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Abstract. A new formulation based on the transfer-matrix method is presented for
antiferromagnetic spin chains. The magnetic susceptibility and the spin correlation functions
are calculated exactly, and the surface spin-flop phase in the even-spin case is identified as the
energetically degenerate or nearly degenerate single-domain wall states, the degeneracy arising
from the translational degree of freedom of the domain wall centre. The surface spin-flop to
bulk spin-flop transition is found to be a first-order-like transition.

The surface spin-flop (SSF) transition in a semi-infinite antiferromagnetically coupled
ferromagnetic layer was first discussed theoretically quite some time ago [1–3]. Unlike
the bulk system, in which it is known that the Néel state makes a first-order transition
to the bulk spin-flop (BSF) or canted spin state at a critical magnetic fieldHBSF applied
parallel to the ferromagnetic layers, the system of an even number of layers is predicted
to have yet another phase, the SSF phase, between these two phases due to the presence
of free surfaces. According to the perturbative analysis of the caseHa � H � He in the
model 1D spin Hamiltonian (equation (1) taken from [2]), this intermediate phase appears
atHSSF ' HBSF /

√
2 and develops with an increase in the magnetic fieldabruptly, namely

via a first-order transition, to the BSF state atHBSF . Wang et al [4, 5] recently studied
antiferromagnetically coupled Fe/Cr superlattices experimentally and theoretically. The
experimental result for the magnetic susceptibility of the even-layer superlattices confirmed
the existence of the transition from Néel to SSF states. Wanget al also conducted a
numerical analysis of the model spin Hamiltonian (equation (1)) for the SSF transition
using a self-consistent mean-field method to determine the ground-state spin configuration.
The result reproduced the experimental result for the magnetic susceptibility but argued that,
unlike the Keffer–Chow picture, the SSF to BSF transition is continuous. A similar self-
consistent mean-field calculation was also done for finite temperatures by Carri¸co, Camley
and Stamp [6] in the study of the phase diagram of thin antiferromagnetic films such as
FeF2 and MnF2 [7–9]. More recently, Tralloriet al [10] analysed the ground states of the
same spin Hamiltonian in terms of a 2D area-preserving map. To our surprise, however,
Trallori et al concluded that the SSF state does not exist for the semi-infinite system.

It is to be noted that, for the Fe/Cr superlattice [4, 5], the intralayer exchange coupling
is thousands of times stronger than the interlayer one. Moreover, an important fact is that
the experimentally observed magnetization has little temperature dependence[13]. Thus the
system is quasi-1D in the perpendicular direction, giving support to the 1D model spin
Hamiltonian description. However, for detailed comparison with experiments, one would
still need to include certain effects of intralayer spin fluctuations.
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In this letter we present a new analysis of the model spin Hamiltonian (1) below in terms
of the transfer-matrix method [11, 12]. Our findings are as follows. (i) The SSF phase does
exist for even-spin systems, although we identify the SSF states asenergetically degenerate
or nearly degenerate, due to finite-size, one-domain wallstates (due to the translational
degree of freedom of the domain wall centre); therefore the SSF state is not necessarily
localized to the surface. In contrast, the previous theories [2, 4, 5, 10] considered only the
ground state. Departing from the unrealisticT = 0 and taking into account excited states
nearly degenerate with respect to the ground state, the conclusion drawn by Tralloriet al
should be altered to support the existence of the SSF phase. (ii) In the Ising limit, for
which calculation can be done analytically, the nature of the transition from the SSF to the
BSF state is found to be offirst order in that the magnetization is discontinuous over the
transition. For the planar Heisenberg case with even spins, the numerically calculated spin
correlation functions and the size dependence of the magnetization per site demonstrate that
the SSF to BSF transition isalso of first order. The latter finding (ii) is consistent with our
intuition that (i) in the large-size, bulk limit, there should be no difference between cases
with even and odd numbers of spins: both should exhibit first-order transition to the BSF
phase; and (ii) suppose that a domain wall is localized near the surface for some reason,
energetical or dynamical, then again the response thereafter of an even or an odd number
of spins to the elevated magnetic field should be the same as that of the bulk, that is, both
should undergo a first-order transition to the BSF phase. Throughout the present paper, the
term first order should be understood asfirst-order-like for the finite-size system.

Let us consider the spin Hamiltonian

H
gµβS

= He

2

N−1∑
l=1

cos
(
φl − φl+1

)− Ha
2

N∑
l=1

cos2 φl −H
N∑
l=1

cosφl (1)

whereS is the spin size,φl describes the orientation of thelth spin,He the antiferromagnetic
exchange coupling,Ha the in-plane anisotropy andH the magnetic field applied in the
direction of the easy axis (z axis) of ferromagnetic layers. We evaluate the partition function
by the transfer-matrix method:

Z = Tr e−βH

=
∫ 2π

0
dφN · · ·

∫ 2π

0
dφ1e−βH

∫ 2π

0
d1

∑
m

δ
(
φN − φ1+ 2πm−1)

=
∫ 2π

0
d1

∫ 2π

0
dφN · · ·

∫ 2π

0
dφ1e−βH

∑
n

ψ∗n
(
φN −1

)
ψn
(
φ1
)

(2)

where{ψn} is a 2π periodic orthonormal complete set yet to be determined. Now re-write
the Hamiltonian as

H
gµBSHe

=
N−1∑
l=1

Hl,l+1− ξ
4

[
cos2 φN + cos2

(
φN −1

)]− ζ
2

[
cosφN + cos

(
φN −1

)]
(3)

whereξ ≡ Ha/He, ζ ≡ H/He and

Hl,l+1 = 1

2
cos
(
φl−φl+1

)− ξ
4

(
cos2 φl+cos2 φl+1

)
− ζ

2

(
cosφl+cosφl+1

)
.(4)

The set{ψn} is then chosen to satisfy the transfer-matrix (TM) equation∫ 2π

0
dφl exp

(−qHl)ψn(φl) = λnψn(φl+1
)

(5)
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Figure 1. The longitudinal magnetic susceptibility
versus the applied magnetic field forN = 20 (top) and
21 (bottom) spins.

Figure 2. The longitudinal (top) and transverse
(bottom) spin correlations for theN = 20 planar
Heisenberg case. The applied magnetic fields are 0.5 kG
(left-hand side), 1.0 kG (middle) and 1.6 kG (right-hand
side). All graphs share the same scale: from−1 to
1 along the vertical axis and from 0 to 20 along the
transverse axis.

whereq ≡ gµBSHeβ. It is to be noted thatHl,l+1 is real and symmetrical with respect to
the interchange ofφl andφl+1; therefore the eigenvaluesλn are real andψn can be taken
as real 2π periodic functions.

By using the TM equation (5) repeatedly, the partition function can be reduced to

Z =
∑
n

λN−1
n G2

n (6)

where

Gn ≡
∫ 2π

0
dφψn(φ) exp

[
q

(
ξ

4
cos2 φ + ζ

2
cosφ

)]
. (7)

The spin correlation functions are calculated likewise. Letf (φ) be any 2π periodic function
of φ. Then, by repeatedly using the TM equation (5) and the expansion

f (φ)ψn(φ) =
∑
p

〈
ψp|f (φ)|ψn

〉
ψp(φ) (8)

we have〈
f
(
φk
)
f
(
φl
)〉 = ∑

n,p,m

Gmλ
N−k
m

〈
ψm|f (φ)|ψp

〉
λk−lp

〈
ψp|f (φ)|ψn

〉
λl−1
n Gn/Z. (9)

By choosingf = S sinφ and S cosφ, one can calculate the spin correlation functions
〈Sx,kSx,l〉 and 〈Sz,kSz,l〉. When f is put equal to unity, equation (9) gives expectation
values of thex and z components of spins which, when summed over the entire lattice,
give the magnetizations in the transverse (x) and longitudinal (z) directions.

To solve the TM equation (5) numerically, we divide the interval [0, 2π ] into M

segments, the correspondingψn being anM-dimensional vector, and equation (5) is
transformed into a matrix eigenvalue problem. The case studied by Wanget al [4, 5]
hadS = 1, He = 2.0 kG, Ha = 0.5 kG and temperatureT = 0. Note that the magnetic
energy scale isgµBHe ' 0.3 K so we takeT = 5×10−3 K as a low enough temperature to
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Figure 3. The longitudinal magnetization per site versus the applied magnetic field forN = 20,
50, 100 and 500.

be regarded asT = 0, although a sharp phase transition occurs only atT = 0. It turns out
that there are numerous excited states nearly degenerate with respect to the ground state,
the excitation energies being less thanT = 5× 10−3 K; thus the latter temperature is more
relevant to the experiment thanT = 0 would be. The numerical accuracy was checked by
studying theM = 400, 500 and 600 cases, which gave exactly the same results.

Figure 1 shows the longitudinal magnetic susceptibility versus the applied magnetic
field for N = 20 and 21, reproducing the experimental findings of Wanget al [4, 14].
The sharp peak in theN = 21 case is attributed to the Néel-to-BSF transition, whereas
those in theN = 20 case are attributed to the Néel-to-SSF and SSF-to-BSF transitions.
Figure 2 shows the spin correlation functions〈cosφl cosφk〉 and 〈sinφl sinφk〉 versus
k = 1, 2, . . . , N = 20 for the three magnetic fieldsH = 0.5, 1.0 and 1.6 kG. The
spin correlations on the left- and right-hand sides of figure 2 are clearly characteristic of the
Néel state and of the BSF or canted spin state. On the other hand, the peculiar correlation
pattern of the middle graph in figure 2, which should be attributed to the SSF state, provides
useful information about the SSF state. The local antiferromagnetic order is clear, but the
correlation decreases with the spin–spin separation. In comparison with the Ising case, as we
will see below, this longitudinal correlation pattern is due to a spatially fluctuating domain
wall; that is, the SSF state is composed of energetically degenerate or nearly degenerate
single-domain wall states. This can also be seen from the longitudinal magnetization, which
shows that about one spin is flopped from down to up during the Néel-to-SSF transition. It
is to be noted that the inside spins become affected by the spatial location of the domain
wall, leading to a decreasing correlation with distance, but the correlation should again
become strong towards the other end because then we know that there is definitely just one
domain wall inside and the outermost spin should definitely be up. On the other hand, the
small but non-zero transverse correlation indicates that spins are not quite oriented along
the z direction but rather are slightly canted. Now a crucial question is that of whether the
SSF-to-BSF transition is continuous or discontinuous, namely of first order. Fortunately,
we can answer this question without going to theT = 0 limit. The size dependence
of the longitudinal magnetization suffices for us to answer the question. If the ratio of the
magnetizations between the SSF and BSF states did not change with the number of spinsN ,
that would mean a continuous transition, whereas, if the contrary applies, the transition must
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be discontinuous. We thus calculated theN dependence of the longitudinal magnetization
per site, figure 3, from which we conclude that the transition is of first order.

Finally, one can see these points analytically in the limit of strong anisotropy, namely,
the Ising case in the limitT → 0 (q →∞). In this case the spin orientation is limited to
φ = 0 andπ and the TM equation (5) reduces to a 2× 2 matrix eigenvalue problem:(

g00 gπ0

g0π gππ

)(
ψn0

ψnπ

)
= λn

(
ψn0

ψnπ

)
(10)

where

g00 = exp

[
−q
(

1

2
− ζ

)]
gπ0 = g0π = exp

(
1

2
q

)
gππ = exp

[
−q
(

1

2
+ ζ

)]
.

For N even, the partition function can then be calculated to leading order in the limit
q →∞ as

Z =



2 exp

(
N − 1

2
q

)
for ζ < 1

2

N

2
exp

(
N − 1

2
q + (2ζ − 1)q

)
for 1

2 < ζ < 1

exp

(
Nζq − N − 1

2
q

)
for ζ > 1.

(11)

We find from (11) and energy considerations that, forζ < 1
2, the ground state is doubly

degenerate:

↓↑↓↑ . . . ↓↑ or ↑↓↑↓ . . . ↑↓ . (12)

For 1
2 < ζ < 1, one hasN/2 degenerate single-domain wall states. ForN = 6, for example,

these states are

↑↑↓↑↓↑ ↑↓↑↑↓↑ ↑↓↑↓↑↑ . (13)

Finally, for ζ > 1, the system is ferromagnetic, all the spins pointing in thez direction.
Upon identifying these ground states as the Néel, SSF and BSF states, we again reach

the conclusion thatthe SSF-to-BSF transition is of first orderin that the magnetization
is discontinuous there. Now we turn to the spin correlation functions. Starting with
equation (9), after a lengthy but straightforward calculation, the spin correlation function in
the Ising case forN even,T = 0 and 1

2 < ζ < 1 is given by〈
cosφl cosφk

〉 = [1+ (−1)k−1(N − 2k + 1)
]
/N (14)

which is plotted in figure 4. We thus find that it is identical to the corresponding spin
correlation function, shown in the middle of figure 2, for the planar Heisenberg case. This
result demonstrates a robust character of the SSF state, in that it is composed of energetically
degenerate or nearly degenerate single-domain wall states.

To conclude, the SSF phase does exist in the even-spin system, in contradiction to the
conclusion of Tralloriet al [10]. We would like to point out that the mapping method cannot
handle the energetically degenerate single-domain wall states such as (13). The observation
by Trallori et al of a chaotic behaviour within certain parameter ranges forξ and ζ may
be related to this degeneracy. On the other hand, the SSF-to-BSF transition is found to be
of first order, confirming the Keffer–Chow prediction from perturbation theory. We also
observed a finite-size effect in the Néel-to-SSF transition; that is, the critical magnetic field
decreases with increasing system sizeN . Since there is no such effect in the Ising case,
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Figure 4. The spin correlation for theN = 20 Ising case with the applied magnetic field
He/2< H < He.

HSSF being alwaysHBSF /2 irrespective ofN , the size dependence is clearly related to the
spatial extent of a domain wall.

I would like to express my thanks to Eric Fullerton, who ignited my interest in layered
magnetic systems and gave me a timely comment and some of the most recent references.
I have also benefited from discussions with Jun Akimitsu and Hiroshi Matsuoka.
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