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Moments analysis of X-ray reflection profiles
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Abstract

We discuss an approach towards understanding the limitations of X-ray or neutron reflectivity methods for the determination
of an interfacial density profile. A novel analysis is presented based on an expansion of the reflectivity function in terms of

moments of the density profile.

0. Introduction

Neutron and X-ray reflectivity techniques have proven to
be unique tools for the determination of interfacial profiles,
i.e. the density profile across an interface. However, due to
the limited range of wave-vector transfer accessible with
these techniques, even using the most powerful new sources,
and also due to the loss of the phase of the scattered ampli-
tude, the determination of a profile is not unambiguous. We
discuss here the pertinent parameters that can be extracted
in a model-independent way from a reflection experiment in
the case of simple interfacial profiles. The discussion is ex-
emplified on the case of the helium liquid/vapour interface
where the different possibilities are discussed.

1. X-ray and neutron reflection from surfaces

The reflection of X-rays or neutrons from surfaces can
be used to study interfacial density profiles and roughnesses
(in addition to thin-film thicknesses). The term “interfacial
profile” may include very different contributions: it can be
due to a true compositional gradient or to a projection on
the surface normal of laterally structured surface. The lateral
structure can be due to a wide range of physical phenomena
ranging from capillary waves in the case of a liquid inter-
face to steps, islands or surface defects in the case of solid
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surfaces. For a perfect diopter (step-like profile), the usual
Descartes—Snell law of refraction applies, and there is very
little penetration of the incident radiation for grazing angles
of incidence inferior to the critical angle for total external
reflection: Q.c = (4n/2)/23(A), where | — d(4) is the real
part of the refractive index of the material. The specularly
reflected intensity ideally follows the Fresnel law of optics
which, for larger angles of incidence, falls off rather rapidly
as Re(Q.) ~ (Q:/20:)* (Q: > Qx). Typically, from a mea-
sure of the reflectivity spectrum of a real interface, different
models for the density profile p(z) are tested. If the scattering
is weak and one ignores the effects of multiple reflections,
then the reflected intensity can be described in the equiva-
lent of the first Born approximation by the square modulus
of the Fourier transform of the profile gradient:
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(valid only at Q. > Q). The Born approximation permits a
fairly simple interpretation of the data and yields an analytic
function for evaluation. Alternately, an exact calculation of
the model reflectivity can be made using the optical matrix
formalism, dividing the density profile into a succession of
thin slabs of constant index [1]. This approach presents the
advantage of remaining valid at small angles of incidence,
notably near the critical angle, and for large density gradi-
ents. Except for the development of conceptional arguments,
it is preferable to use the matrix approach for all analysis of

R(Q:) ~ Re(Q:)
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reflectivity (which can be calculated easily using an iterative
procedure).

2. Moments analysis of reflection data
2.1. Case of a single profile

Although, in principle, one can test different functional
forms for the density profile through a measurement of X-
ray or neutron reflectivity, experimental data are mostly sen-
sitive to the lower moments of the density profile derivative.
The zeroth and first moments are trivially the normalization
(the bulk density: p(—oc)) and the origin (zo) of the pro-
file. The first non-trivial contribution is due to the second
moment of the derivative describing the interfacial width:
a=M, 2 with

T @p(z—z0)
M.'—/oodzz—-—p(_oo)iaz . (2)

The second moment of the distribution is very important
in the case of a single interface since it defines the length
scale of the problem. It is the first parameter (root-mean-
squared roughness) that can easily be extracted in reflection
studies of interfaces. Higher moments can be defined using
this length scale such as the skewness or asymmetry: r =
M;/M23 ” or the Kurtosis (curvature or “long-tailedness”):
K = My/M? — 3 [2]. In the case of the free-surface of he-
lium, predictions show a non-trivial profile having a rather
large asymmetry including a long-range tail extending into
the bulk. For example, one recent density functional calcu-
lation [3] predicts the helium—vapor profile

p(—00)

)= T epa)

(3)
where @ = 0.196nm and v = 3 for *He. For this profile,
used here for illustration, one calculates: ¢ = 0.286 nm,
r = —0.695 and K = 1.474.

We shall now see whether a measure of the reflectiv-
ity is sensitive to the profile asymmetry, for example. For
that purpose, it is convenient to expand the profile deriva-
tive p'(z) (after suitable normalization and scaling such that
My = M, =1 and M; = 0) into a series involving succes-
sive derivatives of a Gaussian distribution [4]:

p(z) = :iocnqs("’(z) = ¢(z)§ (f/%) caHa(z/V2),
@)

where ¢(z) = (1/v/2m)exp(—23/2) and Ha(z) = (—1)"¢"
(d"/dz")(e™*") are the Hermite polynomials. The coeffi-
cients ¢, are directly related to the moments A; through
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Fig. 1. Profiles of the helium liquid/vapour interface correspond-
ing to Eq. (3) (solid line). The dotted line is the second mo-
ment (Gaussian) approximation. The derivatives are shown also
(units=nm~").

orthogonality relations between H,:

co=1,

cr=c =0,

3 =—r/6 =0.116,

cs = K/24 = 0.061,

¢s = (—Ms + 10M3)/5! = 0.031,

ce = 1/6!(Ms — 15M4 + 30) = 0.024, (5)

where the numerical values given are those calculated for the
profile presented above. Notice that the convergence of the
series is rather slow for this particular profile. The profiles
and their derivatives of expression (3) are shown in Fig. 1
together with the second-order (Gaussian) approximations.

The Fourier transform p'(z) can be expressed as
3" en(iQ:0)Y' $(Q.0) yielding an expression of the reflec-
tivity:

R(Q:)
Re(Q:)
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= exp[—(Q:0)][1 + 2ca(Q:0)"
+(c5 — 2c6)(Q:0)° +--). (6)

Expression (6) shows that the higher moments of the density
profile will contribute to the reflection significantly only
when 2¢4(0:0)* + (¢2 — 2¢6)(0.0)° >0, ie. for Q.0 2 1.
We illustrate this in Fig. 2 and compare the expansion of
Eq. (6) for this particular model profile with its analytical
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Fig. 2. Calculated specular reflectivity of the helium—vapor inter-
face (free surface). The dotted line considers only the interfacial
width (second moment of the helium—vapor density profile). The
solid line is obtained by the Fourier transform of the full model
density profile. The dashed line represents the expansion including
higher moments of the density profile (Eq. (6)). Inset: reflectivity
normalized to the Fresnel step-function reflectivity.

Fourier transform according to Eq. (1). One finds: R/RF =
F(Q:a), where

F(x)=nx[1+ (4/9)x2][1 + 4x%]/[sinh(7x) cosh(mx)]. (7)

Since the specular reflectivity (ignoring the diffuse scattering
in the specular direction) is already below 10~# before any
appreciable difference is indicated, it should be extremely
difficult to measure any effect of the asymmetry. The higher
moments of the profile contribute to the reflectivity even
less.

2.2. Case of a system bounded by two profiles (a film)

Let us consider now the case of a thin helium film wet-
ting a solid substrate [5]. One can perform a similar mo-
ment expansion for each interfacial profile. In addition to
the contribution of each profile, the reflectivity will include
an interference term:

R(Q:)
RF(QZ)

where d),» is the distance between the two interfaces. Due
to the interference product, odd-order terms of the moment
expansion of each profile do not cancel out. Provided that
one of the interfaces is very well known (i.e. including high-
order terms in the moment expansion of its profile), the
interference product will exhibit terms of the unknown pro-
file in ¢3(Q:0)’ sin(Q:d1.») which may be significant for
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Fig. 3. Same as Fig. 2 but in the case of a 20nm helium film
adsorbed on a silicon substrate assuming a simple error-function
helium-silicon density profile (ignoring the adsorption of solid
helium, etc. ). The reflection pattern is modulated by the interference
with the substrate/film interface reflection.

higher reflectivities than in the single-profile case. In this
respect, the film geometry might be more favorable to ex-
tract information on the asymmetry, but detailed knowl-
edge of the substrate—film interface is required. This, again,
is hard to obtain from reflection data as the result will be
strongly model-dependent. Also, if the interfacial width of
the substrate—film interface is comparable to or larger than
that of the film—vapor interface (which is almost always the
case), the previous discussion indicates that effect of a pro-
file asymmetry would also be unobtainable experimentally.
Fig. 3 illustrates the simulated reflectivity of a 20 nm thick
helium film adsorbed on a featureless silicon substrate. The
effect of the profile asymmetry is an enhancement in the
contrast of the interference fringes at large Q:, but the reflec-
tivity again falls below 10~* before the difference becomes
appreciable.

3. Conclusion

Previous discussion has shown that getting information
about asymmetry of an interfacial profile is a difficult task.
Contrary to what could be thought at first, looking at a sim-
ple interface may be less favorable in this respect than con-
sidering a more complex arrangement. In this case, the sec-
ond interface may act as a phase reference to the scattered
amplitude of the unknown profile. The possibility for an in-
terface to act as a phase reference to help to solve a struc-
ture has been suggested previously [6]. Moments analysis
has also been used to derive model-independant data in the
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study of interdiffusion between layers of deuterated and pro-
tonated polystyrene [7]. In this study the authors were able
to see evolution of the fourth moment during the interdiffu-
sion process.
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