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Domain structures in ferromagnetic ultrathin films with in-plane magnetization
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We show that many of the domain patterns in ultrathin films with in-plane magnetizations from experiments
and from computer simulations can be well approximated as local extrema of the exchange and anisotropy
energies with appropriate boundary conditions. These solutions can be obtained analytically from the many
soliton solution of the imaginary time sine-Gordon equation. Different types of these solutions are represented
and their physical meaning is discussg8l0163-182809)10537-X

[. INTRODUCTION structure is approximately determined by minimizing the ex-
change and the anisotropy energy which has the form;
The magnetism of ultrathin films have attracted consider-

able interest recentfl? This is partly motivated by the pos- 1 _ K
sible integration of the semi-conductor microelectronics H= Ef dzr[3(¢§+ b5)+ Zzl1-cod4g)l, ()
technology with magnetic elemehtand possible device ap-
plicatio_ns with the giant magnetoresisti¢€MR) and s_pin and is determined approximately by the equation
tunnelling effect. These systems present opportunities for
studying new phenomena that are beginning to be uncovered.

The interaction energy between the spins at positRR is V2¢—0.5K sin4¢/J=0, (4)
/ , where both the exchange and a fourfold anisotropy term is
H= 0-5”_ =XyEZRR, Vij(R=R)S(R)§(R'), 1) incorporatedJ~z J/4 is the effective exchangejs the num-

ber of nearest neighbors and comes from converting the dis-
where V=V4+V.+V, is the sum of the dipolar energy crete model to the continuum approximation. We shall drop
V4ij(R)=gV;V;(1/R]), the exchange energy.=—JS(R  the bar onJ in what follows. The exactly soluble sine-
=R’+d)&; between nearest neighbors at distandeand ~ Gordon equatiot’ (95— d7) ¢— 0.5K sin 4¢/J=0 is formally
the crystalline anisotropy energ¥,, g, andJ are coupling the same as the above equati@h if we transform they
constants. The form of the anisotropy energy depends on thebordinate into the imaginary time it. A simple two-
material of interest. It can be uniaxié.g.,V,= —K3;S2) dimensional generalization of the conventional expression
or fourfold symmetric(e.g.,V,= _Kzi[st_SZy]2/4), with for the 90° domain wall has been obtained in our previous
the easy or hard axis aligned along specific directions. work!® and describes the domain wall that was observed in

The magnetic dipoles here can be parallel or perpendicithe experiments on the ultrathin cobalt filrifs'*
lar to the plané® For discussions in this paper, we restrict  In general,analytic many solitonsolutions provide for
our attention to those cases so that the spins lie in the plarf@ore possibilities to describe the two-dimensional domain
of the film, the case of experimental interest in sensor typavall patterns in thin magnetic filmddany solitonsolutions
applications. The domain pattern depends on the shape of tt@e known but have never been exploited in the understand-
sample, which is especially important for small structures. Inng of domain structures. The main goal of this paper is to
this paper we follow our earlier wofkand show that the represent some exact solutions of the imaginary time sine-
many domain patterns subjected to the sample boundary cofgordon equation which can be used to describe forms of the
straints can be well approximated as local extrema of th&lomain wall patterns in thin magnetic films. We now explain
exchange and anisotropy energies. our results in detail.

The orientation of the spin is determined by its angle

R Il. CALCULATION OF THE DOMAIN STRUCTURES
S=5(cosg¢,sing). 2 ) . o
To calculate the domain structures in an ultrathin film
For most applications the contribution from the dipolar inter-with in plane magnetization in the presence of the exchange

action is small if the global constraint of closed flux lines is and an in-plane fourfold anisotropy we have to solve @gy.
satisfied and can be treated as a perturbation. The domaiftith the change of variables
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This solution represents oscillations bf such thatfy<f
<ml2—f, with period 41+ u’K(1/k). k is related to the

parametelC by k*=2/(C+1).
Case 3C=1. This is a case limit of case 1 and 2 above.

y' =y SR (5)  Here Eq.(10) gives
Eq. (4) becomes E— &=+ 1+ u? In{*=tanf}, (14
1 whereé, is a constant and the signs need not be related to
—V'2¢+ =sindp=0 (6)  one another. Writing this solution in full we have:
Z .

2K (x+uy—
d)(X,y): itan‘l + _w

J o J1+u?
hese are the 90° domain wall soliton solutions of E).

otice that these solution can also be obtained as a limit of
cases 1 and 2 fdk=1.

In what follows we drop the prime index on the coordinates.
In this section we discuss three different ways of obtaining
special solutions of this equation in increasing complexity.
Some of the results from these different approaches are t

same.

| s

A. Waves and solitons . .
B. Some other explicit solutions

To solve Eq.(6) we first seek trial solutions such that

d(x,y)=f(&)=f(x+uy), (7)
whereu is a constant. Then
1+u? L 4f 8
(1+u )@—Zsm . (8)
Then, on integration with respect fp
df\?
8(1+u?) =(C—cos4f), (9
d¢
whereC is an integration constant. Therefore
10
&= f+\/C cos 4 )/8(1+u?)’ (10

We are looking for real solutions; thereforg?=0 and

Other simple explicit solutions of E@6) can be obtained
as follows. The form of the solutiofil4) suggest to start
from the ansatz suggested by Larhfor the solution of the
real time sine-Gordon equation. We seek solutions of(&q.
having the form

p(x,y)=tan [F(x)/G(y)].
Substitution into Eq(6) gives

(16)

+2(G;—F5)—(G*~F?)=0.
(17)

Differentiating this equation with respect xcandy we have

=
2 2 XX Yy
(F°+G) T G

(df/d&)?=0. There are various cases depending on the vallntegrating these equations we have

ues ofC.

Case 1C>1.df/d¢ has the same sign, positive or nega-

tive, for all £ andf is a monotonic function o€. Equation

(10) can be integrated in terms of elliptic functions and gives

the periodic solutions of the form

{=elerees)

w

1
f=—+ =sin”

4" 2 (19

1 [Fol 1 (ny)
| 2] = | ] =A. 18
(F2>x( Fl @, 6, 19
A
F§:§F4+BF2+C,
2 A 4 2
Gy=5G"+(1-B)G*+C, (19

for some constant, B, andC. Equationg19) can be solved

generally in terms of elliptic functions, but they have also
some special solutions in terms of elementary functions
which we first discuss next. This type of solutions is particu-
larly useful for boundary condition considerations, which
will be further developed in the next section. Here we con-
sider some special cases when some of the constaidsC
is zero. We distinguish between the following cases.

Case 1 A=0, C=0, and 6<B<1. This is the soliton
solution previously mentioned. The parametein Eq. (14)
is related to the paramet®rby the relationship.

wherek?=2/(C+1) andsnis the jacobian elliptic function
of modulusk.'? With respect tct the spatial period or wave-
length A of the periodic function is

A=4K(K)ky1+u?, (12

whereK (k) represents the complete elliptic integral of the
first kind with modulusk.

Case 2 0=C<1. In this case we defing,=3 cos 1C,
with O=f=<m/4, so thatf, is the least positive zero of
G(f)=1-cos4. Only whenG(f )=0 are real solutions of
f possible. A particular solution is u==

m 1 1{1

1-B

B (20

Case 2 A=0, B=C>0, we have to distinguish two sub-
classes. FoB>1 we have

= — -+ —
f 4+25|n _ksn

£ 1
Nerik (13)
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[B=1 sini V2K/JVB(x—xo)] ] (DZ+DY)(GG-FF)=(u—1)(G*~F?), (29

=tan 1 +
¢ [ B sin y2K/JVB—1(y—yo)] whereu is a constant. We look for solutions of the form

21
(0 G=1+e2GY+&*G?+---,
and for 0<B<1 we have
F=eFM+e3F@ ... 30
et _1[ . [1-B  sinH V2K/IVB(x—Xg)] ] o ° j ve E@9) ord ( b)
=tan | = : . wheree is a parameter and try to solve E@9) order by
B sinf{ y2K/3V1-B(y—yo)] ) order ine. At zero order we finds=1 andu=1. At first

order we have to solve

Equation (21) describes forB—1, B>1 two 90° domain D ) L =)
wall separated by a distance of 2 In(B—1). AsB is in- FU=FtFyy . (32)
creased, the two separated domain walls become separatgfe simplest nontrivial solution of this equation is
by vortices and merge into a 180° domain wall. Equation
(22) describes a closure domain. This is a case studied by FO=g? (32)
Chui and RyzhoV. _ _ S

Case 3C=0, A#0. F and G depend omA whereas the where O=kx+ wy+ 6 andk“+ w“=1. For this choice it is
ratio F/G does not. We have to distinguish three subclassef0SSiPle to make all the other functions zero. Therefore we

For B>1 we have obtain
— —1 kx+ wy+ &
» \/ B sin v2K/JVB—1(y—y,)] ¢=tan [ee 1. (33)
p=tan = B—1 sinH 2K/JVB(x—x0)] For e=1 andk®=1/(1+u?) this is the single soliton solu-

(23) tion obtained above. To get the two solitons solution we start

with a solution of Eq(31) of the form
and for <B<1;

BT FH=el1+ g2, (34)
B sinH v2K/Jy1-B(y—
¢:tan1‘t \/1—B r[ y yo”] where &, =kx+ojy+6 and k’+w?=1. The simplest
sint 2K/3VB(x—xo)] choice forG™) which satisfies the equation
and forB<0 Gl - F&QF“)+(F§”>2+G<yly>—F§§>F<l>+<F;l>>2=C(>35)
¢:tan1{ . 1|B||B| smrsz/leBl(y—yo)]]_ is
+ sin V2K/JV|B|(x—x
n B[ (x—xo)] GW=A e ¥ (36)
Cases 2 and 3 have a simple interpretation. These are twiith
soliton solutions of Eq(6).
f Cl-kiko— oy, (Ki—kp)? (01— wp)?
C. Multisoliton solutions 27 14Kkt ooy (01 02)2 (KiTkp)? '(37)
Multisoliton solutions of Eq(6) can be readily obtained o o ]
from the Hirota method® We start now with the ansatz Also in this case it is possible to choose all the other func-
tions zero and we obtain for the double soliton solution
=tan ! Foy) (26) 91y e
o=t sxy) p—tart o | (39
1+A e %2

and define thd® operator as
It is easy to see that solutiori@1)—(25) are particular cases

a\"a a\" of Eq. (38) with an appropriate choice of the constakis
ax ox'| \ay oy’ k,, w1, wy, 81, and 5,. For example, Eq(22) with the
minus sign can be obtained after E§8) with the choices
. 27 ki=—k,=\B, w;=w,=\1-B, 8=~ Bx—\1-Bys
Yty +In((1-B)/B), &,=BXo—vJ1—Byy+In(y(1—B)/B)
+i. Some other interesting two-soliton solutions can easily
be found after Eq(38). Making k;=k,= B, w;=—w,

DTDf(ab)=

Xa(x,y)b(x',y")

Equation(6) with the ansatZ26) can be then written as

G2-F2)(D2+D2)(FG)~FG(D2+D2)(GG—FF =V1-B, 8=—Bx~V1-Byo+In(yBI(1-B)), &
( J(Di+DY(FG) (D5 Dy ) = —Bxo+ V1—By,+In(\B/1—B)+im, and v
=FG(G*~F?). (28)  =./(1—-B)/B, we obtain
This can be reduced to two bilinear equations b=tan L(sin y V2KI3(y—yo) J{ v sinH yy2K/J

(D{+DJ)(FG)=uFG, X (x=%0) T}, (39)
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FIG. 1. 180° domain configuration for a rectangle from a two

h ! = FIG. 2. Edge domain configuration for a rectangle from varia-
SO"g’g solution[Eq. (41)]. () corresponds to=0.01 and(b) to  isna| calculations by using Eq$41) and (42). (a) represents the
v=0.8.

caseH=0 and(b) the caseH=K/2.

where y=1/\/1+v?. The detail of this simple structure has D. Trial solutions to incorporate the dipolar energy
been described previously and will not be repeated here. The configurations discussed in this section have so far
(See, for example, Fig. 1 of Ref. 7 for the shape of this 9

. — . not taken into consideration the boundary conditions of finite

structure) Making k;=—k,=\1+B, w;=w,=—iB, & . . . .
— . = sample boundaries. The magnetostatic energy is lowered if

=—1+Bx,+i By, 5,=1+Bxy+i By, P g 9y

i ) the component o8 normal to the boundary is equal to zero.
+In[yB/(1+B)]+im, andv=B/(1+B), we obtain This condition can be partially incorporated by using a

simple phenomenological generalization of H4l). We
p=tan ! suppose that is a function ofy. The form ofv(y) is chosen
to minimize the magnetostatic energy and is given by

" exf y\2K/J(x—xXq)]—v2exd — yv2K/J(x—Xo)]

2 cog yvv2K/I(y—VYo)] v(y)= A
(40) exd av2K/I(y+Yo)]+exd — BV2KII(y+yo)]’

(42)

wherey=1/J1—Vv?. v is related to half the separation of the
domain wallsx; by v=2e 1 In the limit x1>1 Eq. (40)

describes two parallel 90° domain waII_s locatedxat=Xy i x andy directions, respectively. The parametérandy,
+In2/y andx’=xg+In 2/y+2x, . Equation(40) takes the  4re obtained by minimizing the total energy of the system. In
most simple form wher™ o=y (Ref. 7: Fig. 2 the spin configurations obtained by using E@)
and (42) are shown for a triangular lattice 410 spins for
J=2,K=0.2, andg=1. Figure Za) corresponds to magnetic
¢=tan” *(cod yvy2K/I(y—yo) 1/{v sinH yy2K/J field H=0 and Fig. 2b) to H=K/2. This can be compared
X (X—xg) I} 41) with the Monte Carlo result discussed in the next section and
0/15 7 shown in Fig. 7. The total energy per particle &
=—8.39387 forH=0 andE,= —8.31041 forH=K/2. The
This is basically the same as the soluti®l). Figure 1  parametersA andy, are A=0.027373,y,=7.4435 forH
shows the spin configurations obtained by using #d) for =0 and A=0.084793,y,=6.6731 forH=K/2. Equations
different values of parameter for a triangular lattice 40 (41) and(42) may be used to investigate the behavior of the
X 40 spins forJ=2 andK=0.2 (Xo=Y,=0). spin system under different system parameters. However,

where a=In(Alvo)/(L/2+Yo), B=In(Avo)/(L/2—Yo), Vo
=2 exp(-y2K/JL,/2), andL, andL, are the sample sizes
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Eq. (42) cannot be obtained as the exact solution of the Eq. *L,
(4) for the finite sample. Exact solutions for this case are F > —*oo,
discussed in the next section.
+L
E. N soliton solution Gl(Ty) =0, (50

For completeness we end this section by considering the
N-solitons solution of Eq(6). We take as solution of Eq. whereL, andL, are the sample sizes in theandy direc-
(3D): tions, respectively. One class of solutions for which these
boundary conditions can be easily imposed is

F=2 e, (43 d=tan H{Dtn[Q(x—Xo) A{1ch[V(Y—Yo) Aql}, (51)

where 9, =kix+wy+s8 and k’+w?=1. The simplest Where

choice forG) is
, D?+0%(1-D??

)\f_ 92(1_D2) ’

G=2 A e, (44)

, - 5 D?Q?(1-D?)
with Rgz—m,
1-kikj—wjo; (ki—k)? (0~ w))?

= - = . (45 0%(1-D?»2?-1
(i) 1+ klk]-i—w,w] (w|+wJ)2 (k|+k])2 V2: ( 1_D2) (52)
Also in this case is possible to choose all the other functions
zero and we obtain for thH solitonic solution For a rectangular sample, the boundary condition can be in-
N corporated by demanding th&t to be infinite at the two
ze’ vertical boundariex=—a=—L,/2 andx=a andcn to be

p=tan ! (46)

zero at the horizontal boundarigse=—b=-L,/2 andy
=h. We first consider solutions of this type for different
IIl. BOUNDARY CONDITIONS parameter values. We consider the cBSe<1 because the
opposite case leads to the same results. We describe different

The consideration of domain patterns in small structuresegimes in the parameter space Brand(). In some cases,

requires the imposition of finite boundary conditions. Therethe right hand sides of Eq$52) becomes less than zero.

are different possible ways to determine the parameters. Or®@ome of the parameteks , A4, andv may become imagi-

possibility is to require the surface part of the magnetostatiqary. It is then necessary to rewrite the elliptic functions with

energy to be equal to zero. This imposes the boundary corimaginary arguments in terms of functions of real arguments.

ditions that the normal components of the magnetizatiorLet us consider now these different forms of the solution

must be zero at the boundary of the rectangle. We first dis(51) in detail.

cuss examples of this for different cases. In the case of pe-

1+ 2i<jA(i’j)eﬂi+ﬁJ' ’

riodic solutions, Eq.(11), finite boundary conditions only A. Q?51/(1-D2)?2
impose conditions in thk values. For example faa=0 the ) ) ) .
solution depends only onandf(0)=f(L)=+ #/2 we have f From Eq.(52) Af>0, v©>0, \§<0, the solution has the
orm
f== T ot sl Xk 4
== s =S kal “n B e[y I+KE(Y —yo) kg
p=tan | DIN[Q(X—Xg),\¢] > ,
wherek, is related to the sample sizeby the equation dnvy/1+K3(Y = Yo) . Kyg]
(53
L 2 2 2 2 2 202 2
2nK (k)= - (489  where k2=—\2 and kZ,=K%/(1+k2)=D?Q2(1-D?)/
n [Q?%(1-D? —1]. These solutions represent edge domains

This solution corresponds to a spin density wave of period which shall be discussed in more detail below. Fof
—1/(1—D?)? the solution(53) becomes
A =4k K(k,). (49)

—tan 1 2 4
Another important type of solutions can be obtained starting ¢=tan H{Dtn[(x=xo)/(1~D%),1~D7]}. (54)
from the ansatz of E16), with the solutions to EqL19) in  This limit corresponds to two straight domain walls that are
terms of Jacobian elliptic functions with the appropriatefar apart.
boundary condition$®> As an example we consider configu-
rations corresponding to edge domains with the boundary
conditions of that the spins point dovimp) on the left(right)
edges and horizontally in both the top and bottom edge. This We havexf>0, A\5>0, v?<0; the solution takes the
is equivalent to imposing the boundary conditions form

B. 1/(1-D?<0%<1/(1-D??



10 276
e .

R R R R A A SRR RN ]
L DR AR A A AR A A S S S g N ) (Kt && ]
Ct IR ER AR AN N3 ]
A RN A N N et S R S R R A R ]
AR AR A NNt NN NN N R R R R R 2 R R 2 S
D R I S S N et O PN I TN TN I I S SR
C e e e L L L L LT IR

ZQ A A e I
[ o o ot o e IR NN
Nttt e A VoA R
ettt ittt Sttt

20F
F EEE:// I3

oI Ay 5

WEZ L oo Tt
Crar o r o e iy I I I I I I NN
N R A s TETTIIII_/JNNNNY
C 1 7 7 7 o o o e N e N N N N N NN N N NV VY]
O O O A O A O st NN I I NI N
C [ SN E BN NN b e NN NN NN I S R

PP TSN NNNNYYY YNV VNN
C {‘(‘f{_/\‘:-}e}}\\\\\LL\&\}f}}_

SERRRRRRRRRESRERSECSEYIIINREERENREanRRnIE

o] 10 20 30 40

J. CASTRO, S. T. CHUI, AND V. N. RYZHOV

PRB 60

sin{ V1-Q%(y—yo)]
Q sinh(x—Xq) '

(60)
which is reduced to the closure domain E9) after the
substitutiony1—Q?/Q=v. The closure domain configura-
tions may also be obtained from E¢53), (55), and(57) by
using a shift iny coordinates by one quarter of the period of
elliptic functionsK (k) whereK(k) is the complete elliptic
integral of the first kind. In the limit of small), D/\¢

—0\J1-D% MQ—)D/\/l—Dz, w—11-D?, )\é—>l

a| 1 siDy(X—Xo)]
Qy sechiy(y—yo)l)’

Q

=m/l2—tan !
¢ 1-0°

d—tan

FIG. 3. Two-dimensional spin configuration obtained after Eq.\where y= 1//1—-DZ.

(57); see text.

p=tan Y Dtn[ Q(x—Xg),\?]

dn[w)\g(y_yo)l)\lg]}
Cn[w)\g(y_yo)a)\lg] ,
(55

where w?=-v? and A ;=[Q%*1-D?)-1]/[D?0?(1

—D?)]. The limiting behavior of Eq(55) coincides with Eq.
(54) for 0?—1/(1—D?)?2. For Q?=1/(1—D?) it has the
form

cogD/y1-D*(y—yo)]
D sinH (x—Xg)/y1—D?]

Equation(56) coincides with the two domain wall solution
(41) with D playing the role of the parameter

¢=ml2—tan !

. (56

C. 0%<1/(1-D?)

We haverf>1, \2>0, v?= - w?<0. Expression(51)
may be rewritten in the form;

S—tan? 2 SN Q(X—Xg),1/\¢] 1
A dn[A ¢ Q(X=Xo), L\ ¢] cnfw(y—Yo),Ag] ]’

(57)
where A *=1-\=[1-Q%1-D?]/[1-0*1-D?)?.
An example of this configuration is shown in Fig. 3 fDr
=0.125,22=0.1,J=2,K=0.2. The limiting behavior of Eq.
(57) for Q?—1/(1—D?) coincides with Eq(56). By using
the relationcn(u—K,k) = V1 —k?sn(u,k)/dn(u,k) Eq. (57)
can be rewritten as

d=tan !

D s A)(X—Xo),1/A¢] dn[w(y—yo).ké]}

N eNg AN (X—=X0), IN¢] sl w(y—Yo), N gl |
(58)

In the limit Q2—1/(1—D?) the solution takes the form

sif D/\1-D?(y—yo)]
D sinH (x—Xg)/V1—D?]

Equation(59) can be obtained from E56) by shift in they
coordinates. In the limit of) approaching zero but finit®,
an equivalent limit is obtained. Whefi?<1 the limit D
—0 yields an expression

¢=ml2—tan ! . (59

We now return to a general discussion of the domain con-
figurations. Another interesting solution would be to con-
sider configurations corresponding to edge domains with the
boundary condition of that the spins point (yp) on the left
(right) edges and horizontally in both the top and bottom
edge. This is equivalent to impose the boundary conditions

L
P =)

G‘l(—i Ly):o,

5 (61)

whereL, andL, are the sample sizes in theandy direc-
tions, respectively. The solution we are looking for have the
form

d=tant| D (62

dS[Q(X_XO)J\f]}
ncfv(y—Yo)Agl)’
This corresponds to a solution of the Ed9) if we have
Q2=v?D*(1-13),
D20%(1-NHNF=VAS,
Q2(2NF-1)=1-Vv3(2\i-1). (63
Imposing the boundary conditions we haxg=y,=0 and

Lx
QizK(M),

L
V= =K(\g).

. (64)

Inserting this into the above equation we have

<2K(xf)>2_ ( 2K(Ng)
L, /| | L

2
) D(1-)2),
y

2K(\g)
Ly

(2K(7\f)

2
» ) (2xg—1),

2
) (2>\f2—1):1—(

2K(Ng)
Ly

DZ(ZK(M) :

2
L -

2
) <1—A?)x$=xz(
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10+t
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FIG. 4. Two-dimensional spin configuration obtained after Eq. ° : ! ¢ ¢ o
(62); see text. FIG. 5. Two-dimensional spin configuration obtained after Eq.

) ] ) (66); see text.
This system of equations must be solved numerically to ob-

tain Ay, A¢, anda. Then on substitution in equatiori64)  This system of equations must be solved numerically to ob-
we can calculat& and () and this completes our calculus of tgjn g, N¢, andD. Then on substitution in E68) we can
the solution of Eq/(6) with the given boundary conditions. calculatev and Q and this completes our calculus of the
This solution for the cask,=L,=10 is represented in Fig. solution of Eq.(6) with the given boundary conditions. This
4. solution for the casé ,=L,=10 is represented in Fig. 5. A

We can extend our solutior{22) for the closure domains  simple approximation of ’the closure domain solution, Eq.
to the case of a finite sample. The solutions we are lookinge0) can be obtained in terms of elementary functions for a
for have the form square lattice of dimensioris=L,>10. ForL,=L, we ex-

pect by symmetry considerations thn;:xg and O=v.

M (66) Then we haveD = = 1. Furthermore fot,=L,>10 we can
sdv(y—Yo).Agl] approximate\;=\4~1. Thereforev=Q=1~2. We have
obtained a simple approximation to E&1)

$=tan YD
This corresponds to a solution of EQ.9) if we have
Q2(1-N)=vZa?(1-7)), ¢=arctar{ *

D20)2=\>2

: : (70)
sinh 1#2(y—Y,)
This corresponds to E¢22) with B=3. We have compared

20 Y2\ 1 2(0 2 the approximate solution with the exact one folLg=L,
Q2= =1-vA2=1y), &7) =10 square lattice and we have found a value of the mean
To impose the boundary conditions we assume that we argguare difference between the azimuthal angles in both solu-
dealing with a square lattice with <IL,<2N,, 1<L, tions of about 0.08 rad.
<2N, and the defect is centered aty(yo)=(Ny +2,N

sinh 1;V2(x—xo)]

+3). Then we have D. Edge domains in detail
Q(N—1)=K(\y) Quite often good analytic approximations exists for the
2 solutions of the boundary conditions. We discuss in detail an
v(Ny— 1) =K(\y) (69) example of this for the calculation of the parameters of the
y 2 g edge domains in Eq53). As mentioned above, in this case
Inserting this into the above equation we have tn[ Q(x—Xg) ] must be infinite at the vertical boundaries and
KOn) K(no) cn[v\/1+kgz(y—y0),klg] must be zero at the horizontal
<2N ) (1—\ f) ( gl> 2(1_)\5), boundaries. Thereforg,=y,=0 and
O 2K/Ja=K(\})
2K(>\f) N2y 2K(Ng) )2 2 ,
oN,—1) (2= m1) (27 V\/1+kgy2K/Ib=K (kyg). (71)
) ) For large enough values of the half horizontal and vertical
D2 KN |7 [ KAy ) (69)  box sizesa andb;—1,k;;—0 and Eqs(71) can be ap-
2N, —1 2N,—1) - proximated by
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FIG. 7. Edge domain configuration of zero vorticity with more

FIG. 6. Edge domain configuration for a rectangle from a twoedge singularities.

soliton solution. The analytic results are(in). The finite tempera-

ture Monte Carlo results observed in Ref. 10 are showta)in sponding to these parametersHg~ —8.371. Therefore the

simple equationg53) and (73) may be considered as the
reliable starting point for the quantitative investigation of the
edge domain patterns. Minimizing the energy of the closure
domain configuration described by the E§O0) we have

Vv 1+k5V2K/Ib= /2. (72 D,~0, 0,=0.632, E;n=—8.49. This result exactly coin-
_ cide with the minimum of the total energy obtained by using
From the definition ofky and v, we get vyl+ky  Eq (39 to describe the closure domain configuration. This
~/Q?—1. These equations have the simple approximateqinimum corresponds to=1.23— \/mg/QV. So the

solution: simple formula(39) obtained for the infinite sample may be
1T (a2 used to describe closure domain patterns for finite size sys-
Q=1+ (m/2b")", tems provided the system size is not extremely small.

0\2K/Ja=0.5IM16/(1—\3?)],

D~40e /071, (73 E. Vorticity

Herea'=\2K/Ja andb’=2K/Jb. The second equation The edge domain in case 1 corresponds to configurations
of Eq. (73) is obtained directly from the second of E72). of “finite vorticity” wherein the magnetizations along the
We have also solved the boundary conditions numericalljwo vertical edges are opposite to each other. Let us consider
with the bisection algorithm for solving nonlinear equations.now the exact two soliton solution of E¢) corresponding
The difference between the numerical and approximate rethe configuration with parallel edge domain magnetization.
sults is less than 0.01% f& and less than 3% fdb. Using ~ Keeping in mind that the spins point down at the left and
the approximation tn(u,\¢{)~sinh@) for A¢~1 and right edges of the rectangle and horizontally at both the top
cn(u,k)~cos(), dn(u,k)=1 for k=0, we obtain ¢ and bottom edges we find

~tan [8b’ exp(—a’)sinh(x)cos@ry/2b)/m7], where w is

given by w 1= J2K/J+ 2/(8b2)JJI2K. For the sake of ¢=tan” {Den[i Q(x—xo), \Ien[v(y—Yo) Aql}
completeness, we show in Fig.abthe edge domain pattern D

obtained by using Eqg53) and (73) for the system of 40 —tan ! —cnv(y—vYo),\gll, (74
X 40 particles =2, K=0.1J, g=0.5], J=—1.5J, and the cn[Q(X—Xo),K"] g

lattice constanty=1). Figure §b) shows the results of the N

Monte Carlo simulation for this system in zero magneticWheer =vVi-Ajand

field. There are other metastable solutions where the period D2[Q%(1+D?)—1]
in they direction is smaller. This corresponds to replacing )\f= 0211D22
the factor cosfy/2b) by cogm(2n+1)y/2b]. These type of ( )
solutions exhibit more singularities at the edges and is often

2 2 202 2
observed experimentally as well as in simulations. An ex- 2= DZ(Q :D QZ+D )2 '
ample of this is shown in Fig. 7 fon=1 (J=2, K 9 (1+DH[Q(1+D%)+D"—-1]
=0.1333g=0.5 for a square lattice of 6060 sping. More on s
generally one can considerand ) in Eq. (51) as the varia- , DO°+OQ°+D°—1
tional parameters which can be determined by minimizing V= 1+D? '
the total energy of the system. For the same parameters as
that at the end of Sec. Il at zero field minimization of the s , 07+0°D?*+D?
energy gives)=1.024,D=0.006, and the energy per par- k —1_)\f——Qz(lTD272—- (79

ticle E,,=—8.39035. This energy is close to that

(—8.39387 obtained by using the variational approach at thePhysically interesting results can be obtained = 1/(1
end of Sec. Il. From the boundary condition constréigs.  +D?). In this case\{=0, v2=0, k'?><1, N{<1. First con-
(73] we haveQ2=1.032,D=0.01, and the energy corre- sider the limiting behavior of the solution faR?=1/(1
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+D?). One hak’?=\=1, v?=D?%(1+D?). Taking into  An example of such zero vorticity edge domains is shown in
account thatn(u,1)=sech(), we find Fig. 7.

.| DCh[(x—X)/1+D?]
ch[D(y—yo)/y1+D?]]

To determine the parametddsand() in Eq. (74), we assume

that the normal component of magnetization is zero at th%ol

boundary of the rectangle. In this cagsg=y,=0 and the
boundary conditions have the form

B(x,y)=tan (76) IV. CONCLUSION

In this paper we have provided details about different 2
iton solutions of the imaginary time sine Gordon equation
and their application and interpretation of different domain
structures. The effect of dipolar interaction is taken as a

OX|ye s =K(k"), boundary constraint here but is otherwise not included. The
residual effect of the dipolar interaction is usually slight and
VY|y—+p =K(\g). (770 has been discussed recently, with particular emphasize to

: 6
We assumeD2<1 so thatk’~1 and Ag<<1. In this case multilayer structurest

K(\g)=~ /2, K(k’)%ln(4/)\f)=0.5In(16}\f2), and the ap-
proximate solution of the equations f6F and D coincides
with Egs. (73). Taking into account that~=/(2b"), and
for Ag<<1 the elliptic functioncn(vy,\g)~ cog(my)/(2b")],

we find the final expression
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