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Chiral Symmetry Breaking in Magnetic Thin Films and Multilayers
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A phenomenological theory of chiral symmetry breaking in magnetic nanostructures is developed
considering induced, inhomogeneous chiral interactions (Dzyaloshinsky-Moriya–type). Application of
the theory to films and multilayers with in-plane and out-of-plane magnetization predicts modulated and
two-dimensional localized patterns (vortices). These new classes of magnetic patterns are intrinsically
stable and localized on nanometer scale. Various experimental observations agree qualitatively with
structures derived from this theory.
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Chiral asymmetry is ubiquitous in nature from cosmic
objects (spiral galaxies and polarized stellar light) to the
enigmatic homochirality of biomolecules in all forms of
terrestrial life, and the parity violation in particle physics
[1]. Chirality is of central importance in modern chemical
technologies [2,3] and still is a subject of recent mathe-
matical inquiries [4]. One of the challenging problems is
the appearance of chiral phases in achiral systems. Chiral
symmetry breaking of this kind is responsible for many
important processes in physics, chemistry, or biology and
attracts great interest in modern science [5].

In solid-states physics chiral interactions also play a re-
markable role, e.g., natural optical activity occurs owing to
the intrinsic properties of materials that lack mirror sym-
metry. Magnetic chirality in crystals arises due to their
crystallographic handedness. In magnetically ordered non-
centrosymmetric crystals electronic spin-orbit scattering
induces chiral asymmetry of exchange coupling, originat-
ing from quantum-mechanical Dzyaloshinsky-Moriya in-
teractions [6]. Phenomenologically these are described by
so called Lifshitz invariants, energy contributions linear in
first spatial derivatives of the magnetization M�r� [7]

Mi
≠Mj

≠xl
2 Mj

≠Mi

≠xl
(1)

(xl is a spatial coordinate). These chiral interactions sta-
bilize localized (vortices) and spatially modulated struc-
tures with a fixed rotation sense of the magnetization [7,8].
Such chiral modulated structures have been identified in
a number of noncentrosymmetric ferromagnets, antiferro-
magnets, and alloys [9]. Magnetic vortices exist in the cu-
bic chiral ferromagnet NiMn [10]. Symmetry breaking by
stresses or applied magnetic or electric fields may induce
chiral magnetic couplings also in centrosymmetric crystals
[11]. For bulk magnetic materials such couplings are sup-
posed to be very weak and effects due to them have not
been observed experimentally.

The situation may radically change in small artificial
structures such as ferromagnetic thin films, multilayers,
nanowires, and nanodots. Within these nanomagnets,
much stronger induced chiral couplings are expected due
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to large strains or high numbers of lattice imperfections.
Additionally, the broken symmetry at surfaces or inter-
faces is an important source for chiral effects in magnetic
nanostructures [12–14]. While several mechanisms for
chiral magnetic couplings due to symmetry breaking have
been proposed [11,12,15], little is known about their in-
fluence on the magnetism of nanostructures. In this Letter
we develop a phenomenological theory of chiral symmetry
breaking and show that induced magnetic chirality may
stabilize new magnetic structures and patterns in thin
magnetic layers.

According to numerous experimental data on ferromag-
netic layer systems, inhomogeneous stresses created by lat-
tice mismatch, related defects, or interdiffusion between
magnetic and nonmagnetic layers substantially influence
their magnetic properties [16]. Under these conditions,
induced chiral couplings should be inhomogeneous within
magnetic nanostructures. Thus, the phenomenological chi-
ral energy density can be written as

wD � Dh�r�L�m� . (2)

Here D is a constant, L is a Lifshitz invariant of type (1),
and a pseudoscalar function h�r� describes the inhomoge-
neous distribution of the magnetic chiral energy. This func-
tion h�r� plays the role of a chiral order parameter and
may be treated as a physical field additional to the magne-
tization field which we take as unity vectors m�r� �
M�r��M0 �M0 � jMj�. Possible distributions of the order
parameter h�r� can be described by a Landau-Ginsburg–
type interaction functional with the density

wc �
X

i

Ã

µ
≠h

≠xi

∂2

1 f�h2� 1 Dh�r�L�m� . (3)

The density (3) includes the coupling with magnetiza-
tion (2), a stiffness energy with constant Ã, and a homo-
geneous energy contribution f�h2�. The magnetic energy
density may be expressed by

wm � A
X

i

µ
≠m
≠xi

∂2

1 wa 2 m ? h 2
1
2

m ? hd , (4)

which consists of exchange interaction with a stiffness con-
stant A, magnetic anisotropy wa, energy of the interaction
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with an external h � H�M0, and a demagnetizing field
hd � Hd�M0. To obtain the equilibrium configurations
of m�r� and h�r� within the magnetic nanostructure, one
has to find the minimum of the energy functional

W �
Z

w̃�m�r�, h�r�� dr , (5)

where w̃ � wc 1 wm, taking into account the equations
of magnetostatics for the demagnetizing field hd . Sur-
face chiral interactions are created by specific mechanisms.
Thus, the related order parameter on surfaces will have
certain fixed values h�r�jS � h

0
i which should be used as

boundary conditions for the variational problem. In gen-
eral h

0
i may even vary within the surfaces.

The general features of the theory are demonstrated for
the important case of magnetic films or layers sandwiched
between nonmagnetic materials. This is modeled by a
magnetic plate infinite in x and y directions confined by
parallel planar surfaces at z � 6l. We consider an (in-
duced) uniaxial magnetic anisotropy wa � 2Km2

z much
stronger than any higher order anisotropies responsible for
orientational effects in the basal plane of the films. The pa-
rameter h has fixed values on the surfaces hz�l � h

0
1 ,

hz�2l � h
0
2 and varies along the z direction.

For K , 0 the magnetization vector lies in the xoy
plane (easy-plane type of the magnetization) and does not
create demagnetizing fields on the surfaces. In this case,
the Lifshitz invariant responsible for chiral effects can be
written as

L � mx
dmy

dz
2 my

dmx

dz
. (6)

The rotation of the vector m in the basal plane is described
by an angle w. The energy density in (5) depends only on
the z coordinate and can be written as

w̃ � A

µ
dw

dz

∂2

1 Dh
dw

dz
1 Ã

µ
dh

dz

∂2

1 f�h2� 2 k cos�hw� , (7)

where the last term describes an in-plane anisotropy with
n � 2, 4, 6, . . . depending on lattice symmetry and/or
homogeneous strain. For this case, physically meaningful
solutions from minimization of the functional (5) are
found subject to the boundary conditions dw�dz�6l� �
2D��2A�h�6l�. For k fi 0, the corresponding Euler
equations must be solved numerically. For k � 0, the so-
lutions are Dw � 2D�2A�21

Rz
2l dj h�j� and z 1 c1 �

Ã1�2
R

dh � f�h2� 2 D2h2�4A�21 1 c2�21�2, where con-
stants c1, c2 are determined by the boundary conditions for
h. Typical solutions for f�h2� � ah2 1 bh4 are shown
in Fig. 1. They represent inhomogeneous structures even
in the case of zero volume chirality �a . D2��4A�, b . 0�.
Then chirally distorted magnetization is induced only by
the boundary conditions, and the rotation has the highest
values near the surfaces and slows into the volume of the
layer [see Figs. 1(b) and 1(d)]. Under the influence of the
037203-2
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FIG. 1. Easy-plane ferromagnetic film: induced chiral modula-
tions perpendicular to the film plane (z direction). Solutions for
functional Eq. (7) with boundary conditions h�6l� � 61 (full
lines in all parts of the figure) or for h�6l� � 1 (dotted lines).
(a) Chirality field without in-plane magnetic anisotropy displays
the effect of decreasing a, i.e., growing strength of volume chi-
rality. (b) Corresponding azimuth angle w of the magnetization
[inset: magnetization distribution in the film for a � 20.2 and
h�6l� � 61]. (c) Chirality field as in (a) but with in-plane
anisotropy. (d) Corresponding w. Inserted diagram is a mag-
nification for the film volume [inset: magnetization distribution
for a � 21.0 and h�6l� � 61].

surface chirality the order parameter h has a finite value
even in the absence of the volume contribution. In the case
of a finite volume chirality �a , D2��4A��, modulated
structures with a different rotation sense arise. An in-
plane anisotropy k fi 0 may yield drastically reduced mag-
netization rotation [Figs. 1(c) and 1(d)]. Only a sizable
volume chirality may overcome this anisotropy threshold
and cause magnetization rotation also in the film volume
[see insets in Fig. 1(d)].

In layers with perpendicular anisotropy �K . 0�, chiral
effects are due to Lifshitz invariants with gradients along
x and y directions. One of the possible invariants of this
type is [8]

L �

µ
mz

≠mx

≠x
2 mx

≠mz

≠x
1 mz

≠my

≠y
2 my

≠mz

≠y

∂
. (8)

In this case, modulated structures are stable only if h is
sufficiently large [of order �AK�1�2�D]. For smaller values
of h the uniaxial anisotropy suppresses modulated phases
pinning the magnetization along the z axis. We consider
possible localized chiral structures in this practically im-
portant case. It turns out that a weak chiral field h�z�
stabilizes two-dimensional states with finite extension, so
called magnetic vortices, within the uniformly magnetized
037203-2
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matrix. Introducing spherical coordinates for the vector
m � �sinu cosc, sinu sinc, cosu� and cylindrical coordi-
nates for the spatial variable r � �r cosz , r sinz , z�, one
finds that the variational problem has axisymmetric local-
ized solutions c � z , u � u�r, z� with u�0� � p and
u�`� � 0 (Fig. 2). The equation for the internal stray
field has an exact analytical solution and this part of the
stray field energy may be incorporated into the uniaxial
anisotropy. Here, we suppose that the constant K is suffi-
ciently large to ignore the surface stray fields. In any case,
the demagnetization influence of the layer surfaces gives an
additional stabilization effect on the localized structures.
The equilibrium values of h�z� and u�r, z� are determined
by variation of the functional with the density

w̃ �

Ω
Ã

µ
dh

dz

∂2

1 f�h2� 1 Dh
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sinu cosu
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∏
2 K cos2u

æ
r .

(9)

Because the magnetic layer is mainly homogeneously mag-
netized the coupling with the magnetization field practi-
cally does not influence the distribution of the h�z� in this
case. The equilibrium function h�z� may be calculated in-
dependently from the magnetic subsystem, and the Euler
equation for u�r, z�,

A

µ
≠2u

≠z2
1

≠2u

≠r2
1

1
r

≠u

≠r
2

sinu cosu
r2

∂

2Dh�z�
sin2u

r
2 K sinu cosu � 0 , (10)

includes the chiral parameter as a definite function of z
which describes the distribution of the chiral order pa-
rameter under the influence of the surface chirality. Equa-
tion (10) was solved numerically for a number of functions
f�h2�. Solutions with well defined sizes exist for arbitrar-
ily small values of h. In particular, for f � Bh2 �B . 0�
(zero volume chirality) with symmetric boundary condi-
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FIG. 2. Magnetization structure (depicted by arrows) of a vor-
tex induced by chiral interactions in an inhomogeneous perpen-
dicular ferromagnetic film. (a) View on top of the film. (b) Cut
in the rz half-plane. Dotted lines are curves for u�r, z� � const.
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tions hz�l � hz�2l � h1, we have h�z� � h1 cosh�kz��
cosh�kl� [with k � �B�Ã�1�2]. The corresponding solu-
tions of Eq. (10) describe a magnetic vortex with increas-
ing localization into the depth of the layer (Figs. 2 and 3).
For these structures, the chiral interactions are decisive to
stabilize these magnetic vortices which, otherwise, spon-
taneously collapse under the influence of magnetic fields
or anisotropy [8].

Interactions of type (1) are based on orbital magnetism
[6]. An order of magnitude per bond near surfaces can be
estimated by the ratio between isotropic exchange J and
the Dzyaloshinsky-Moriya constant JD , JD�J � Dg�g �
mL�mS , where g is the gyromagnetic ratio, Dg is its
deviation from the free-electron value, and mL and mS are
orbital and spin moments, respectively [6]. Within a tight-
binding approximation [13], or for indirect exchange
mechanisms [12,15], estimates JD�J � 0.1 were found for
bonds which do not have a center of inversion at their mid-
point. For example, each nearest-neighbor bond in a (001)
surface of a fcc crystal contributes an antisymmetric ex-
change coupling [cf. Fig. 2(c) in Ref. [13] ], which is
equivalent to the Lifshitz invariant (8). Similarly, reduced
symmetry near surface steps may induce further strong
antisymmetric couplings [14]. Such considerations yield
surface energy densities h0, i.e., boundary conditions for
h, with an order of magnitude 0.13 isotropic exchange en-
ergy density. Equation (3) embodies a microscopic length
describing a finite thickness of the surface inhomogeneity.
This length should be in the thickness range where strong
changes in orbital magnetism are observed in magnetic
layers. Recent experimental data show considerably en-
hanced ratios of mL�mS in magnetic layers compared to the
corresponding bulk materials [17]. Layer-resolved meth-
ods reveal variations of orbital moments into the depth of
magnetic layers [18]. These experimental findings under-
pin our assumptions about strong inhomogeneous induced
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FIG. 3. Example of an induced magnetic vortex in a film with
thickness 2l. The main figure shows profiles for the magne-
tization tilt angle u�r; z�, solution of Eq. (10), for z � ih�8
(i � 0, . . . , 8), i.e., from film midplane z � 0 (lowest curve) to
film surface z � l (top curve). Inset (A): fixed, inhomogeneous
chirality in the film. Inset (B): vertical and radial magnetization
component at the film surface along a line through the vortex
center at r � 0.
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chiral interactions in nanomagnets. The characteristic
size of chiral structures L0 (period of a modulated state or
the size of the vortex core) is determined by the value of
induced orbital moment. It can be estimated by L0 �
A�D � 10Ja2

0��JDa0� � 10a0�mS�mL�, where a0 is the
lattice constant.

There are various experimental reports on chiral effects
in magnetic layers; however, systematic searches for such
effects and their causes were not yet reported and the rela-
tion to surface-induced chirality is generally ignored. In-
duced chiral exchange may be responsible (together with
induced uniaxial anisotropy), e.g., for inhomogeneous sur-
face states as recently discovered for FeBO3 [19], for “chi-
ral magnetic domains” observed in ultrathin FePd films
[20], and for anomalous magnetic domains in layered per-
ovskite manganites [21]. Helical structures induced in
magnetic layers and thin films by tensile stresses are de-
scribed in [22]. Twisted structures in layers with in-plane
magnetization (Fig. 1) should become observable with the
methods of Refs. [17,18]. Magnetic vortices (Figs. 2 and
3) may exist only in perpendicular magnetized films. For
example, Ni�Cu�001� would be a convenient system with
perpendicular magnetization in a broad range of thickness
and low in-plane anisotropy. Locally focused, perpendicu-
lar magnetic field pulses could be used to nucleate vortices
and to probe their stability in such films. We note that im-
perfections of the layer may stabilize chiral magnetic vor-
tices. As an experimental confirmation, we refer to a recent
observation of free magnetic vortices in thin buckled lay-
ers of permalloy [23]. We suggest that these vortices are
due to uniaxial anisotropy and chiral interactions induced
by large strain effects in this case.

We have shown that surface-induced chiral symmetry
breaking in magnetic nanostructures should have a strong
impact on their properties. It may cause chiral spatially
modulated or localized magnetic structures which were pre-
viously associated only with low-symmetry crystals [24].
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