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Abstract. This paper presents a review of the phenomenon of interlayer exchange coupling in
magnetic multilayers. The emphasis is put on a pedagogical presentation of the mechanism of
the phenomenon, which has been successfully explained in terms of a spin-dependent quantum
confinement effect. The theoretical predictions are discussed in connection with corresponding
experimental investigations.

1. Introduction

Since the first observation by Grünberget al [1] of antiferromagnetic coupling of Fe films
separated by a Cr spacer, the interlayer exchange interaction between ferromagnetic layers
separated by a non-magnetic spacer has been a subject of intense research, in particular in
the last few years. The decisive stimulus came from the discovery, by Parkinet al [2], of
oscillationsof the interlayer exchange coupling in Fe/Cr/Fe and Co/Ru/Co multilayers, as a
function of spacer thickness. Furthermore, Parkin [3] showed that this spectacular phenomenon
occurs with almost any metal as the spacer material.

This review will be restricted to the case of interlayer coupling across non-magnetic
metallic spacer layers. This excludes the cases of non-metallic spacers [4–9], of antiferro-
magnetic spacers such as Cr or Mn [10–21], and of rare-earth multilayers [22–25]. This
choice is motivated by the fact that the physical mechanism of the coupling in these cases is
quite different from the one to be discussed here.

The magnetic coupling energy per unit area can usually be expressed as

E(θ) = J cosθ (1)

whereθ is the angle between the magnetizations of the two magnetic layers, andJ is called the
interlayer-coupling coupling constant. Higher-order terms in an expansion in powers of cosθ

are also observed; such terms, which give rise to non-collinear alignment of the magnetizations,
are believed to be of non-intrinsic origin and to be related to defects such as roughness [26,27].
Such effects will not be considered here. In addition, due to space limitations, the important
question of the role of alloy disorder and interdiffusion [28–31] will not be addressed.

The purpose of this paper is to present as simply as possible the mechanism of interlayer
exchange coupling in terms of quantum interferences due to electron confinement in the spacer
layer. The understanding of this mechanism relies on ideas due to various authors [32–36].
The presentation given here is based on that of reference [36]. The emphasis will be on

0953-8984/99/489403+17$30.00 © 1999 IOP Publishing Ltd 9403



9404 P Bruno

physical concepts and pedagogical clarity rather than on mathematical rigour. It is organized
as follows: in the next section, an elementary discussion of quantum confinement is given; in
section 3, it is then shown how spin-dependent confinement in the spacer layer gives rise to
interlayer exchange coupling; section 4 is devoted to the limit of large spacer thicknesses, for
which particularly simple results are obtained; sections 5 and 6 treat the variation of interlayer
exchange coupling with magnetic layer thickness and non-magnetic overlayer thickness,
respectively; finally, in section 7 the strength of the interlayer exchange coupling is discussed
in comparison with experimental data.

The point of view adopted here reflects the author’s subjective views on the topic. In
particular, due to space limitations, the important literature devoted toab initio calculation
will not be discussed in detail here. The interested reader can find complementary information
in the various review papers on this subject which have been published recently [26,37–42].

2. Elementary discussion of quantum confinement

For the sake of clarity, we shall first consider an extremely simplified model, namely the one-
dimensional quantum well, which nevertheless contains the essential physics involved in the
problem. Then, we shall progressively refine the model in order to make it more realistic.

The model consists in a one-dimensional quantum well representing the spacer layer (of
potentialV = 0 and widthD), sandwiched between two ‘barriers’ A and B of respective
widthsLA andLB, and respective potentialsVA andVB. Note that we use the term ‘barrier’ in
a general sense, i.e.,VA andVB are not necessarily positive. Furthermore, the barrier widths,
LA andLB, can be finite or infinite, without any restriction.

2.1. Change of the density of states due to quantum interferences

Let us consider an electron of wavevectork+ (with k+ > 0) propagating towards the right
in the spacer layer; as this electron arrives at barrier B, it is partially reflected to the left,
with a (complex) amplituderB ≡ |rB|eiφB . The reflected wave of wavevectork− is in turn
reflected at barrier A with an amplituderA ≡ |rA |eiφA , an so on†. The modulus|rA (B)| of
the reflection coefficient expresses the magnitude of the reflected wave, whereas the argument
φA (B) represents the phase shift due to the reflection (note that the latter is not absolutely
determined and depends on the choice of the coordinate origin).

The interferences between the waves due to the multiple reflections at the barriers induce
a modification of the density of states in the spacer layer, for the electronic state under
consideration. The phase shift resulting from a complete round trip in the spacer is

1φ = qD + φA + φB (2)

with

q ≡ k+ − k−. (3)

If the interferences are constructive, i.e., if

1φ = 2nπ (4)

with n an integer, one has an increase of the density of states; conversely, if the interferences
are destructive, i.e., if

1φ = (2n + 1)π (5)

† Of course, for the one-dimensional model, one hask− = −k+; however, this property will generally not hold for
three-dimensional systems, to be studied below.
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one has a reduction of the density of states. Thus, in a first approximation, we expect the
modification of the density of states in the spacer,1n(ε), to vary withD like

1n(ε) ≈ cos(qD + φA + φB). (6)

Furthermore, we expect this effect to be proportional to the amplitude of the reflections at
barriers A and B, i.e., to|rArB|; finally, 1n(ε) must be proportional to the widthD of the
spacer and to the density of states per unit energy and unit width:

2

π

dq

dε
(7)

which includes a factor of 2 for spin degeneracy. We can also include the effect of higher-order
interferences due ton round trips in the spacer; the phase shift1φ is then multiplied byn and
|rArB| is replaced by|rArB|n. Gathering all the terms, we get

1n(ε) ≈ 2D

π

dq

dε

∞∑
n=1

|rArB|n cosn(qD + φA + φB)

= 2

π
Im

(
iD

dq

dε

∞∑
n=1

(rArB)
neniqD

)
= 2

π
Im

(
i
dq

dε

rArBeiqD

1− rArBeiqD

)
. (8)

As will appear clearly below, it is more convenient to consider the integrated density of states

N(ε) ≡
∫ ε

−∞
n(ε′) dε′. (9)

The modification1N(ε) of the integrated density of states due to electron confinement is

1N(ε) = 2

π
Im

∞∑
n=1

(rArB)
n

n
eniqD = − 2

π
Im ln(1− rArBeiqD). (10)

A simple graphical interpretation of the above expression can be obtained by noting that
Im ln(z) = Arg(z), for z complex; thus,1N(ε) is given by the argument, in the complex
plane, of a point located at an angle1φ = qD + φA + φB on a circle of radius|rArB| centred
at 1. This graphical construction is shown in figure 1.

1Arg(z)

BA |r|r

z

Im(z)

Re(z)
0

Figure 1. Graphical interpretation of equation (10).

The variation of1N(ε) as a function ofD is shown in figure 2, for various values of the
confinement strength|rArB|. For weak confinement, figure 2(a),1N(ε) varies withD in a
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Figure 2. Variation of1N(ε) as a function ofD, for various values of the confinement strength:
(a) |rArB| = 0.1, (b) |rArB| = 0.8, (c) |rArB| = 1 (full confinement). Note the different scales
along the ordinate axis.

sinusoidal manner. As one increases the confinement strength, figure 2(b), the oscillations are
distorted, due to higher-order interferences. Finally, for full confinement, figure 2(c),1N(ε)

exhibits some jumps that correspond to the appearance of bound states. We note, however,
that the period3 of the oscillations of1N(ε) depends not on the confinement strength, but
only on the wavevectorq ≡ k+ − k−; that is,3 = 2π/q.

So far, we have implicitly restricted consideration to positive-energy states. Negative-
energy states (i.e., of imaginary wavevector) are forbidden in the absence of the barriers A and
B, because their amplitude diverges either on the right-hand side or on the left-hand side, so
they cannot be normalized. This no longer holds in the presence of the barriers ifVA (or VB,
or bothVA andVB) is negative: the negative-energy states, i.e., ones varying exponentially
in the spacer, can be connected to allowed states of A or B. In order to treat these states
consistently, we simply have to extend the concept of the reflection coefficient to states of
imaginary wavevector, which is straightforward. One can check that, with this generalization,
equation (10) accounts properly for the contribution of the evanescent states. Physically, this
can be interpreted as a coupling of A and B by the tunnel effect [7,36].

2.2. Energy associated with the quantum interferences in the spacer

Let us now study the modification of the energy of the system due to the quantum interferences.
In order to conserve the total number of electrons, it is convenient to work within the grand-
canonical ensemble, and to consider the thermodynamic grand potential, which is given by

8 ≡ −kBT
∫ +∞

−∞
ln

[
1 + exp

(
εF − ε
kBT

)]
n(ε) dε = −

∫ +∞

−∞
N(ε)f (ε) dε. (11)

At T = 0, this reduces to

8 ≡
∫ εF

−∞
(ε − εF )n(ε) dε = −

∫ εF

−∞
N(ε) dε. (12)
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The energy1E associated with the interferences is the contribution to8 corresponding to
1N(ε):

1E = 2

π
Im
∫ +∞

−∞
ln(1− rArBeiqD) dε. (13)

2.3. The three-dimensional layered system

The generalization of the above discussion to the more realistic case of a three-dimensional
layered system is immediate. Since the system is invariant on translation parallel to the plane,
the in-plane wavevectork‖ is a good quantum number. Thus, for a givenk‖, one has an
effective one-dimensional problem analogous to the one discussed above. The resulting effect
of quantum interferences is obtained by summing overk‖ over the two-dimensional Brillouin
zone. The modification of the integrated density of states per unit area is

1N(ε) = − 1

2π3
Im
∫

d2k‖ ln(1− rArBeiq⊥D) (14)

and the interference energy per unit area is

1E = 1

2π3
Im
∫

d2k‖
∫ +∞

−∞
f (ε) ln(1− rArBeiq⊥D) dε. (15)

2.4. The quantum size effect in an overlayer

The case of a thin overlayer deposited on a substrate is of considerable interest. In this case,
one of the barriers (say, A) consists of the vacuum, and barrier B is constituted by the sub-
strate itself. The potential of the vacuum barrier isVvac = εF + W , whereW is the work
function; thus it is perfectly reflecting for occupied states, i.e.,|rvac| = 1. On the other hand,
the reflection at the substrate (or coefficientrsub) may be total or partial, depending on the band
matching for the state under consideration.

The spectral density of the occupied states in the overlayer can be investigated
experimentally by photoemission spectroscopy; in addition, by using inverse photoemission,
one can study the unoccupied states. If furthermore these techniques are used in the ‘angle-
resolved’ mode, they give information on the spectral densitylocally in thek‖-plane.

For a given thickness of the overlayer, the photoemission spectra (either direct or inverse)
exhibit some maxima and minima corresponding, respectively, to the energies for which the
interferences are constructive and destructive. When the confinement is total, narrow peaks
can be observed, which correspond to the quantized confined states in the overlayer, as was
pointed out by Loly and Pendry [43].

Quantum size effects due to electron confinement in the photoemission spectra of over-
layers have been observed in various non-magnetic systems [44–52]. In particular, the systems
Au(111)/Ag/vacuum and Cu(111)/Ag/vacuum offer excellent examples of this phenomenon
[49,51].

2.5. A paramagnetic overlayer on a ferromagnetic substrate: the spin-polarized quantum
size effect

So far our discussion has concerned exclusively non-magnetic systems. Qualitatively new
behaviour can be expected when some of the layers are ferromagnetic. A case of particular
interest is that of a paramagnetic overlayer on a ferromagnetic substrate.

In the interior of the overlayer, the potential is independent of the spin; therefore the
propagation of electrons is described by a wavevectork⊥ which is spin independent. The
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coefficient of reflection at the vacuum barrier,rvac, is also spin independent. However, the
ferromagnetic substrate constitutes a spin-dependent potential barrier; thus, the substrate
reflection coefficients for electrons with spin parallel to the majority- and minority-spin
directions of the substrate, respectivelyr↑sub andr↓sub, are different. It is convenient to define
the spin average

rsub≡ r
↑
sub+ r↓sub

2
(16)

and the spin asymmetry

1rsub≡ r
↑
sub− r↓sub

2
. (17)

In this case, the electron confinement in the overlayer gives rise to a spin-dependent modulation
of the spectral density versus overlayer thickness; the period of the modulation is the same for
the two spins, whereas the amplitude and phase are expected to be spin dependent.

The quantum size effects in paramagnetic overlayers on a ferromagnetic substrate have
been investigated by several groups [53–66]. The systems studied most are Cu overlayers on
a Co(001) substrate and Ag overlayers on an Fe(001) substrate. Ortega and Himpsel [54,55]
observed a quantum size effect in the normal-emission photoelectron spectra of a copper
overlayer on a fcc cobalt (001) substrate. They observed peaks due to quantum size effects
both in the photoemission and in the inverse-photoemission spectra. These quantum size
effects manifest themselves also in an oscillatory behaviour of the photoemission intensity
at the Fermi level; as the observed oscillation period (5.9 atomic layers (AL)) is close to the
long period of interlayer exchange-coupling oscillations in Co/Cu(001)/Co, they suggested
that the two phenomena should be related to each other; they also claimed that the observed
oscillations in photoemission are spin dependent and due mostly to minority electrons. A
direct confirmation of this conjecture has been given independently by Garrisonet al [57]
and by Carboneet al [58] by means of spin-polarized photoemission. They found that
both the intensity and the spin polarization exhibit oscillatory behaviours, with the same
period (5–6 atomic layers), but opposite phases, which indicates that the quantum size effect
does indeed take place predominantly in the minority-spin band as proposed by Ortega and
Himpsel [54, 55]. Recently, Kläsgeset al [64] and Kawakamiet al [66] have observed spin-
polarized quantum size effects in a copper overlayer on cobalt (001) for a non-zero in-plane
wavevector corresponding to the short-period oscillation of the interlayer exchange coupling
in Co/Cu(001)/Co; they observed short-period oscillations of the photoemission intensity in
good agreement with the short-period oscillations of the interlayer coupling. This observation
provides a further confirmation of the relation between quantum size effects in photoemission
and oscillation of interlayer exchange coupling.

Photoemission studies of quantum size effects have also been performed for other kinds of
system such as a ferromagnetic overlayer on a non-magnetic substrate, or systems comprising
more layers [67–71].

Photoemission spectroscopy undoubtedly constitutes the method of choice for
investigating quantum size effects in metallic overlayers: this is due to its unique features,
which allow selectivity in energy, in-plane wavevector, and spin.

Besides photoemission, spin-polarized quantum size effects in paramagnetic overlayers
on a ferromagnetic substrate are also responsible for the oscillatory behaviour (versus overlayer
thickness) of the spin-polarized secondary-electron emission [72,73], linear [74–79] and non-
linear [80,81] magneto-optical Kerr effect, and magnetic anisotropy [82,83]. However, these
effects usually involve a summation over all electronic states, so the quantitative analysis of
the quantum size effects may be fairly complicated.
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3. Interlayer exchange coupling due to quantum interferences

Let us now consider the case of a paramagnetic layer sandwiched between two ferromagnetic
layers A and B. Now, the reflection coefficients on both sides of the paramagnetic spacer layer
are spin dependent.A priori, the angleθ between the magnetizations of the two ferromagnetic
layers can take any value; however, for the sake of simplicity, we shall restrict ourselves here
to the ferromagnetic (F) configuration (i.e.,θ = 0) and the antiferromagnetic (AF) one (i.e.,
θ = π ).

For the ferromagnetic configuration, the energy change per unit area due to quantum
interference is easily obtained from (15), i.e.,

1EF = 1

4π3
Im
∫

d2k‖
∫ +∞

−∞
f (ε)

[
ln(1− r↑Ar↑Beiq⊥D) + ln(1− r↓Ar↓Beiq⊥D)

]
dε. (18)

In this equation, the first and the second term correspond respectively to majority- and minority-
spin electrons. The antiferromagnetic configuration is obtained by reversing the magnetization
of B, i.e., by interchangingr↑B andr↓B; thus the corresponding energy per unit area is

1EAF = 1

4π3
Im
∫

d2k‖
∫ +∞

−∞
f (ε)

[
ln(1− r↑Ar↓Beiq⊥D) + ln(1− r↓Ar↑Beiq⊥D)

]
dε. (19)

Thus, the interlayer exchange-coupling (IEC) energy is

EF − EAF = 1

4π3
Im
∫

d2k‖
∫ +∞

−∞
f (ε) ln

[
(1− r↑Ar↑Beiq⊥D)(1− r↓Ar↓Beiq⊥D)

(1− r↑Ar↓Beiq⊥D)(1− r↓Ar↑Beiq⊥D)

]
dε (20)

which can be simplified as

EF − EAF ≈ − 1

π3
Im
∫

d2k‖
∫ ∞
−∞

f (ε)1rA 1rB eiq⊥D dε (21)

in the limit of weak confinement. The above expression for the IEC has a rather transparent
physical interpretation. First, as the integrations overk‖ over the first two-dimensional
Brillouin zone and over the energy up to the Fermi level show, the IEC is a sum of contributions
from all occupied electronic states. The contribution of a given electronic state, of energyε

and in-plane wavevectork‖, consists of the product of three factors: the two factors1rA
and1rB express the spin asymmetry of the confinement due to the magnetic layers A and B,
respectively, while the exponential factor eiq⊥D describes the propagation through the spacer
and is responsible for the interference (or quantum size) effect. Thus, this approach establishes
an explicit and direct link between oscillatory IEC and quantum size effects such as are observed
in photoemission.

4. Asymptotic behaviour for large spacer thicknesses

In the limit of large spacer thicknessD, the exponential factor oscillates rapidly withε and
k‖, which leads to substantial cancellation of the contributions to the IEC due to the different
electronic states. However, because the integration over energy is abruptly stopped atεF , states
located at the Fermi level give the predominant contributions. Thus the integral overε may
be calculated by fixing all other factors to their value atεF , and by expandingq⊥ ≡ k+

⊥ − k−⊥
aroundεF , i.e.,

q⊥ ≈ q⊥F + 2
ε − εF
h̄v+−
⊥F

(22)
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with
2

v+−
⊥F
≡ 1

v+
⊥F
− 1

v−⊥F
. (23)

The integration (see reference [36] for details) yields

EF − EAF = 1

2π3
Im
∫

d2k‖
ih̄v+−
⊥F
D

1rA 1rB eiq⊥FDF (2πkBTD/h̄v
+−
⊥F ) (24)

where

F(x) ≡ x

sinhx
. (25)

In the above equations,q⊥F is a vector spanning thecomplex Fermi surface; the velocityv+−
⊥F

is a combination of the group velocities at the points(k‖, k+
⊥F ) and(k‖, k−⊥F ) of the Fermi

surface.
Next, the integration overk‖ is performed by noting that, for large spacer thicknessD, the

only significant contributions arise from the neighbouring critical vectorskα‖ for whichq⊥F is
stationary. Around such vectors,q⊥F may be expanded as

q⊥F = qα⊥F −
(kx − kαx )2

καx
− (ky − k

α
y )

2

καy
(26)

where the crossed terms have been cancelled by making an appropriate choice of thex- and
y-axes;καx andκαy are combinations of the curvature radii of the Fermi surface at(kα‖ , k

+α
⊥ )

and(kα‖ , k
−α
⊥ ).

The integral is calculated by using the stationary-phase approximation [36], and one
obtains

EF − EAF = Im
∑
α

h̄vα⊥κα
2π2D2

1rαA 1r
α
B eiqα⊥DF(2πkBTD/h̄v

α
⊥) (27)

whereqα⊥, vα⊥,1rαA,1rαB correspond to the critical vectorkα‖ , and

κα ≡ (καx )1/2(καy )1/2. (28)

In the above equation, one takes the square root with an argument between 0 andπ .
This analysis shows that eventually the only remaining contributions in the limit of large

spacer thicknessD arise from the neighbourhood of states having in-plane wavevectorskα‖ such
that the spanning vector of the Fermi surfaceq⊥F = k+

⊥F − k−⊥F is stationary with respect to
k‖ for k‖ = kα‖ , and the corresponding contribution oscillates with a wavevector equal toqα⊥F .
This selection rule was first derived in the context of the RKKY model [33]; it is illustrated in
figure 3. There may be several such stationary spanning vectors and, hence, several oscillatory
components; they are labelled by the indexα.

The above selection rule allows one to predict the oscillation period(s) of the interlayer
exchange coupling versus spacer thickness just by inspecting the bulk Fermi surface of the
spacer material. As regards an experimental test of these predictions, noble-metal spacer layers
appear to be the best suited candidates; there are several reasons for this choice:

• Fermi surfaces of noble metals are known very accurately from de Haas–van Alphen and
cyclotron resonance experiments [84];
• since only the sp band intersects the Fermi level, the Fermi surface is rather simple, and

does not depart very much from a free-electron Fermi sphere;
• samples of very good quality with noble metals as a spacer layer could be prepared.
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q α
⊥

k//

k⊥

Figure 3. A sketch showing the wavevectorqα⊥ giving the oscillation period of the oscillatory
interlayer exchange coupling, for the case of a non-spherical Fermi surface.

Figure 4 shows a cross-section of the Fermi surface of Cu, indicating the stationary
spanning vectors for the (001), (111), and (110) crystalline orientations [33]; the Fermi surfaces
of Ag and Au are qualitatively similar. For the (111) orientation, a single (long) period is
predicted; for the (001) orientation, both a long period and a short period are predicted; for the
(110) orientation, four different periods are predicted (only one stationary spanning vector is
seen in figure 4, the three others being located in other cross-sections of the Fermi surface).
These theoretical predictions have been confirmed successfully by numerous experimental
observations. In particular, the coexistence of a long and a short period for the (001) orientation
has been confirmed for Cu [40, 66, 85–87], Ag [88], and Au [89–91]; and the experimental
periods have been found to be in excellent agreement with the theoretical ones. A comparison
of the theoretically predicted oscillation periods and the experimentally observed ones is given
in table 1.

(111)
- - - - -

(111)

(000) (002)

(111)

(002)
-

(111)
    -

 [001]

 [111]
 [110]

Figure 4. The cross-section of the Fermi surface of Cu along the(11̄0) plane passing through the
origin. The solid dots indicate the reciprocal-lattice vectors. The dashed lines indicate the boundary
of the first Brillouin zone. The solid arrows, respectively horizontal, oblique, and vertical, indicate
the vectorsqα⊥ giving the oscillation period(s) for the(001), (111), and(110) orientations.
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Table 1. Comparison between the theoretical predictions of reference [33] and experimental
observations for the oscillation periods of interlayer exchange coupling versus spacer thickness.

Spacer Theory System Experiment Reference

Cu(111) 3 = 4.5 AL Co/Cu/Co(111) 3 ≈ 5 AL [3]
Co/Cu/Co(111) 3 ≈ 6 AL [92]
Co/Cu/Co(111) 3 ≈ 4.5 AL [93]
Fe/Cu/Fe(111) 3 ≈ 6 AL [94]

Cu(001) 31 = 2.6 AL Co/Cu/Co(001) 3 ≈ 6 AL [95]
32 = 5.9 AL

Co/Cu/Co(001) 31 ≈ 2.6 AL [85]
32 ≈ 8 AL

Co/Cu/Co(001) 31 ≈ 2.7 AL [87]
32 ≈ 6.1 AL

Co/Cu/Co(001) 31 ≈ 2.7 AL [66]
32 ≈ 5.6 AL

Fe/Cu/Fe(001) 3 ≈ 7.5 AL [74]

Ag(001) 31 = 2.4 AL Fe/Ag/Fe(001) 31 ≈ 2.4 AL [88]
32 = 5.6 AL 32 ≈ 5.6 AL

Au(001) 31 = 2.5 AL Fe/Au/Fe(001) 31 ≈ 2 AL [89]
32 = 8.6 AL 32 ≈ 7–8 AL

Fe/Au/Fe(001) 31 ≈ 2.5 AL [90,91]
32 ≈ 8.6 AL

In a further attempt to test the theoretical predictions for the periods of oscillatory coupling,
several groups [96–98] have undertaken to modify in a controlled manner the size of the Fermi
surface (and hence, the period of the coupling) by alloying the spacer noble metal (Cu) with a
metal of lower valence (Ni); in all cases, the change in oscillation period due to alloying has
been found to be in good agreement with the expected change in the Fermi surface.

5. The effect of magnetic layer thickness

As already mentioned, the influence of the IEC on the ferromagnetic layer thickness is contained
in the reflection coefficients1rA and1rB. If the ferromagnetic layers are of finite thickness,
reflections may usually take place at the two interfaces bounding the ferromagnetic layers,
giving rise to interferences [99], and, hence, to oscillations of the IEC versus ferromagnetic
layer thickness. A more detailed discussion of this effect is given in references [36,99]. This
behaviour was first predicted from calculations based upon a free-electron model (reference
[100]). The amplitude of the oscillations of the IEC versus ferromagnetic layer thickness is
generally much smaller than the oscillations versus spacer thickness, and does not give rise to
changes of sign of the IEC. From the experimental point of view, this effect was confirmed by
Bloemenet al [101] for Co/Cu/Co(001) and by Backet al [102] for Fe/Cu/Co(001). It has also
been confirmed theoretically by Nordström et al [103], Langet al [104], Drchalet al [105],
and by Lee and Chang [106].
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6. The effect of overlayer thickness

A more (at first sight) surprising behaviour is the dependence of the IEC on the thickness of
an external overlayer. From a naı̈ve point of view, one might think that layers external to the
basic ferromagnet/spacer/ferromagnet sandwich should not influence the interaction between
the two ferromagnetic layers. This view is incorrect, in particular when the system is covered
by an ultrathin protective overlayer. In this case, the electrons are able to reach the vacuum
barrier, which is a perfectly reflecting one, so strong confinement and interference effects take
place in the overlayer, which leads to a weak but significant oscillatory variation of the IEC as
a function of the overlayer thickness (reference [107]).

This effect, which follows directly from the quantum interference (or quantum size
effect) mechanism, has been proposed and experimentally confirmed independently by de
Vries et al [108] for the Co/Cu/Co(001) system with a Cu(001) overlayer, by Okuno and
Inomata [109] for the Fe/Au/Fe(001) system with a Au(001) overlayer, and by Bounouh
et al [110] for the Co/Au/Co(0001) system with a Au(111) overlayer. In all cases, the
observed period(s) for the oscillations versus overlayer thickness were found to be in good
agreement with the theoretically predicted ones. This effect has also been confirmed by means
of first-principles calculations for the Co/Cu/Co(001) system with various types of overlayer
(references [111–113]). The comparison between the periods of oscillations versus overlayer
thickness predicted theoretically and those observed experimentally is given in table 2. A more
detailed discussion of this effect can be found in references [107,111,113].

Table 2. Comparison between the theoretical predictions of reference [107] and experimental
observations for the oscillation periods of the interlayer exchange coupling versus overlayer
thickness.

Overlayer Theory System Experiment Reference

Cu(001) 31 = 2.6 AL Cu/Co/Cu/Co/Cu(001) 3 ≈ 5 AL [108]
32 = 5.9 AL

Au(001) 31 = 2.5 AL Au/Fe/Au/Fe/Au(001) 31 ≈ 2.6 AL [109]
32 = 8.6 AL 32 ≈ 8.0 AL

Au(111) 3 = 4.8 AL Au/Co/Au/Co/Au(111) 3 ≈ 5 AL [110]

7. The strength and phase of the interlayer exchange coupling

In contrast with the excellent agreement between theory and experiment which is obtained
for oscillation periods, the situation for the amplitude and phase of the oscillations is less
satisfactory. According to the theory presented above, the coupling takes the following form
in the limit of large spacer thickness (asymptotic limit):

J =
∑
α

Aα

D2
sin(qαD + φα). (29)

Since the coupling constantJ has the dimension of an energy per unit area, the parametersAα
characterizing the coupling strength of the various oscillatory components have the dimension
of an energy. By taking typical values of the Fermi wavevector and velocity, it is easy to see
from equation (27) that they are typically of the order of 1 to 10 meV.



9414 P Bruno

Table 3 presents a comparison of theoretical and experimental values of the oscillation
amplitude strengthsAα, for various systems†. We observe that there is a rather strong
discrepancy between theory and experiment, but also among various theoretical studies.
Although the agreement seems to be rather good for the Co/Cu(111)/Co system, more
experimental and theoretical data would be required in order to establish whether the apparent
agreement is conclusive or accidental.

Table 3. Comparison between the theoretical predictions and experimental observations for the
oscillation amplitudesAα of the interlayer exchange coupling versus spacer thickness; for Cu(001)
and Au(001) spacers,A1 andA2 correspond, respectively, to the short-period and long-period
oscillations.

System Theory Reference Experiment Reference

Co/Cu(111)/Co A ≈ 3.7 meV [114] A ≈ 7.6 meV [85]
A ≈ 4.2 meV [115] A ≈ 3.4 meV [93]

A ≈ 2.5 meV [117]

Co/Cu(001)/Co A1 ≈ 42 meV [114] A1 ≈ 1.6 meV [40,85,86]
A2 ≈ 0.13 meV A2 ≈ 1.4 meV

A1 ≈ 72 meV [115]
A2 ≈ 0.75 meV

A1 ≈ 35 meV [105]
A2 ≈ 3.5 meV

A1 ≈ 35 meV [116]
A2 ≈ 0.035 meV

Fe/Au(001)/Fe A1 ≈ 12.5 meV [115] A1 ≈ 8.1 meV [91]
A2 ≈ 6.9 meV A2 ≈ 1.1 meV

7.1. Co/Cu(001)/Co

The Co/Cu(001)/Co system is the one which has been most investigated theoretically and
it is considered to be a model system for testing the predictions of theory. The theoretical
results reported in table 3 correspond to semi-infinite magnetic layers, whereas the exp-
erimental data have been obtained for magnetic layers of finite thickness. As discussed in
section 5, the strength of the coupling varies with the magnetic layer thickness, which can be
a source of discrepancy between theoretical an experimental results. Another possible source
of discrepancy is the unavoidable imperfection (roughness, intermixing) of the experimental
samples.

Let us first address the short-period oscillatory component (labelled with the subscript
1). As discussed in section 4 above, this component arises from four equivalent in-plane
wavevectorsk‖1 located on the0–X high-symmetry line of the two-dimensional Brillouin
zone [36]. Since the majority-spin band structure of fcc Co matches well that of Cu, one has
|r↑1 | ≈ 0. On the other hand, for minority-spin fcc Co, there is a local gap in the band structure
of symmetry compatible with the Cu states, which leads to total reflection, i.e.,|r↓1 | = 1.
Thus, one has|1r1| ≈ 0.5 [42, 114] and|1r1| is (almost) independent of the Co thickness
(reference [105]). The various theoretical values for the amplitudeA1 listed in table 3 agree

† Note that, in order to be able to compare various theoretical results with each other, we included in the present
discussion only the calculations pertaining to semi-infinite magnetic layers.
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rather well with each other, except the one from reference [115] which is almost a factor of 2
larger than the values obtained by other authors [105,114,116]. This discrepancy may be due
to an error in the estimation of the curvature radiusκ1 of the Fermi surface, and of the Fermi
velocityv⊥1, which are quite tricky to obtain accurately fork‖1.

Turning now to the comparison between theory and experiment, we notice that the calc-
ulated values ofA1 are considerably larger than the measured ones. At least two factors can
contribute to this discrepancy. The first one is the effect of interface roughness, which generally
tends to reduce the amplitude of the coupling oscillations [33]; this effect is particularly
pronounced for short-period oscillatory components, as is indeed confirmed experimentally
[87]. The second factor is of intrinsic character: the theoretical values ofA1 given in table 3
correspond to the asymptotic limit, whereas the experimental data have been obtained for
spacer thicknesses below 15 AL. As is clearly apparent from figure 6(a) of reference [105]
and from figure 13 (bottom) of reference [116], the asymptotic regime is attained only for
thicknesses above 20 to 40 AL; below, the envelope of the oscillations deviates significantly
from aD−2-behaviour, and the apparent amplitude in the range relevant to experiments is
typically a factor of 2 smaller than the asymptotic amplitude. This pre-asymptotic correction
is attributed to a strong energy dependence ofr

↓
1 (reference [116]).

Let us now discuss the long-period oscillatory component. As is apparent from table 3,
the situation is quite confusing: not only do the various theoretical results disagree with each
other, but also some of them [114–116]underestimatethe coupling strength as compared to
the experiment [40, 85, 86], a fact which cannot be explained by the effect of roughness or
interdiffusion.

The long-period oscillatory component arises from the centre0 of the two-dimensional
Brillouin zone. Here again, for the same reason as above, one has|r↑2 | ≈ 0. The minority-
spin reflection coefficient, on the other hand, is considerably smaller than for the short-period
oscillation, and one has|r↓2 | ≈ 0.15 [36], so|1r2| ≈ 0.05 [36, 114]. This very small spin-
dependent confinement explains the very small values ofA2 obtained by the authors who rely on
the asymptotic expression (27) obtained from the stationary-phase approximation [114–116].
However, as seen from figure 2 of reference [118] and figure 2 of reference [115],r

↓
2 increases

very strongly withk‖ and full reflection is reached at a distance 0.1× π/a from 0; indeed,
the low reflectivity arises only in a narrow window around0. As discussed in reference [119],
this gives rise to a strong pre-asymptotic correction, and explains why the stationary-phase
approximation yields anunderestimatedvalue ofA2. On the other hand, if thek‖-integration is
performed without using the stationary-phase approximation, as was done in reference [105],
a much higher value ofA2 is obtained; the latter is larger than the experimental one [40,85,86]
by a factor of 2.5, which seems plausible in view of the effect of roughness and interdiffusion.

Our knowledge of the phase of the oscillations is much more restricted, as this aspect of
the problem has attracted little attention so far, with the notable exception of the work of Weber
et al [87]. On general grounds, in the case of total reflection (as is the case forr1↓), one expects
the phase to vary with magnetic layer thickness and/or with the chemical nature of the magnetic
layer; conversely, for a case of weak confinement (such as that forr

↓
2 ), one expects the phase to

be almost invariant [36]. These general trends are indeed confirmed experimentally by Weber
et al [87].

7.2. Fe/Au(001/Fe

The system Fe/Au(001)/Fe is actually an excellent system for a quantitative test of the theory.
This is due to the excellent lattice matching between Au and bcc Fe (rotating the cubic axes of
the latter by 45◦), and to the availability of extremely smooth Fe substrates (whiskers) [90,91].
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In contrast to the Co/Cu(001) case discussed above, for Fe/Au(001), one has total refl-
ection of minority-spin electrons both atk‖1 (short-period oscillation) andk‖2 (long-period
oscillation), and|r↓| is almost independent ofk‖ around these points, as is clearly apparent
from figure 1 of reference [42]. Therefore, the associated pre-asymptotic correction should
not be very strong.

Indeed, as is seen from table 3, the predicted amplitudes are quite large, both for the short-
period and long-period oscillatory components (reference [115]). These predictions are fairly
well confirmed by state-of-the-art experimental studies [91], although the predicted amplitude
of the long-period component is too large by a factor of 6.

Clearly, even for this almost ideal system, further work is required to achieve a satisfactory
quantitative agreement between theory and experiment.

8. Concluding remarks

As has been discussed in detail in this review, there is a great deal of experimental evidence
that the mechanism of quantum confinement presented above is actually the appropriate one
to explain the phenomenon of oscillatory interlayer exchange coupling. This mechanism is
entirely based upon a picture of independent electrons. This may seem paradoxical at first sight,
in view of the fact that exchange interactions are ultimately due to the Coulomb interaction
between electrons. In fact, this independent-electron picture can be justified theoretically and
is based upon the ‘magnetic force theorem.’ A thorough discussion of this fundamental (but
somewhat technical) aspect of the problem is given elsewhere [120,121].

In spite of the successes encountered by the quantum confinement mechanism, a number
of questions remain to be clarified for a full understanding of the phenomenon. In particular,
one needs to assess in a more quantitative manner than has been achieved so far the validity
of the asymptotic expression (27); a first attempt towards addressing this issue is given in
reference [119].
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[18] Schreyer A, Ankner J F, Zeidler T, Zabel H, Schäfer R, Wolf J A, Gr̈unberg P and Majkrzak C F 1995Phys.

Rev.B 5216 066
[19] Fullerton E E, Bader S D and Robertson J L 1996Phys. Rev. Lett.771382
[20] Grimditch M, Kumar S and Fullerton E E 1996Phys. Rev.B 543385
[21] Schreyer A, Majkrzak C F, Zeidler T, Schmitte T, Bödeker P, Theis-Br̈ohl K, Abromeit A, Dura J and Watanabe
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[113] Kudrnovsḱy J, Drchal V, Bruno P, Turek I and Weinberger P 1998Comput. Mater. Sci.10188
[114] Lee B and Chang Y-C 1995Phys. Rev.B 523499
[115] Stiles M D 1996J. Appl. Phys.795805
[116] Mathon J, Villeret M, Umerski A, Muniz R B, d’Albuquerque e Castro J and Edwards D M 1997Phys. Rev.B

5611 797
[117] Ives A J R,Hicken R J, Bland J A C,Daboo C, Gester M and Gray S J 1994J. Appl. Phys.756458
[118] Bruno P 1995J. Magn. Magn. Mater.148202
[119] Bruno P 1999Eur. Phys. J.B 1183
[120] Bruno P 1999Magnetische Schichtsystemeed P H Dederichs and P Grünberg (J̈ulich: Forschungszentrum)

ch B8
Bruno P 1999Preprintcond-mat/9905022

[121] Bruno P 1999 to be published


