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Abstract. We present a theoretical study of an Fe/Cr multilayer film which may be thought of
as a synthetic antiferromagnetic superlattice. We clarify certain aspects of the surface-spin-flop
transition in which a domain wall nucleates at the outer layer and eventually migrates to the
centre with increasing bias field. In particular, the nonvanishing ferromagnetic moment predicted
earlier for bulk domain walls at vanishing field is shown to drive a prolonged hysteresis cycle
and could thus be detected experimentally.

Domain walls that may occur in the bulk of a classical antiferromagnetic chain were recently
shown to exhibit a nonvanishing total magnetic moment which approaches the values±s,
in the limit of weak easy-axis anisotropy, wheres is the magnitude of the classical spin at
each lattice site [1]. This curious result would appear to be rather academic for crystalline
antiferromagnets, in view of the miniscule (atomic) values ofs, even though it could play
some role within a proper semiclassical quantization of antiferromagnetic domain walls [2].
Nonetheless the picture changes drastically in the case of an antiferromagnetic superlattice,
such as Fe/Cr, because the local moments coincides with the ferromagnetic moment of
each Fe layer and thus acquires macroscopic size. As a consequence, the superlattice is
effectively described by a classical spin chain whose sites correspond to the Fe layers and
the exchange coupling between adjacent layers is antiferromagnetic for Cr thickness in the
neighbourhood of 11̊A.

The essential ingredient of the scenario demonstrated both theoretically and
experimentally in [3] is a surface-spin-flop (SSF) transition that takes place on a finite
superlattice. When the bias field exceeds a certain critical value, which is smaller than
the critical field required for the familiar bulk spin-flop (SF) transition roughly by a factor√

2, a domain wall nucleates near one of the two free ends of the superlattice. With further
increase of the applied field the domain wall migrates to the centre and subsequently expands
more or less symmetrically to approach a SF state that is nearly uniform within the bulk.
The SF state eventually saturates to complete ferromagnetic order after the field exceeds
yet another critical value.

The above rough description of the SSF transition glosses over some important details
concerning the process of nucleation of a domain wall. Our first aim is to examine
more closely the formation of the true SSF state advocated in [4] which proceeds by
a first-order transition and provides the true hysteresis curve when the cycle is reversed
carefully. However the generic hysteresis curves obtained in a variety of simulations [5, 6]
are significantly different and may extend all the way down to vanishing field. We shall
argue here that a prolonged hysteresis cycle is driven by a domain wall trapped near the
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centre, whose total moment remains finite even at vanishing field, and should be a robust
feature of antiferromagnetic superlattices. In turn, such a scenario may provide a method
for the experimental detection of the theoretically predicted ferromagnetic moment of an
antiferromagnetic domain wall [1].

We consider a finite superlattice (chain) with3 layers (sites). Theyz plane is taken to
coincide with the plane of each layer and is thus perpendicular to the chain,x direction.
The ferromagnetic moment of each Fe layer is described by a spinSi , residing at the site
i = 1, 2, . . . , 3 of the equivalent chain, which carries constant magnitudes (S2

i = s2)

and satisfies the classical Landau–Lifshitz equation [7] adapted to the present problem [1],
namely

(1+ s2γ 2)
∂Si

∂t
= (Si × Fi )− γ [Si × (Si × Fi )]

Fi = −J (Si+1+ Si−1− 2Si )− (K1S
x
i e1−K3S

z
i e3)+He3

(1)

where e1, e2 and e3 are unit vectors along the three axes. The exchange term in the
effective fieldFi should be completed with the stipulation that it contain only one spin
when applied for the outer layers;i = 1 or 3. The anisotropy term is such that the easy
or z axis lies within each layer, while the hard orx axis points along the chain direction
thanks to the effect of the magnetostatic field at low frequencies [5]. The last term inFi is
the contribution of a uniform external field applied along the easy axis.

The spin magnitudes and the exchange constantJ may be scaled out of the calculation
and the relevant parameters are the rationalized easy-axis anisotropy and bias field defined
from

ε =
√
K3

J
h = H

2εsJ
(2)

as well as the dimensionless hard-axis anisotropyK1/J and dissipation constantsγ . The
most important parameter is the easy-axis anisotropy for which we shall mainly use a value
ε = 1/2 that is typical in Fe/Cr superlattices. It is also significant thath = 1 corresponds
to a modest magnetic field in the vicinity ofH ∼ 1 kG. On the other hand, a precise
specification ofK1/J and sγ is not necessary for the current work. These parameters are
relevant for some transient dynamical details but do not affect the shape of the equilibrium
spin configurations which ultimately develop in theyz plane. For definiteness, we have
employed the valueK1/J = 21 recommended in [5] and have adopted a relatively large
dissipation constantsγ = 1 that leads to relaxation essentially within a few rationalized
time units, defined asτ = 2εsJ t . In fact, if one only aims at locating the energy minima,
one may use a very large dissipation constant so that the precession term in equation (1)
can be neglected and

∂Si

∂t ′
= −Si × (Si × Fi ) (3)

wheret ′ is a suitably rescaled pseudotime variable. The advantage of the fully dissipative
equation (3) is that it rapidly leads to equilibrium [1], whereas equation (1) describes a
physical process that is closer to what is actually done in an experiment. Our main results
presented in the following were confirmed using both equation (1) and (3).

Now assume that a superlattice with an even number of layers(3 = 20) is initially
relaxed in its ground (Ńeel) state shown in the first row of figure 1 at vanishing field. Our
task is to predict the fate of the ground state after a finite fieldh is turned on. Actually the
pure Ńeel state is an exact static solution of equation (1) for any value of the applied field.
Hence we study the stability of the Néel state in the presence of a random perturbation.
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We consider first the case of a ‘small’ perturbation simulated here by replacing the value
S3 = s(0, 0,−1) of the rightmost spin with, say,S3 = s(0, 0.14,−0.99). (In practice, a
disturbance of this nature may be realized by temporarily applying a small in-plane field
near the surface of the superlattice in a direction perpendicular to the easy axis.) We then
view the perturbed state as the initial condition and numerically calculate its time evolution
through equation (3). Not surprisingly, such a state quickly relaxes back to the pure Néel
state when the bias fieldh is sufficiently small. This result is consistent with the fact
that the anticipated bulk SF transition should occur only when the field exceeds a certain
(rationalized) critical value in the neighbourhood ofh ∼ 1; the precise value may be found
in equation (4.17) of [1] and reduces toh = 1 in the weak-anisotropy limitε→ 0.

Figure 1. Snapshots of the SSF transition at various values of the fieldh. The relaxed spin
configurations are confined in theyz plane which is rotated onto the plane of the figure.

Nevertheless a detailed search in steps ofδh = 0.01 reveals that the Ńeel state is
rendered unstable at an earlier stage, namely whenh = h2 ≈ 0.75. The corresponding
relaxed configuration, shown in the third row of figure 1, clearly demonstrates that a domain
wall has suddenly appeared somewhere between the rightmost layer and the centre of the
superlattice. This result agrees with the calculation of [3]; so does the subsequent evolution
of the domain wall calculated here by continuing the procedure beyondh = 0.75, also in
steps ofδh = 0.01, using as initial condition at each step the relaxed configuration obtained
in the preceding step. The wall has practically moved to the centre ath = 0.80, as shown in
the fourth row of figure 1, but a slight asymmetry around the centre persists in the numerical
data beyond the eighth significant figure. The asymmetry is progressively reduced at higher
fields, as the wall expands around the centre, and disappears forh & 1 within machine (16-
place) accuracy. Meanwhile the domain wall gradually turns into a uniform SF state within
the bulk, with notable nonuniformities around the edges, as is apparent in the caseh = 1.5
depicted in the fifth row of figure 1. Further increase of the applied field eventually leads
to complete ferromagnetic order which first occurs when 2εh = 4− ε2; in our calculation
ε = 1/2 andh = 3.75. The described process is also monitored in figure 2 which plots the
field dependence of the total magnetic momentµ = ∑i Si = (µ1 = 0, µ2, µ3) by a solid
line. The solid curve forµ3 is in general agreement with the result of [3], while the small
componentµ2 that develops along they axis in a narrow field regime aboveh2 = 0.75
provides a measure of the asymmetry of the wall around the centre and practically disappears
for h > 0.80.
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Figure 2. The field dependence of the total magnetic momentµ = (µ1 = 0, µ2, µ3) depicted
by solid and dotted lines corresponding to the two applied field sequences.

The procedure followed above suggests thath2 is the characteristic field where a
surface-spin-wave mode turns soft [8] and hence the Néel state becomes unstable to small
perturbations forh > h2. Indeed, an examination of small fluctuations of the Néel state on
a semi-infinite chain yields the field value

h2 = 1

2

√
2+ ε2 (4)

which reduces toh2 = 1/
√

2 in the limit of weak anisotropy(ε → 0) but givesh2 = 3/4
for ε = 1/2. The very slight departure from the above value observed in our simulation
is due to the finiteness of the lattice(3 = 20). One should also mention that the fieldh2

given in equation (4) coincides with the field determined from equation (3) of [4] obtained
through a different reasoning and thought to provide the phase boundary of the AF3:AF4

transition.
In the present context, the sudden appearance of a domain wall within the chain, the

sudden jump of the total moment and a corresponding sudden reduction of the energy make
it clear that the SSF transition is first order and could occur at a field smaller thanh2. In
order to probe for such a possibility we repeat the procedure by invoking a ‘large’ fluctuation
in the initial Néel state, implemented here by nearly flipping the spin of the outer layer from
its Néel valueS3 = s(0, 0,−1) to, say,S3 = s(0, 0.14, 0.99). Such an initial condition
no longer relaxes to the pure Néel state, when the field exceeds the valueh1 ≈ 0.66, but
to a nontrivial surface state illustrated in the second row of figure 1 forh = 0.70. Clearly
this is the SSF state discussed in [4] in which the outer spin forms an angle with the
easy axis approximately equal to 60◦. One should also note that the SSF state comes in
two varieties distinguished by their handedness. Had we started with the initial condition
S3 = s(0,−0.14, 0.99) the outer spin would have again tilted by nearly 60◦ but to the left
of the easy axis. When the field is increased to approach the valueh2 = 0.75, the SSF state
evolves into the domain wall shown in the third row of figure 1 and, thereafter, the process
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continues as described earlier in the text. As a consequence, the total moment of the SSF
state, depicted by a dotted line in figure 2, joins smoothly with the earlier results ath = h2.
The observed sizable componentµ2 implies that the SSF state is significantly twisted.

A closer look at the numerical energy data reveals that we are dealing with a genuine
first-order transition characterized by three distinct field values ordered ash1 < hc < h2,
whereh1 ≈ 0.66 andh2 ≈ 0.75 are the fields already discussed. The low-energy regime
may be envisaged roughly as an uneven double well whose two local minima correspond
to the Ńeel and SSF states. The Néel state is locally stable forh < h2 and the SSF state
for h > h1. The energies of the two minima coincide ath = hc = 0.682. . . which lies in
the overlaping domain [h1, h2]. The SSF state first appears as a metastable local minimum
in the region [h1, hc] and becomes the absolute minimum forh > hc. Similarly the Ńeel
state is the absolute minimum forh < hc and survives as a metastable local minimum in
[hc, h2]. Therefore, strictly speaking, the true SSF transition occurs at the critical fieldhc.
Nevertheless all three characteristic field values are important in connection with hysteresis.
One should further note that the two states discussed above are not the only local minima of
the energy functional. On the contrary, a multitude of metastable minima are present with
energies that differ only slightly. The implied chaotic behaviour of this fascinating system
was already emphasized in the earlier work, especially in [9], and is also important for the
ensuing discussion of hysteresis.

The preceding description of the ‘true SSF transition’ establishes that the ‘true hysteresis
loop’ is given by the solid and dotted lines of figure 2 taken in combination. Specifically,
let us invoke the original scenario and drive the system to a nominal fieldh0, just aboveh2,
where a domain wall appears within the chain but is still off centre. If we then reverse the
cycle carefully, by reducing the applied field adiabatically, the wall returns to the rightmost
layer, through the formation of a SSF state in reverse order, and finally exits the system
at h = h1 where the chain returns to the pure Néel state. Consequently the total moment
retraces the dotted lines of figure 2 also in reverse order.

However the hysteresis loop of figure 2 is far from generic when the nominal fieldh0

is taken to be sufficiently large, practically in the regionh0 > 0.8, where the relaxed spin
configuration is symmetric around the centre to great numerical precision. If we use such
a configuration as initial condition in equation (1), and then reduce the field adiabatically,
the calculated hysteresis curve is rather prolonged and typically extends all the way down
to vanishing field [5, 6]. An example of such a calculation is shown in figure 3 obtained
here by a continuous adiabatic field reduction given byh = h0− ατ , with α = 10−6, and a
nominal fieldh0 = 0.9 or 1.5, both cases leading to essentially the same result depicted by a
dashed line. Despite appearances the solid and dashed lines in figure 3 do not join smoothly
ath2. The small discrepancy illustrated in the inset of the same figure is certainly not due to
numerical imprecision but reflects the important fact that a domain wall is trapped near the
centre of the chain during the descending side of the cycle. Such a fact is corroborated by
monitoring the corresponding spin configuration. In particular, when the field is completely
switched off (h = 0) the resulting configuration, shown in the sixth row of figure 1, is
simply the bulk domain wall illustrated earlier in figure 1 of [1]. A related interesting fact
is that the same domain wall is realized bysuddenlyturning off the fieldh0 and then letting
the configuration relax through equation (1) or (3). If we further reverse the cycle once
again, by increasing the field adiabatically, the dashed line of figure 3 is reproduced.

The key element of this calculation is that the relaxed spin configuration at some field
h0 loses memory of its history whenh0 is sufficiently large. As mentioned earlier, memory
is stored in a slight asymmetry of the relaxed configuration, which is lost to within 16-place
accuracy whenh0 & 1. But even when 0.8. h0 . 1, the asymmetry is pushed beyond the
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Figure 3. The generic hysteresis curve (dashed line) obtained by reversing the cycle after
the spin configuration had relaxed at the nominal field valueh0 = 1.5. The dashed line is
indistinguishable from the corresponding solid line of figure 2almostdown to the field value
h2 = 0.75, as shown in the inset.

eighth significant figure and is apparently washed out by small errors made at each step of
the numerical integration of equation (1) during the descending side of the cycle. On the
assumption that random numerical errors may provide a genuine representation of noise in
a realistic superlattice, one must conclude that the spin configuration loses its memory as it
descends through the Rubikon of fields near the SSF transition and, thereby, is locked into
a high-energy local minimum which is a bulk domain wall trapped at the centre.

Whereas a firm theoretical explanation of the picture outlined above is lacking, one
may nonetheless provide a semi-analytical description of the prolonged hysteresis curve of
figure 3 based on the continuum approximation of bulk domain walls worked out in [1].
At first sight, it appears improbable that a continuum description can be useful for such a
short chain(3 = 20) and strong anisotropy(ε = 1/2) because there exist two competing
conditions for its validity: (a) the wall must be sufficiently wide to allow a formulation in
terms of continuous functions and (b) the wall must be sufficiently narrow to fit within a
finite chain. The discussion of [1] suggests that these conditions are equivalent to the strong
inequalities

1/3� ε
√

1− h2� 1 (5)

which are meaningful in the regionh < 1; i.e., below the critical fieldh = 1 of the bulk
SF transition in the limit of weak anisotropy. The total moment of a domain wall is then
given analytically by

µ1 = 0= µ2 µ3 = s
[

1+ h√
1− h2

]
. (6)

Interestingly, both inequalities in equation (5) are reasonably satisfied in our current example
whenh < 1. Therefore, if we recall that the prolonged hysteresis curve (dashed line) of
figure 3 also describes the total moment of a domain wall trapped near the centre, we
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conclude that such a curve can be approximated by equation (6). Indeed, in figure 4, we
observe a reasonable agreement forh < 1; of course, the two curves diverge from each
other ash approaches unity because the left inequality in equation (5) is then violated
or, equivalently, the domain wall expands and clearly senses the boundaries of the finite
chain. We have repeated the calculation for a larger superlattice(3 = 200) and a weaker
anisotropy(ε = 0.1), a choice that strengthens both inequalities in equation (5). One would
thus expect that the agreement should improve for any given value ofh, in the regionh . 1,
as actually demonstrated in the inset of figure 4.

Figure 4. Comparison of the generic hysteresis curve of figure 3, now depicted by open circles,
to the analytical prediction of equation (6) shown by a solid line. The main figure illustrates the
results for our standard choice of parameters,3 = 20 andε = 1/2, while the inset for3 = 200
andε = 0.1.

The published experimental data [5] on hysteresis in Fe/Cr do not seem to be sufficiently
detailed or accurate to resolve at this point the finer issues discussed in the present letter.
In this respect, one should keep in mind that Kerr measurements may not be entirely
appropriate because they probe mostly the outer layers, whereas it is difficult, if not
impossible, to ascertain where the total ferromagnetic moment of an antiferromagnetic
domain wall is actually located [10]. Putting it differently, the local distribution of the
ferromagnetic moment is somewhat elusive, a fact reflected in the appearance of parity-
breaking contributions within a continuum description. Nevertheless the total moment is
completely unambiguous and should be amenable to experimental detection. One should
further mention that domain walls may occur also in the bulk of a superlattice with an odd
number of layers, and their total moment differs from that of the ground state by an amount
±s in the limits of weak anisotropy and vanishing field. However domain walls cannot be
produced on an odd superlattice via a SSF transition [3].

We conclude with a few comments on the numerical integration of equations (1) and
(3). One would think that resolving the constraintS2

i = s2 through, say, a spherical
parametrization should expedite the process. Actually such a parametrization introduces
artificial coordinate singularities when a spin approaches the north or the south pole, a
frequent occurrence in this problem, which put a strain on the calculation. Instead, we
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found it far more efficient to look upon the Landau–Lifshitz equation as a system of three
equations, one for each spin component, and re-enforce the constraint after every time step of
the numerical integration. This trick was borowed from earlier calculations in the nonlinear
σ model [11]. One may then use a standard Runge–Kutta algorithm for the time integration.
In fact, even a straightforward first-order time differencing scheme proves to be stable for
all calculations presented here, provided that the time step is chosen in the neighbourhood
of 10−2. The required CPU time is rather insignificant. For example, complete relaxation at
a specific field value is typically obtained through equation (3) using 106 time steps which
amount to less than one minute on a modest HP715 workstation.

I am indebted to D L Mills for sending me a copy of [5] prior to publication, and to C
Micheletti for a copy of his Oxford DPhil thesis.
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