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A quantitative theory of the nonspecular scattering of x rays from multilayer structures having 
rough interfaces is presented. The results are valid for arbitrary polarization and angles of 
incidence (measured from the normal) less than the critical angle for total external reflection. 
A structural model is adopted wherein each interface is assumed to be described by a surface 
having statistically random roughness with a well-behaved power spectrum. In addition, the 
model accounts for arbitrary correlation of the roughness between different interfaces. Calcu- 
lations are presented for a variety of roughness configurations to investigate the dependence of 
the nonspecular scattering on the fundamental structural parameters. In particular, it is shown 
that the scattering from correlated roughness exhibits characteristic resonance behavior (quasi- 
Bragg diffraction). 

I. INTRODUCTION 

Thin films composed of synthetically grown multilayer 
(ML) structures represent a new class of materials having 
novel optical, electrical, magnetic, mechanical, and super- 
conducting properties for a host of important applications. 
Since the interesting and unique properties of ML derive 
from the close proximity of different materials, it is not 
surprising that these properties are often strongly sensitive 
to the nature of the interfaces at the layer boundaries. In 
order to understand and control the physical behavior of 
ML, it is essential to be able to determine the detailed 
structure of the layers and interfaces, and to correlate this 
structure with the measured properties. 

One important type of structural imperfection that can 
affect the properties of ML structures is interfacial rough- 
ness. For example, in electronic and magnetic ML,’ inter- 
facial roughness increases the amount of electron scatter- 
ing by providing coupling to additional momentum states. 
In x-ray optical ML,2 roughness both decreases the reflec- 
tivity and introduces a background halo that can degrade 
the resolution of imaging optics. There is also an increasing 
interest in understanding roughness as an intrinsic dy- 
namic behavior of growing surfaces and interfaces. Recent 
theories3-7 predict that the roughening of a surface follows 
simple scaling laws, and it has been shown* that ML struc- 
tures can be useful experimental systems for studying the 
evolution of the surface roughness during film growth. 

, A promising technique for characterizing the rough- 
ness of surfaces and interfaces in ML structures is x-ray 
scattering. The use of x-ray scattering as a structural probe 
has several important advantages. It is inherently a nonin- 
vasive technique, well suited for dynamic measurements 
including in situ growth studies. The penetration of x rays 
allows both surfaces and buried interfaces as to be directly 
probed. Furthermore, due to the short wavelength of x 
rays, x-ray scattering can provide structural information 
on spatial scales ranging down to atomic dimensions. The 
roughness of single surfaces has been investigated using 
x-ray scattering,’ and corresponding theoretical treatments 
applicable to a variety of conditions and approximations 

can be found in the literature.10-13 More recently there has 
been increasing interest in using nonspecular x-ray scatter- 
ing to study the roughness of multiple interfaces in ML 
structures. The first experimental results indicate that the 
x-ray scattering can exhibit a rich variety of behavior as- 
sociated with the structural correlations between 
interfaces. 14-” However, the interpretation of these results 
has been limited by the lack of a quantitative theory that 
incorporates realistic models of the interface structure. The 
goal of this paper is to present a simple theory that, within 
the limitations imposed by certain simplifying approxima- 
tions, can provide a straightforward means of relating re- 
alistic interface structures to measurements of nonspecular 
scattering. 

The scattering of radiation from multilayer optical 
coatings having rough boundaries has been considered pre- 
viously. Early attempts’8”9 were directed at studying the 
effects of roughness on the specular scattering using scalar 
theory. Subsequently, Elson2’ developed a vector theory 
for the scattering of radiation from surface roughness, and 
applied the theory to ML coatings in which the roughness 
at the layer boundaries was either exactly reproduced from 
layer to layer (complete correlation) or was completely 
random at each layer (no correlation). Elson, Rahn, and 
Bennett2’ later extended the model to include a case where 
the roughness accumulates from the bottom to the top of 
the stack which corresponds to partial correlation. Bous- 
quet, Flory, and Roche2* developed a comprehensive the- 
ory of scattering from ML coatings that accomodates ar- 
bitrary correlations between the roughness of the different 
interfaces. Calculations based on this model have been 
compared to measured nonspecular scattering from multi- 
layer optical coatings for the special cases of no correlation 
and complete correlation.23 It is also possible to induce 
strongly correlated interface roughness in “ideal” ML 
coatings by applying surface acoustic waves. A purely ki- 
nematical description of x-ray scattering from such struc- 
tures, assuming that the roughness is completely corre- 
lated, has been compared to experimental results.24 

Most of this previous work was intended to describe 
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scattering from optical ML coatings at visible and near- 
ultraviolet wavelengths. Although the theoretical formal- 
isms can in principle be applied to the scattering of x rays, 
we choose instead to apply the theory of the scattering of x 
rays from a nonideal ML structure developed in a previous 
paper” (referred to herein as Part I). This treatment uti- 
lizes the first Born approximation and hence is only valid 
under the condition that the scattering is weak and refrac- 
tion can be neglected; that is, for incident and scattering 
angles (measured from the normal) less than the critical 
angle for total external reflection. At x-ray wavelengths the 
dielectric function is close to unity for all materials, so that 
even the specular (zeroth order) scattering is weak. Then 
for many experimental configurations this approximation 
is acceptable and offers the advantage of significantly sim- 
plifying the mathematical description of nonspecular scat- 
tering, particularly the term that Elson and Bennett26 call 
the “optical factor” which accounts for the geometric and 
polarization effects. 

In Sec. II we extend the results of Part I to treat the 
specific case of x-ray scattering from inter-facial roughness 
in ML structures. A general model for inter-facial rough- 
ness is introduced that can account for an arbitrary 
amount of correlation between layers. The model imposes 
no contraints on the power spectrum of the roughness, and 
thus is compatible with both conventional correlation- 
length-type and fractal-type descriptions of surface 
roughness. 27 The correlation of the roughness between lay- 
ers is described by a frequency-dependent replication factor 
which can be used to either amplify or attenuate the rough- 
ness from layer to layer in a given frequency range. This 
represents an important extention of the earlier models for 
roughness propagation used in ML scattering theories, and 
is more consistent with the models currently used in theo- 
retical treatments of surface roughening during film 
growth. 

In Sec. III we present calculations of nonspecular scat- 
tering from a variety of different interface structures and 
configurations. In particular, we study the characteristic 
dependence of the scattering on structural parameters such 
as the number of layers, the root-mean-square roughness, 
the correlation length of the roughness, and the degree of 
correlation of the roughness between layers. Systematic 
variations in the nonspecular scattering are observed, in- 
cluding the appearance of resonance features (sometimes 
called “quasi-Bragg diffraction”) when the interfacial 
roughness is correlated from layer to layer. The purpose of 
these calculations is to illuminate the close relationship 
between the nonspecular x-ray scattering and the detailed 
structure of the interfaces. 

In Sec. IV we conclude by commenting on the imple- 
mentation of the theory as it relates to the interpretation of 
experimental measurements. 

II. THEORY 

In Part I we presented a description of x-ray scattering 
from an interface of arbitrary structure. A special case is 
the scattering from a “slightly rough” boundary f(x,y) 
between two media described by dielectric constants E and 

FIG. 1. The configuration of the radiation field scattered from a rough 
interface f(x,y) separating two uniform media. 

E’. As a review, we consider the configuration shown in 
Fig. 1. A plane wave, Eo$ exp( L&x), propagating in di- 
rection $ with polarization $, is incident on the rough in- 
terface from above and scatters into direction &, experi- 
encing a momentum transfer of 

q = k(hi -i?), (1) 

where k is the vacuum wave number. The difference in the 
dielectric constants of the two media A = E - E’ is always 
small at x-ray wavelengths (Ag 1). Using the first Born 
approximation for the scattered field, the amplitude den- 
sity of the field reflected into direction 6i with polarization 
&s given by 

Wk~$,i9 = - rEo gz (i;*-i$k~,,~,). 
Here yis the Fourier transform off, s = sxG + s,,? is the 
projection of q in the x-y plane, and 2 represents the 
complex conjugate to account for the the case of circular 
polarization. It should be noted that the Born approxima- 
tion is only valid when the scattering is weak and refrac- 
tion of the transmitted field can be ignored, conditions that 
are generally satisfied for x rays when the incident and 
scattering angles (measured from the normal) are less than 
the critical angle for total external reflection. The Fourier 
transform in Eq. (2) results from the assumption that the 
interface is “slightly rough,” such that 

Iqzfky) I = k( m, - n,) If (x,-Y) 14 1 for all x,y. 
(3) 

It is shown in Sec. II A that this condition is equivalent to 
requiring that the total integrated nonspecular scattering is 
small compared to the specular reflectance. We note that 
Eq. (3) is always satisfied when the interfacial roughness 
If(x,y) I <;1, the x-ray wavelength. 

The differential power dP, reflected from an interface 
of area A into a solid angle da, per unit incident power, is 
given by 

(4) 

Similarly, for a plane wave, E$ exp( ik’G*x), incident 
onto the rough interface from below, the field amplitude 
density transmitted into direction i;i with polarization 2 is 
given by 
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FIG. 2. Schematic diagram of a ML structure having rough interfaces. 
The inset shows the scattering at a particular interface, consisting of two 
contributions. The specular field incident from above and below the in- 
terface is scattered into the mode (&a with amplitudes of ri and ti, 
respectively. 

3 
t(iii,i,ii;G,3) = a() &. (ii+- E)~(s,,s,), 
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and the power scattered into that direction is 

dP, hhhh 4rPrn~ 
z bww) = 2 lt12. 

GA 

(5) 

(6) 

Next consider the scattering from a multilayer stack 
consisting of a sequence i = 1,2,...,M of layers having 
rough interfaces as illustrated in Fig. 2. The ith interface, 
defined as the boundary between layers i and i + 1, is de- 
scribed by the surface fi(x,y). A plane wave of unit am- 
plitude 8 exp( ik%x) is incident at an angle 19, on the top of 
the stack. For convenience, the propagation vector is cho- 
sen to have components of n, = 0, nY = sin eo, and n, 
= cos eo, and the polarization 2 is either S or P type. The 

propagation direction in the ith layer is altered by refrac- 
tion to have the value 2, where 

i 
n, = n,, 

nf= n, 

nf = & ,/kf - k2nz - k2nz. 

(7) 

Here kj = \ E;‘~ I k and ni is a complex quantity in the case 
of an absorbing medium. 

The x-ray scattering within the ML structure is calcu- 
lated using the specular field approximation, as discussed 
in Part I. In this approximation, the specular field in each 
layer is determined from a complete dynamical treatment 
of the specular scattering within the system of interfaces 
using well-known recursive28 or matrix methods.29 The 
Fresnel reflection coefficients can be modified to account 
for the interfacial roughness,25 although this is required by 
condition (3) to be a small correction to the specular field. 

Once the specular field in each layer is known, the non- 
specular scattering is treated kinematically. The total non- 
specular field is approximated as the sum of the fields scat- 
tered from each interface, taking into account extinction of 
the field as it propagates towards the top of the ML stack. 
We note that the kinematic treatment breaks down when 
the nonspecular scattering angle satisfies the ML Bragg 
condition, such that the multiple scattering exhibits con- 
structive interference. This can either suppress or enhance 
the nonspecular scattering, in the same way that the spec- 
ular transmission through a ML structure is modified at 
the Bragg condition.25 Such distinctive features arising 
from multiple scattering of the nonspecular field have been 
experimentally observed.15p16 

Let us consider the field scattered from the ML stack 
into the nonspecular direction i% with polarization 2. As 
before, the propagation of the field in the ith layer is altered 
by refraction to be in the direction &ii. There are two con- 
tributions to the nonspecular field from each interface, cor- 
responding to the scattering from the interface of the spec- 
ular fields incident on either side (see Fig. 2). In 
particular, the specular fields incident on the ith interface 
from above and below are, correspondingly, 

Ei- (x) = ,E-$- exp(ikn,y)exp( - ik,n$) (8) 

and 

E+ (x) = Ei+$+ exp(ikn,y)exp(ik&), (9) 

where j = i + 1 and the polarization $* corresponds to S 
or P type in accordance with the polarization of the inci- 
dent field. The amplitudes of the specular fields, Ejm and 
Eii’ , are determined using recursive or matrix methods as 
mentioned above. Each of these specular fields scatters 
from the rough interface, generating a nonspecular field 
that propagates towards the top of the stack. The incident 
field Ei- scatters into mode %  with an amplitude density 
ri given by Eq. (2), 

Aikj 
ri( i%,G;S,G- ) = - iEi m; e-2- >fi(S,JJ, 

(10) 
where Ai = Ej - Ed Similarly, the incident field E+ scatters 
into mode %  with an amplitude density ti given by Eq. (5)) 

ti( iYp@$pS’ ) = iEii 
Aiki 

j--J-& e-3+ )f,(s,Jy). (11) 
.z 

The nonspecular field scattered from the ith interface 
accumulates phase as it propagates to the top of the ML 
stack. The phase contributed by traversal of thepth layer is 
defined as c#J~, given by 

&, = ktP ,im, (12) 

where tp is the thickness of the pth layer. The total phase 
accumulated upon reaching the vacuum ihterface at the 
top of the stack is pi = ZF= i + ,c$~ The total amplitude 
density of radiation scattered into the vacuum in the direc- 
tion ;;i is Zy= ,bi( r, + ti) . Then, according to Eqs. (4) and 
(6), the scattered power is given by 
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gj( iii,i?;;s,$, = $pj 1 ii0 2vrj + fj) 12. (13) 

The theoretical development presented thus far is 
mostly a recapitulation of the results of Part I. Equation 
(13) describes the nonspecular scattering of x rays from a 
series of rough interfaces having completely arbitrary 
structures. To proceed we must adopt a specific model for 
the interfacial roughness in a ML stack. We postulate that 
the roughness of an interface can be separated into two 
components which we call the “intrinsic” and “extrinsic” 
parts. The intrinsic foughness h(x), with the associated 
frequency spectrum h(s), corresponds to that part of the 
interface structure that is inherent to the formation of the 
interface, and would be experimentally >bserved if the un- 
derlying interface was perfectly smooth. The extrinsic 
roughness corresponds to the structure derived from the 
replication of the roughness of an underlying interface. 
Hence the extrinsic roughness accounts fc: Lhe propaga- 
tion of roughness through the ML stack. It is reasonable 
that the extent of propagation varies with spatial fre- 
quency; components of roughness having wavelengths 
much longer than the layer thickness should be replicated, 
whereas the high-frequency components of roughness are 
likely to be planarized. To keep the model general we de- 
fine a replication factor ai which describes the fraction 
of the frequency component s in the (i - 1)th interface 
that is replicated in the ith interface. Then the model for 
inter-facial roughness in a ML stack can be written as 

fi(S) = hi(S) + &(S)fi- 1(S)* (14) 

The first and second terms on the right-hand side represent 
the intrinsic and extrinsic roughness of the ith interface, 
respectively. The replication factor &(s) can have any 
functional form, but is physically constrained to have the 
limiting values of unity and zero as 1 s 1 approaches 0 and 
CO, respectively. By substituting recursively in Eq. ( 14) we 
obtain 

(15) 

where 

Iii = (+im 
CinEfl:,=gm* (16) 

Equation (15) explicitly shows that the roughness of th_e 
ith interface is composed of its-own intrinsic roughness hi 
and the intrinsic roughnesses h, of each of the underlying 
interfaces. The factor c/n represents the amount of intrinsic 
roughness inherited by layer i from the underlying layer n. 
The physical significance of the replication factor is made 
clear by taking the Fourier transform of Eq. (14) to obtain 
a description of the interface structure in real space, 

ft(X) =hi(x) +ai(x)*[fj- I(X)I* (17) 

The amount of roughness replicated from the underlying 
interface is determined by a convolution with the function 
ai( When &(s) decreases monotonically with 1 s 1 then 
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ai decreases monotonically with 1 x ( , and the convolu- 
tion serves to smooth the surface locally. This, of course, is 
the natural outcome of suppressing the replication of the 
higher-frequency components. 

It is interesting to relate the model for the propagation 
of interfacial roughness in a ML structure to the theory of 
the roughening of the surface of a single film during 
growth. The difference equation (14), describing the 
roughness at a number of discrete interfaces, can be con- 
verted into a differential equation by considering the film, 
of total thickness t, as being composed of many thin I_ayers 
having thickness At. We define the functions q(s) rh(s)/ 
At and b(s) = [ 1 - Z( s)]/At, and take the limit of At-+0 to 
obtain 

ah) -= q(s) - b(s)f(s,t). at 
If we let b(s) = 47?& then the Fourier transform of Eq. 
(18) yields the well-known Langevin equation describing 
the evolution of a growing surface derived by Edwards and 
Wilkinson,3 

a- (x,0 -= at yV2f(xJ) + r](x). (19) 

This is a differential equation representing isotropic diffu- 
sion in two dimensions, where the thickness of the film 
replaces the time variable. The first term on the right-hand 
side describes the relaxation of surface features due to a 
“diffusion coefficient” Y. The second term is a source term 
accounting for the introduction of random noise during 
growth. Kardar and co-workers’ have pointed out that it is 
necessary to include a nonlinear term proportional to 
(Vf)* in Eq. (19) when the direction of growth is locally 
normal to the surface of the film. However, the behavior of 
the growth on sloped surfaces is likely to be strongly de- 
pendent on the detailed characteristics of the deposition 
process such as the collimation and energy of the incident 
adatoms, and it is not clear a priori whether the inclusion 
of a nonlinear term is more physically relevant. In any 
case, Eqs. (14) and (17)-( 19) are linearized, lowest-order 
descriptions of roughness propagation in film growth, and 
are certain to be good approximations when the interface 
or surface slopes are small. 

Having established a structural model for interfacial 
roughness in a ML, we proceed to develop an expression 
for the nonspecular x-ray scattering. We rewrite Eq. (13) 
as 

where the quantity Wi is defined by 

WjzAj[Ej+ (@*$+) - Ei- (pm$-)]e’@i. 

From Eq. ( 15) we have 

Ti$ = ( nio cirzLn) ( i. cj&T)* 

D. G. Stearns 

(20) 

(21) 

(22) 
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The intrinsic roughness hi(x) of each interface is statisti- 
cally random, in the sense that it is completely uncorre- 
lated with the intrinsic roughness of any other interface. 
Hence the phase of the quantity i,,@ has a random value, 
and every term in Eq. (22) for which I#n vanishes when 
averaged over an ensemble of interface structures. This 
“random-phase approximation” is valid for measurements 
in which the spatial coherence length is much smaller than 
the dimensions of the x-ray beam, where the measurement 
averages over an ensemble consisting of different areas of 
the ML sample. However, in the case where the incident 
beam is spatially coherent, all of the terms in Eq. (22) will 
contribute to the scattered power, resulting in a varying 
and complex angular distribution analogous to the speckle 
patterns produced by the scattering of laser light from 
rough surfaces. Applying the random-phase approximation 
reduces Eq. (22) to 

f2 = n$o CjnCjnh”,Lt, j<i, = A i cjncjndGn* (23) 
n=O 

where o,, is the root-mean-square (rms) roughness defined 
as 

d=; j- P,W2dx=f j- lin(s)12ds (24) 

and G, is the normalized power spectrum of the intrinsic 
roughness h,, defined as 

(25) 

Finally, substitution of Eq. (23 ) into Eq. (20) yields 

+ iz: ( i CjnCjn$,Gtz) 
n=O 

X(Wjv+ CWj) * 1 (26) 

This expression is the central result of the scattering the- 
ory, relating the power scattered by a ML consisting of M 
rough interfaces to the detailed structure of the interfaces. 
Each interface is characterized by fundamental structural 
parameters: the intrinsic rms roughness (T,, the power spec- 
trum G,(s) of the intrinsic roughness, and a set of repli- 
cation factors tin. The factors in parentheses containing 
G, correspond to the structure factors in the language of 
x-ray-diffraction theory. All of the information relating to 
the structural configuration of the interfaces is contained in 
these factors. It is evident in Eq. (26) that the scattering 
separates naturally into two terms. The first term corre- 
sponds to the uncorrelated scattering, and is simply the 
sum of the intensities scattered by each interface indepen- 
dently. The second term corresponds to the correlated 
scattering. This contribution represents the interference of 

the radiation fields scattered by interfaces that have corre- 
lated structure due to the replication of roughness from 
layer to layer. 

If the configuration of the surface roughness or the 
measurement geometry reduces to a one-dimensional scat- 
tering problem it is straightforward to show that Eq. (26) 
becomes, 

c~,O~,G: Wi fi 

+ iil ( f: C+zcjndG!t) 
n=O 

X(Wiy+ flWj) 9 1 (27) 

where G:(s) is now the one-dimensional power spectrum 
of the intrinsic roughness of the nth interface. 

Although Eq. (26) is a complicated result, it is quite 
general, valid for any ML structure that conforms to our 
model for propagating roughness. There are, however, sev- 
eral special cases for which the description of nonspecular 
x-ray scattering is considerably simplified. 

A. Scattering from a single rough interface 

In the case of scattering from a single rough interface 
described by a surface h(x) having a rms roughness (T and 
a power spectrum G(s), Eq. (26) reduces to 

(28) 

This is closely related to the bidirectional reflectance dis- 
tribution function (BRDF), defined as ( nz/m,)dP/dfl, 
which is used in optics to describe light scattering from a 
single surface. 

Consider for the moment the special case where the 
nonspecular scattering is limited to an annular region near 
the specular direction. Then Eq. (28) can be approximated 
as 

dP 
-= 
dfl (29) 

(30) 

is the specular reflectance from a perfectly smooth surface 
to lowest order in A, and $ and 2 are the polarizations of 
the incident and specularly reflected fields, respectively. 
We use the relation ds = k2nz dR to write 

dP( s) = ( l/d) k20%,2RoG( s)ds, (31) 

and integrate over all scattering vectors s to obtain an 
expression for the total integrated scattering (TIS) from 
the rough surface, 

TIS = ( 1/~)k20-%,2Ro = ( 1/4+q;c?Rg. (32) 
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The TIS is equal to the decrease SR of the specular reflec- 
tance due to the surface roughness to lowest order in qp 
(neglecting scattering into evanescent modes). Applying 
the condition (3) which defines the case of “slight rough- 
ness,” we arrive at an equivalent but more practical crite- 
rion defining the roughness limit, 

TIS = SR(R,,. (33) 

The roughness must be sufficiently slight so that the rela- 
tive decrease in the specular reflectance from the ideal 
Fresnel reflectance is small. 

When the limitations on the magnitude of the rough- 
ness are satisfied as discussed above, the description of 
nonspecular scattering from a single surface assumes a very 
simple analytic form. As an example, let the incident radi- 
ation be S polarized with an angle of incidence eo, and 
consider scattering into the S-polarization state in the di- 
rection (0,~$) defined in spherical coordinates. Then Eq. 
(28) becomes 

k4c?A2 cos* C$ 
162 cos f3, G(s). 

The power spectrum G(s) is the Fourier transform of the 
normalized autocorrelation function y(x), defined by 

‘(‘)= 
S h(u)h(u -I- x)du 

J Ih(u)l*du * 

If we assume that the interface is described by a spatially 
isotropic autocorrelation function having an exponential 
form, 

y(x) = y(r) = exp( - r/t), (36) 

where r = /zg and L is the autocorrelation length, 
then the power spectrum is a Lorentzian, 

In the special case of normal incidence, where s = k sin 8, 
the power scattered by a single rough interface reduces to 
the particularly simple result, 

g (e,4;eo = 0) = 
k4dL2A2 cos* fp 
8~ cos 0, ( 1 + L2k2 sin2 f3)3’2 * (38) 

This expression illustrates the general features of nonspec- 
ular x-ray scattering from interfacial roughness. The k4 
frequency dependence is characteristic of dipole scattering, 
where A corresponds to the magnitude of the dipole layer 
induced at the interface. The scattering into a direction 6 is 
due to the coupling of the photon momentum with the 
component of interfacial roughness that has a frequency of 
k sin 8. The strength of the scattering is proportional to the 
magnitude of the power spectrum at that frequency. The 
factor cos 0, in the denominator is a geometrical factor 
that accounts for the change in the area of the interface 
illuminated by the incident beam. Finally, the factor 
cos’ C$ in the numerator represents the overlap of the in- 
coming and outgoing polarizations. 

B. Scattering from a ML having uncorrelated 
roughness 

Next we consider the case of x-ray scattering from a 
ML consisting of M uncorrelated interfaces. Since there is 
no propagation of roughness, the replication factors are 
identically zero and the roughness of each interface is 
purely intrinsic, 

fj(S) = Iii(S). 

It is easily shown that tin = Sj,, so that Eq. (26) reduces to 

The scattering is simply a sum of the intensities scattered 
from each interface. The contributions are weighted by the 
factors Wj~ which contain information about the ampli- 
tude of the incident field at the buried interface, and the 
attenuation of the scattered field due to absorption. If the 
roughness of each interface is statistically equivalent, such 
that the rms roughness and power spectrum are identical, 
then 

- Ei- (&$- ) I 2. (41) 

A comparison with Eq. (28) shows that the angular dis- 
tribution of the scattered power is characteristic of the 
scattering from a single interface. We note that the scat- 
tering is proportional to the intensity of the specular field 
at the interfaces. When the specular field has a significant 
standing-wave component, such as near the Bragg condi- 
tion in a periodic ML, the nonspecular scattering is mod- 
ulated according to the relative position of the standing 
wave in the ML stack. The scattering is enhanced (sup- 
pressed) when the antinodes (nodes) of the specular field 
are located at the position of the interfaces. 

C. Scattering from a ML having completely correlated 
roughness 

Finally, we consider the case of x-ray scattering from a 
ML structure having M completely correlated interfaces. 
We assume that there is no intrinsic roughness ( Gj = 0 for 
all i#O), so that the roughness of each interface is an exact 
replication of the substrate surface hsub( x). In this case the 
replication factors Cjn are unity, and Eq. (26) reduces to 

Wjq 

i- 1 

+ C (Wiq+ VWj) 9 (42) 
j=O 

where OS,,,, and Gsub are the rms roughness and power spec- 
trum of the substrate, respectively. The first term in the 
summation corresponds to the uncorrelated scattering 
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while the second term accounts for interference between 
the fields scattered at each interface. This interference term 
can either increase or decrease the nonspecular scattering 
for a given scattering angle and x-ray wavelength, depend- 
ing on the phase relationship of the fields. If the fields 
scattered at each interface are phased such that they con- 
structively interfere, then the double summation in Eq. 
(42) is approximately proportional to M* (assuming that 
extinction of the specular field in the ML is neglible). In 
this case the nonspecular scattering from completely cor- 
related ML roughness can be as much as a factor of M 
stronger than the scattering from uncorrelated ML rough- 
ness. 

III. MODELING THE NONSPECULAR SCATTERING 
FROM ML X-RAY OPTICAL COATINGS 

As an example of the implementation of the theoretical 
results presented in the previous section, we have chosen to 
calculate the nonspecular scattering from ML structures 
designed as soft-x-ray optical coatings.’ X-ray ML struc- 
tures typically consist of alternating layers of high- and 
low-Z materials having individual layer thicknesses in the 
range of - 10-100 A. The reflectivity of the coating is 
optimized by choosing materials that (i) maximize the 
contrast in the index of refraction and (ii) minimize the 
absorption, which is always appreciable at soft-x-ray wave- 
lengths. Examples of useful material combinations for nor- 
mal incidence reflectivity are: Mo-Si (Ref. 30) for wave- 
lengths greater than 124 A (the Si L edge); Ru-B,C (Ref. 
3 1) for wavelengths greater than 65 A (the B K edge); and 
W-C (Ref. 32) for wavelengths greater than 44 A (the C K 
edge). Interfacial roughness in these ML is undesirable, as 
it degrades the x-ray optical performance by both decreas- 
ing the specular reflectivity and generating a diffuse back- 
ground signal at the image plane due to nonspecular scat- 
tering. The detailed nature of the interfacial roughness 
varies with the materials system and can depend strongly 
on the growth conditions. Hence, a fundamental under- 
standing of the growth and structure of the interfaces is 
important for improving the performance of ML x-ray op- 
tical coatings. 

We have developed a code for simulating the nonspec- 
ular x-ray scattering from periodic ML structures com- 
monly used as x-ray optical coatings. For the calculations 
presented in this paper, the ML is assumed to consist of 
alternating layers of MO and Si separated by rough bound- 
aries described by a set of surfaces fi(X,y) . The thicknesses 
of the MO and Si layers are tMo and tsi, respectively, and the 
ML period is A = tMo + tsia The coating consists of a total 
of N layer pairs deposited on an infinitely thick Si sub- 
strate. We assume that the propagation of roughness in the 
ML is described by Eq. ( 14), and that all of the Mo-on-Si 
and Si-on-MO interfaces are statistically equivalent. In par- 
ticular, the intrinsic roughness of each type of interface is 
assumed to be random, isotropic in the x-y plane, and sta- 
tistically represented by a rms roughness ai and autocor- 
relation length Li, where the subscript i denotes an inter- 
face above a MO layer (i = MO), a Si layer (i = Si), or the 
substrate (i = sub). For convenience we use the exponen- 
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TABLE I. Values of the atomic scattering factors f, and f2 and mass 
densities p used in the calculations of x-ray scattering from Mo-Si ML 
structures. 

fi f2 P 

A= 10 A A= 130 w A= 10 A ,I= 130 A (g/cm’) 

MO 35.1 14.4 a.6 2.1 10.2 
Si 12.6 -3.1 0.74 0.46 2.33 

tial autocorrelation function and corresponding Lorentzian 
power spectrum given by Eqs. (36) and (37), respectively. 

Calculations of nonspecular x-ray scattering are pre- 
sented for a variety of ML interface configurations relating 
to the three general categories of uncorrelated, correlated, 
and partially correlated roughness. In all cases the incident 
field consists of a monochromatic plane wave of wave- 
length A, incident at an angle 13, with respect to the normal 
to the ML stack. The differential power scattered per unit 
incident power dP/dfl is calculated as a function of the 
scattering angle 8 in the plane of incidence (4 = 0). The 
values used for the atomic scattering factors and the mass 
densities of MO and Si are listed in Table I. 

The limitations of the scattering theory restrict the cal- 
culations to cases where the scattered field is weak. As a 
simple guideline, we require that the field specularly re- 
flected from an interface be at most one-tenth the strength 
of the incident field or, equivalently, that the x-ray reflec- 
tance of each interface be less than 1%. For example, the 
reflectance from a MO-vacuum interface as a function of 
incident angle is plotted in Fig. 3 for x-ray wavelengths of 
10 and 130 A. The reflectance increases with increasing 
incident angle and reaches a value of 1% at incident angles 
of 85” and 55” for A = 10 and 130 A, respectively. We 
conclude that for Mo-Si ML structures, the condition of 
weak scattering is satisfied when the incident and scatter- 
ing angles are restricted to a range of - 85”-85” ( - 55”- 
55”) for A = 10 A (2 = 130 A). As the x-ray wavelength 
decreases the critical angle for total external reflection 
(measured from the normal) generally increases,33 and 
there is a corresponding increase in the angular range over 

t 

,’ 

10” 
,’ 

#’ 
.I’ ,’ 

t ___._________ _ ____. ----*I 
lo-‘, 

Incident angle (degrees) 

FIG. 3. Theoretical reflectance of a MO vacuum interface as a function of 
incident angle for x-ray wavelengths of 10 and 130 A. 
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FIG. 4. Calculations of nonspecular x-ray scattering (A = 130 A) f rom a Mo-Si ML (A = 75 8, r = 0.4) having uncorrelated interfacial roughness. 
Variation of the differential scattered power with (a) the number of ML periods, (b) the rms interfacial roughness o = a,, = osi = osUb, (c) the 
autocorrelation length L = L,, = Lsi = Lrub of the interfacial roughness, and (d) the angle of incidence. 

which the scattering theory is valid. Hence the theory is 
well suited for describing the scattering of hard x rays 
(il< 1 A) from ML structures provided that the condition 
(3) for slight roughness is satisfied. 

A. Uncorrelated roughness 

In the case of uncorrelated roughness, as discussed in 
Sec. II B, the replication factors are identically zero so that 
there is no propagation of roughness through the ML 
stack. The roughness of each interface is purely intrinsic 
and is described by 

p”(s) = iMo,Si(s) , (43) 

where the power spectrum Of fi is given by Eq. (37). Fig- 
ure 4 presents calculations of the nonspecular scattering 
from a ML having MO and Si layer thicknesses of 30 and 
45 A, respectively. Unless otherwise stated, the angle of 
incidence is normal to the ML (6, = 0”) and the x-ray 
wavelength is /z = 130 A. 

The dependence of the x-ray scattering on the number 
of bilayers N in the ML stack is shown in Fig. 4(a). The 
different curves correspond to values of N ranging from 1 
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to 50. The interface parameters are LM,, = Ls 0 
= Lsub = 100 A and o&r0 = osi = o,,b = 2 A. The scat- 

tered power is observed to roll off smoothly with increasing 
scattering angle, characteristic of the scattering from a sin- 
gle interface. As the number of layer pairs increases, there 
is a uniform, linear increase in the scattering intensity until 
approximately N = 20, where saturation is observed. Sat- 
uration occurs when the field amplitude inside the stack is 
attenuated due to specular reflection and absorption. 

The dependence of the nonspecular scattering on the 
rms roughness parameter is shown in Fig. 4(b) for the case 
of N = 50 layer pairs. The rms roughnesses cMO, Osi, and 
o&, are set equal and have values ranging from 1 to 4 A. It 
is evident in Fig. 4(b) that the intensity of the scattering 
scales with r? at all scattering angles, consistent with the 
dependence indicated by Eq. (26). 

Calculations of the scattering for different values of the 
autocorrelation length (L = LMo = La = Lsub) in the 
range of L = lO-IO4 A are presented in Fig. 4(c), where 
N = 50 and uMO = osi = o,,b = 2 A. The angular distribu- 
tion of the nonspecular scattering varies significantly with 
the autocorrelation length. When L(A the scattering is 
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FIG. 5. Calculations of nonspecular x-ray scattering from a Mo-Si ML having complete correlation, where the roughness of the substrate is replicated 
exactly at each interface. Variation of the differential scattered power with (a) the ML period, showing resvnant scattering at angles predicted by E.4. 
(45), (b) the angle of incidence, and (c) the number of ML periods. (d) Nonspecular scattering at A = 10 A from a ML having a period of A = 40 A, 
for two values of the layer-to-thickness ratio r. Four distinct orders of resonant scattering are labeled. 

fairly uniform with scattering angle. However, as L in- 
creases, the scattering becomes increasingly weighted in 
the specular direction (8 = 0’). Of course, in the limit 
L + 0~) , the ML interfaces become perfectly smooth and the 
scattering is purely specular. The intensity of the scattering 
scales as L2 at small 8, consistent with the L dependence of 
the power spectrum. 

The nonspecular scattering for different angles of inci- 
dence ranging from f3e = V-40” is shown in Fig. 4(d) . The 
interface parameters are LMo = Lsi = Lsub = 100 A and 
or+&, = ffsi = aSUb = 2 A. It is evident that the scattering 
always peaks in the specular direction, due to the maxi- 
mum of the power spectrum at s = 0. 

6. Correlated roughness 

The roughness of the substrate is assumed to be described 
statistically by Eqs. (36) and (37) with an autocorrelation 
length of &, = 100 A and rms roughness of o,,b = 2 A. 

An essential feature of any model for ML inter-facial The calculated nonspecular x-ray scattering from a 
roughness is the capability to account for the propagation MO-5 ML having completely correlated interfacial rough- 
of roughness through the ML stack. When propagation ness is presented in Fig. 5. The scattering predicted for x 
occurs, an interface is correlated with each of the underly- rays at normal incidence and a wavelength of/z = 130 A is 
ing interfaces. The correlation of the interface structure shown in Fig. 5 (a). The curves correspond to different 
provides a unique phase relationship between the radiation values of the ML period in the range of A = 65-80 A. In 
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fields scattered from the interfaces, with a resulting pro- 
found effect on the nature of the scattered field. To illus- 
trate this behavior we consider next the extreme case of 
complete correlation, where the replication factors are 
unity (&, = Zsi = 1). Furthermore, we choose the ML 
interfaces to have no intrinsic roughness 
( aM, = asi = 0 A). This yields the condition of purely ex- 
trinsic roughness considered in Sec. II C, where the surface 
profile of the substrate is exactly reproduced at each ML 
interface: 

fySi(s) = i&,(S). (4) 
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FIG. 6. Geometrical construction depicting the location of resonant non- 
specular x-ray scattering in reciprocal space. Resonant scattering occurs 
wherever the sphere of radius k intersects the planes qr = Zrm/A, corre- 
sponding to the set of circles defined in J&J. (46). 

each case the ratio I- of the MO layer thickness to the ML 
period is kept at the constant value of 0.4. The scattering is 
characterized by a striking resonance surrounded by sec- 
ondary oscillations. The angular position 0, of the peak of 
the resonance is seen to vary systematically with the ML 
period. The origin of the resonance behavior can be under- 
stood by noting that the ML structure has a series of re- 
ciprocal lattice vectors along the z direction with magni- 
tude 2n-m/A. The resonance in the nonspecular scattering 
occurs when the change in the momentum of the x ray 
along the z direction matches a reciprocal lattice vector of 
the ML, such that 

(45) 

where m = 1 and qr = k (cos 0, + cos 6JP). Equation (45) 
neglects refraction corrections that are usually small at 
x-ray wavelengths. This is identical to the Bragg condition 
for x-ray diffraction from a ML, except that Bragg scatter- 
ing requires that qx = q,, = 0. The resonance behavior of 
the nonspecular scattering can be considered as quasi- 
Bragg diffraction, where a finite momentum transfer in the 
x-y plane is permitted.t4 As a result, the introduction of 
correlated roughness to a ML structure has an interesting 
effect in reciprocal space: The series of lattice points at 
q = (2am/A)$ corresponding to scattering from an ideal 
ML (i.e., having perfectly smooth interfaces) spread out 
into diffuse sheets located at qr = 2rrm/A. Then, for a 
given x-ray wave number k, the resonant nonspecular scat- 
tering is described by a circle in reciprocal space according 
to 

(s, + kr~,)~ + (s,, + knJ2rk2 - (27-rm/A + knJ2. (46) 

The conditions for resonant scattering expressed by 
Eq. (46) are illustrated in the geometrical construction 
presented in Fig. 6. Thecesonance scattering occurs along 
the sheets qz = 2rm/A. The sheets have finite thickness 
6q, given approximately by 

2am 
&z”~ f 

eff 
(47) 

where N,, is the number of ML periods over which the 
roughness is correlated. For completely correlated rough- 
ness, Neff is simply the total number of ML periods, inde- 
pendent of frequency. In the case of partially correlated 
roughness, where the correlation decreases at higher fre- 
quencies s, the sheets of resonant scattering become 
broader and more diffuse with increasing distance from the 
qr axis. The x-ray scattering measurement at a particular 
wavelength /z interrogates points in reciprocal space that 
lie on a sphere of radius k = 2rrr//z having its center at the 
point q = - kir^ (the Ewald sphere). The intersection of 
this sphere with the planes at qz = 2?rm/A are the set of 
circles defined by Eq. (46), representing the peak in the 
resonant scattering for a given experimental configuration 
(i.e., x-ray wavelength and incident angle). The angular 
position of the resonant scattering in real space is given by 
the direction of the circles with respect to the center of the 
sphere. From this construction it is clear that, for a given 
ML period A, an infinite series of scattering resonances are 
available; the number of orders m of resonant scattering 
that are experimentally accessible is determined by the x- 
ray wavelength (i.e., the radius of the Ewald sphere). The 
width of the resonance is determined by the thickness of 
the sheets as given by Eq. (47) and the trajectory of the 
scan in reciprocal space. Resonant nonspecular x-ray scat- 
tering of this type has been experimentally observed by 
several groups,‘““’ and some of the experimental issues are 
discussed by Savage et ~1.‘~ The calculations presented in 
this paper correspond to “28” scans, where the incident 
beam is fixed and the detector position is varied. 

Further examples of resonant scattering from a ML of 
period A = 75 A are shown in Fig. 5 (b). The different 
curves correspond to angles of incidence ranging from 
6, = V-40”. Scattering resonances occur in both the for- 
ward and backward directions, which corresponds to view- 
ing a slice at qx = 0 through the m = 1 circle of resonant 
scattering shown in Fig. 6. It is also apparent that the 
angular distribution of the scattering is weighted by the 
uncorrelated scattering distribution from a single interface; 
the scattering is enhanced in the specular direction. 

The scattering of normal incidence x rays from a ML 
of period A = 75 A having different numbers of layer pairs 
is presented in Fig. 5(c). The enhancement of the reso- 
nance behavior as the number of layer pairs increases is 
clearly evident. The intensity of the resonance peak scales 
as N2 (until saturation occurs due to extinction of the 
incident field) and the frequency of the secondary oscilla- 
tions increases with the number of layers. This behavior is 
typical of coherent scattering from a periodic structure 
(e.g., diffraction from multiple slits). The peak of the res- 
onance corresponds to the condition where all of the fields 
are in phase; the maxima in the secondary oscillations oc- 
cur at angles where the phase difference between the radi- 
ation scattered from the top and bottom interfaces is an 
integral multiple of 2~. 

Resonant scattering from correlated roughness can oc- 
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cur whenever Eq. (46) is satisfied, resulting in a spectrum 
of harmonics associated with the different integer values of 
m. This behavior is illustrated in Fig. 5 (d), where we show 
calculations of the scattering of unpolarized x rays at an 
incident angle of 85” and a wavelength of ;1= 10 A from a 
Mo-Si ML having N = 50 periods of A = 40 A. The 
atomic scattering factors used in the calculation are listed 
in Table I. Four strong scattering resonances are clearly 
evident. The positions of the peaks are in good agreement 
with Eq. (46) and the corresponding values of m are la- 
beled in the figure. The two curves represent different val- 
ues for the ratio of the MO layer thickness to the ML 
period: The solid and dashed curves correspond to values 
of I = 0.4 and 0.5, respectively. It is apparent that the 
even orders are suppressed when I = 0.5. This is because 
the fields scattered from the Mo-on-Si and the Si-on-MO 
interfaces in each layer pair are QT out of phase and hence 
destructively interfere. The same effect is observed for the 
ditIi-action orders of a ruled grating, where the even orders 
vanish when the line-to-space ratio is unity. 

C. Partially correlated roughness 

Although the cases of uncorrelated and completely 
correlated interfacial roughness are of interest for showing 
the limiting behavior of the x-ray scattering, it is unlikely 
that ML structures grown in the laboratory are well de- 
scribed by either of these extremes. A more realistic model 
for roughness propagation is the intermediate case of par- 
tial correlation, where the roughness of an interface in- 
cludes a partial replication of the structure of the underly- 
ing interfaces. In the model (14) for ML interfacial 
roughness, the nature of the roughness propagation in the 
ML is dictated by the specific functional form of the rep- 
lication factors g(s). For the following calculations we use 

Z;(s) = 
1 

1 + 47f?vitisZ ’ (48) 

This form is chosen to be consistent with the linearized 
Langevin equation ( 19) for surface roughness propagation 
in the limit where the ML becomes a continuous film. In 
particular, the Hankel transform of Eq. (48) is 

1 
ai(r) = -; K. zrrj, 

where Kc(x) is the modified Bessel function having asymp- 
toticvaluesof (-lnx) asx+Oand (x-1’2e-X) asx-+m. 
Equation (49) is the solution for isotropic diffusion from a 
point source in two dimensions, where the thickness of the 
ith layer ti substitutes for the time variable and Vi is the 
diffusion coefficient. Hence for this specific choice of rep- 
lication factor, the propagation of roughness behaves in a 
manner analogous to surface diffusion: A spike introduced 
at the (i - 1)th interface propagates to the ith interface, 
annealing into a surface feature having a radius of 
- &. Correspondingly, a surface fluctuation of fre- 
quency s is damped to one-half of its original amplitude 
when the overlayer has a thickness of ti = 1/(4?T2viS2). 
The replication of roughness is strongly dependent on fre- 

quency; the low-frequency components of roughness tend 
to propagate more effectively through the ML stack, while 
the frequencies greater than - l/ fi are damped. Conse- 
quently, the correlation of the interfacial roughness be- 
tween the different interfaces is greatest for the lower fre- 
quencies, and the x-ray scattering from the low-frequency 
components of the roughness is expected to exhibit the 
strongest resonant behavior. 

With this particular model of roughness propagation, 
Eq. (14) becomes 

fyqs) = i&$(s) 

( 1 

+ l + 4~vMo,SitMo,SifMssIsi) 
~yy(s). 

(50) 

The total of eight parameters, (TMo,si,sub, LMo,si,sub, and 
YMo,si, in conjunction with the recursive relation (50), 
completely define the structure of the interfaces in the ML 
stack. 

As an example, consider a ML$ucture in which the 
layers have no intrinsic roughness [hMo,si(s) = 01. In this 
case the roughness at each interface is due solely to the 
replication of the roughness of the original substrate. If we 
assume that all of the layers have the same thickness At 
and value for the diffusion parameter v, then from Eq. 
(50) the roughness of the ith interface can be written as 

Ij;l&(s). (51) 

The inter-facial roughness damps exponentially with the 
number of layers and the strength of the damping increases 
with increasing frequency. Taking the limit as At-0 and 
i- UJ yields an expression describing the roughening of a 
continuous film as a function of thickness t, 

T(s;t) = exp( -4??vt~)h,ub(s). (52) 

This is the solution of the differential equation J 18) de- 
scribing the diffusion of an initial perturbation h&,(d) in 
the case where the source term ij vanishes. 

Calculations of nonspecular x-ray scattering from a 
ML having partially correlated roughness (v = vMO 
= Vsi) are presented in Fig. 7. The structure of the Mo-Si 

ML is similar to the previous example (A = 40 A, I = 0.4, 
N = 20), as is the incident field (1 = 10 A, 19~ = 85”). Fig- 
ure 7(a) shows the scattering for different values of the 
diffusion parameter v in the case where the MO and Si 
layers have no intrinsic roughness ( (TM0 = osi = 0 A). In 
this case, all of the interfacial roughness in the ML stack is 
due to replication of the substrate roughness characterized 
by ,&, = 100 A and a,,, = 1 A. The four scattering reso- 
nances arising from the correlated roughness are clearly 
evident. Increasing the diffusion parameter v causes the 
scattering intensity to decrease at all angles, as the inter- 
facial roughness is damped more effectively. The damping 
is smallest at the scattering angles near the specular direc- 
tion of 8 = 85”, which correspond to low-frequency com- 
ponents (i.e., smaller values of s). 
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FIG. 7. Calculations of nonspecular x-ray scattering (A = 10 A) from a 
Mo-Si ML (A = 40 A, N = 20, r = 0.4) having partially correlated 
roughness, for different values of the diffusion parameter Y = v,, = vsi. 
The differential scattered power is calculated for the cases of (a) no 
intrinsic roughness ( aMO = os, = 0 A) and (b) finite intrinsic roughness 
( u&=q,= 1 A,. 

We next allow the ML interfaces to include a compo- 
nent of intrinsic roughness. In this case, the roughness of 
the underlying layers is continuously damped, while new 
random roughness is introduced at each layer. After a 
number of layers has been deposited corresponding to a 
transient stage, the ML system converges to a steady-state 
condition where the roughness of the interfaces is constant. 
If we assume for simplicity that each of the M = 2N inter- 
faces is characterized by-the same replication factor Z(s) 
and intrinsic roughness h(s), then it is straightforward to 
show that the power spectral density (PSD) of the inter- 
facial roughness converges to 

PSD= Is(s) I2 

o-%) 
= 11- ;;f CJ%) --) l _ 2(s) , as M--+c~, 

(53) 
where (T and G(s) are the rms roughness and power spec- 
trum associated with h(s). This relationship provides a 
direct method of determining the intrinsic interface rough- 

ness from the PSD measured at any interface in the ML 
stack (e.g., the top surface). 

An example of the nonspecular x-ray scattering from a 
ML that includes intrinsic roughness is presented in Fig. 
7(b). X-ray scattering (A = 10 A, 13, = 85”) from the Mo- 
Si ML considered previously (A = 40 A, r = 0.4, N = 20) 
is calculated for the case in which the intrinsic roughness 
of all the layers (and the substrate) is identical: LMO 
= Lsi = Lsub = 100 A, a~, = asi = U,,b = 1 A, and 

vMO = Vsi. The curves in Fig. 7(b) correspond to different 
values of the diffusion parameter v. At small values of v the 
scattering resonances due to correlated roughness are 
clearly visible. However, the introduction of intrinsic 
roughness entirely washes out the secondary oscillations. 
As v increases, the replication of roughness from layer to 
layer is damped, thereby diminishing the amount of corre- 
lation. Correspondingly, the intensity of the scattering res- 
onances decrease, and converge to a smooth background 
characteristic of the scattering from a ML having com- 
pletely uncorrelated interfacial roughness. The sensitivity 
of the resonance structure on the diffusion parameter var- 
ies with the order of the resonance. The highest orders are 
suppressed rapidly with increasing Y since these corre- 
spond to scattering from the higher spatial frequencies. 

IV. CONCLUSION 

The theory presented in this paper provides a general 
framework for describing the nonspecular x-ray scattering 
from interfacial roughness in ML structures, valid within 
the limitations imposed by the following simplifying as- 
sumptions: (i) The scattered field is weak and refraction 
can be neglected, (ii) multiple scattering of the nonspecu- 
lar field can be neglected, and (iii) the interfacial rough- 
ness is slight as defined by condition (3). 

As in the case of x-ray diffraction from crystal lattices, 
the nonspecular scattering from roughness in a ML struc- 
ture is often sufficiently weak to justify the neglection of 
refraction and multiple scattering. Within this kinematic 
approximation, the momentum transfer q of the scattered x 
ray maps to a single point in reciprocal space, and the 
intensity of the scattering at that point is directly related to 
the power spectra of the interfacial roughness through Eq. 
(26). The nonspecular x-ray scattering at measurable an- 
gles derives from those frequency components of the inter- 
facial roughness having spatial wavelengths in the vicinity 
of il, the x-ray wavelength. The smallest spatial wavelength 
that can be interrogated is -A/2, corresponding to back- 
scattering. The largest spatial wavelength that contributes 
to the nonspecular scattering is the projection of the trans- 
verse coherence length of the x-ray beam onto the surface 
of the ML sample. Thus a specific frequency regime in the 
power spectrum of the interfacial roughness can be studied 
by choosing an appropriate wavelength and configuration 
of the incident field. 

The theory predicts a wide range of interesting phe- 
nomena, some aspects of which have been explored in the 
calculations presented in Sec. III. In particular, when 
roughness propagates through the ML, resulting in corre- 
lation between the structure of the different interfaces, in- 
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terference in the x-ray scattering produces a characteristic 
resonance behavior. This resonant scattering occurs at the 
locus of points in reciprocal space defined by the set of 
planes 1 qz 1 = 2nm/A. By adopting the physically reason- 
able model for roughness propagation in a ML expressed 
by Eq. ( 14), we have established a quantitative relation- 
ship between the correlation of the interface structure and 
the resonant nonspecular scattering. The modeling of res- 
onant scattering should provide a sensitive measure of the 
existence and degree of correlation in the ML interfacial 
roughness. 
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