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Abstract

Basic mechanisms of interlayer exchange coupling between two ferromagnets separated by a non-magnetic spacer are
surveyed. Simple generic theoretical models yielding closed formulae are treated. First, intrinsic exchange between itinerant
ferromagnets is treated in the free-electron band approximation, including corrections to the elementary sinusoidal
dependences on metallic-spacer thickness and on angle 6 included between the magnetic moments. Properties of metallic
and insulating spacers are compared. Then three special mechanisms of non-cos 6 coupling are described: (1) fluctuations
of spacer thickness, (2) loose spins, and (3) a novel phenomenological coupling through a non-normal spacer, possibly

acting in spacers composed of chromium or manganese.

1. Introduction

Early exchange-coupling studies were made in
superlattices composed of RE /Y where RE is one of
the magnetic rare earths Gd, Dy, Ho, or Er [1]. The
theory, notably by Y. Yafet, was based on the Rud-
erman—Kittel-Kasuya—Yosida (RKKY) indirect ex-
change which originally described the coupling be-
tween two nuclear spins embedded in a degenerate
electron gas. Basic is the effective Hamiltonian

J2m,Q°F(20p)S;" S, 0
2732 ’

Hyg(p) =
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in which the function F is proportional to the non-
local susceptibility of the gas. Here p is the distance
between local atomic spins S; and S;, J. is the
exchange integral between a local f-electron and a
conduction electron, m, is the electron mass, and Q
is the Fermi vector of the free-electron gas. Sum-
ming H, over atomic positions i in one RE magnet
and j in the other gives the coupling energy per unit
area W= —J, cos § where 0 is the angle between
the two magnetization vectors. This bilinear or
Heisenberg energy expression follows from the fac-
tor S, - 8; in Eq. (1) and the linearity of the electron-
gas susceptibility.

After the discovery of giant magnetoresistance
(GMR) in 1988, the emphasis of exchange studies
shifted to ferromagnets of the first transition series,
in which the spontaneously spin-polarized electrons
have appreciable itinerant character. There exists a
comprehensive review of the experimental status of
exchange coupling between such ferromagnets sepa-
rated by metallic spacers [2]. Useful to the interpreta-
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tion of eXperiments is the phenomenological energy
series

W= —J, cos §+J, cos?+J; cos®9+ -+, (2)

where, by definition, J, > 0 for ‘ferromagnetic’ and
J; <0 for ‘antiferromagnetic’ coupling. This series
describes generalizations of the Heisenberg form of
coupling energy.

An excellent current article broadly reviews the
theory of exchange coupling through metallic spac-
ers [3]. Here I try to depict succinctly the essential
physics, presenting only those theoretical results
available as generic closed formulas without special-
izing to specific electron structures. For discussions
of the important topics of ‘Fermiology’ of oscillatory
dependence of exchange on spacer thickness, total-
energy computations of exchange, and information
about specific multilayer compositions, one must
consult reviews [2,3] or the rich original literature.

I first treat intrinsic exchange energy in the free-
electron band model (Section 2) including non-Hei-
senberg terms, Then in Section 3 I treat three special
mechanisms of non-Heisenberg coupling. The first
two, considered extrinsic, only operate in magnetic
multilayers that are either structurally or composi-
tionally non-ideal. The third mechanism is really
intrinsic to a spacer made of an abnormal metal
manifesting internal exchange forces. 1 propose a
previously unpublished phenomenological coupling
expression to describe such multilayers exhibiting
what one might call proximity magnetism, a concept
which could apply to Cr or Mn spacers.

2. Intrinsic exchange

It should be interesting to complement the older
RKKY description and emphasize the newer role of
itinerant ferromagnetism. For this reason I expose
the essential physics by following the resonant-
scattering approach of independent works by P.
Bruno [4] and M.D. Stiles [5] in the following Sub-
section 2.1. Their analogy of an optical Fabry—Perot
resonator is helpful. It is closely related to the quan-
tum-well concept [6]. Electron transitions observed
by inverse photo-emission experiments provide a
direct empirical basis for the quantum-well electron
states employed in the theory [7]. The resonator

-2 k2 0 €

Fig. 1. (a) Potential well for a one-dimensional spinless Fermi gas.
(b) Change of density of states An due to presence of the well [5].
The bound-state levels marked by vertical arrows, together with
transmission resonances marked by the indicated peaks of the
continuous part of An(e), form one smooth system of sharply
defined energy values ¢, (v =1,2,3,...).

model will serve as background to discussions of
anharmonic distortion of coupling oscillations (Sub-
section 2.2) and a comparison of metallic with insu-
lating spacers (Subsection 2.3).

2.1. Resornator model

To explain in minimal terms the exchange theory,
let us first consider spinless particles comprising a
one-dimensional degenerate Fermi gas overfilling a
rectilinear quantum-well potential (Fig. 1a) [S]. Let ¢
be the variable particle wave number and @ the
constant Fermi wave number inside the well, and
similarly & and K outside the well. The energy
e=q>—Q?=k*—K? of a Schrddinger particle
wave generally propagating through all three subre-
gions of this system is measured from the Fermi
potential in reduced units. According to these con-
ventions, the ‘crystalline potential’ term is ¥ = —Q*
inside the well and v= —K? outside. The kinetic
energy term is respectively g2 or k2.

In the range —Q? < € < —K?, there exist a finite
number N, of localized states bound to the well with
sharp levels e=¢, (v=1,2,3,...,N,). An inci-
dent subwave I with e> —K? propagating right-
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ward within the well scatters from interface B with
reflection coefficient r(e)=(q—k)/(q+k). The
reflected part of this wave scatters again at interface
A, and so on. For an infinite number of particular
discrete values of €= ¢, (v>N,), these reflections
interfere constructively causing 100% resonant trans-
mission through the spacer of any wave incident
from afar. All of these bound-state levels and trans-
mission resonances form a single smooth pattern
satisfying the approximate quantum-well relation gw
=qw=mv+0Q1) (v=1,2,3,...,°) where w is
the well width. (The exact relation, itself an elemen-
tary topic of quantum theory, is not important here.)

Figure 1b shows the change An=n(w, €)—
n(0, €) in state density brought about by creation of
the well. Upward pointing arrows locate the set of
&-function contributions due to the bound levels. At
higher €, the rounded peaks in the dependence of An
on € mark the transmission resonances. Their widths
vary inversely with the dwell time of a resonant
particle in the well [5].

The total energy at =0 K of this one-dimen-
sional solid is the integral of the energy over the
occupied states

E='/-_Owen(e) de. (3)

Fig. 2 shows its change AE = E(w) — E(0) versus
w. It represents the signed area bounded by —Q° < €
<0 and lying between the horizontal axis and the
curve n(e) indicated by shading in Fig. 1b, plus the
bound-state energy Ly €,. According to the above
quantum-well relation, one of the resonant peaks of
An(e), shown in Fig. 1b, passes downward through
the Fermi level e=0 each time w increases by
approximately 7 /Q. Each such passage causes the
integral in Eq. (3) to execute an oscillation exhibited

0 w

Fig. 2. Total energy versus symmetric-well thickness w for a
one-dimensional spinless Fermi gas at T = 0 K. The solid curve is
exact; the dashed curve is Eq. (4) [5].

v my=mj,

Fig. 3. The four spin-dependent potentials used in calculating the
four terms in Eq. (5). The upper two potentials are for parallel
ferromagnetic moments, the lower two for antiparallel moments.
Different shadings indicate schematically regions occupied by
up-spin 1 and down-spin | electrons.

in Fig. 2. Approaching the limits w — <« and of weak
reflections, one finds [5]:

AE - AE, = (R*QR*/2mm,w) sin(20w).  (4)

Here R=r(e=0)=(Q-K)/(Q+K) is the re-
flection coefficient at the Fermi level, and physical
units (with m, = electron mass) are employed. Note
that only particle states with € near 0 contribute to
AF,. The dashed curve in Fig. 2 represents this
equation, which differs drastically from the exact
relation (solid curve) only within the first period of
oscillation.

Turning our attention to the magnetic multilayer,
we know that the Stoner exchange potential inside
each ferromagnet is spin dependent. Interface reflec-
tions differ for majority (+) and minority (—) spin
electrons having a given energy e. For reflection
coefficients R, at the Fermi level € =0 we define
the difference AR =R, — R_. We define a coupling
strength J =[W(w) — W(0)]/2 which usually dif-
fers little from J;. For each of the angles 6=0
(ferromagnetic moments parallel) and #= 7 (anti-
parallel), the electron wave functions are classed as
spin-down | and spin-up 7. So we write

2J=-E (0)=E,(0) +E (7)) +E,(7m) (5)

where E, . (6) is an integral of type (3) with the
subscript 1 or | attached to n(e). The potentials for
the four terms in this equation are pictured in Fig. 3,
showing the two magnet alignments, each with 2
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spin directions. We distinguish here the Fermi wave
vector K, _, for majority(minority)-band electrons
in the magnets. Note the need for a small extension
of the discussion leading to Eq. (4) because the two
potential steps are unequal for each of the two
antiferromagnetic potentials.

The potential of a three-dimensional trilayer with
free-electron bands is invariant with respect to trans-
lations parallel to the interfaces. It is energetically
equivalent to an aggregate of one-dimensional trilay-
ers, the electrons in each member having the same
wave-vector K parallel to the interface. Thus the
energy in three dimensions is obtained by integrating
the result (5) over the two-dimensional space of k.
In the limit of weak reflections and large w, the
result [4,5] with an inserted temperature factor [4,6]
is J=J;, J, 5, = 0 with J; of Eq. (2) given by

Jy = (#20%/4wm w?)(AR)?
Xsin(2Qw)( {/sinh ), (6)

where ¢ =2mkyTwm,/A*Q.

The above integration of the one-dimensional be-
havior of an equation similar to Eq. (4) over the
space k| mixes different oscillation periods. How-
ever, the period m/Q present in Eq. (4) survives
asymtotically, because a group of waves with Kk
near O gives nearly the same period. Note, however,
that Eq. (6) decays more rapidly (o w™?) than Eq.
(4) (e w™") because of these interferences. An ex-
tension of this consideration gives rise to the span-
ning-vector construction of the oscillation frequency
from the shape of a realistic Fermi surface based on
computed band structure of the bulk spacer material
[6]. Our specialization to a rectilinear potential for
the derivation of Eq. (6) is not necessary, because it
is valid for more general potentials providing the
reflection coefficients R, and R_ are known [4,5].
However, a potential-dependent shift in the phase of
the oscillatory dependence of J; on spacer thickness
occurs.

2.2. Harmonic distortions

When the potential well is deep, the interface
reflections are strong and the sinusoidal dependence
of w?W on w and 6 given by Egs. (2) and (6)
become generally distorted [3—6]. One practical way

of calculating exchange coupling in the degree of
detail needed to show these harmonic distortions is
to equate the mutual torque at general 6 with the
flow of spin angular momentum carried through the
spacer by the scattered electrons. This spin-flow
method of calculating exchange coupling was first
applied to an insulating spacer [8], and later extended
to conductors [9].

_ We define the mean ferromagnetic Fermi vector
K=(K,+K_)/2 and the Fermi-vector ratio x =
K/Q in the case of a metallic spacer. The spin-flow
calculation predicts generally J, %0 for all » and
that w?J, has period m/Q in w but is not sinu-
soidal. In particular, one has at large w, to leading
order in AK=K,—-K_ [10]:

R2(AK)
Y4ntmwd(1+x2)(1 +x)

70(Qw) (7)

where p(¢) is a periodic function satisfying p(¢ -+
m) = p(¢). Within the sector | ¢ |< /2, it can be
written as

1+x2 1 -1
p=—(1_x)2{gp—arctan[5(x+x )tan ('P]}
(8)

and is plotted in Fig. 4. Thus Egs. (7) and (8)

separate J, into two factors, expressing respectively
2

its envelope, which decays as w~
monic periodicity.

, and its anhar-

n+1 n+2

Qu/m

Fig. 4. Periodic factor p(w) (o w2J,) in the exchange coupling
versus spacer width w for four values of the ratio x =& /0,
according to Eq. (8). The harmonic distortion of exchange cou-
pling grows with the sharpness of transmission resonances as the
Fermi vectors of the ferromagnets and spacer are made more
different (x < 1 or x> 1),
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We note the following [10]: Numerical results for
W(w, 6) not relying on the small AK approxima-
tion agree well with Eqgs. (7) and (8) even when the
ferromagnetic exchange splitting is as large (2 eV) as
calculated ab initio in Fe: (K., K_)=(1.09, 0.42)
AL Suppose, moreover, that the non-magnetic
spacer also belongs to the first transition series. The
trilayer would then be broadly represented by Q = K.
Then x =1, and Eq. (7) predicts J, = (1 nm/w)*p
erg cm™2, which is broadly consistent with experi-
ments using Cu spacers [2]. For example, J, for
bce(001)Fe /Cu /Fe oscillates with an apparent mini-
mum of —0.6 erg cm™2 at w=1.4 nm. Also, for
general Q, the function w2/ (w) is predicted to
oscillate with 7 times the frequency of wJ,(w).
However, the amplitude of w2J'2 oscillation amounts
to less than 2% of that for w2J,. This checks with
the analytic expression in our notation

T, =H*(AK)*(sin 40w) /2272 m, Q% w? (9)

derived for the special case Q=K_ [2,8]. Still-
higher angular-order terms w?J, are of relative order
107* or less.

With increasing electron density in the spacer
(x — 0) the predicted harmonic distortion of p(w)
shown in Fig. 4 increases. In practice this increase is
modest; for the fairly extreme case of Fe/Al/Fe,
one estimates x = 0.4 so that w2J(w) should fall
somewhere between the curve marked x~* =35 and
the sinusoid x =1 in Fig. 4.

This predicted increase of harmonic distortion
reflects the physical discussion of our one-dimen-
sional solid. Increasing the mean well depth propor-
tional to Q% — K2 has the effect of strengthening the
electron reflection (R, — 1) at the interfaces. The
resulting strengthening of multiple reflections sharp-
ens the resonant transmission so that the maxima
An(e) shown in Fig. 1b become sharper. Thus,
whenever varying w causes one of these sharp reso-
nances to pass through the Fermi level, AE(w)
calculated according to Eq. (3) develops a quasi-dis-
continuity in the limit x~! — c which corresponds
to one tooth of Fig. 4.

Complementary to our above model, in which
both spin-up and spin-down bands are occupied, is
the one-band limit (—K 2 — ) in which the unoccu-
pied spin-up band lies high above the Fermi level.

Remarkably, the special case @ =K, of this limit
yields a closed formula for coupling energy at =0
K [11]. In our notation, its asymptotic form for large
ow is

_ﬁ2 2 ©
C Y, n7? sin(2nQw) cos**(6/2).

@)

W=———
8mim w?

Note that each term in this formula having the factor
cos*"(#/2) contributes to the first n terms of the
series (2), so that here also bivariate harmonic distor-
tion is present.

Eq. (9') displays an intimate association between
the two kinds of harmonic content in the one-band
limit. However this association is inverted in our
more typical two-band case of finite K._. Indeed,
numerical analysis of this case [10] predicts the
harmonic distortion in 6 to be strongest, with J,
given by Eq. (9), when reflections and harmonic
distortion of J,w? with respect to w are weakest
(x=1).

The above-illustrated contrast in the predicted
relative strengths (greater with respect to w than 6)
of the two kinds of harmonic distortion of coupling
energy deserves comment. Comparison of Eq. (7)
with Eq. (9) reveals that the dimensionless expansion
parameter for deviations from the Heisenberg-like
cos 6 coupling is AK/Q (with condition Q =K).
However, the expansion parameter for deviation of
w?W from sin 20w behavior expressed by Eq. (8)
and shown in Fig. 4 is x! = Q/K because of its
origin from transmission resonance. Whereas the
values of Q and K reflect effects of Coulomb
energy, AK =K, — K_ measures an internal
Stoner-exchange energy splitting which is typically
an order of magnitude weaker. Therefore a greater
harmonic distortion versus w than 6 is generally
expected.

The presence of K or Q in the denominator of
these expansion parameters indicates that strong har-
monic distortions of both types may be created by
design using a spacer or ferromagnets having small
pockets in the Fermi surface causing the effective K
or QO to be small relative to AK. The one-band case
of Eq. (9'), in which AK =0, is a case in point.
However, we re-emphasize that these intrinsic an-




18 J.C. Slonczewski / Journal of Magnetism and Magnetic Materials 150 (1995) 13-24

harmonicities are expected to be modest. Experimen-
tally, none with respect to w are reported. Section 3
below makes some references to experimental re-
ports of harmonic distortion with respect to 6 (bi-
quadratic coupling).

The dependence of J, on well depth predicted by
Eq. (7) is substantial. For example, varying Q from
K to = raises J; by the factor 8, according to Eq.
(7). A different treatment of the same model inter-
prets, with considerable success, the remarkably sys-
tematic experimental variation of exchange coupling
versus electron density (o Q%) across the Periodic
Table [12].

2.3. Metallic versus insulating spacers

Remarkably, P. Bruno recently used a t-matrix
technique to derive broadly useful integral expres-
sions for J, in terms of the reflection coefficients of
Bloch waves at the interfaces [4]. They apply to both
metallic and insulating spacers. For metals, the w™2
dependence of the envelope is asymtotically univer-
sal for all terms. For a free-electron metal and large
w the leading term for J; is Eq. (6) above. For an
insulator at T'= 0 K, Bruno reproduces the previous
result

J,(0) = {#%3(k* - K,K_)(K,~K_)’

><(K++K_)exp'2"w}

><{211'2mew2(1<2 +K3_)2(K2 +K3)2}
(10)

calculated in conjunction with the magnetic-tunnel-
ing-valve effect which forms the basis of magnetic
STM [8]. Here, « is the imaginary wave vector and
v =k’ is the reduced potential in the insulator now
lying above the Fermi level. For T> 0, one has
J(T)=J0)z/sin z where z=2wkyTwm,/fi%
[4]. Interestingly, the coupling expressions for metal
and insulator spacers are made equivalent by the
replacement Q — ik [4].

According to Egs. (7) and (10), metallic and
insulating spacers behave very differently: For a
metallic one, J; oscillates versus w; for an insulator,
it decays exponentially. For a metallic spacer, J,
decreases with increasing T but for an insulator J,

increases with increasing 7. Since this growth with 7"
for the insulator is very steep, the coupling is essen-
tially thermally-induced, as observed experimentally
using an amorphous insulating spacer [13].

3. Special mechanisms of non-Heisenberg cou-
pling

Only one sign of biquadratic coupling J,(=0)
has been reported in all experiments [2]. Since the
minima of cos?0 occur at = + /2, spontaneous
orthogonal alignment of sublayer moments is an
experimental signature for the dominance of J, over
J;. General calculations, such as formulas (9) and
(9') discussed above, however, predict the intrinsic
J,w? through a truly non-magnetic spacer to be very
small and/or to oscillate symmetrically about J,w*
=0 [3,9,10,11]. The predicted oscillation period of
w2J (w) is simply proportional to 1/x.

One must therefore appeal to special conditions to
explain why the few experiments with measurable J,
always find J, > 0. Once such an explanation is in
hand, the dominance of biquadratic over the apparent
bilinear coupling in some of these experiments might
be accounted for by the proximity of experimental w
to a node of the intrinsic oscillatory J,(w) or by
cancellation of oscillations of the intrinsic J; due to
spacer-thickness fluctuations.

Of the three special exchange mechanisms dis-
cussed in this section, the first two are extrinsic and
J, >0 is predicted for all spacer thicknesses. Al-
though the coupling energy predicted by the third
mechanism (intrinsic proximity magnetism) is not
conveniently expanded in the series (2), it predicts
non-colinear ground states with values of 8 gener-
ally not limited to 0 or .

3.1. Thickness fluctuations

Our first special mechanism arises phenomenolog-
ically from the combined micromagnetic effects of
variations of spacer thickness and oscillations of
intrinsic J; versus w, as known experimentally and
represented by Eq. (6) or (7) and (8) [14]. In the
structural model of Fig. Sa, the local coupling J,(x)
between the faces of the magnets has the mean J,
and steps by amount +2AJ at the edges of mono-
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Fig. 5. (a) The thickness-fluctuation model of biquadratic cou-
pling. (b) Loose-spin model of biquadratic coupling.

layer-high terraces having width L. The resulting
torque fluctuations induce static spin-wave fluctua-
tions which penetrate exponentially a distance of the
order L into each of the ferromagnets. The sum of
coupling and exchange-stiffness energies is mini-
mized when the mean moments are orthogonal. Cor-
rectly to second order in AJ, one has the effective
biquadratic coupling

Ty = [2L(AT) /7% L A7' coth(wD,/L)
i=1,2
(11)

where A, is the exchange stiffness within the ferro-
magnetic layer of thickness D, (i =1, 2).

This derivation assumed that L is large compared
to the spacer thickness. The sign J, > 0 comes
from the fact that all torques arising from J;(x)
vanish for the special cases of perfect alignment
[6(x)=0 or = for all x]. For any other uniform
orientation of the ferromagnetic moments, the fluctu-
ations of J, create torques which are only balanced
when the magnets are allowed to relax to a rippled
state of varying m,(x, y) and m,(x, y) having less
energy. Ergo orthogonality is favored and therefore
J5 ese > 0. To be precise, it is the mean energy that is
written W= —J, cos §+J, . cos’> 6 where 8 is
the angle between the means of the spatially fluctuat-
ing m, and m,, and J, . is given by Eq. (11).

Paradoxically, J, . increases with L or increas-
ing specimen perfection, up to the point that the
predicted J, ., becomes as large as AJ where the
theory breaks down. Numerical energy minimization
is then needed [15]. AJ and J, . are as large as
0.40 and 0.10 erg/cm? respectively in experiments
on bee (001) trilayers of composition Fe/Cu/Fe
[16] in which L ranged between 100 and 200 A. This
is the one experimental system so far interpreted

systematically according to this theory. Fluctuations
of dipole interactions theoretically contribute to J,
on the order of 0.01 erg/cm? in a micromagnetically
similar manner [17]. Thickness-fluctuation mecha-
nisms should create little biquadratic coupling in
sputtered multilayers because they effectively have
small values of L.

3.2. Loose spins

Eq. (11) predicts only a modest temperature de-
pendence for J, ., owing directly to the temperature
dependence of the parameters J;, A;, A,. But in the
cases of Al and Au spacers, the experimental J,
varies by at least two orders of magnitude below
room temperature [18,19].

The loose-spin model attempts to account for this
strong thermal behavior. It postulates impurities with
spin S; located inside or at the interfaces of the
spacer [20]. The underlying mechanism is fundamen-
tally the strictly Heisenberg-type indirect exchange,
described by Eq. (1) in the simplest case, coupling a
loose spin to the spins of the ferromagnets. Because
it interacts with both magnets, each loose spin con-
tributes to the mutual coupling between them. At
high temperatures, the Curie susceptibility of the
loose spins is independent of this exchange field and
the loose spin contributes only to J, via this re-
sponse. But at lower temperatures this coupling term
increasingly departs from the cos 6§ form because
the now mnon-linear loose-spin polarization ap-
proaches saturation in the total exchange field acting
on it. This non-linearity results generally in J, # 0
for all n.

For concreteness, we use the model of Fig. 5b, in
which the edges of two ferromagnets having unit
magnetization vectors m; and m, lie at z=0 and
z=w respectively. A loose spin with momentum
operator %S lies at position z (0<z<w). It is
subject to exchange-coupling fields induced by the
two ferromagnets through the non-local spin polariz-
ability of the electron gas. The vector sum of these
fields, conveniently parametrized according to U=
U(z)m, + Uy,(z)m,, gives rise to the effective
Hamiltonian # = —U - S /S having the energy lev-
els €,=—-Um/S with m=-§,-5+1,...,S.
Here

U(6) =|U|= (U2 + U} + 20,0, cos 8)" (12)
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From conventional statistics, the free energy per
loose spin of this level scheme is

AT, 6)

sinh{[1+ (25) "] U(6) /keT )

— kT
st Sinh[U( ) /25k5T ]

(13)

Let N be the number of assumedly identical loose
spins. We assume conditions such that only J; and
J, are appreciable (kgT > |U,|+|U,| or U] <
|U,). Then the loose-spin contribution to J, is
N[ f(w) = f(0)]/2 and the biquadratic coefficient is

T, =N[3f(0) + 3f(m) = f(m/2)]. (14)

One can check this by substituting the first two terms
of Eq. (2) plus a constant for Nf(#) in this equation.

In the special case T=0 and |U;| <|U,|, the
sign J, >0 is easy to establish by this argument,
similar to the one for thickness fluctuations: To first
order, the ground-state quantum-mechanical expecta-
tion value (S) = £Sm, has the direction of the
field U,m, and the coupling of this one loose spin to
m, gives the energy +U, cos 6, where the sign is
the same as that of U,. This energy is exact for § =0
or w. But for any other 6, the energy diminishes
when the field Uym, tilts (S by relaxation away
from U,m,. The second term of Eq. (2) can only
describe energy lowering for 650 or w if J, >0,
which explains the sign of J,. Further, the energy eg
with Eq. (12) expanded to second order gives the
biquadratic coupling at T =0 K as J, = NU?2/2 | U,|
[20,21].

The above theory neglects the scattering effects of
loose-spin atoms on the electron waves which com-
municate bilinear coupling between the ferromag-
nets. Therefore, it has a better prospect of predicting
J, than corrections to J,. Fitting Egs. (13) and (14)
to temperature-dependent data for Fe/Al/Fe [18]
gives loose-spin exchange fields in the ranges
|U, /kgl =20 K, | U, /kg| = 250 — 480 K [20]. Simi-
lar data for Fe/Au/Fe [18,19] yield |U, /kgl=2.3
K, and | U, /kg| =230 K [20]. These results indicate
that the loose spins are probably Fe atoms located
very near the interfaces. The small U; measures the
coupling across, or nearly across the spacer thick-

ness, and the large U, measures the coupling to the
nearby ferromagnet.

Aside from the Curie temperature of the ferro-
magnet, we have no ready means of estimating the
large loose-spin field U,. To estimate the small
long-range coupling U,(z), we can take advantage of
the bilinearity of the RKKY theory [Eq. (1)] and its
predictive equivalent, the resonator model in the
limit of weak reflections [Eq. (6)]. For this purpose,
we adapt a treatment of the coupling between a
semi-infinite ferromagnet and a magnetic monolayer
[22]. The coupling U, of the first semi-infinite Fe
magnet, say, to a loose Fe spin occupying the
atomic-volume element v, (=a®/2) located at the
distance z, is just the change in J, (with w— 2)
obtained by adding », to the volume of the second
ferromagnet at the spacer-magnet interface. Regard-
ing v, as infinitesimal, we have a differential rule
expressed by Uy(z) = —ydJ,(w—z2)/dz.

Application of this differential rule to Eq. (6),
which assumes that the ferromagnets are semi-in-
finite continua, predicts U, to be an order of magni-
tude smaller than our above fit for Al spacers [20].
This inconsistency might be removed if the theory
could be extended to take into account the deep
potential well implied by the large Fermi vector (2
(=25Ky,) deduced from the valence-electron deri-
sity of bulk aluminum. We have seen in Eq. (7) that
the ferromagnet-ferromagnet coupling increases ap-
preciably with O because the stronger resonance of a
deeper well increases the dwell time of a scattered
electron within the well. This fact leads us to conjec-
ture that the long-range ferromagnet—loose-spin cou-
pling U/(z) should also be increased by a deeper
well.

Suppose we now restrict consideration to a home-
geneous gas. This might be sensible if the spacer is
composed of a transition metal such as copper which
should create weaker reflections than aluminum.
Then the linearity of the non-local susceptibility in
the RKKY theory permits restatement of the differ-
ential rule thus: For asymptotically large z, U(z)
equals 21,0 times J,(w — z), but with one quarter
of a cycle subtracted from the experimental oscilla-
tion of J; as a function of spacer thickness w. The
differential rule, or its straightforward finite exter-
sion to a discrete atomic lattice, may be useful in
estimating the loose-spin biquadratic coupling from
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measurements of J,(w) versus w in the absence of
loose spins.

Thus the design of such a synthetic loose-spin
experiment must take into account that the maxima
of [Uf(z), and therefore J,(z), should occur at
distances near the zeros of J,(w) measured in the
absence of loose spins. Synthetic loose-spin experi-
ments using fractional magnetic monolayers deliber-
ately deposited within the spacer are currently under
way [16,23].

3.3. Proximity magnetism of a spacer

Strictly speaking, Cr and Mn are not ‘non-mag-
netic’ spacer elements as often tacitly assumed. The
tendency, especially in chromium [24], for bulk anti-
ferromagnetism in the form of incommensurate spon-
taneous colinear-spin density waves is known. A
series of remarkable theoretical papers includes some
helicoidal quasi-antiferromagnetic solutions of tight-
binding equations in Cr and Mn spacers, even when
the ferromagnet moments are externally constrained
to be colinear [25]. The prediction J,/J, = —0.15
for Fe /Cr /Fe in one of these calculations is remark-
ably close to certain experimental results discussed
below.

The linear polarizability of an elementary non-
magnetic spacer would prevent a helicoidal magnetic
state from forming when the ferromagnet moments
are colinear. Such a state cannot exist within the
framework of our Section 2. This condition inside
the spacer, which may be called proximity mag-
netism, arises from the effects of combining a mod-
est internal exchange with a strong exchange cou-
pling across the interfaces to the adjacent ferromag-
nets [25].

Given the complexity of the unrestricted
Hartree—Fock calculations required for the funda-
mental theory, it may be useful to interpret coupling
measurements with the following phenomenological
description that reflects the underlying physics.
However weak the intra-spacer exchange effects
(tending to spontaneous antiferromagnetism or spin-
density wave in the bulk) may be, the thermal expec-
tation value (&(x)) of the itinerant-electron spin-
vector density operator inside the spacer will gener-
ally not vanish at temperatures below the Curie point
of the ferromagnets. On general grounds of statistical
physics, it has no critical temperature of its own, but

(&(x) only disappears at the high Curie tempera-
ture of the adjoining ferromagnets, each considered
as semi-infinite bulk. Hence the term proximity mag-
netism.

Thinking heuristically in terms of the tight-bind-
ing limit, the effective spin of the ith atomic cell
within the spacer is the unit-cell integral S,=
[,dr¥{F(x)). Let us assume that all of these
atomic-spin vectors lie colinearly in the ground state
of our trilayer, as in bulk chromium at low tempera-
tures [24]. (The incommensurate spin-density wave
vector of bulk chromium differs by 4% from that of
simple alternating antiferromagnetism.) Let us rela-
tively rotate the assumedly uniform ferromagnetic
moments m; and m, away from equilibrium by
external means. Consider the relative deviation
@;;(>0) of the atomic-spin axes in monolayers i
and j from colinear. (Here we do not distinguish
positive and negative senses of S,.) The consequent
increase of free coupling energy W may be written
heuristically =, K;;S,S,(1 —cos ¢;;) where K;; is
an effective layer—layer exchange integral having
either sign. Its values at large separation distances
must be significant for the spin-density wave to be
incommensurate with the lattice.

Crucial is the assumption that the energetically
most important K;; occur at small separations. For
nearest neighbors, ¢; ;. is small at general 6, ex-
cept for the very thinnest spacers. In a portion of the
generally fluctuating spacer thickness having m
monolayers, this deviation is of the order ¢;;,; =
{6} /m if the net coupling favors m; =m, in the
ground state (see Fig. 6a), and ¢, ;. ={m—~6}/m
if it favors m; = —m, (see Fig. 6b). Here, the brace
notation means that the assigned twist angle {x}
differs from x by that multiple of 27 which assures
{xl < 7.

Thus W is nearly quadratic in ¢;;, and therefore
in {6} or {w— 0}. It is then plausible to write the
non-analytic phenomenological formula

W=cC, {0} +C_{6—m)" (15)

(see Fig. 7) for the mean energy, considering the
possible fluctuations in spacer thickness. We neglect
the possible existence of those metastable states
which have a twist angle of more than = represented
by dashed extensions of the broken curve indicated
in Fig. 7. Here the coupling coefficients C, (= 0),
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my

Fig. 6. Illustration of hypothetical twisted quasi-antiferromagnetic
proximity states in a spacer of Cr or Mn. The ferromagnetic
moments m, and m, are externally constrained to be non-colin-
ear. In (a), the spacer has an odd number (m=23) of atomic
layers; in (b) it has an even number (m = 4).

which can only be positive, measure the mean contri-
bution of the portions of the spacer favoring respec-
tively m; = +m, alignments. Clearly, we assume
again that the scale L of thickness fluctuation illus-
trated in Fig. 5a is large compared to the spacer
thickness. However, we must now also assume that
L is small enough that exchange stiffness preserves
sufficient spatial uniformity of each of the moments
m, and m,. By extension of arguments leading to
Eq. (11), this condition is

L(C,+C_) Y. A;!coth(wD,/L) <1, (16)

i=1,2

which is typically satisfied by L <100 A. Only
certain real specimens will satisfy these two bounds
on L and therefore obey Eq. (15).

If neither C, nor C_ vanishes, the mutual equi-
librium orientation of m; and m, is not colinear
(6 # 7n). (Note the general positions of the minima
in the example plotted in Fig. 7.) But one or the

=1 0 9 / m 1 2
Fig. 7. A hypothetical example of the exchange energy (15) for a
trilayer with proximity magnetism in the spacer having thickness
fluctuations. Antiparallel coupling predominates in the plotted

example: W =C({0}* +2{m — 8}?). The dashed curve segments
represent metastable conditions.

other of these coefficients C', vanishes if the spacer
is perfect (m = constant), and then the equilibrium is
colinear (m; = +m,). Comparable mixtures of even
and odd m may give C,= C_> 0, which constitutes
an orthogonal coupling because the minima appear-
ing in Fig. 7 would in this case lie instead at the
positions 8/m=—1/2,1/2,3/2....

A crucial difference between Eq. (15) and any
finite sum having the form of Eq. (2) is that the
saturation torque dW/d§ for the orientation m; =
m, (6= 0) vanishes in the latter but has two values
+2wC_ in the former. Here, the + sign depends
on the sense of micromagnetic twist through the
spacer portions of antiparallel coupling (assumed all
alike). Operationally, this sign depends on whether
the condition 6 = 0 is approached from below (8 < 0}
or above (6> 0). Thus, whereas Eq. (2) implies full
saturation of the M-H curve at a finite critical
external field H =H,, Eq. (15) implies asymptotic
approach toward saturation. The latter saturation is
not complete for any finite field because the torque
+2mC_# 0 precludes the possibility of a minimum,
even though the total energy is symmetric about:
6=0.

Parenthetically, we comment that the same behav-
jor is predicted under similar structural conditions if
the spacer is an ordinary alternating-spin antiferro-
magnet. In addition, we may consider bridges filled
with ferromagnetic material passing through an im-
perfect non-magnetic spacer. The mean energy of
such bridges, also known as pirholes, should theo-
retically obey Eq. (15) with C_= 0 and C > 0. This
fact is apparent from the derivation of the quasi-
parabolic exchange energy of conical bridges illus-
trated in Fig. 6 of Ref. [27].

The very many coupling measurements with
chromium (001) spacers have been interpreted using
the first two terms of Eq. (2) as if chromium were &
normal simple metal [2]. However, we argue that
some of the data is better understood in terms of our
proximity-magnetism phenomenology which at-
tempts to reflect results of n-electron quantum the-
ory [25]:

(1) The Kerr-effect magnetization loops of
Fe /Cr/Fe sometimes approach saturation gradually
[26].

(2) Spin-polarized neutron reflection data for a
Fe/Cr superlattice shows periodically alternating
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transverse components of ferromagnetic sublayer
moments which only align gradually in up to several
kilogauss of increasing external field [28].

(3) The apparent J, measured by means of the
Kerr effect varies as w™! for large w [26]. Intrinsic
coupling predicts w2 behavior for the envelope of
J, (Section 2), and imperfections of structure only
make it fall faster. But a w™' or m~* dependence of
C. follows naturally from our above discussion
(W« mk'ij(e/m)2 am™ .

(4) Compelling is the fact that very differently
prepared and measured Fe/Cr/Fe specimens -
(GaAs substrate and M—H loops [29]) versus (Fe
whisker and Brillouin light scattering [2]) — have one
property in common: J, /J, = —3 for several values
of mean m in the first negative lobe of long-period
coupling (3 <m < 13). This ratio J,/J, is nearly
constant even though J, and J, oscillate strongly
with the =2 monolayer short period in the
whisker-based sample, yet not in the GaAs-based
sample. Surely this structurally invariant ratio must
be intrinsic to ideal epi Fe /Cr/Fe trilayers having
spacer thicknesses in this range!

To explain the reason for this constant characteris-
tic ratio, let us embrace the experimental evidence
that the long-period coupling generally (but not com-
pletely) dominates the short-period coupling
throughout this first negative lobe of the long-period
coupling. Then ideally we have C_ (m) = 0 for most
values of m in this range 3 <m < 13, and perhaps
C, (m) is small for certain ones (m =3, 11, 13) [2].
The mean coupling of any real spacer whose thick-
ness fluctuates within this range should therefore
typically satisfy C, < C_. The observed coupling
oscillations imply that, depending on character of the
sample, the mean C_ (> 0) versus the mean m
oscillates with the short period (but without sign
change).

Suppose we crudely represent Eq. (15) with the
technically inapplicable first two terms of Eq. (2) by
setting the difference between these expressions to a
constant at the three representative orientations 6 =
0, w/2, and . We then find that Eq. (15) effec-
tively predicts J, = —w*C_/2 and J,/J, = —2 if
we neglect C, . Since the predicted ratio —2 is not
far from the experimental = —3, our interpretation
in terms of proximity magnetism using one ad-
justable parameter C_ is more economical than the

conventional one using two parameters J;, J,. A
proper test of proximity-magnetism phenomenology
would require the direct employment of Eq. (15)
instead of Eq. (2) in deriving the M—H loops,
Brillouin-scattering frequencies, neutron-reflection
intensities, etc. for comparison with experiments.
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