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A generzl theory is developed for the scattering of x rays from a single nonideal interface
between two dielectric media. It is then extended to describe the scattering of x rays from a
multilayer structure composed of many nonideal interfaces. The most unique feature of this
theory is that there are no constraints on the physical structure of the interfaces; the interfaces
can have any form of roughness or compositional inhomogeneity. A simple analytical
expression is derived for both the near and far radiation field to first order, assuming that the
scattering is weak. The theory is valid for arbitrary polarization and at all angles of incidence
{measured from the normal) less than the critical angle for total external reflection. Finally,
the results are applied to study the effect of different interface structures on the performance of

multilayer x-ray optics.

i. INTRODUCTION

Recent progress in the controlled deposition of ultrathin
rmultilayer structures has had a large impact in the field of x-
ray optics.’ A synthetically fabricated structure composed of
many alternating layers of high-X and low-X materials can
produce normal incidence reflectance of tens of percent at x-
ray wavelengths, several orders of magnitude greater than
the reflectance of a single surface (typically ~ 107%). This
property has spurred the development of a new class of re-
flection optics for the soft x-ray wavelength region of ~ 1-30
nm. Comprehensive descriptions of the design, fabrication,
and characterization of x-ray multilayer mirrors can be
found elsewhere.” ' Indeed, x-ray multilayer optics are now
used in many applications, including x-ray astronomy, mi-
€roscopy, spectroscopy, as filters and monochromators for
intense sources such as synchrotron radiation and in x-ray
laser cavities.'"%®

Designing optimized multilayer x-ray optics for specific
applications requires the ability to accurately calculate the
scattering of x rays from these structures. The simplest and
most common method is to assume that the muliilayer is
composed of ideal layers. The refiectance and transmittance
of a system of ideal interfaces can be determined from the
Fresnel equations for the scattering from a single interface in
conjunction with recursive® or matrix™ methods to treat
the multiple scattering within the layered structure. Itis gen-
erally found, however, that calculations based on the simple
model of ideal layers yield results that are in substantial dis-
agreement with the measured performance. A major reason
for the disparity is the failure of the simple model to account
for realistic interfaces. In practice, the interfaces between
materials that are not well lattice-matched are far from ideal
on the spatial scale of an x-ray wavelength. Many of the
material combinations preferred for x-ray multilayer optics,
such as tungsten and carbon, exhibit significant polycrystal-
line growth and compound formation at the layer boundar-
ies, resuiting in rough and extended interface regions.’'*
The nonideal interfaces not only modify the specular scatter-
ing, but can also scatter X rays into nonspecular directions.
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Hence, the quantitative calculation of the scattering proper-
ties of a multilayer x-ray opticai component requires both an
accurate description of the interfaces and a comprehensive
theory of the interaction of x rays with the nonideal struc-
ture.

The scattering of electromagnetic radiation from a noni-
deal interface has been an important problem in applied
physics. Much of the early work® was directed towards un-
derstanding the behavior of radic waves (and radar) scat-
tered from the surface of the earth. In particular, Beckmaunn
and Spizzichino®® (BS) developed a comprehensive scalar
scattering theory that applies to a rough surface for which
the radius of curvature is much greater than a2 wavelength of
the radiation. Concurrently, there has been a substantial
theoretical effort to describe the scaitering of light from
rough surfaces. The specular reflectance at normal incidence
has been related to the distribution of surface heights, estab-
lishing light scattering as a diagnostic measurement of sar-
face roughness.’”*® There have been several treatments of
the scattering of lght from thin films*** and multilayer
mirrors*'*? having rough interfaces, which are essentially
extentions of the BS theory. More rigorous analytical***
and numerical*>*® methods have been presented for calcu-
fating the light scattered from “slightly rough” surfaces. The
term “‘slightly rough” refers to the condition where the de-
viations of the surface from the ideal plane are much smaller
than the wavelength of the light.

In the regime of shorter wavelengths an early effort was
made to give a theoretical ireatment of the scattering of x
rays from a nonideal interface.®” A numerical method has
heen developed by Nevot and Croce™ for calculating the
specular scattering of electromagnetic radiation near graz-
ing incidence, and has been extended by Croce* for the more
general case of a stratified medium. Vidal and Vincent™®
have applied an analytical technique based on reciprocity
relations>' to determine the specular reflectance and trans-
mittance of x rays from a nonideal multilayer stack. Their
resulf is limited to the special case where the layers are
“slightly rough’ in one dimension. More recently, Sinha er
al.’* have developed a scalar theory for the scattering of x

© 1988 American Institute of Physics 491




rays and neutrons from a rough surface that can be described
statistically in terms of a Gaussian random variable,

1t is evident that the complexity of the problem of the
scattering of electromagnetic radiation from an arbitrary in-
terface precludes an exact analytical solution. Unfortunate-
ly, all of the previous theories place restrictions on the scat-
tering conditions and on the nature of the interfaces that can
pose undesirable limitations when calculating the x-ray scat-
tering from realistic interface structures. In particular, we
identify three important requirements: (1) The scattering
theory should be applicable to any type of interface structure
including the important special cases of rough and composi-
tionally inhomogeneous interfaces; (2) there should be no
constraints on the spatial extent of the interface region; and
(3) the theory should be valid for any configuration of the
incident field.

The purpose of this paper is to develop a general scatter-
ing theory that satisfies these basic criteria. The scattering of
x rays from an interface is weak except near grazing inci-
dence, since ali materiais have dielectric constants near unity
at x-ray wavelengths. This property is exploited in Sec. I to
derive a first-order analytical solution for the total field scat-
tered by a single interface of arbitrary structure. The theory
is valid for all polarizations and at any angle of incidence
away from grazing incidence.

In Sec. I the theory is extended to describe the scatter-
ing of x rays from a system of nonideal interfaces. A numeri-
cal method is presented for calculating the reflectance, trans-
mittance, and the nonspecular scattering from a nonideal
multilayer structure. The interaction of the interfaces is
treated in the *‘specuiar field approximation,” wherein the
multiple scattering of the nonspecular field is neglected. As
an application of the theory, we calculate the refiectance and
transmittance of two representative multilayer x-ray beam-
splitters, and investigate the effect of different interface
structures on their performance.

ii. THE SCATTERING OF X RAYS FROM A SINGLE
NONIDEAL INTERFACE

A, Scattering theory formalism

We begin by deriving a general expression that describes
the scattering of x rays from an arbitrary spatial inhomoge-
neity. The scattering from an interface between two dielec-
tric media is then treated as a special configuration of the
general scattering probiem.

Consider the propagation of x rays in a medium repre-
sented by a dielectric function €(x,w), which relates the dis-
placement field D to the electric field E (assuming a har-
monic time dependence ) through

Di(x,0) =e(x,0)E(x,w). {(n

The implications and limitations of the dielectric function
representation of matter are discussed in Appendix A. At x-
ray wavelengths, the dielectric function is typically a com-
plex quantity, the imaginary part corresponding to the at-
tenuation of the electromagnetic field in the medium. For
simplicity of presentation, however, the dielectric function is
assumed to be purely real throughout the derivations in Secs.
I B and I C. The modification of the theory to accommo-
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date a complex dielectric function is the subject of Sec. [ D.

Let the incident field E° be defined as the field that pro-
pagates in & uniform medium of dielectric constant ¢, In
particuiar, the incident field is a solution of the homoge-
necus wave eqguation,

(V2 +EHE’ =0, (2)

where k2 = e,(w/c}?

Now consider the introduction of a spatial inhomogene-
ity a{x) defined as the deviation of the dielectric function
from its uniform value,

af{x) = e{x) — &, (3

The incident field is scattered from the spatial inhomogene-
ity, producing a scattered field £ that satisfies the inhomo-
geneous differential equmtion,53

(V2 + k)D*(x) = — VXVXa(x)[E(x) + E*(x)].
(4}

Al x-ray wavelengths, the dielectric constant for all ma-
terials is close to unity. Consequently, any variations in the
dielectric function must be small so that a(x) < 1. Inspec-
tion of (4) suggests that when o is small, the scattered field is
weak. Hence, the scatiered field is estimated to first order by
neglecting E™ on the right-hand side of (4) (the Born ap-
proximation).

An analytic solution for the scattered field is obtained
through the method of Fourier transformation. The incident
field is chosen to be a plane wave propagating in the direction
#° with polarization &°,

E%(x) = &° exp(ikA®x). (5)
Using the usual relationship between a function f{x) and its

Fourier transform f(s), we take the Fourier transform of
both sides of Eq. (4) to find

D™ (8) = [(AX&) XA [s/(s — k) |@(s — kA®),
(6)

where s =s#. An expression for the scattered field is obtained
through the inverse Fourier transform of (6),
1

DSC =
{x) TISE

f[(ﬁxé“)xﬁ}

2

X &(s — ki) #@ﬂ ds. (7

Next we specialize the result to the case of the scattering
of x rays by an interface. In particular, we choose the vari-
ation a to represent a second uniform medium of dielectric
constant €) located in the half space z < 0 such that

0 zo 4+ @

a(x) -;—:{ (8)

Az — o’
where A=¢, — €. As shown schematically in Fig. 1, the
interface corresponds to the region of transition between the
two media in the vicinity of the plane z = 0.

The interface can be described formally by a function
g{(x) defined as the normalized derivative of a(x) along the
z direction,

ks da(x) :_]_ de(x)
A 9z A dz

g(x)= 9
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FIG. 1. Configuration of the x-ray scattering from a single interface.

In addition, we define the origin of the z axis by requiring
that

(zg(x)dx =0 (10}
J

In order to keep the scattered power finite, the Iateral
area of the interface is considered to be bounded, extending
for a rectangular region —X/2<x<X/2 and — Y /2
<y < ¥ /2. Then the interface encompasses an area in the x-p
plane equal to

XY:Ig(x)a’x:é(O). (11)
In the remainder of this paper, the limit X, ¥— o is implicit-
ty assumed to avoid diffraction from the edges of the inter-
face.

The specular components of the scattered field are only
sensitive to the average variation of the dielectric function
across the interface. Consequently, it is useful to introduce
the interface profile function p(z), defined as the normalized
average value of the dielectric function along the z direction,

155 [e(x) — & ldxdy

PO iy
1 o~
= €(x) — ¢ {dx dy. 12
Ag(o)“[() bldxdy (12)
We also define w(z) as the derivative of the interface profile,
w(z) = P& (13)
dz

The advantage of this formalism is its complete genera-
lity; the functions g{x), p(z), and w(z) can represent an
interface of arbitrary structure. To illustrate the role of these
functions, three special types of interfaces are presented in
Fig. 2. Theideal interface is shown in Fig. 2(2), in which the
tramnsition between two media having dielectric constants ¢,
and €, occurs abruptly at z = 0. The profile p(z) is a unit
step function and the interface is characterized by the delta
function g(x) = w(z) = 8§(z). A purely rough interface is
shown in Fig. 2(b). In this case the interface profile p(z) is
smooth even though the transition between the media at any
position (x,y) is abrupt. In particular, the boundary between
the two media can be defined by a surface z = f(x,y). Since
the dielectric function is discontinuous at the surface, then
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FIG. 2. One-dimensional representations of different types of interfaces
having profiles p(z} and derivatives w(z}. (2} An ideal interface; (b) a
purely rough interface; and (c¢) a purely diffuse interface.

g(x) =8z — fix,y}] and wiz) represents the normalized
distribution of surface heights f{x,y) about the plane z = 0.
In contrast, Fig. 2{c) shows a purely diffuse interface, in
which the dielectric constant varies smoothly along the z
direction and is uniform in the x-y plane. In this case p(z)
represents the actual variation of composition across the in-
terface and g(x} = g{2) = w(z) is the composition gradi-
ent.

B. The reflected field

The configuration of the scattering problem is depicted
in Fig. 1. An incident plane wave propagates from medium
€, to medium ¢, in a direction A° with initial polarization &,
and scatters into a direction # with polarization . The re-
fiected and transmitted fields correspond to scattering in
which #, >0 and n, <0, respectively. We consider first the
derivation of the reflected field E'.

The Fourier transform of g(x} is given by

g(8) = (is./A)a(s). {14)

Substitution for & in (7) yields an expression for the reflect-
ed field in the Born approximation,

gy = -8 L sy xh
E{x) = (27)360J‘[(n><e } X &)

s7e** ds
(s, — kn) (s — k%)
Defining g* as the partial Fourier transform of g such that

Xg(s — kA®) (15)

fg*(sx,sy,z’)e— 5 dr = 3(s), {i6)

we can separate the integration over s, in (15) to obtain

E(x) = —— f’”‘(js (Axe")yxh
(277) € [ ]
l\ gz -2 ds'
(sz — knd) (s, + £)(s, ~§))
Xg¥(s, — knl.s, — knj),z')
N ds, ds, dz, (17
where
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=k? =5 —s. (18)
The integral over s, in (17) is evaluated using contour inte-
gration. The scattered field must be evaluated at a position x
that is completely outside of the interface region. Specifical-
1y, it is required that z > z' for all points x" at which g(x’) is
nonzero. Then the factor exp{is, (z —2') ] allows the con-
tour to be closed with a semicircle of infinite radius lying in
the upper s, plane. The integrand has poles at s, = knJ, + £.
The poles are actually displaced above and below the real
axis, because the causality of E" requires that the frequency @
must have a small positive imaginary part> making the wave
number k imaginary. Only the pole at s, = + £ is enclosed
by the contour and contributes to the integral (recali that
#? < 0). Evaluation of the residue of the integrand requires
from (19) thats=kandn, = (1 —n2 — ni)”z. Then, the
integration yields

E(x) =

847260_;- [{Ax&") xA]

g(kﬁ — k™)

0 e dn_ dn,.
n,(n, —n,)

(19)
The component of the scattered field having polarization &
can be written as

2*E"(x) :Jfr(n?} 7°.80) e dn_ dn,, (20)

where 2% is the complex conjugate of the polarization vector
(required for circular polarization) and the mode amplitude
density r(#,6;7°,8%) is defined by
BE? a0y BUKR — KA®)
S n.n, —n2)

It is evident in (20) that the refiected field is a superposition
of plane wave modes and evanescent modes. As usual, the
evanescent modes correspond to fields that decrease expo-
nentially with distance from the interface. They are associat-
ed with imaginary values of #,, which occurs when
w4 1> 1

The scattered radiation in the far-field is derived by let-
ting x = R# in the limit as R — . As the point of observa-
tion is removed far from the interface,” the field is dominat-
ed by the mode that propagates in the direction #. It is shown
in Appendix B that the scattered field becomes

R oo

P*E'(x =RA) = —

r(7,8;°28%) =

(21)

Zﬁfﬁz . "R

(22)

Introducing the momentum transfer vector q=£~&# — k4",
Eq. (22) can be rewritten as

: "kR
2 Q) = — BKT (. SHUESS (23)

T€o =

It is evident that the x rays scattered from the interface with
a change of momentum g are described in the far field by an
outgoing spherical wave with an amplitude proportional to
Z2(q). Physically, g(g) represents the frequency spectrum of
the spatial inhomogeneities that compose the interface re-
gion. It is also interesting to observe that the solution is con-
sistent with the principal of reciprocity, as the amplitude of
the scattered field is unchanged under the transformation
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ficy — A°. The analytlcal expression (23} can be compared
to the results of Croce for the special case of a stratified
interfacial region to obtain a useful geometrical interpreta-
tion of the scattering process.

The quantity most relevant to experiment is the scat-
tered power. The differential power dP " scattered into solid
angle ¢{} with propagation vector # and polarization ¢ per
unit incident power having propagation vector #° and polar-

ization &° is given by
r 4 |n)
ap (7,;7°,8%) 2——-_—2~’nZi (7,878
a0 k2%3(0)
1 AR oy | B@]
167202 | €04, E(0)
(24)

Except for the geometrical and polarization factors, the an-
gular distribution of the scattered power is simply related to
the structure of the interface through the term [g(q) %

€. The transmitted fieid

The derivation of the radiation field transmitted
through a nonideal interface follows closely the case of the
reflected field. We begin by modifying Eq. (7), replacing the
wave number k with £ '. The motivation for this procedure is
best understood by studying Eq. (4). The left-hand side is
the wave equation, describing the propagation of waves in
the medium €,, and the right-hand side is the source term.
The transmitted field, however, is necessarily composed of
waves propagating in the medium €. Replacing k with £ " in
the wave equation resolves this inconsistency. Then, the
transmitted field B’ is given by

— A

E@x) = m F(AXE) X i)
X (s — ki) s’ ds . (25)
(s, —knd)(s* — k")
which is rewritten as
E(x) = J-‘[(Jrs [(Axe&’yxa]
(’77r) 60
B e )
(s —knd) (s, + &5, — &)
X g(s, — knl,s, — kn),2')
X e ™ fad ds, ds, dz, (26)
where
E'=\k? st 5 (27)

As before, the mtegrai over s, is evaluated by contour inte-
gration. In this case, however, the field is evaluated at a point
% outside of the interface region such that z < 7’ for all points
%' for which g(x'} is nonzero. The exponential factor allows
the contour to be closed with a semicircle of infinite radius in
the lower s, plane. The two poles at s, = knl, — £ are en-
closed by the contour and contribute to the integral. Evalua-
tion of the residues of the integrand at these poles yields two
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terms E] and Ej. It is easily shown that the contribution
from the pole at 5, = kn® is given by

EZ] (X) I éoeikﬁ”ux
= — E%(x). (28)

Hence, this part of the scatiered field exactly cancels the
incident field in medium €/ . The remaining transmitted field
corresponds to the contribution from the poleatz = — &',
Evaluation of (27) at this pole requires that s =%’ and

.= {1 —n2 — n2)"2 The residue yields

i3
E(x) =FE(x)= — Ak Jif [(Axe"yxa]

~ ' 20
g(k n— k” ) eik'fr-x dnx dnv.
n(k'n, — kn®) ’
(29)

The transmitted field can be expressed in terms of a mode

amplitude density #(#,8,7°2%),

2B () _—:j t(7,8,7°,8%) % " dn dn,, (30)
where
3 Sthty — Y
HAeHA0 ") = — Ak (%37 w, (31)
g€, n,(k'n, —kn%)

We observe that the transmitted field is a superposition of
plane waves, including the properly refracted incident field,
propagating in the medivm €.

An expression for the transmitted radiation in the far
field is derived following the procedure outlined in Appen-
dix B with the result
2 xk 13

ik
! (6% 3(q) <
TELG R

Zz

e*Eiq) = — (32)

where the momentum transfer vector is now defined as
g = k 'fi — khi,. Similarly, the transmitted power scattered
per unit solid angle is given by

: A
P (i) = SVl i)
dQ k"g(0)
— 1 g Ak’z (é*'é‘)) ‘g(Q)F
6 | e, )
(33)

A comparison of {(33) and (24) shows that, for 2 given mo-
mentum transfer g, the power scattered by the interface into
the reflected and transmitted fields is identical to second
order in A.

B. Absorbing media

Thus far we have assumed that the dielectric function is
purely real. In fact, the absorption of soft x rays in the wave-
length range of 1-30 nm is significant for most materials.
Consequently, it is important to treat the dielectric function
as a complex guantity, the imaginary part accounting for the
attenuation of the radiation field in the medium.

The results of the previous sections can be directly
modified to accommodate a complex dielectric function. In
particular, since the amplitude of the incident and scattered
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fields must be finite over the entire interface, they can attenu-
ate only in the z direction, requiring that , and n, bereal, as
well as the wave numbers k = [¢}?|ky and k' = |¢;/?|k,.
Thus, only r, is complex and is given by

2o
|€o] ’
n, = (34)
€
€51
The plane waves exp(ikfiex ) and exp (it 'fi*x) that compose
the scattered fields now exhibit the curious property of prop-
agating and attenuating in different directions. The imagi-
nary part of n, is chosen to be positive for the refiected field
and negative for the transmitted field to ensure that the scat-
tered field decays exponentially away from the interface. It is
also assumed that the decay of the radiation field across the
interface is negligible. Then, #, can be replaced by its real
part for any integrations over the interface region, such as in
the Fourier transformation of g(x).
With these modifications, expressions (20) and (30)
remain valid descriptions of the reflected and transmitted
fields, respectively. The mode amplitude densities become

reflected field

—ni —n2 transmitted field.

£op0 s Ak? 0y SIRe(kA — kii®)]
P(7,8:%8%) = —— e (8%:3%) © 9
877"2|5’ol u(n, ~nly
A8y = . AR ey BIRe(K'A — KA%)]
s€ 78 S'szigl’)i nz(k'nz-“kﬂg)

(35)

An important conseqguence of s complex dielectric function
is that the poles in the contour integrals (17) and (26) are
automatically moved off of the real axis. The position of the
pole is determined from the sign of the imaginary partof n,.
Hence, the causality of the solution is established by satisfy-
ing the physical constraint that the scattered fieids must at-
tenuate away from the interface.

E. Discussion

The expressions derived above provide a general de-
scription of the radiation field scattered by a nonideal inter-
face of arbitrary structure, restricted only by the require-
ment that the scattering is weak sc that the first-order Born
approximation of the scattered field is appropriate. Despite
some mathematical complexity, the analytical solutions pro-
vide valuable insight into the nature of the scattered field.
Themode structure of the field is directly related to the phys-
ical structure of the interface through the function (g). In-
spection of Eqs. (24} and (33) shows that the distribution of
energy among the propagating modes is proportional to
|€(q)|*, which corresponds to the power spectrum of the
spatial variations of the dielectric function at the interface.
We now consider several special cases of practical impor-
tance to illustrate the physical relationship between the
structure of the interface znd the scattered field.
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1. The ideal interface

The ideal interface corresponds to an abrupt transition
between two media at the plane z = 0, and represents the
simplest possible configuration of an interface. Since the ex-
act solution of the scattering from an ideal interface is weil
known, it also serves as a valuable test of the first-order scat-
tering theory.

The ideal interface is represented by the delta function
g(x) = &(z). Taking the Fourier transform, and substitut-
ing into {23) for the reflected field yields

“ A ns AON KR
PHE (%) =y (242N, (36)
eﬂ!nz
where
ny=nd, n,=ny, n,= —n. (37)

Hence, we derive a weli-known result: The field reflected
from an ideal interface is composed of a single plane wave
propagating in the specular direction 7", Using (32), we ob-
tain an expression for the transmitted field to first orderin 4,

A . ) (é*.é())eik ’Ft’-x’
4eo|n;

where 7' is the direction of specular transmission given by

ek o

g
L= —n, =

x k' n!*'v_ k' n.v’

=[S () (L)
e\ kO

It can be shown that the exact solution for the field scat-
tered from an ideal interface, as given by the Fresnel equa-
tions, agrees with {36) and (38) in the limit

A/nS <l {40)

This condition formally represents the requirement of weak
scattering upon which the first-order scattering theory is
based. The scattering is weak when A = g; — €§ is small
{which is always true at x-ray wavelengths) and when »° is
not near zero, that is, away from grazing incidence.

The constraint on »? is directly related to the condition
for the total external reflection of x rays from an interface. In
particular, consider the reflectance from an ideal interface
between a material and vacuum. The real part of the index of
refraction at x-ray wavelengths is typically wriitenas 1 — &,
where 8 is a small quantity. Then it can be shown™® that the
critical angle for total external reflection (imeasured from
the surface) is given by 8, ~ (28) /2. Neglecting absorption,
the dielectric comstant of the material is € = (1 —§)?
=1 —26. If 6, is defined as the grazing angle of incidence of
the x rays, measured from the plane z = 0, then for small
grazing angles we have n) = 6,, and the condition (40) be-
comes &, > 6. Simply stated, the first-order scattering theo-
ry is valid providing the grazing angle of incidence is greater
than the critical angle for total external reflection.

SRE(x) = <z n (38)

n

(3%

2. Specuizr scattering from a nonideal interface

We now consider the scattering of x rays from a noni-
deal interface. It is customary to divide the scattered field
into specular and nonspecular components. By definition,
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the specular field conserves momentum in the x-y plane such
that g, = g, = 0. Hence the specular field corresponds to
scattering in the two directions A" and A’ given by (37) and
(39). Scattering into all other directions is nonspecular.
The calculation of the specular field requires the evalua-
tion of g(g) at g, = ¢, = 0. A simple manipulation yields

(g, =0.g, =0,g,) = §(0) f wizde ™ dz = 2(0)iv(q.).
(41)

This expression exhibits a unique characteristic of the specu-
lar field: Its amplitude depends only on the average variation
of the dielectric function along the z direction. In particular,
the specular scattering is completely determined from a
knowledge of the derivative of the interface profile w(z).
Substituting (42) into Egs. (23) and (32), we arrive at
general expressions for the amplitude densities »(#,2;7°,¢%)

and t{#',&;7°,2°} of the specular modes

PR 27089) = P Re( — 2kn%) ],
H{A20°8%) = 1B Re(k'n, — knl)]
=t"W{Re| — (Ak /2|e,|nd) 1}, (42)
where *° and ¢ ® are the Fresnel scattering amplitudes from an

ideal interface. In the case of specular transmission, i can be
expanded in orders of A to obtain

2
i( — _Ak )zl — ( A,k ) [zzw(z)dz,
2jeln? 20elnl ) J

where the first-order term vanishes on account of (10). Itis
evident that the lowest-order correction of the specular
transmission amplitude is second order in A. Hence, to first
order the transmission through a nonideal interface is the
same as through an ideal interface,

AR08 = ¢°,

(43)

(44)

The evaluation of the specular scattering from a noni-
deal interface requires the determination of the profile func-
tion p(z) and its derivaiive w(z). Ideally, if the exact three-
dimensional structure of the interface were known, then the
actua! profile p(z) could be calculated numericaily by aver-
aging the dielectric function over the x and y directions. In
general, however, such detailed knowledge of the structure
of the interface is unavailable and it is more expedient to
model the interface profile using a simple analytical func-
tion. It is convenient (but not necessary) to assume that
w(z} is a symmetric function. The width of the interface o is
defined by the second moment of w(z),

o’ = | Zw{z)dz. (45)
Several useful models of the interface profile p(z) are listed
in Table I along with w(z) and its Fourier transform #(s).

The appropriate choice of model is dictated largely by the

nature of the interface. For instance, the classical diffusion of ~

two materials produces a variation in composition at the
interface described by an error function. When the interface
profile p(z) is modeled as an error function then w(z) is a
Gaussian. In contrast, the mixing at an interface produced
by bombardment of the surface by energetic atoms during
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TABLE 1. Several useful profiles p{z) and the related functions w(z) and &(s).

Description

of
interface p(2) w(z) (s}
Ettor function
hal 2q 3 _i,, {2 e~ f:/2cr‘dz : _1_ P Ede T e o /2
‘i 1 Jir v J2mr
'!
] -
Exponential
kg Fe\“’“’, <0 1, =2 i
! j‘ [—je 27, z»0 2 o (145072}
il
o
Linear o, z< ~\3o o
- 2ope % ; IZ[Q\EU ’ 1 Il > Vo M—Sin(‘ﬁa{z—
b 23 — <3 3
% 230 ‘ 2o lz]<y30 V3os
! 1, zZ> ‘,/(30'
o —
Sinusoidgal 0, Zg —ao 0
-~ 2«:«— ) 1 " 1 sm( 7z ), |z|<aor - 2 zj>ao ﬂ( sin{aos — 7/2) sin{eos + w/2) )
i 2 2 2ac ———COS{ —— |, |z|<ao 4 aos —w/2 aos + 7/2
yé 4ao 2ao
1 i, z»ac
0
e=nw/{r ~-§

sputter deposition might be better described by a linear com-
positional variation, and consequently w(z) is the rectangle
function. In the case of a rough interface, it has been suggest-
ed that the distribution of surface heights about the mean
position, which is equivalent to w(z), is best described by an
exponential function.’’

As a specific example, consider an interface of width o
having a profile represented by the error function

- _1‘_ g
p(z) = = L e dt. (46)
Then the derivative w(z) is the Gaussian,
£ — 220"
w(z) = N e , (47}
with 2 Fourier transform given by
sy =e 77" (48)
Substitution into (42) yields the well-known result
P(A%8;7°,8°) = ¥ exp( — 2k %o}, (49)

where the real part of 70 is implied. It is seen that the ampli-
tude density of specular reflection from an interface having
an error function profile decreases exponentially with the
unitless parameter (o/A4)3° If the width o is much less than
an x-ray wavelength, then the interface reflects essentially as
if it were ideal. However, if the width is much greater than a
wavelength, then the specular reflection amplitude is signifi-
cantly attenuated. Inspection of the various forms for the
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function @(s) in Table I shows that this behavior is in fact
common to all of the interface models.

3. Monspecular scattering from a “siightly rough”
interface

The scattering of radiation from a “‘slightly rough” in-
terface is a case in which there is a conceptually simple rela-
tionship between the structure of the interface and the scat-
tered field. This is also a problem of practical interest as it
directly relates to the scatiering from patterned surfaces
such as gratings.

In general, a rough interface can be described by

gix) =68{z— flx, )1, (50)

where the surface f{x,y) defines the abrupt boundary
between the two media. Taking the Fourier transform yields

glq) = jj g g T DI T S g .

The condition of “slight roughness” implies that the excur-
sions of the surface f{x, ¥) from the plane z = O are small. In
particular, it is required that ¢_f(x, y) €1 for all x, p. Then,
the exponential is expanded to obtain

glq) = (27)%6(4,)6(q,) — i4.7(9.,9,)

(51

2
*%ff‘—’"'qx*e' “fx, ) Pdxdy. (52)

The quantity of practical interest is the power scattered
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by the interface. To derive the scattered power it is necessary
to evaluate |g|*. Squaring (52) yields

1g(a) | = (27m)°8(0)6(q, )8(g,) (1 — g2c?)

+ g2 149,01, (53)
where the cross term vanishes due to (10), and
2 1 bl .
0“’?—-:-—”‘ ix, y) 17 dx dy. (54)
&%)

The first and second terms correspond to the specular and
nonspecular scattering, respectively. Ignoring specular re-
flection, we substitute the second term into (24) to find the
differential power scattered per unit solid angle into the re-
flected field,

s 4 5
ar’ (R,8°,8°) = —-—5(—-_ A (@*.@0){
da 16100 e, |
¥ 2
NACEL 2l 55)
2@

It is straightforward to obtain a similar expression for the
transmitted power. We observe that the scattering from a
slightly rough surface exhibits remarkably simple behavior.
In particular, the power distribution among the nonspecular
modes is directly proportional to the power specirum
LA 4.,9,)|* of the surface roughness.

As an exampie, consider the field refiected from a sinu-
soidal grating described by

Sf(x, ) =acos(px) (56)
having the Fourier transform
Ra.a,) = (a/2)(2m)%5(q,) [8(g. +p) + (g, — )]

(57)
Then, from (55) the power scattered per unit solid angle is
P 2 . N
i.., (q) = a 5 ___(e«‘,eﬂ)
d 8|nl] &

x8(g,)[8(q, +p)+6(q. —p)}. (58)

The integration over solid angle is performed by using the
relation dyg, dg, = k *|n_|d€). The result shows that power
is scattered into only two nonspecular directions 7 * given
by

nt =nl tp/k, nf=n), nt "‘—’\/T:EQ_:{P’TZ-
(59)

The total power scattered in these directions is

(¢}
P(;z:t) — 2aZk2 inii !rﬂ(o)F’@*.é()!z, (60)
nt

z

where |#°(0){* is the specular reflectivity of an ideal interface
at normal incidence. Hence, the scattering theory repro-
duces the well-known properties of a sinusoidal grating. The
direction of the scattered radiation is given by the grating
equation n, — n" = + p/k, and the efficiency of the grating
increases with both the amplitude of the sinusoidal modula-
tion and the refiectivity of the surface.
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L THE SCATTERING OF X RAYSFROM A MULTILAYER
STRUCTURE

The extention of the theory of the scattering of x rays
from a single nonideal interface to the case of a multilayer
structure having nonideal interfaces is significantly compli-
cated due to the interaction of the interfaces. In general, the
radiation field scattered by each nonideal interface is a su-
perposition of many plane wave modes. An exact accounting
of the multiple scattering of every mode within the multi-
layer structure is intractable. Instead, a simpiified picture of
the interaction of the interfaces is required.

Recognizing that the scattering from each single inter-
face is weak, it is tempting to ignore the interaction of the
interfaces altogether. This is the standard kinematic approx-
imation, where the total scattered field is simply the sum of
the fields scattered from the incident fieid by each separate
interface. However, the kinematic approximation is inap-
propriate for multilayer structures of practical interest be-
cause the total scattered field can be very strong; this is in
fact the goal in designing efficient multilayer x-ray optics. In
particular, 2 multilayer mirror typically consists of alternat-
ing layers of two materials having a pertodic bilayer thick-
ness D. Neglecting refractive effects, the structure has a
strong specular reflection when

miar = Dk, n?, (61)

where m is an integer corresponding to the order of the re-
flection. Eguation (61) represerits the resonance condition
at which the fields refiecied specularly from each single in-
terface add coherently, resulting in a total scattered field that
is comparable in strength to the incident field.

In view of the coherent interaction of the interfaces, the
multiple scattering cannot be completely neglected. A useful
discussion of the interaction of x rays within a multilayer
structure has been given by Spiller and Rosenbiuth.*® They
point out that the nonspecular field within a multilayer is
always weak compared to the specular field, because the
nonspecular scattering of the incident field from the differ-
ent interfaces is necessarily incoherent. The domination of
the specular field suggests an approximate description of the
interaction of the interfaces, referred to henceforth as the
“specular field approximation.” In this approximation, the
specular field within the multilayer structure is treated dy-
namically and the nonspecular field is treated kinematically.
Specifically, the specular field in each layer is determined
from a complete dynamical treatment of the specular scai-
tering within the system of interfaces, including al! multiple
scattering and extinction. In calculating the specular field,
the nonspecular scattering is considered to remove energy
from the specular field, but otherwise is neglected. In partic-
ular, no energy is coupied from the nonspecular field back
into the specular field. The nonspecular field is then calculat-
ed using a kinematic treatment of the scattering of the specu-
lar field by the multilayer structure: The total field scattered
into nonspecular directions is estimated as the sum of the
nonspecular scattering from each interface.
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A. Calculation of the scatiered fleld

Let the multilayer structure be composed of a stack of ¥
layers of dielectric media €,, as shown in Fig. 3, surrounded
on both sides by vacuum. A plane wave of unit amplitude
&% exp(ikyhyx) is incident (at an angle &) on the top of the
stack. The propagation vector has components #) = 0, 1’

=sin &, and n” = cos J and the polarization & is chosen to
be either S or P type.

We begin by determining the specular field within the
multilayer structure. The basic assumption of the specular
field approximaticn is that the nonspecular field is weak
compared to the specular field {(including the incident field},
and hence multiple scattering of the nonspecular field is ne-
glected. The specular field in the fth layer away from either
interface region is written as

+EFere™y, (62)

where k; = |€;”*|k,, and n] is a complex quantity for an ab-
sorbing medium given by
nl = L ki —kinS
%]
The polarization ¢ * in (62) corresponds to .S or P type in
accordance with the polarization of the incident field. The
amplitudes £/~ and £ ;* of the specular field in each layer,
as well as the amplitudes £ and E* of the reflected and

transmitted fields above and below the stack, can be directly
calculated using well-known recursive®?” 3041

Kt ik
E(x)=¢"E 27 "™

(63)

or matrix’
methods as discussed by Peterson, Knight, and Pen.”® The
application of these methods requires values for the ampli-
tudes of specular reflection 7; and transmission ¢, at each
interface between adjacent Iayers { and j. The values are
modified to account for the nonideal interfaces and are given
to first order by

Py =1, ( — 2konl), (64)

Here ¢, and 1) are the Fresnel amplitudes corresponding to

__ L0
r, =19

FIG. 3. Configuration of the multi-
- layer stack.

\ €3
RS
=
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the reflection and transmission from an ideal interface. As
discussed in Sec. II E 2, the function wy; (2) characterizes the
average gradient of the dielectric funcnon across the inter-
face, and @, (s,) is its Fourier transform. 'The specuiar re-
flectance and transmittance of the multilayer stack are then
given by |E"|? and |E‘|?, respectively.

Omce the specular field in each layer is determined, the
nonspecular scattering is calculated kinematically; that is,
the total nonspecular field is approximated as the sum of the
fields scattered from each interface.

As an example, consider the reflected field scattered
from the multilayer stack into the nonspecular direction
with polarization & where €' is the angle between /2 and the
normal to the stack and, for convenience, it is chosen that
m, =0, m, =sin #',and m, = cos §'. Then, in: the ith layer
the propagation direction of this mode is altered by refrac-
tion to have the value A, where m! =0, m;, =m,, and
mi = (1/1k;|) (k> — k% sin® 7)1,

There are two contributions to the nonspecular field
from each interface, corresponding to the scattering from
the interface of the specular fields incident on either side. In
particular, consider the scattering from the interface
between adjacent layers 7 and /. The specular fields incident
on the interface from above and below are, correspondingly,

Emc(x) — ~!_— 5" 6'1‘1;” Ve — ikl z
and
Egzm(x) — Ej+ é+ ik nyyemjn z, (65)

where £, and £ are determined using the matrix method
as described above. Each of these specular fields scatters
from the nonideal interface, producing a nonspecular field
that propagates towards the top of the muitilayer stack. The
incident field EP scatters into the mode 7' with an ampli-
tude r,; given to first order by (21},

2
A A Al A _.Aijhi
rp{mian'e™) = £~ ———

87€;

i

£m) g, [Re(k,m' — k.h )}

X{a

mi{m —n')

(66)
where g; (%) represents the jth interface. Similarly, the inci-
dent field EX* scatters into the mode /7' with an amplitude 1
given by (31):

i asi,2 MK
Lmawety= —E/ 8;2%
X (&%) g’,_;.—[Re(ki{ﬁfm kj—ft‘i)}
mi(k,ml — kjn’;) )
(67)

where g, (x,3,2) = g, (x.y, — z}.

These two contributions to the nonspecular field propa-
gate from the ith to the & th layer accumulating a phase shift.
The contribution to the phase shift from the pth layer is ¢,
given by

¢, =k, \/E;: sin® 6", (68)
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The amplitude R (#,4;7%8°) of the total nonspecular field
above the multilayer stack is the sum of the contributions
from each interface.

N s
R(i/?\‘l,&;ﬁn,éo) — Z [(H ez¢p)
interfaces

p—i
X Erij ‘: i?liy&;ﬁi)é_- ) + Ej{ (i?li&!;\tj;é+ ) } °
(69)
Finaliy, the differential power scattered per unit solid angle
is given by Eq. (24):
o di’m
L (Baht 2y =
di 58(0)

|R (h,a;7%,2°) |2 {7C)

B. Application: The reflectance and transmittance of x-
ray beamspilitters

X-ray multilaver optics are finding increasing applica-
tion in many areas of x-ray physics. As an example, there has
recently been a successful demonstration of an efficient soft
x-ray beamsplitter® which, as in the visibie analog, divides
an incident x-ray beam into approximately equal specularly
reflected and transmitted components. The performance of
multilayer x-ray optics is invariably degraded due to diffu-
sion and mixing at the interfaces, as well as roughness of the
layers replicated from the substrate or induced by processes
such as polycrystalline growth. The nonideal interfaces not
only modify the specular scattering, but can also scatter x
rays into nonspecular directions. The nonspecular scattering
is usually ignored, although it can be problematic in imaging
applications and producing undesirable halos and back-
ground noise in the image field.

To investigate the effect of nonideal interfaces on the
performance of multilayer x-ray optics, we calculate the
specular scattering from two multilayer structures designed
for use as x-ray beamsplitters. The specular reflectance and
transmittance of the beamspilitters is compared for a variety

WKXIILLS e
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¢ 2onm FIG. 4. Ideal models of the
structure of two X-ray
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of different inierface structures. Nonspecular scattering,
which depends on the detailed frequency spectrum of the
roughness of the interfaces, is not considered. All of the cal-
culations presented here were performed ona VAX 11/780
computer using optical constants tabulated by Henke ef ol.*!

The structures of the two beamsplitters, identified as
models A and B, are shown in Figs. 4{a) and 4(b), respec-
tively. The mode! A beamsplitter is composed of fifteen al-
ternating layers of tungsten and carben, each 2.0 nm thick.
This beamsplitter is designed to operate at an x-ray wave-
tength of 1.0 nm and at an incident angle {measured from the
normal to the surface) of 82.5°. The model B beamsplitter is
composed of 20 bilayers of tungsten and carbon having
thicknesses of 2.0 and 3.8 nm, respectively. It is designed to
operate at a2 wavelength of 8.0 nm and an incident angle of
45°. These structures are assumed to be free standing for
simplicity. In practice, the multilayers are usually supported
by a membrane several tens of nanometers thick of a material
of low absorption such as silicon nitride.

The calculated performance of the two beamsplitters
when the interfaces are ideal is shown in Fig. 5. The reflec-
tance, transmittance, and absorbance are plotted as a func-
tion of the angle of incidence of the x rays, which are as-
sumed to be unpolarized. The reflectance of the model A
beamsplitter, shown as the solid line in Fig. 5(a), exhibits a
peak at 82.55° with a maximum value of 0.27 and a full width
at half maximum (FWHM) of 0.50°. The transmittance
{dashed line) and the absorbance (dotted line) are both ob-
served to decrease in the vicinity of the peak in reflectance.
The reflectance of the model B beamsplitter, shown in Fig.
5(b), peaks at 44.80° with a maximum value of 0.06 and a
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FIG. 5. Calculated reflectance {solid curve), transmittance (dashed
curve), and absorbance (dotted curve) of the ideal beamsplitters as a func-
tion of the incident angle (measured from the normal) of the x-ray beam,
The incident beam is unpolarized. (a) Model A beamsplitter, A = 1 nm,
(b) model B beamsplitter, 4 = 8 nm.
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FWHM of 2.65°. In this case the transmittance is enhanced
in: the vicinity of the reflectance peak, while the absorbance
exhibits a decrease.

These two examples iliustrate the variable behavior of
the specular transmittance near the peak in reflectance for
an x-ray beamsplitter. The transmittance can be either en-
hanced or attenuated depending on the design of the multi-
layer structure. The behavior of the transmittance for a par-
ticular multilayer is determined by the competition between
two effects. The increase in specular reflection near the reso-
nance condition (61) removes energy from the incident
beam at the expense of the specular transmission. Hence a
strong reflectance results in a decreased transmittance, as in
the case of the model A beamspliticr. However, absorption
of the incident beam is significant in x-ray muitilayer optics,
as shown in Fig. 5. The absorbance generally decreases near
the resonance condition because the electric field consists of
a standing wave® with the nodes positioned at the layers of
the high-Z material (tungsten in the examples above}. Asa
result, the highest intensity of the field is located in the re-
gions of lowest absorption of the multilayer. The reduced
absorbance at the resonance condition can enhance the
transmittance if the reflectance is low, as in the case of the
model B beamsplitter. The energy balance between the ab-
sorbance, reflectance, and transmittance of a beamsplitter is
directly controlled by the choice of materials and structural
parameters such as the thickness and the number of bilayers.

In practice, it is difficult to fabricate multilayer struc-
tures having interfaces that are ideal on the scale of an x-ray

BO — §

Sl > §

SN, o

C-8f —o~

FIG. 6. High-resolution transmission electron microscope image of an x-
ray beamsplitter designed for normal incidence operation at 4 = 20 nm.
The dark and light layers are molybdenum and silicon, respectively.
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wavelength. Figure 6 shows a high-resolution transmission
electron microscope (HTEM ) image of a cross section of an
x-ray beamsplitter. The structure is composed of alternating
layers of molybdenum and silicon of thicknesses 4.5 and 6.5
nm, respectively, deposited by magnetron sputtering onto 2
substrate consisting of a polished single-crystal silicon wafer
coated with a2 45-nm-thick layer of siticon nitride. The silicon
wafer substrate is subsequently etched to leave the multi-
layers supported on a thin silicon nitride membrane. The
HTEM image shows that the molybdenum layers are poly-
crystalline and the silicon layers are amorphous. The inter-
faces exhibit a combination of rough and diffuse structure.
The interface roughness originates partly from replication of
the roughness of the substrate, and additional roughness is
induced by the crystal growth within the molybdenum lay-
ers. The diffuseness is most likely the result of mixing of
molybdenum and silicon during deposition. Nonidea! inter-
faces, particularly roughness replicated from the substrate,
can be a very severe problem in the fabrication of multifayer
beamsplitters.

The HTEM image illustrates the potential impact of
nonideal interfaces on the structure of realistic multilayer x-
ray optics. An example of the effect of nonideal interfaces on
the performance of the model A beamsplitter is shown in
Fig. 7. All of the interfaces are modified equivalently and are

Reflectance

Transmittance

"8 81 82 83 84 85
Angle ot incldence (deg)

FIG. 7. Calculated performance of the model A beamsplitter with nonideal
interfaces (error function profiles) as a function of the angle of incidence at
A =1 nm. The curves correspond to interface widths that range from 0 to
Q.6 nm. (a) Reflectance; (b) transmittance.
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described by an error function profile of width o. The reflec-
tance [Fig. 7(a)] and transmittance [Fig. 7(b)] are shown
for four values of ¢ varying between 0 and 0.6 nm. For larger
values of o the interfaces extend into the center of the layers,
so that it would be necessary to represent the composition of
the layers as a mixture of tungsten and carbon. It is apparent
that the reflectance decreases with increasing ¢, by as much
as 50% at o = 0.6 nm. In the vicinity of the reflectance peak
the transmittance is observed to increase as o increases, indi-
cating a redistribution of energy from the reflected to the
transmitted field.

A useful methed of displaying the effect of nonideal in-
terfaces is to plot the relative change in the reflectance
{R(0) — R(o0=0)]/R(o=0) asafunction of the width ¢
of the interfaces. The change in reflectance for the model A
beamsplitter at an incident angle of 82.55° (the peak position
when the interfaces are ideal) is compared in Fig. 8(a) for
the four different interface profiles listed in Table §. All four
profiles cause the reflectance to decrease monotonically with
increasing o. It is also evident that for a particular interface
width the change in reflectance is relatively insensitive to the
choice of profile. It is found that the exponential profile
causes slightly less attenuation of the reflectance than the
linear, sinusoidal, and error function profiles. The relative
change in transmittance of the model A beamsplitter at an
incident angie of 82.40° is plotted in Fig. 8(b). The transmit-
tance is observed to increase with increasing o for all inter-
face profiles. As in the case of the reflectance, the change in
transmittance is approximately equivalent for all of the in-
terface profiles.

For comparison, the relative change in reflectance (at
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FIG. 8. The relative change of reflectance and transmittance of the model A
beamsplitter as a function of interface width for different interface profiles
at A = ! nm. (a) Reflectance, # = 82.55%; (b) transmittance, 8 = §2.40°.
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44.80°) and transmittance {at 45.40°) of the model B beam-
splitter is plotted in Fig. 9 for the four different interface
profiles. As before, the reflectance always decreases as the
interface width increases. It is seen in Fig. 9(b), however,
that the transmittance of the type B beamsplitter also de-
creases with increasing o. In this case, the dominant effect of
the nonideal interfaces is to increase the absorbance at the
expense of both the reflectance and transmittance.

Close inspection of the curves in Fig. 7 shows that the
relative change in the reflectance and transmittance of the
model A beamsplitter varies with the angle of incidence, im-
plying that the shape of the curves change with o. This is
shown explicitly in Fig. 10, where the change in reflectance
and transmittance as a function of ¢ (assuming an error
function profile) is plotted for three different angies of inci-
dence. Referring to Fig. 10(a}, it is seen that the peak of the
reflectance curve at 82.55° decreases more slowly with ¢
than the reflectance on either side of the peak. This indicates
that the peak narrows with increasing interface width. Such
behavior can be understood physically by noting that as the
reflectance of each interface decreases, the contribution to
the reflected ficld from the interfaces at the bottom of the
stack with respect to the top interfaces increases. The nar-
rowesi possible peak (highest resolution) is achieved when
all of the interfaces contribute equally to the reflected field.
Another feature observed in Fig. 10(a) is that reflectance on
the high-angle side of the peak decreases more rapidly than
the reflectance on the low-angle side, indicating that the
peak shifts slightly with increasing ¢, from a value of 82.55°
at o = 0 nm to 82.50° at o = 0.6 nm. The complicated effect
of nonideal interfaces on the transmittance at different an-
gles of incidence is presented in Fig. 10(b). It is seen that the
change in transmittance manifests a different sign depending
on the incident angle. The increase in transmittance at angles
fess than 82.80° can be attributed to the corresponding de-
crease in reflectance.
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0.1
R ~ R{0)
R ) '0'2; O Lingar

{ Error functlon
3 Exponential

~0.3 A Sinusoidal

0.4 i ) J L

0.2 0.4 (X

o {nm)

FIG. 9. The relative change of reflectance and transmittance of the model B
beamsplitter as a function of interface width for different interface profiles
at A = 8 nm. (2) Refiectance, 8 == 44.8C"%; (b} transmittance, 6 = 45.40°.
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FIG. 10. The relative change of reflectance and transmittance of the model
A beamsplitter as a function of interface width (error function profiles} at
A = | nm and at different angles of incidence. (a) Reflectance; (b) trans-
mittance.

Thus far all of the interfaces of the beamsplitter have
been assumed to be identical. In practice, the nature of an
interface can vary significantly according to its deposition
history as well as its orientation within the layer stack. A
important exampie is the asymmetry observed in the inter-
face widths of sputtered multilayer structures.®” It is found
that the interfaces created by sputtering the high-Z material
ontc a low-Z material are generally wider than the opposite
case. This is attributed to an increased mixing at the inter-
face driven by the greater kinetic energy of the heavier
atoms, The relative change in the reflectance and transmit-
tance of a model A beamsplitter having asymmetric nonideal
interfaces is shown in Fig. 11. The change is plotted as a
function of the width of the tungsten-on-carbon interface,
for four different widths of the carbon-on-tungsten interface,
as each is allowed to vary between 0 and 0.6 nm. All of the
interfaces are described by an error function profile. It is seen
that an increase in the width of either type of interface causes
a decrease in refiectance and a corresponding increase in
transmittance. Furthermore, the relative change in perfor-
mance induced by one type of interface is independent of the
width of the other type of interface.

1t has also been observed that the width of the interfaces
in a multilayer structure can vary according fo position with-
in the stack.®®* The most common situation is that the
width of the interfaces either monotonically increases or de-
creases on going from the bottom to the top of the stack. The
former case occurs if roughness accumulates during depo-
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FIG. 11. The relative change of reflectance and transmittance of the model
A beamsplitter at A = 1 nm as a function of the width of the tungsten-on-
carbon interface for different values of the width of the carbon-on-tungsten
interface. (a) Reflectance, 8 = 82.55° (b) transmittance, § = 82.40°.

sition, so that each successive layer replicates the roughness
of previous Iayers and contributes additional roughness. The
latter case occurs if the deposition of each successive layer
anneals roughness that was criginally introduced by the sub-
strate. The specific behavior of a muitilayer system depends
on the materials and the parameters of the depositicn pro-
cess. The modification of the performance of the model A
beamsplitter when the interface widths are made to vary lin-
early with position within the stack is shown in Fig. 12. The
dashed curve corresponds to a structure in which the inter-
face width increases linearly from O nm at the top of the stack
t0 0.6 nm at the bottom. The dotted line represents the com-
plementary case in which o varies from 0.6 nm at the top of
the stack to 0 nm at the bottom. For comparison, the solid
line represents the performance of the beamsplitter with
ideal interfaces. In both cases the reflectance, shown in Fig,
12¢a}, is reduced by the introduction of nonideal interfaces.
The case in which the widest interfaces are on top exhibits
the largest decrease in refiectance because the top interfaces
contribute the most to the reflected field. In contrast, in Fig.
12(b) it is seen that the transmittance of the two nonideal
structures is nearly identical. This indicates that the trans-
mittance averages over the variation in interface widths, and
is not particularly sensitive to the orientation of the inter-
faces within the stack. Hence, in an effort to optimize perfor-
mance, it is always desirable to choose materials and depo-
sition parameters that produce multilayer structures in
which the interface width is minimized at the top of the
stack.

In conclusion, it has been found that the performance of
a multilayer x-ray beamsplitter is significantly affected by
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FIG. 12. Calculated performance of the model A beamsplitterat A = I nm
as a function of incident angle for the case of idea! interfaces (solid curve),
and when the width of the interfaces increases (dashed curve) and de-
creases (dotted curve) from the top to the botiom of the multilayer stack.
(a) Reflectance; {b) transmittance.

the structure of the interfaces. In general, the reflectance is
observed to decrease as the width of the interfaces increases;
the transmittance can either decrease or increase depending
on the design of the beamsplitter. It has been seen that the
reflectance and transmittance are sensitive to structural de-
tails such as the variation of interfaces widths within the
muitilayer stack, and yet are relatively insensitive to the pre-
cise shape of the interface profiles.

This example demonstrates that the existence of noni-
deal interfaces must be taken into account to accurately de-
sign and model realistic x-ray multilayer optics. Conse-
quently, it is important to thoroughly characterize the
interface structure of the standard multilayer systems, such
as carbon and tungsten, acquiring information about inter-
face widths, profiles, and the frequency spectrum of the
roughness. The scattering theory developed in this work, in
conjunction with such detailed structural information, pro-
vides a general and powerful foundation for understanding
the x-ray scattering from nonideal multilayer structures.
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APPENDIX A: THE DIELECTRIC FUNCTION
REPRESENTATION

The interaction of eleciromagnetic radiation and matter
on a macroscopic scale is described by the dielectric function
e{x,w}, which relates the polarization P(x,w} of a medium
to the electric field E(x,w) through
47iP(x,w)|

|E(x,m)|

From a quantum-mechanical point of view, the dielec-
tric function represents the response of a dielectric medium
to the radiation field through all the possibie virtual and real
transitions of the solid-state system. Besides atomiclike exci-
tations, the dielectric function also includes contributions
from the bulk collective excitations such as plasmons, as well
as surface excitations such as surface plasmons that are asso-
ciated with the interfaces. In principle, the dielectric func-
tion is sensitive to solid-state effects such as chemical bond-
ing and collective excitations. Fortunately, in the case of x
rays having wavelengths less than ~ 10 nm, these effects can
be neglected. This is becaunse the energies of these excitations
are much less than the x-ray energy, so that the valence elec-
trons respond to the field as free electrons. Conseguently, at
x-ray wavelengths the dielectric function is isctropic and de-
pends only on the atomic composition and density of the
matter, not on the detailed structure of the solid-state sys-
tem.

e(xw) =14+ (Al}

It is useful to relate the dielectric constant of a material
to its atomic composition. The response of an atom to an
applied field of amplitude F is described by the atomic dipole
moment p,,

Do =P 1 +i2), (A2)

where f| + if; is the complex atomic scattering factor and p,
is the dipole moment of a free electron, given by

po = — (r,A%/47*)E. (A3)

Here », is the classical electron radius and A is the x-ray
wavelength in vacuum.

The major assumption of the dielectric function repre-
sentation is that the spatial variation of the applied field is
negligible over a small volume ¥ (which is, however, large
compared to an atomic volume}, so that all of the atomic
dipole moments within ¥ oscillate in phase. Then the polar-
ization P per unit volume is simply the sum of the atomic
moments,

P=(1/VZp,. (A4)
Using Eq. (A1), the dielectric function is related to the
atomic scattering factors through

e(x,0) =1— reA” 5 N (x}p(x)4
T T w(x)

(@) + i ()],
(A3)
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where p is the density of the medium, 4 is Avogadro’s num-
ber, w is the molecular weight of the medium, N, is the num-
ber of atoms of type j in a molecule, and the sum is over the
different types of atoms. A comprehensive tabulation of the
atomic scattering factors can be found in Ref. 6L

The dielectric function representation is commonly
used to describe the propagation of x rays in matter. It is
important, however, to appreciate the Himitations of this rep-
resentation. By definition, the dielectric function contains an
implicit spatial average over a microscopic volume that re-
moves spatial variations of the polarization en the atomic
scale.®® Hence, €(x) contains no information about the
atomic structure of matter. Nonetheless, it is well known
that x rays scatter from polarization fluctuations on the

" atomic scale, as in the Bragg scattering from crystal Iattices.

Specifically, an x ray of wavelength A can scatter elastically
from polarization fluctuations having spatial frequencies up
to a valne 47rc/A, corresponding to the maximum possible
change of momentum of the x ray. This implies that the
dielectric function representation is only valid at x-ray wave-
lengths that are larger than the spatial scale of the atomic
structure. In view of this limitation, the scattering theory
developed in this work is only strictly valid for wavelengths
greater than ~ | nm. In practice, the theory can be applied to
shorter wavelengths with caution, as long as there is no
strong coherent scattering from the atomic structure, This
should particularly be the case when the materials are amor-
phous.

APPENDIX B: SCATTERING IN THE FAR FIELD

In this Appendix an expression is derived for the refiect-
ed radiation in the far-field limit. Consider the radiation field
at the position x = R# in the limit that K - «o. A minor
rearrangement of (20) vields

(BI)

Note that any evanescent mode i7: where > -+ m 5 s 1will
not contribute to the field at x = R#A because m, is imagi-
nary. Hence the integrand vanishes everywhere outside of
the unit circle in the s, — m, plane, providing the boundary
condition

R

R ;KQ, (B2)

where C represents the unit circle. bt is convenient to make a
variable transformation to polar coordinates (8,4). Specifi-
cally, the points (m,,m, ) inside the unit circle C'are mapped
onto the unit hemisphere. Without loss of generality, the
polar axis is chosen to be in the direction 7. Then,

e = cos 6. (B3)

The differential area dm, dm, is simply the projection of the
infinitesimal area d{} of the unit sphere onto the m, —m,
plane:

dm, dm, =m, d{} = m,sin 6 d5 d¢. (B4)

Then (B1) can be written
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27 ()
SREN(RA) = f f A (6,0).57°00,4),2°]
4] (4]

X m, (6,8)e*R % sin 8 d9 d. (B5)

The upper limit on the integral over 8 is the angle 6. (&) at
which the unit vector /7 lies in the m, — m, plane, and is
imposed by the boundary condition (B2).

The integral over @ is evaluated using repeated integra-
tion by parts to generate a series of terms in increasing pow-
ers of (1/R}. For example, the first integration by parts
yields

27 ~ iR cos 8y 6= 0c($)
% EX(RA) = — [ r{m,2:0%e% m, _______,_) do
ikR 8=0

-+

SO
2w, 9 .
f [t {(#1,&7°8 ) m, |
o Jo d(cos 8)
ikR cos 6

xﬁ—;’:g—- d(cos 6)dg, (B6)

Integrating the second term by parts once more shows that
this term is proportional to (1/R)? and thus is negligible as
R - oo. The first term vanishes at the upper limit 8 = 8, due
to the boundary condition (B2). At the lower limit (6 = 0)
we note that 7 == 7, and the first term is evaluated to yield

FRE(RAY = — (2ain, /k)r{A,e7°8%) (e*® /R). (B7)
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