jy. Asanexample, we con- zation. As long as the dipolar interaction is big enough,

sider configurations corresponding to edge domains witthe minimum energy configuration from our algorithm is
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500 ' ' ' iee ] naryv. Whenv is small, this solution describes two 90
exchange+anisotropy, - - - == a ‘Oiure ] domairj wglls separated by a distada(2/v)+/J /2K /y.
ol M i As v is increased from zero, two separated® 9fb-
I o T 1 main walls merge to become a I88omain wall with

vortices in between. This type of solution is not the
lowest energy configuration in zero magnetic field but oc-

energy

°00¢ Q 1 curs as a rate limiting step in spin reversal processes at
I "o ] a finite magnetic field. Our solution provides for con-
—10001 , , ' ' figurations that are local extrema of the exchange and
0 20 40 60 80 100 anisotropy energy. The ordinary 18@domain wall in
linear dimension zero field, which consists of two 90domain walls, is

FIG. 3. The energy difference between the domain configurarlOt a local extrema of the exchange and anisotropy en-

tion and that with uniform magnetization as a function of the €gY- Itis only stabilized by the magnetoelastic or dipolar
linear dimension of the sample. These energy differences arénergy [5,13].

normalized by the coupling constants, as is described in the In summary, we have provided examples of how
text. the many soliton solutions can be used to understand
essentially independent of the strength of the dipolar inter'Ehe domain structures in .“'”?‘th'” films. Th's opens
action. We obtain a state that resembles our analytic ret-h.e door to .ana_llytlc quantitative understanding of the
sults. The mean square difference between the initial angcromagnetics in these systems. .

final azimuthal angles is less than 10%. The analytic for- This work is supported in part by the Office of
mula is indeed a good approximation, even though it is nojJaval Research under Contract No. N00014-94-1-0213.
as good as that for the closure domains. With this analytic_* N R. acknowle_dges financial support from the Russian
formula, we have investigated the size dependence of t clence _Fo_undatlon through Grant No. 9.6'02'16211 and
energy difference between the edge domain and that wit e hospitality of the Bartol Research Institute.
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