APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. B 58, 8590–8595 (1998)

[Issue 13 – 1 October 1998 ]

Previous article | Next article | Issue 13 contents ]

Add to article collection View PDF (115 kB)


Magnetic behavior of probe layers of 57Fe in thin Fe films observed by means of nuclear resonant scattering of synchrotron radiation

L. Niesen, A. Mugarza*, and M. F. Rosu
Nuclear Solid State Physics, Materials Science Centre, Groningen University, Nijenborgh 4, 9747 AG Groningen, The Netherlands
R. Coehoorn, R. M. Jungblut, and F. Roozeboom
Philips Research Laboratories, Box WA-14, 5656 AA Eindhoven, The Netherlands
A. Q. R. Baron§, A. I. Chumakov, and R. Rüffer
European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble, France
Received 4 November 1997

The magnetic behavior of epitaxial probe layers of 57Fe down to a thickness of 1 monolayer (ML) has been investigated with the technique of nuclear resonant scattering by synchrotron radiation (NRS) in a grazing-incidence geometry. The samples consisted of 10–55 ML Fe deposited onto a Ge(100) substrate and covered with 2 nm Au. Probe layers of 1–10 ML 57Fe were inserted at different depths in the Fe film. The technique yields spectroscopic information, i.e., magnetic hyperfine fields and isomer shifts, as well as structural information, such as layer thicknesses and interface roughness. The results show the existence of a nonmagnetic Ge/Fe interlayer of at least 10 ML thick after deposition at room temperature. Subsequent conversion electron Mössbauer spectroscopy (CEMS) data show that, although the samples were stored at room temperature, the interlayer diffusion proceeds as a function of time. The relative merits of NRS and CEMS for the investigation of ultrathin layers are discussed.

©1998 The American Physical Society

URL: http://link.aps.org/abstract/PRB/v58/p8590
DOI: 10.1103/PhysRevB.58.8590
PACS: 75.70.Ak, 75.70.Cn, 76.80.+y, 78.70.Ck


* Present address: CEIT, Departamento de Materiale, 200009 San Sebastian, Spain.
§ Present address: SPring8/JASRI, Kamigoro-cho, Ako Gun, Hyogo 678-12, Japan.

Add to article collection View PDF (115 kB)

Previous article | Next article | Issue 13 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. For a recent review, see, e.g., Ultrathin Magnetic Structures, edited by J. A. C. Bland and B. Heinrich (Springer, Berlin, 1994), Vols. 1 and 2.
  2. G. Liu and U. Gradmann, J. Magn. Magn. Mater. 118, 99 (1993) [dot INSPEC].
  3. P. J. Schurer, Z. Celinski, and B. Heinrich, Phys. Rev. B 48, 2577 (1993); ; 51, 2506 (1995).
  4. R. Rüffer and A. Chumakov, Hyperfine Interact. 97/98, 589 (1996).
  5. A. I. Chumakov, G. V. Smirnov, A. Q. R. Baron, J. Arthur, D. E. Brown, S. L. Ruby, G. S. Brown, and N. N. Salashchenko, Phys. Rev. Lett. 71, 2489 (1993) [SPIRES].
  6. T. S. Toellner, W. Sturhahn, R. Röhlsberger, E. E. Alp, C. H. Sowers, and E. E. Fullerton, Phys. Rev. Lett. 74, 3475 (1995).
  7. W. Folkerts, W. Hoving, and W. Coene, J. Appl. Phys. 71, 362 (1992) [dot INSPEC].
  8. G. W. Anderson, P. Ma, and P. R. Norton, J. Appl. Phys. 79, 5641 (1996) [dot SPIN][dot INSPEC].
  9. K. Shintaku, Y. Daitoh, and T. Shinjo, Phys. Rev. B 47, 14 584 (1993).
  10. A. Q. R. Baron, Nucl. Instrum. Methods Phys. Res. A 353, 665 (1994).
  11. Y. Kagan, A. M. Afanas'ev, and V. G. Kohn, J. Phys. C 12, 615 (1979) [dot INSPEC].
  12. J. P. Hannon, N. V. Hung, G. T. Trammell, E. Gerdau, M. Mueller, R. Rüffer, and H. Winkler, Phys. Rev. B 32, 5068 (1985); ; J. P. Hannon, G. T. Trammell, M. Mueller, E. Gerdau, R. Rüffer, and H. Winkler, 32, 6363 (1985).
  13. L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980) [dot INSPEC].
  14. The computer code written for this calculation is based on A. Q. R. Baron, thesis, Stanford, 1995.
  15. H. Kiessig, Ann. Phys. (Paris) 10, 769 (1931).
  16. A. Q. R. Baron, J. Arthur, S. L. Ruby, A. I. Chumakov, G. V. Smirnov, and G. S. Brown, Phys. Rev. B 50, 10 354 (1994).
  17. G. Weyer, in Mössbauer Effect Methodology, edited by I. J. Gruverman (Plenum, New York, 1976), Vol. 10, p. 301.
  18. R. Wäppling and L. Häggström, Phys. Lett. 28A, 173 (1968).
  19. R. Wäppling, L. Häggström, and E. Karlsson, Phys. Scr. 2, 233 (1970) [dot INSPEC].
  20. O. Massenet and H. Daver, Solid State Commun. 21, 37 (1977) [dot INSPEC].
  21. J. Patankar, Y. V. Bhandarkar, S. M. Kanetkar, S. B. Ogale, and V. G. Bhide, Nucl. Instrum. Methods Phys. Res. B 7/8, 720 (1985).
  22. A. Q. R. Baron, A. I. Chumakov, H. F. Grünsteudel, H. Grünsteudel, L. Niesen, and R. Rüffer, Phys. Rev. Lett. 77, 4808 (1996).
  23. G. A. Prinz, in Ultrathin Magnetic Structures (Ref. 1), p. 35.
  24. D. P. Siddons, U. Bergmann, and J. B. Hastings, Phys. Rev. Lett. 70, 359 (1993).
  25. Yu. V. Shvyd'ko, U. van Bürck, W. Potzel, P. Schindelmann, E. Gerdau, O. Leupold, J. Metge, H. D. Rüter, and G. V. Smirnov, Phys. Rev. B 57, 3552 (1998). .


Add to article collection View PDF (115 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 13 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]
E-mail: prola@aps.org