FN ISI Export Format VR 1.0 PT J AU Subagyo, A Oka, H Eilers, G Sueoka, K Mukasa, K TI Scanning tunneling microscopy observation of epitaxial bcc- Fe(001) surface SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS NR 15 AB We report the first atomic-resolution scanning tunneling microscopy (STM) image of epitaxial bcc-Fe(001) films grown on MgO(001) substrates. A 50-Angstrom-thick Fe film grown at a growth temperature of 550K formed square pyramidal islands with atomically flat terraces. The terraces were found to range between 5 nm and 20 nm in width separated by monoatomic high steps. The film exhibited a (1 x 1) unreconstructed structure at a film thickness below 19 Angstrom however, a reconstructed surface was found on thicker films. The atomic-resolution STM image and low energy electron diffraction (LEED) observation indicated that the reconstructed structure is a c(2 x 2) structure. CR ANDERSON JF, 1997, PHYS REV B, V56, P9902 BERTACCO R, 1999, J MAGN MAGN MATER, V196, P134 BERTACCO R, 1998, J VAC SCI TECHNOL A, V16, P2277 HANSON M, 1999, J APPL PHYS, V85, P2793 JORDAN SM, 1998, J APPL PHYS, V84, P1499 KANAJI T, 1973, VACUUM, V23, P55 KIM SG, 1999, J MAGN MAGN MATER, V198, P200 LAIRSON BM, 1992, APPL PHYS LETT, V61, P1390 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 STROSCIO JA, 1995, PHYS REV LETT, V75, P2960 SUBAGYO A, 1999, IEEE T MAGN, V35, P3037 SUBAGYO A, 1999, JPN J APPL PHYS 1, V38, P3820 SUBAGYO A, UNPUB SUEOKA K, 1998, J SURF SCI SOC JPN, V19, P522 THURMER K, 1995, PHYS REV LETT, V75, P1767 TC 0 BP 3777 EP 3779 PG 3 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. PY 2000 PD JUN VL 39 IS 6B GA 337ZE J9 JPN J APPL PHYS PT 1 UT ISI:000088393000021 ER PT J AU Kohler, U Jensen, C Wolf, C Schindler, AC Brendel, L Wolf, DE TI Investigation of homoepitaxial growth on bcc surfaces with STM and kinetic Monte Carlo simulation SO SURFACE SCIENCE NR 8 AB Time-resolved in situ STM has been applied to the system Fe on Fe(110) to study the characteristics of homoepitaxial growth on bcc surfaces. Additionally the growth of W on W(110) has been investigated which shows the same behaviour at 500 degrees C as iron at room temperature. The resulting data are compared with kinetic Monte Carlo simulation which include the correct symmetry of the bcc(110) surface. It is found that islands grow strongly anisotropically elongated in [100] which is due to a hindered diffusion at step edges along [001]. At room temperature the inter-layer diffusion is suppressed by a step edge barrier which leads at higher coverages to a kinetic roughening and a complete faceting of the surface. The developing stable facets were investigated by SPA-LEED. (C) 2000 Elsevier Science B.V. All rights reserved. CR ALBRECHT M, 1992, J MAGN MAGN MATER, V113, P207 BARTELT MC, 1999, SURF SCI, V423, P189 CHANG SL, 1994, CRIT REV SURF CHEM, V3, P239 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 KOHLER U, 2000, PHILOS MAG B, V80, P283 STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1783 THURMER K, 1995, PHYS REV LETT, V75, P1767 THURMER K, 1998, SURF SCI, V395, P12 TC 0 BP 676 EP 680 PG 5 JI Surf. Sci. PY 2000 PD MAY 20 VL 454 GA 326ZB J9 SURFACE SCI UT ISI:000087766200128 ER PT J AU Wedler, G Walz, J Greuer, A Koch, R TI The magnetoelastic coupling constant B-2 of epitaxial Fe(001) films SO SURFACE SCIENCE NR 14 AB Magnetoelastic (ME) coupling, a property of major importance in heteroepitaxy, describes the dependence of the free energy of magnetic materials on strain/stress. Using our versatile ultrahigh vacuum cantilever beam magnetometer we have investigated the ME constant B-2 of epitaxial Fe(001) films in the thickness range of 2-100 nm, where the films are characterised by the magnetisation and the magnetic anisotropy of bulk Fe. Similar to B-1 both the magnitude and sign of B-2 depend on the film stress. B-2 decreases linearly with increasing stress and changes its sign at ca. 4 GPa. For stress-free Fe(001) films the bulk value of B-2 is obtained. (C) 2000 Elsevier Science B.V. All rights reserved. CR BECKER R, 1939, FERROMAGNETISMUS BOCHI G, 1996, PHYS REV B, V53, PR1729 BRUNO P, 1989, APPL PHYS A-MATER, V49, P499 FARLE M, 1997, PHYS REV B, V55, P3708 KOCH A, 1999, APPL PHYS A, P529 KOCH R, 1997, CHEM PHYS SOLID SURF, V8, P448 KOCH R, 1996, J MAGN MAGN MATER, V15, PL11 MARCUS PM, 1996, SURF SCI, V366, P219 SANDER D, 1999, REP PROG PHYS, V62, P809 SCHULZ B, 1994, PHYS REV B, V50, P13467 THURMER K, 1995, PHYS REV LETT, V75, P1767 WASSERMAN B, UNPUB WEBER M, 1994, PHYS REV LETT, V73, P1166 WEDLER G, 1999, PHYS REV B, V60, P11313 TC 0 BP 896 EP 899 PG 4 JI Surf. Sci. PY 2000 PD MAY 20 VL 454 GA 326ZB J9 SURFACE SCI UT ISI:000087766200170 ER PT J AU Moldovan, D Golubovic, L TI Interfacial coarsening dynamics in epitaxial growth with slope selection SO PHYSICAL REVIEW E NR 33 AB We investigate interfacial dynamics of molecular-beam epitaxy (MBE) growth in the presence of instabilities inducing formation of pyramids. We introduce a kinetic scaling theory which provides an analytic understanding of the coarsening dynamics laws observed in numerous experiments and simulations of the MBE. We address MBE growth on crystalline surfaces with different symmetries in order to explain experimentally observed differences between the growth on (111) and (001) surfaces and understand the coarsening exponents measured on these surfaces. We supplement our kinetic scaling theory by numerical simulations which document that the edges of the pyramids, forming a network across the growing interface, are essential for qualitative understanding of the coarsening dynamics of molecular-beam epitaxy. CR AMAR JG, 1999, PHYS REV B, V60, PR1131 AMAR JG, 1996, PHYS REV B, V54, P14742 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BRAY AJ, 1994, ADV PHYS, V34, P357 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1993, PHYS REV B, V43, P3897 EVANS JW, 1990, PHYS REV B, V41, P5410 GOLUBOVIC L, 2000, PHYS REV E, V61, P1703 GOLUBOVIC L, 1998, PHYS REV LETT, V81, P3387 GOLUBOVIC L, 1991, PHYS REV LETT, V66, P3156 GOLUBOVIC L, 1987, PHYS REV LETT, V78, P90 JOHNSON MD, 1993, PHYS REV LETT, V72, P116 LAI ZW, 1991, PHYS REV LETT, V66, P2348 MOLDOVAN D, 1999, PHYS REV E, V60, P4377 MOLDOVAN D, 1999, PHYS REV LETT, V82, P2884 MULLINS WW, 1957, J APPL PHYS, V28, P333 MULLINS WW, 1963, METAL SURFACES STRUC, P17 ORME C, 1995, J CRYST GROWTH, V150, P128 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3982 SIEGERT M, 1995, NATO ADV SCI INST SE, V344, P165 SIEGERT M, 1998, PHYS REV LETT, V81, P5481 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1997, PHYSICA A, V239, P420 SMITH GW, 1993, J CRYST GROWTH, V127, P996 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 THURMER K, 1995, PHYS REV LETT, V75, P1767 TSAO JY, 1993, MAT FUNDAMENTALS MOL TSUI F, 1996, PHYS REV LETT, V76, P3164 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 VVEDENSKY DD, 1993, PHYS REV E, V48, P852 TC 0 BP 6190 EP 6214 PG 25 JI Phys. Rev. E PY 2000 PD JUN VL 61 IS 6 PN A GA 323PZ J9 PHYS REV E UT ISI:000087575300025 ER PT J AU Coluci, VR Cotta, MA TI Influence of rough substrates on the morphology evolution of epitaxial films SO PHYSICAL REVIEW B NR 28 AB We present results of Monte Carlo simulation of the morphology evolution of films grown on rough substrates. The initial surfaces considered for the simulation are similar to those of substrates used for the growth of GaAs films by chemical and molecular beam epitaxy. When the growth is simulated in the absence of the Erhlich-Schwoebel effect, decreasing film roughness is observed until a stable value is reached. During this decrease we observe the formation of moundlike structures of a few monolayers in height. In some conditions the structures forming the initial rough surface (pits) present a limitation to the lateral size of these mounds. These simulation results are in qualitative agreement with experimental results for homoepitaxial GaAs films grown by chemical beam epitaxy. CR ALBRECHT M, 1993, SURF SCI, V294, P1 BARABASI AL, 1995, FRACTAL CONCEPTS SUR COLUCI VR, 1998, PHYS REV B, V58, P1947 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELKINANI I, 1994, J PHYS I, V4, P949 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1990, PHYS REV B, V41, P5410 GYURE MF, 1998, PHYS REV LETT, V81, P4931 HAIDER N, 1993, APPL PHYS LETT, V62, P3108 LENGEL G, 1999, PHYS REV B, V60, PR8469 NOTZEL R, 1999, J CRYST GROWTH, V201, P814 OHTA K, 1989, J CRYST GROWTH, V95, P71 ORME C, 1994, APPL PHYS LETT, V64, P860 ORME C, 1995, J CRYST GROWTH, V150, P128 POLITI P, 1996, PHYS REV B, V54, P5114 SALMI MA, 1999, SURF SCI, V425, P31 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SHITARA T, 1992, PHYS REV B, V46, P6815 SIEGERT M, 1996, PHYS REV E, V53, P307 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1993, PHYS REV B, V47, P4119 SMITH GW, 1993, J CRYST GROWTH, V127, P966 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 THURMER K, 1995, PHYS REV LETT, V75, P1767 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VANNOSTRAND JE, 1996, SURF SCI, V346, P136 VILLAIN J, 1991, J PHYS I, V1, P19 WEEKS JD, 1979, ADV CHEM PHYS, V40, P157 TC 0 BP 13703 EP 13709 PG 7 JI Phys. Rev. B PY 2000 PD MAY 15 VL 61 IS 20 GA 318LF J9 PHYS REV B UT ISI:000087284900055 ER PT J AU Schinzer, S Kohler, S Reents, G TI Ehrlich-Schwoebel barrier controlled slope selection in epitaxial growth SO EUROPEAN PHYSICAL JOURNAL B NR 34 AB We examine the step dynamics in a 1 + 1-dimensional model of epitaxial growth based on the BCF-theory. The model takes analytically into account the diffusion of adatoms, an incorporation mechanism and an Ehrlich-Schwoebel barrier at step edges. We find that the formation of mounds with a stable slope is closely related to the presence of an incorporation mechanism. We confirm this finding using a solid-on-solid model in 2 + 1 dimensions. In the case of an infinite step edge barrier we are able to calculate the saturation profile analytically. Without incorporation but with inclusion of desorption and detachment we find a critical flux for instable growth but no slope selection. In particular, we show that the temperature dependence of the selected slope is solely determined by the Ehrlich-Schwoebel barrier which opens a new possibility in order to measure this fundamental barrier in experiments. CR AMAR JG, 1996, PHYS REV B, V54, P14071 AMAR JG, 1996, PHYS REV B, V54, P14742 BARABASI AL, 1995, FRACTAL CONCEPTS SUR BIEHL M, 1998, EUROPHYS LETT, V41, P443 BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELKINANI I, 1994, J PHYS I, V4, P949 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1990, PHYS REV B, V41, P5410 HERMANN MA, 1996, MOL BEAM EPITAXY, V2 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KALFF M, 1999, SURF SCI LETT, V426, PS447 KRUG J, 1995, J PHYS I, V5, P1065 KRUG J, 1997, J STAT PHYS, V87, P505 OEHLING S, 1998, APPL PHYS LETT, V73, P3205 ORME C, 1995, J CRYST GROWTH, V150, P128 PIMPINELLI A, 1998, PHYSICS CRYSTAL GROW POELSEMA B, 1991, APPL PHYS A-MATER, V53, P369 POLITI P, 1997, J PHYS I, V7, P797 SCHINZER S, 1999, PHYS REV B, V60, P2893 SCHINZER S, 1999, SURF SCI, V439, P191 SCHINZER S, 1998, SURF SCI, V401, P96 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1996, PHYS REV E, V53, P307 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1993, PHYS REV B, V47, P4119 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 TANG LH, 1998, EUR PHYS J B, V2, P409 THURMER K, 1995, PHYS REV LETT, V75, P1767 THURMER K, 1998, SURF SCI, V395, P12 VILLAIN J, 1992, J PHYS I, V2, P2107 VILLAIN J, 1991, J PHYS I, V1, P19 YUE Y, 1998, PHYS REV B, V57, P6685 ZUO JK, 1997, PHYS REV LETT, V78, P2791 TC 0 BP 161 EP 168 PG 8 JI Eur. Phys. J. B PY 2000 PD MAY VL 15 IS 1 GA 314DP J9 EUR PHYS J B UT ISI:000087040000020 ER PT J AU Fahsold, G Pucci, A Rieder, KH TI Growth of Fe on MgO(001) studied by He-atom scattering SO PHYSICAL REVIEW B NR 39 AB With He-atom scattering we studied the epitaxial growth of Fe ultrathin films deposited on in situ cleaved MgO(001). The measurements at Various substrate temperatures (140 less than or equal to T less than or equal to 670 K) start with bare MgO(001) and extend to him thicknesses beyond the complete coverage of the substrate. From the development of specular intensity with Fe deposition we estimate saturation island densities, give a quantitative description of the evolution of their size and shape, and calculate a thickness for coalescence of all islands. The observed three-dimensional metal island growth behavior is suppressed at low temperature (140 K) where a monolayer film almost completely covers the substrate. For increased substrate temperatures a decreased island density and an increased interlayer mass transport from substrate level onto the islands leads to a temperature and thickness dependent change in island shape. CR BRUNE H, 1998, SURF SCI REP, V31, P121 COMSA G, 1992, ATOMIC MOL BEAM METH, V2, P463 DURIEZ C, 1990, SURF SCI, V230, P123 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 FAHSOLD G, IN PRESS THIN SOLID FAHSOLD G, 1999, SURF SCI, V433, P162 FAHSOLD G, UNPUB HAAS G, IN PRESS PHYS REV LE HENRY CR, 1985, J PHYS-PARIS, V46, P1217 HENRY CR, 1998, VACUUM, V50, P157 JORDAN SM, 1999, PHYS REV B, V59, P7350 KOCH R, COMMUNICATION KONIG G, THESIS FREIE U BERLI, P95 KRAUTH O, 1999, J CHEM PHYS, V110, P3113 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LAIRSON BM, 1995, J APPL PHYS, V78, P4449 LAWLER JF, 1997, J MAGN MAGN MATER, V165, P224 LEVI AC, 1995, SURF SCI, V342, P307 LI C, 1991, PHYS REV B, V43, P780 LIU C, 1992, J MAGN MAGN MATER, V111, PC225 LOCK A, 1990, KINETICS ORDERING GR MAGG N, 1999, THESIS U HEIDELBERG MEUNIER M, 1994, SURF SCI, V307, P514 MEZEY LZ, 1982, JPN J APPL PHYS 1, V21, P1569 MUHGE T, 1994, APPL PHYS A-MATER, V59, P659 MUSOLINO V, 1998, SURF SCI, V402, P413 OVERBURY SH, 1975, CHEM REV, V75, P547 PALMBERG PW, 1967, APPL PHYS LETT, V11, P33 PARK YS, 1995, APPL PHYS LETT, V66, P2140 PRIEBE A, 1999, THESIS U HEIDELBERG RIEDER KH, 1982, SURF SCI, V118, P57 SANGWAL K, 1997, SURF SCI, V383, P78 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THURMER K, 1995, PHYS REV LETT, V75, P1767 TOENNIES JP, 1991, SPRINGER SERIES SURF, V21, P111 URANO T, 1988, J PHYS SOC JPN, V57, P3403 YINNON AT, 1998, SURF SCI, V410, PL721 ZHOU JB, 1997, SURF SCI, V375, P221 TC 2 BP 8475 EP 8483 PG 9 JI Phys. Rev. B PY 2000 PD MAR 15 VL 61 IS 12 GA 299MV J9 PHYS REV B UT ISI:000086203100085 ER PT J AU de Mongeot, FB Constantini, G Boragno, C Valbusa, U TI Ripple rotation in multilayer homoepitaxy SO PHYSICAL REVIEW LETTERS NR 18 AB We have investigated the homoepitaxial growth of Ag(110) in the multilayer regime. After deposition of 30 monolayers of Ag at a temperature of 210 K a ripplelike surface instability is produced and the ridges of the ripples, as well as the majority steps, are found to be parallel to (1 (1) over bar 0) which is the thermodynamically favored orientation. As the deposition temperature is decreased to 130 K, an unexpected 90 degrees switch of the ripple orientation is observed. The ridges of the ripples and the steps are in this case parallel to (100). In the intermediate temperature range a checkerboard of rectangular mounds results. We interpret our results in terms of the peculiar hierarchy of interlayer and intralayer diffusion barriers present on the anisotropic Ag(110) surface. CR ALBRECHT M, 1993, SURF SCI, V294, P1 AMAR JG, 1996, PHYS REV B, V54, P14742 BOTT M, 1992, SURF SCI, V272, P161 EHRLICH G, 1996, J CHEM PHYS, V44, P1039 FERRANDO R, COMMUNICATION FOLSCH S, 1996, PHYS REV B, V54, P10855 HONTINFINDE F, 1996, SURF SCI, V366, P306 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 MORGENSTERN K, 1999, PHYS REV LETT, V83, P1613 MOTTET C, 1998, SURF SCI, V417, P220 SCHEITHAUER U, 1986, SURF SCI, V178, P441 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 THURMER K, 1995, PHYS REV LETT, V75, P1767 WOLLSCHLAGER J, 1998, PHYS REV B, V57, P15541 ZHANG CM, 1998, SURF SCI, V406, P178 ZUO JK, 1997, PHYS REV LETT, V78, P2791 TC 1 BP 2445 EP 2448 PG 4 JI Phys. Rev. Lett. PY 2000 PD MAR 13 VL 84 IS 11 GA 292JZ J9 PHYS REV LETT UT ISI:000085791900041 ER PT J AU Politi, P Krug, J TI Crystal symmetry, step-edge diffusion, and unstable growth SO SURFACE SCIENCE NR 31 AB We study the effect of crystal symmetry and step-edge diffusion on the surface current governing the evolution of a grouping crystal surface. We find there are two possible contributions to anisotropic currents, which both lead to the destabilization of the flat surface: terrace current j(t), which is parallel to the slope m=del z(x,t), and step current j(s), which has components parallel (j(s)(ii)) and perpendicular (js(perpendicular to)) to the slope. On a high-symmetry surface, terrace and step currents are generically singular at zero slope. and this does not allow one to perform the standard linear stability analysis. As far as a one-dimensional profile is considered, j(s)perpendicular to is irrelevant and j(s)(parallel to) suggests that mound sides align along [110] and [110] axes. On a vicinal surface, j(s) destabilizes against step bunching; its effect against step meandering depends on the step orientation, in agreement with the recent findings by Pierre-Louis et al. [Phys. Rev. Lett. 82 (1999) 3661]. (C) 2000 Elsevier Science B.V. All rights reserved. CR BALES GS, 1990, PHYS REV B, V41, P5500 CHAME A, 1996, BULG CHEM COMMUN, V29, P398 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 KALFF M, 1999, SURF SCI, V426, PL447 KRUG J, 1997, ADV PHYS, V46, P139 KRUG J, 1993, PHYS REV LETT, V70, P3271 KRUG J, 1999, PHYSICA A, V263, P170 KRUG J, UNPUB MERIKOSKI J, 1997, SURF SCI, V387, P167 MURTY MVR, 1999, PHYS REV LETT, V83, P352 PIERRELOUIS O, 1999, PHYS REV LETT, V82, P3661 PIERRELOUIS O, 1998, PHYS REV LETT, V80, P4221 PIMPINELLI A, 1994, J PHYS-CONDENS MAT, V6, P2661 POLITI P, 2000, IN PRESS PHYS REP POLITI P, 1997, J PHYS I, V7, P797 POLITI P, 1996, PHYS REV B, V54, P5114 ROST M, 1996, SURF SCI, V369, P393 SCHINZER S, 1999, SURF SCI, V439, P191 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1998, PHYS REV LETT, V81, P5481 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1997, PHYSICA A, V239, P420 SMILAUER P, 1995, PHYS REV B, V52, P14263 SPOHN H, 1993, J PHYS I, V3, P69 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THURMER K, 1995, PHYS REV LETT, V75, P1767 TRUSHIN OS, 1997, PHYS REV B, V56, P12135 TSUI F, 1996, PHYS REV LETT, V76, P3164 VILLAIN J, 1992, J PHYS I, V2, P2107 VILLAIN J, 1991, J PHYS I, V1, P19 ZUO JK, 1997, PHYS REV LETT, V78, P2791 TC 1 BP 89 EP 97 PG 9 JI Surf. Sci. PY 2000 PD FEB 1 VL 446 IS 1-2 GA 282DF J9 SURFACE SCI UT ISI:000085200800016 ER PT J AU Politi, P Grenet, G Marty, A Ponchet, A Villain, J TI Instabilities in crystal growth by atomic or molecular beams SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS NR 271 AB When growing a crystal, a planar front is desired for most of the applications. This plane shape is often destroyed by instabilities of various types. In the case of growth from a condensed phase, the most frequent instabilities are diffusion instabilities, which have been studied in detail by many authors but will be briefly discussed in simple terms in Section 2. The present review is mainly devoted to instabilities which arise in ballistic growth, especially molecular beam epitaxy (MBE). The reasons of the instabilities can be geometric, but they are mostly kinetic (when the desired state cannot be reached because of a lack of time) or thermodynamic (when the desired state is unstable). The kinetic instabilities which will be studied in detail in Sections 4 and 5 result from the fact that adatoms diffusing on a surface do not easily cross steps (Ehrlich-Schwoebel or ES effect). When the growth front is a high symmetry surface, the ES effect produces mounds which often coarsen in time according to power laws. When the growth front is a stepped surface, the ES effect initially produces a meandering of the steps, which eventually may also give rise to mounds. Kinetic instabilities can usually be avoided by raising the temperature, but this favours thermodynamic instabilities of the thermodynamically unstable materials (quantum wells, multilayers...) which are usually prepared by MBE or similar techniques. The attention will be focussed on thermodynamic instabilities which result from slightly different lattice constants a and a + delta a of the substrate and the adsorbate. They can take the following forms. (i) Formation of misfit dislocations, whose geometry, mechanics and kinetics are analysed in detail in Section 8. (ii) Formation of isolated epitaxial clusters which, at least in their earliest form, are 'coherent' with the substrate, i.e. dislocation-free (Section 10). (iii) Wavy deformation of the surface, which is presumably the incipient stage of (ii) (Section 9). The theories and the experiments are critically reviewed and their comparison is qualitatively satisfactory although some important questions have not yet received a complete answer. Short chapters are devoted to shadowing instabilities, twinning and stacking faults, as well as the effect of surfactants. (C) 2000 Elsevier Science B.V. All rights reserved. CR AARNEODO A, 1991, GROWTH FORM NONLINEA, P297 AMAR JG, 1996, PHYS REV B, V54, P14742 ANDROUSSI Y, 1995, MATER RES SOC S P, V355, P569 ASARO RJ, 1972, METALL TRANS, V3, P1789 AVIGNON M, 1971, J CRYST GROWTH, V11, P265 AVIGNON M, 1969, P ROY SOC LOND A MAT, V310, P277 BAIBICH MN, 1988, PHYS REV LETT, V61, P2472 BALES GS, 1994, PHYS REV B, V50, P6057 BALES GS, 1990, PHYS REV B, V41, P5500 BALL CAB, 1983, DISLOCATIONS SOLIDS, PCH27 BARABASI AL, 1997, APPL PHYS LETT, V70, P2565 BARABASI AL, 1995, FRACTALS CONCEPTS SU BARTELT MC, 1992, PHYS REV B, V46, P12675 BEANLAND R, 1995, J APPL PHYS, V77, P62171 BENA I, 1993, PHYS REV B, V47, P7408 BERBEZIER I, 1998, SURF SCI, V412, P415 BOURRET A, 1983, J PHYS C, V44 BOUSSINESQ JV, 1885, APPL POTENTIELS ETUD BRAY AJ, 1994, ADV PHYS, V43, P357 BROMANN K, 1995, PHYS REV LETT, V75, P677 BRUINSMA R, 1990, KINETICS ORDERING GR BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 CAHN JW, 1959, J CHEM PHYS, V30, P1121 CAHN JW, 1958, J CHEM PHYS, V28, P258 CARLIN JF, 1992, J CRYST GROWTH, V120, P155 CAROLI B, 1992, SOLIDS FAR EQUILIBRI CEBOLLADA A, 1994, PHYS REV B, V50, P3419 CHAKRAVERTY BK, 1967, J PHYS CHEM SOLIDS, V28, P2401 CHAKRAVERTY BK, 1967, J PHYS CHEM SOLIDS, V28, P2413 CHAMBEROD A, 1990, METALLIC MULTILAYERS, P59 CHAME A, 1996, BULG CHEM COMMUN, V29, P398 CHEN Y, 1996, PHYS REV LETT, V77, P4046 COLOCCI M, 1997, APPL PHYS LETT, V70, P3140 COPEL M, 1990, PHYS REV B, V42, P11682 COPEL M, 1989, PHYS REV LETT, V63, P632 DAVIDSON BN, 1994, PHYS REV B, V49, P14770 DENBROEDER FJA, 1991, J MAGN MAGN MATER, V93, P562 DESJONQUERES MC, 1993, SPRINGER SEREIS SURF, V30 DOBBS HT, 1997, DIFFUSION ATOMISTIC DOBBS HT, 1997, PHYS REV LETT, V79, P897 DUPORT C, 1995, J PHYS I, V5, P1317 DUPORT C, 1997, MORPHOLOGICAL ORG EP DUPORT C, 1995, PHYS REV LETT, V74, P134 DUPORT C, 1996, THESIS U GRENOBLE DUTARTRE D, 1994, J CRYST GROWTH, V142, P78 DYNNA M, 1996, ACTA MATER, V44, P4417 DYNNA M, 1994, ACTA METALL MATER, V42, P1661 EAGLESHAM DJ, 1993, PHYS REV LETT, V70, P966 EAGLESHAM DJ, 1993, SURFACE DISORDERING EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELKINANI I, 1994, J PHYS I, V1, P1991 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1991, PHYS REV B, V43, P3897 FERRANDO R, 1996, PHYS REV LETT, V76, P2109 FLORO JA, 1998, PHYS REV LETT, V80, P4717 FOX BA, 1990, J APPL PHYS, V68, P2801 FRANK FC, 1949, P ROY SOC LOND A MAT, V189, P205 FREUND LB, 1990, J APPL PHYS, V68, P2073 FREUND LB, 1995, P MAT RES SOC FALL M GALLAS B, 1996, PHYS REV B, V54, P4919 GAU JS, 1989, J MAGN MAGN MATER, V80, P290 GEHANNO V, 1997, PHYS REV B, V55, P12552 GERARD JM, 1996, MAT SCI ENG B-SOLID, V37, P8 GERARD JM, 1996, SOLID STATE ELECTRON, V40, P807 GILLARD VT, 1994, J APPL PHYS, V76, P7280 GLAS F, 1997, PHYS REV B, V55, P11277 GOLDFARB I, 1997, PHYS REV B, V56, P10459 GOLUBOVIC L, 1997, PHYS REV LETT, V78, P90 GOSLING TJ, 1992, PHILOS MAG A, V66, P119 GRADMANN U, 1986, J MAGN MAGN MATER, V54-7, P733 GRANDJEAN N, 1997, PHYS REV B, V55, P10189 GRANDJEAN N, 1992, PHYS REV LETT, V69, P796 GRILHE J, 1993, EUROPHYS LETT, V23, P141 GRINFELD M, 1994, PHYS REV B, V49, P8310 GRINFELD M, 1994, SCANNING MICROSCOPY, V8, P869 GRINFELD MA, 1986, SOV PHYS DOKL, V31, P831 GUYER JE, 1996, PHYS REV B, V54, P11710 HACK JE, 1989, ACTA METALL MATER, V37, P1957 HEAD AK, 1953, P PHYS SOC LOND B, V66, P793 HERMAN MA, 1996, MOL BEAM EPITAXY HERMANN MA, 1996, SPRINGER SERIES MAT, V7, P290 HERMANN P, 1996, J CATAL, V163, P169 HEYRAUD JC, 1999, SURF SCI, V425, P48 HOBBS PV, 1974, ICE PHYSICS HODGKINSON IJ, 1988, CRIT REV SOLID STATE, V15, P27 HOUDRE R, 1993, SUPERLATTICE MICROST, V13, P67 HOUGHTON DC, 1990, APPL PHYS LETT, V57, P2124 HUG HJ, 1996, J APPL PHYS, V79, P5609 HULL R, 1989, J VAC SCI TECHNOL A, V7, P2580 HUNT AW, 1994, EUROPHYS LETT, V27, P611 ISIBASI, 1940, MEMOIRS FACULTY ENG, V9, P131 JAIN SC, 1992, PHILOS MAG A, V65, P1151 JANKOWSKI AF, 1993, J MAGN MAGN MATER, V126, P185 JESSON DE, 1996, MRS BULL, V21, P31 JESSON DE, 1998, PHYS REV LETT, V80, P5156 JOHNSON HT, 1997, J APPL PHYS, V81, P6081 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 JORRITSMA LC, 1997, PHYS REV LETT, V78, P911 JOYCE BA, 1994, HDB SEMICONDUCTORS, V3, P275 JOYCE BA, 1997, JPN J APPL PHYS 1, V36, P4111 JUNQUA N, 1993, J PHYS III, V3, P1589 JUNQUA N, 1994, PHIL MAG LETT, V69, P61 KALLABIS H, 1998, EUR PHYS J B, V5, P801 KALLABIS H, 1997, THESIS, P3483 KANDEL D, 1995, PHYS REV LETT, V75, P2742 KANDEL D, 1994, PHYS REV LETT, V72, P1678 KANDEL D, 1992, PHYS REV LETT, V69, P3758 KARMA A, 1993, PHYS REV LETT, V71, P3810 KARUNASIRI RPU, 1989, PHYS REV LETT, V62, P788 KASPER E, 1986, SURF SCI, V174, P630 KASSNER K, 1994, EUROPHYS LETT, V28, P245 KAWAKATSU T, 1985, PROG THEOR PHYS, V74, P11 KAWASAKI K, 1982, PHYSICA A, V116, P573 KERN R, 1997, SURF SCI, V392, P103 KOBAYASHI NP, 1996, APPL PHYS LETT, V68, P3299 KODIYALAM S, 1996, PHYS REV B, V53, P9913 KRUG J, 1997, ADV PHYS, V46, P139 KRUG J, 1997, DYNAMICS FLUCTUATING KRUG J, 1996, J PHYSIQUE, V5, P1065 KRUG J, 1997, J STAT PHYS, V87, P505 KRUG J, 1995, MATERIALWISS WERKST, V26, P22 KRUG J, 1997, NONEQUILIBRIUM STAT KRUG J, 1991, PHYS REV A, V43, P900 KRUG J, 1995, Z PHYS B CON MAT, V97, P281 KURAMOTO Y, 1984, CHEM OSCIALLATIONS W KYUNO K, 1997, SURF SCI, V383, P766 LAMBERT B, 1998, SEMICOND SCI TECH, V13, P143 LANCZYCKI CJ, 1998, PHYS REV B, V57, P13132 LANDAU L, 1959, STAT PHYSICS LANDAU L, 1959, THEORY ELASTICITY LANGER JS, 1971, ANN PHYS-NEW YORK, V65, P53 LEAMY HJ, 1980, CURRENT TOPICS MAT S LEONARD D, 1993, APPL PHYS LETT, V63, P3203 LICHTER S, 1986, PHYS REV LETT, V56, P1396 LIFSHITZ IM, 1961, J PHYS CHEM SOLIDS, V19, P35 LING CB, 1948, J MATH PHYS, V26, P284 MADHUKAR A, 1994, APPL PHYS LETT, V64, P2727 MAREE PMJ, 1987, J APPL PHYS, V62, P4413 MARKOV I, 1996, PHYS REV B, V54, P17930 MARKOV I, 1994, PHYS REV B, V50, P11271 MARZIN JY, 1994, PHYS REV LETT, V73, P716 MASON BJ, 1992, CONTEMP PHYS, V33, P227 MASSIES J, 1992, APPL PHYS LETT, V61, P99 MATTHEWS JW, 1975, J VAC SCI TECHNOL, V12, P126 MEAKIN P, 1986, FRACTALS PHYSICS, P205 MEDEIROSRIBEIRO G, 1998, PHYS REV B, V58, P3533 MEDEIROSRIBEIRO G, 1998, SCIENCE, V279, P353 MEYER JA, 1995, PHYS REV B, V51, P14790 MO YW, 1990, PHYS REV LETT, V65, P1020 MOISON JM, 1994, APPL PHYS LETT, V64, P196 MOISON JM, 1989, PHYS REV B, V40, P6149 MOLL N, 1998, PHYS REV B, V58, P4566 MORGENSTERN K, 1998, PHYS REV LETT, V80, P556 MULLINS WW, 1963, J APPL PHYS, V35, P444 MULLINS WW, 1963, J APPL PHYS, V34, P323 MULLINS WW, 1957, J APPL PHYS, V28, P333 MYERSBEAGHTON AK, 1990, PHYS REV B, V42, P5544 NANDEDKAR AS, 1990, PHILOS MAG A, V61, P873 NIEUWENHUIZEN JM, 1966, PHILIPS TECH RUNDSCH, V27, P177 NIRTH JP, 1982, THEORY DISLOCATIONS NISHI K, 1996, J APPL PHYS, V80, P3466 NOTZEL R, 1995, APPL PHYS LETT, V66, P2525 NOTZEL R, 1994, NATURE, V369, P131 NOZIERES P, 1993, J PHYS I, V3, P681 NOZIERES P, 1991, SOLIDS FAR EQUILIBRI ORME C, 1994, APPL PHYS LETT, V64, P860 OSTWALD W, 1908, F ANAL CHEM, P22 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PEHLKE E, 1996, P 23 INT C PHYS SEM, P301 PELCE P, 1988, DYNAMICS CURVED FRON PEROVIC D, 1992, MECH HETEROEPITAXY G, V514, P391 PIDDUCK AJ, 1992, THIN SOLID FILMS, V222, P78 PIERRELOUIS O, 1998, PHYS REV B, V58, P2259 PIERRELOUIS O, 1998, PHYS REV LETT, V80, P4221 PIERRELOUIS O, 1996, PHYS REV LETT, V76, P4761 PIERRELOUIS O, 1997, THESIS U GRENOBLE 1 PIETRONERO L, 1986, FRACTAS PHYSICS PIMPINELLI A, 1994, J PHYS-CONDENS MAT, V6, P2661 PIMPINLLI A, 1998, PHYSICS CRYSTAL GROW PLISCHKE M, 1987, PHYS REV B, V35, P3485 POLITI P, 1999, COARSENING PROCESS G POLITI P, 1997, FURFACE DIFFUSION AT POLITI P, 1997, J PHYS I, V7, P797 POLITI P, 1996, PHYS REV B, V54, P5114 POLITI P, 1998, PHYS REV E, V58, P281 POMEAU Y, 1992, SOLIDS FAR EQUILIBRI PONCHET A, 1995, APPL PHYS LETT, V67, P1850 PONCHET A, 1998, APPL SURF SCI, V123, P751 PONCHET A, 1995, J CRYST GROWTH, V153, P71 PONCHET A, 1996, SOLID STATE ELECTRON, V40, P615 PONCHET A, 1998, UNPUB PORTZ K, 1977, PHYS REV B, V16, P3535 PREDOTA M, 1966, PHYS REV E, V54, P3933 PRIESTER C, 1998, APPL SURF SCI, V123, P658 PRIESTER C, 1995, PHYS REV LETT, V75, P93 RATSCH C, 1996, J PHYS I, V6, P575 REUTER MC, 1991, PHYS REV LETT, V67, P1130 ROSENFELD G, 1995, J CRYST GROWTH, V151, P230 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 ROSS FM, 1998, PHYS REV LETT, V80, P984 ROST M, COMMUNICATION ROST M, 1997, PHYS REV E, V55, P3952 ROST M, 1995, PHYS REV LETT, V75, P3894 ROST M, 1996, SURF SCI, V369, P393 RUDRA A, 1994, J CRYST GROWTH, V136, P278 SAITO Y, 1996, J PHYS SOC JPN, V65, P3576 SAITO Y, 1994, PHYS REV B, V49, P10677 SCHROEDER K, 1998, PHYS REV LETT, V80, P2873 SCHROEDER M, 1997, SURF SCI, V375, P129 SCHWENGER L, 1997, PHYS REV B, V55, PR7406 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SHCHUKIN VA, 1995, PHYS REV LETT, V75, P2968 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1998, PHYS REV LETT, V81, P5481 SIEGERT M, 1997, PHYS REV LETT, V78, P3705 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1997, PHYSICA A, V239, P420 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1995, PHYS REV B, V51, P14798 SMILAUER P, 1993, PHYS REV B, V48, P17603 SNYDER CW, 1992, PHYS REV B, V46, P9551 SOMFAI E, 1997, DYNAMICS CRYSTAL SUR SPENCER BJ, 1993, J APPL PHYS, V73, P4955 SPENCER BJ, 1991, PHYS REV LETT, V67, P3696 SRIDHAR N, 1997, J APPL PHYS, V82, P4852 STOLTZE P, 1994, J PHYS-CONDENS MAT, V6, P9495 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STOYANOV S, 1991, JPN J APPL PHYS 1, V30, P1 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STUMPF R, 1994, PHYS REV LETT, V72, P254 SUN T, 1989, PHYS REV A, V40, P6763 TANG LH, 1998, EUR PHYS J B, V2, P409 TANG LH, 1991, PHYS REV LETT, V66, P2899 TEJEDOR P, 1999, PHYS REV B, V59, P2341 TERSOFF J, 1991, PHYS REV B, V43, P9377 TERSOFF J, 1998, PHYS REV LETT, V81, P3183 TERSOFF J, 1997, PHYS REV LETT, V78, P282 TERSOFF J, 1994, PHYS REV LETT, V72, P3570 TERSOFF J, 1993, PHYS REV LETT, V70, P2782 THIEL M, 1992, EUROPHYS LETT, V20, P707 THURMER K, 1995, PHYS REV LETT, V75, P1767 THURMER K, 1909, SURF SCI, V395, P12 TILMANN K, 1996, PHIL MAG LETT, V74, P309 TSAO JY, 1993, MAT FUNDAMENTALS MOL TSUI F, 1996, PHYS REV LETT, V76, P3164 TUNG RT, 1989, PHYS REV LETT, V63, P1277 UWAHA M, 1992, PHYS REV LETT, V68, P224 VALANCE A, 1993, PHYS REV E, V48, P1924 VANDEREERDEN JP, 1986, PHYS REV LETT, V57, P2431 VANNOSTRAND JE, 1998, PHYS REV B, V57, P12536 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VASSENT JL, 1996, J APPL PHYS, V80, P5727 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VILLAIN J, 1986, EUROPHYS LETT, V2, P531 VILLAIN J, 1991, J PHYS, V11, P19 VOIGTLANDER B, 1993, APPL PHYS LETT, V63, P3055 VOIGTLANDER B, 1995, PHYS REV B, V51, P7583 VVEDENSKY DD, 1993, PHYS REV E, V48, P852 WEINEL E, 1941, MATH MECH, V21, P228 WILLIS JR, 1990, PHILOS MAG A, V62, P115 WITTEN TA, 1983, PHYS REV B, V27, P5686 WITTEN TA, 1981, PHYS REV LETT, V47, P1400 WOLF D, 1996, J PHYSIQUE, V6, P393 WOODRUFF DP, 1973, SOLID LIQUID INTERFA YANG WH, 1993, PHYS REV LETT, V71, P1593 ZANGWILL A, 1992, SURF SCI, V274, PL529 ZINKEALLMANG M, 1992, PHYS REV LETT, V68, P2358 ZINNSMEISTER G, 1968, THIN SOLID FILMS, V2, P497 ZUO JK, 1997, PHYS REV LETT, V78, P2791 TC 3 BP 271 EP 404 PG 134 JI Phys. Rep.-Rev. Sec. Phys. Lett. PY 2000 PD FEB VL 324 IS 5-6 GA 280AN J9 PHYS REP-REV SECT PHYS LETT UT ISI:000085079800001 ER PT J AU Koch, R TI Intrinsic stress of ultrathin epitaxial films SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING NR 67 AB The present article focuses on the stress developing during the deposition of ultrathin epitaxial films in the thickness range of a few atomic layers. The studied systems exhibit the three well-known modes of film growth: Stranski-Krastanow mode [Ge/Si(001), Ge/Si(lll), Ag/Si(lll)], Frank-Van der Merwe mode [Fe/MgO(001)] and Volmer-Weber mode [Ag/mica(001), Cu/mica(001)]. The experimental results demonstrate the important role of the misfit strain as well as the contribution of surface stress effects as mechanisms for the stress in single atomic layers. CR ABERMANN R, 1990, VACUUM, V41, P1279 ALLPRESS JG, 1967, SURF SCI, V7, P1 BARKER RA, 1978, SOLID STATE COMMUN, V25, P375 CAMMARATA RC, 1994, PROG SURF SCI, V46, P1 DOERNER MF, 1988, CRIT REV SOLID STATE, V14, P225 EAGLESHAM DJ, 1990, PHYS REV LETT, V64, P1943 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 EHRLICH G, 1993, PHYS REV LETT, V70, P41 FLORO JA, 1997, PHYS REV LETT, V79, P3946 HAMMAR M, 1996, SURF SCI, V349, P129 HELLWEGE AM, 1966, LANDOLTBURNSTEIN GRU, V1 HIROYAMA Y, 1998, J VAC SCI TECHNOL A, V16, P2956 HOFFMAN RW, 1966, PHYS THIN FILMS, V3, P211 HORNVONHOEGEN M, 1993, PHYS REV LETT, V71, P3170 HORNVONHOEGEN M, 1993, SURF SCI, V284, P53 HULPKE E, 1989, PHYS REV B, V40, P1338 IBACH H, 1997, SURF SCI REP, V29, P193 IWAWAKI F, 1991, SURF SCI, V253, PL411 JAEGER H, 1967, SURF SCI, V6, P309 KATAOKA Y, 1988, J APPL PHYS, V63, P749 KNALL J, 1992, SURF SCI, V265, P156 KOCH R, 1997, CHEM PHYS SOLID SURF, V8, P448 KOCH R, 1996, J MAGN MAGN MATER, V159, PL11 KOCH R, 1994, J PHYS-CONDENS MAT, V6, P9519 KOCH R, 1991, PHYS REV B, V44, P3369 KOCH R, 1990, REV SCI INSTRUM, V61, P3859 KOHLER U, 1991, SURF SCI, V248, P321 MADELUNG O, 1984, LANDOLTBORNSTEIN C, V17 MARCUS PM, 1997, J MAGN MAGN MATER, V168, P18 MARTINEZ RE, 1990, PHYS REV LETT, V64, P1035 MATTHEWS JW, 1979, DISLOCATIONS SOLIDS, V2, P461 MATTHEWS JW, 1962, PHILOS MAG, V7, P915 MATTHEWS JW, 1967, PHYS THIN FILMS, V4, P137 MEADE RD, 1991, SPRINGER SERIES SURF, V24, P4 MO YW, 1990, PHYS REV LETT, V65, P1020 MOLL N, 1996, PHYS REV B, V54, P8844 OHNISHI H, 1993, JPN J APPL PHYS 1, V32, P2920 OVER H, 1993, PHYS REV B, V48, P15353 RATSCH C, 1993, SURF SCI, V293, P123 SAKAI A, 1993, PHYS REV LETT, V71, P4007 SANDER D, 1999, EUROPHYS LETT, V45, P208 SANDER D, 1996, PHYS REV LETT, V77, P2566 SCHELLSOROKIN AJ, 1990, PHYS REV LETT, V64, P1030 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SHCHUKIN VA, 1995, PHYS REV LETT, V75, P2968 SNYDER CW, 1991, PHYS REV LETT, V66, P3032 STEINFORT AJ, 1996, PHYS REV LETT, V77, P2009 STIDDARD MHB, 1982, THIN SOLID FILMS, V97, P91 STIDDARD MHB, 1982, THIN SOLID FILMS, V94, P1 STONEY GG, 1909, P ROY SOC LOND A MAT, V32, P172 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANISHIRO Y, 1991, SURF SCI, V258, PL687 TERSOFF J, 1993, PHYS REV LETT, V70, P2782 THURMER K, 1995, PHYS REV LETT, V75, P1767 TOMITORI M, 1994, APPL SURF SCI, V76, P322 URANO T, 1988, J PHYS SOC JPN, V57, P3403 VENABLES JA, 1980, SURF SCI, V95, P411 VOIGTLANDER B, 1993, APPL PHYS LETT, V63, P3055 WALZ J, 1998, APPL PHYS LETT, V73, P2579 WEDLER G, 1998, PHYS REV LETT, V80 WEDLER G, UNPUB WILLIAMS AA, 1991, PHYS REV B, V43, P5001 WINAU D, 1991, J APPL PHYS, V70, P3081 WINAU D, UNPUB ZUO JK, 1991, J VAC SCI TECHNOL A, V9, P1539 TC 0 BP 529 EP 536 PG 8 JI Appl. Phys. A-Mater. Sci. Process. PY 1999 PD NOV VL 69 IS 5 GA 254BK J9 APPL PHYS A-MAT SCI PROCESS UT ISI:000083591500008 ER PT J AU Wedler, G Walz, J Greuer, A Koch, R TI Stress dependence of the magnetoelastic coupling constants B-1 and B-2 of epitaxial Fe(001) SO PHYSICAL REVIEW B NR 14 AB Magnetoelastic (ME) coupling, a property of major importance in heteroepitaxy, describes the dependence of the free energy of magnetic materials on strain/stress. Using our versatile UHV cantilever beam magnetometer we have investigated the ME coupling constants B-1 and B-2 Of epitaxial Fe(001) films in the thickness range of 2-100 nm, where the films are characterized by the magnetization and the magnetic anisotropy of bulk Fe. Both constants exhibit a strong dependence on the film stress above 0.1 GPa and even change sign at stress values in the GPa range. Whereas B-2 decreases linearly with film stress up to 6 GPa, B-1 saturates after a steep linear increase at 2-3 GPa. Stress-free Fe(001) films exhibit bulk behavior. [S0163-1829(99)50340-8]. CR BOCHI G, 1996, PHYS REV B, V53, PR1729 BRUNO P, 1989, APPL PHYS A-MATER, V49, P499 FARLE M, 1997, PHYS REV B, V55, P3708 KOCH R, 1997, CHEM PHYS SOLID SURF, V8, P448 KOCH R, IN PRESS APPL PHYS A KOCH R, 1996, J MAGN MAGN MATER, V159, PL11 MARCUS PM, 1996, SURF SCI, V366, P219 MATTHEWS JW, 1974, J CRYST GROWTH, V27, P118 SANDER D, 1999, REP PROG PHYS, V62, P809 SCHULZ B, 1994, PHYS REV B, V50, P13467 SUN SW, 1991, PHYS REV LETT, V66, P2798 THURMER K, 1995, PHYS REV LETT, V75, P1767 VANDERMERWE JH, 1962, J APPL PHYS, V34, P123 WEBER M, 1994, PHYS REV LETT, V73, P1166 TC 0 BP R11313 EP R11316 PG 4 JI Phys. Rev. B PY 1999 PD OCT 15 VL 60 IS 16 GA 253KB J9 PHYS REV B UT ISI:000083554800019 ER PT J AU Amar, JG TI Mechanisms of mound coarsening in unstable epitaxial growth SO PHYSICAL REVIEW B NR 27 AB Corner diffusion is shown to play a crucial role in determining the asymptotic mound coarsening exponent in in the case of unstable epitaxial growth on (001) and (111) surfaces. For the case of island-relaxation without corner diffusion the asymptotic exponent is found to satisfy n similar or equal to 1/4. However, when rapid corner-diffusion is allowed, the coarsening exponent is found to approach 1/3. An explanation for these results is presented in terms of the effects of corner diffusion on the surface current and mound morphology. [S0163-1829(99)51440-9]. CR ALVAREZ J, 1998, PHYS REV B, V57, P6325 AMAR JG, 1996, PHYS REV B, V54, P14742 AMAR JG, 1996, PHYS REV LETT, V77, P4584 BOGICEVIC A, 1998, PHYS REV LETT, V81, P637 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELLIOTT WC, 1996, PHYS REV B, V54, P17938 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1990, PHYS REV B, V41, P5410 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 JORRITSMA LC, 1997, PHYS REV LETT, V78, P911 KARR BW, 1997, APPL PHYS LETT, V70, P1703 MICHELY T, 1993, PHYS REV LETT, V70, P3943 MURTY MVR, 1999, PHYS REV LETT, V83, P352 PIERRELOUIS O, 1999, PHYS REV LETT, V82, P3661 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SIEGERT M, 1998, PHYS REV LETT, V81, P5481 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 STOLTZE P, 1994, J PHYS-CONDENS MAT, V6, P9495 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 TANG LH, 1998, EUR PHYS J B, V2, P409 THURMER K, 1995, PHYS REV LETT, V75, P1767 THURMER K, 1998, SURF SCI, V395, P12 TSUI F, 1996, PHYS REV LETT, V76, P3164 VILLAIN J, 1991, J PHYS I, V1, P19 VVEDENSKY DD, 1993, PHYS REV E, V48, P852 WANG SC, 1995, PHYS REV LETT, V75, P2964 TC 3 BP R11317 EP R11320 PG 4 JI Phys. Rev. B PY 1999 PD OCT 15 VL 60 IS 16 GA 253KB J9 PHYS REV B UT ISI:000083554800020 ER PT J AU Schinzer, S Kinne, M Biehl, M Kinzel, W TI The role of step edge diffusion in epitaxial crystal growth SO SURFACE SCIENCE NR 35 AB The role of step edge diffusion (SED) in epitaxial growth is investigated. To this end we revisit and extend a recently introduced simple cubic solid-on-solid model, which exhibits the formation and coarsening of pyramid or mound-like structures. By comparing the limiting cases of absent, very fast (significant), and slow SED we demonstrate how the details of this process control both the shape of the emerging structures and the scaling behavior. We find a sharp transition from significant SED to intermediate values of SED, and a continuous one for vanishing SED. We argue that one should be able to control these features of the surface in experiments by variation of the flux and substrate temperature. (C) 1999 Elsevier Science B.V. All rights reserved. CR AMAR JG, 1997, PHYSICAL REV B, V54, P14742 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BIEHL M, 1998, EUROPHYS LETT, V41, P443 BIHAM O, 1998, SURF SCI, V400, P29 DASSARMA S, 1992, PHYS REV LETT, V69, P3762 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1990, PHYS REV B, V41, P5410 FAMILY F, 1985, J PHYSICS A, V18, PL175 FURMAN I, 1997, PHYS REV B, V55, P7917 GOLOVIN AA, 1999, PHYS REV E, V59, P803 JEONG H, 1997, PHYSICA A, V245, P355 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KRIM J, 1995, INT J MOD PHYS B, V9, P599 KRUG J, 1997, ADV PHYS, V46, P139 OEHLING S, 1998, IN PRESS APPL PHYSIC ORME C, 1995, J CRYST GROWTH, V150, P128 ROST M, 1997, PHYS REV E, V55, P3952 SCHINZER S, 1999, IN PRESS PHYSICAL B SCHINZER S, 1999, UNPUB EUR PHYS J B SCHROEDER M, 1997, PHYS REV B, V55, P10814 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1998, PHYS REV LETT, V81, P5481 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1995, PHYS REV B, V51, P14798 STOLTZE P, 1994, J PHYS-CONDENS MAT, V6, P9495 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 SWAN AK, 1997, SURF SCI, V391, PL1205 TANG LH, 1998, EUR PHYS J B, V2, P409 THURMER K, 1995, PHYS REV LETT, V75, P1767 VILLAIN J, 1992, J PHYS I, V2, P2107 WOLF DE, 1990, EUROPHYS LETT, V13, P389 YUE Y, 1998, PHYS REV B, V57, P6685 ZUO JK, 1997, PHYS REV LETT, V78, P2791 TC 2 BP 191 EP 198 PG 8 JI Surf. Sci. PY 1999 PD SEP 20 VL 439 IS 1-3 GA 238PJ J9 SURFACE SCI UT ISI:000082718400026 ER PT J AU Lengel, G Phaneuf, RJ Williams, ED Das Sarma, S Beard, W Johnson, FG TI Nonuniversality in mound formation during semiconductor growth SO PHYSICAL REVIEW B NR 31 AB The growth of epitaxial GaAs(100) and InP(100) via molecular beam epitaxy has been characterized in vacuo using scanning tunneling microscopy and a height-height correlation analysis of the resulting images. The GaAs growth characteristics can be changed from a layered to a mounded morphology via a change in the As:Ga flux ratio. For InP growth, mounding is observed for growth on a nominally flat substrate, but layered growth occurs on a vicinal substrate. For both the GaAs and InP cases, the measured growth exponents are different for layered vs mounded growth, and do not conform to the predictions of existing dynamical scaling theories. CR BARABASI AL, 1995, FRACTAL CONCEPTS SUR COTTA MA, 1993, PHYS REV LETT, V70, P4106 DASSARMA S, 1996, PHYS REV E, V53, P359 DASSARMA S, 1994, PHYS REV E, V49, P122 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 FEIBELMAN PJ, 1998, PHYS REV LETT, V81, P168 HALPINHEALY T, 1995, PHYS REP, V254, P215 HE YL, 1992, PHYS REV LETT, V69, P3770 HUNT AW, 1994, EUROPHYS LETT, V27, P611 JEONG S, 1998, PHYS REV LETT, V81, P5366 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KODIYALAM S, 1996, PHYS REV B, V53, P9913 KRIM J, 1995, INT J MOD PHYS B, V9, P599 KRUG J, 1997, ADV PHYS, V46, P139 KYUNO K, 1998, PHYS REV LETT, V81, P5592 KYUNO K, 1997, SURF SCI, V394, PL179 LAI ZW, 1991, PHYS REV LETT, V66, P2348 LANCZYCKI CJ, 1998, PHYS REV B, V57, P13132 LANCZYCKI CJ, 1996, PHYS REV LETT, V76, P780 PASHLEY MD, 1991, PHYS REV LETT, V67, P2697 POLITI P, 1997, J PHYS I, V7, P797 POLITI P, 1996, PHYS REV B, V54, P5114 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SNYDER CW, 1994, PHYS REV B, V50, P18194 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 THURMER K, 1995, PHYS REV LETT, V75, P1767 TRUSHIN OS, 1997, PHYS REV B, V56, P12135 VANNOSTRAND JE, 1998, PHYS REV B, V57, P12536 VILLAIN J, 1991, J PHYS I, V1, P19 WOLF DE, 1990, EUROPHYS LETT, V13, P389 ZUO JK, 1997, PHYS REV LETT, V78, P279 TC 1 BP R8469 EP R8472 PG 4 JI Phys. Rev. B PY 1999 PD SEP 15 VL 60 IS 12 GA 241EB J9 PHYS REV B UT ISI:000082868800014 ER PT J AU Krauth, O Fahsold, G Lehmann, A TI Surface-enhanced infrared absorption? SO SURFACE SCIENCE NR 20 AB In ultra-high vacuum (UHV) we have measured infrared transmission spectra of CO on ultra-thin films of iron grown at about 315 K on UHV-cleaved MgO(001). Even at normal incidence of light we observe several asymmetric CO stretching lines with positions, intensities and shapes dependent on film morphology. The CO stretching lines observed are enhanced by at least two orders of magnitude with respect to adiabatic values. Enhancement and asymmetry are correlated to the curvature of transmission spectra of the bare iron films which is a measure of the dynamic conductivity, i.e., of the degree of continuity of the films formed by the growth of three-dimensional epitaxial islands. (C) 1999 Elsevier Science B.V. All rights reserved. CR CHABAL YJ, 1985, PHYS REV LETT, V55, P845 CHABAL YJ, 1988, SURF SCI REP, V8, P211 FAHSOLD G, 1999, SURF SCI, V433, P162 FAHSOLD G, UNPUB PHYS REV B FRANZ M, 1993, SURF SCI, V293, P114 HEIDBERG J, 1992, SURF SCI, V269, P128 HIRSCHMUGL CJ, 1990, PHYS REV LETT, V65, P480 HOFFMANN FM, 1983, SURFACE SCI REPT, V3, P107 KRAUTH O, UNPUB LANGRETH DC, 1985, PHYS REV LETT, V54, P126 LAWLER JF, 1997, J MAGN MAGN MATER, V165, P224 NISHIKAWA Y, 1993, VIB SPECTROSC, V6, P43 OSAWA M, 1997, B CHEM SOC JPN, V70, P2861 OSAWA M, 1991, J PHYS CHEM-US, V95, P9914 OSAWA M, 1992, SURF SCI, V262, PL118 PERSSON BNJ, 1994, SURF SCI, V310, P314 PERSSON BNJ, 1992, SURF SCI, V269, P103 SOBNACK MB, 1998, PHYS REV LETT, V80, P5667 THURMER K, 1995, PHYS REV LETT, V75, P1767 ZHANG ZY, 1989, PHYS REV B, V39, P10028 TC 0 BP 79 EP 82 PG 4 JI Surf. Sci. PY 1999 PD AUG 2 VL 435 GA 230DA J9 SURFACE SCI UT ISI:000082235500015 ER PT J AU Poulopoulos, P Lindner, J Farle, M Baberschke, K TI Changes of magnetic anisotropy due to roughness: a quantitative scanning tunneling microscopy study on Ni/Cu(001) SO SURFACE SCIENCE NR 33 AB Ultrathin Ni/Cu(001) films with thicknesses between 5 and 45 monolayers (ML) were studied at room temperature in situ by scanning tunneling microscopy. Nickel grows on Cu(001) in a layer-by-layer mode with increasing roughness from 0.5 to 1.8 nm in the thickness range studied. We inspect the reasons that influence the evolution of the surface morphology. From the real-space images we directly determined the roughness sigma and correlation length xi as a function of thickness. With these parameters we calculated the changes of the magnetic anisotropy with respect to flat nickel films in terms of the phenomenological model proposed by Bruno. We find that roughness has a negligible influence on the spin reorientation phase transition at about 8 ML. (C) 1999 Elsevier Science B.V. All rights reserved. CR BABERSCHKE K, 1996, APPL PHYS A-MATER, V62, P417 BABERSCHKE K, 1997, J APPL PHYS, V81, P5038 BOTT M, 1992, SURF SCI, V272, P161 BRUNE H, 1994, NATURE, V369, P469 BRUNO P, 1988, J APPL PHYS, V64, P3153 BRUNO P, 1988, J PHYS F MET PHYS, V18, P1291 CERDA JR, 1993, J PHYS-CONDENS MAT, V5, P2055 CHAPPERT C, 1988, J APPL PHYS, V64, P5736 DURR H, 1995, SURF SCI, V328, PL527 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1994, PHYS REV LETT, V72, P112 FARLE M, 1997, PHYS REV B, V56, P5100 FARLE M, 1998, REP PROG PHYS, V61, P755 GIESEN M, 1995, SURF SCI, V336, P269 HIMPSEL FJ, 1998, ADV PHYS, V47, P511 JACOBSEN J, 1995, PHYS REV LETT, V74, P2295 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KITTEL C, 1976, INTRO SOLID STATE PH KUNKEL R, 1990, PHYS REV LETT, V65, P733 MULLER S, 1996, SURF SCI, V364, P235 PLATOW W, 1999, PHYS REV B, V59, P12641 POULOPOULOS P, 1994, J APPL PHYS, V75, P4109 RITTER M, 1996, SURF SCI, V348, P243 SCHMID AK, 1992, ULTRAMICROSCOPY, V42, P483 SCHULZ B, 1994, PHYS REV B, V50, P13467 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SHEN J, 1996, J MAGN MAGN MATER, V156, P104 SHEN J, 1996, PHYS REV B, V52, P8454 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 STINDTMANN M, 1997, SURF SCI, V381, P12 TERSOFF J, 1994, PHYS REV LETT, V72, P266 THURMER K, 1995, PHYS REV LETT, V75, P1767 ZUO JK, 1997, PHYS REV LETT, V78, P2791 TC 2 BP 277 EP 284 PG 8 JI Surf. Sci. PY 1999 PD SEP 1 VL 437 IS 3 GA 232VN J9 SURFACE SCI UT ISI:000082390800005 ER PT J AU Subagyo, A Sueoka, K Mukasa, K Hayakawa, K TI Scanning tunneling microscopy study of surface structure and magnetism of Fe thin films grown on MgO (001) SO JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS NR 23 AB Substrate preparation procedure dependence of the growth morphology and magnetic properties of 25 ML bcc-Fe(001) thin films epitaxially grown on MgO(001) substrates in a wide range of growth temperature was investigated by means of scanning tunneling microscopy (STM) and superconducting quantum interference device(SQUID). The growth morphology of Fe thin films was uniform both on a polished and on an annealed substrate, but nonuniform on a cleaved substrate. It was very difficult to obtain a flat Fe thin film on the cleaved substrate, and the film became discontinuous gt or above a growth temperature of 493 K. At a growth temperature of 550 K, atomically defined terraces of Fe thin films were formed on the annealed substrate but. were not formed on the polished substrate. A continuous film grown on the annealed substrate at a temperature of 593 K has a less magnetic anisotropy. The other continuous films have low coercivity of about 8 Oe and a biaxial magnetic anisotropy. The dependency of the growth morphology and magnetic properties of Fe thin films upon substrate preparation procedures concerning the presence of step-terraces on the substrate surface is discussed. CR ABRIOU D, 1996, SURF SCI, V352, P499 AHMED F, 1996, J LOW TEMP PHYS, V105, P1343 DABOO C, 1994, J APPL PHYS, V75, P5586 DEKOSTER J, 1995, J MAGN MAGN MATER, V148, P93 DURAND O, 1995, J MAGN MAGN MATER, V145, P111 IKEMIYA N, 1996, J CRYST GROWTH, V160, P104 JORDAN SM, 1998, J APPL PHYS, V84, P1499 KOHMOTO O, 1992, JPN J APPL PHYS 1, V31, P2101 LAIRSON BM, 1995, J APPL PHYS, V78, P4449 LAWLER JF, 1997, J MAGN MAGN MATER, V165, P224 LI C, 1991, PHYS REV B, V43, P780 OTA H, 1996, SURF SCI, V357, P150 PARK Y, 1995, PHYS REV B, V52, P12779 PARK YS, 1995, APPL PHYS LETT, V66, P2140 PERRY SS, 1997, SURF SCI, V383, P268 POSTAVA K, 1997, J MAGN MAGN MATER, V172, P199 ROBACH O, 1998, SURF SCI, V401, P227 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SMILGYS RV, 1993, J VAC SCI TECHNOL A, V11, P1361 SOUDA R, 1990, J VAC SCI TECHNOL A, V8, P3218 STROSCIO JA, 1995, PHYS REV LETT, V75, P2960 SUBAGYO A, UNPUB IEEE T MAGN THURMER K, 1995, PHYS REV LETT, V75, P1767 TC 1 BP 3820 EP 3825 PG 6 JI Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. PY 1999 PD JUN VL 38 IS 6B GA 218WU J9 JPN J APPL PHYS PT 1 UT ISI:000081576700006 ER PT J AU Vernon, DC Siegert, M Plischke, M TI Pyramid growth without deposition noise SO PHYSICAL REVIEW B NR 33 AB Several models of molecular-beam epitaxy, both atomistic and ones based on Langevin equations, have as one of their generic growth scenarios the formation of three-dimensional structures such as mounds or pyramids. The characteristic size R of these structures increases as a function of deposition time with a power law R similar to t(n). In order to investigate the dependence of the growth exponent n on the characteristics of the fluctuations of the deposition flux we compare results of Monte-Carlo simulations for random deposition and for deposition on an artificially constructed deterministic sequence of sites. Although the latter algorithm leads to much smaller height fluctuations on each site, the growth exponent in both cases is found to be dose to 0.25. CR AMAR JG, 1996, PHYS REV B, V54, P14742 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BARTELT MC, 1993, SURF SCI, V298, P421 BORTZ AB, 1975, J COMPUT PHYS, V17, P10 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1991, PHYS REV B, V43, P3897 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KANG HC, 1992, SURF SCI, V269, P784 KRUG J, 1995, J PHYS I, V5, P1065 KRUG J, 1993, PHYS REV LETT, V70, P3271 ORME C, 1994, MATER RES SOC SYMP P, V340, P233 POLITI P, 1996, PHYS REV B, V54, P5114 POLITI P, 1998, PHYS REV E, V58, P281 PRESS WH, 1992, NUMERICAL RECIPES C ROST M, 1997, PHYS REV E, V55, P3952 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1995, NATO ADV SCI INST SE, V344, P165 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1998, PHYS REV LETT, V81, P5481 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1997, PHYSICA A, V239, P420 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMITH GW, 1993, J CRYST GROWTH, V127, P966 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 SUN T, 1989, PHYS REV A, V40, P6763 TANG LH, 1998, EUR PHYS J B, V2, P409 TANG LH, 1998, PHYSICA A, V254, P135 THURMER K, 1995, PHYS REV LETT, V75, P1767 TSUI F, 1996, PHYS REV LETT, V76, P3164 VILLAIN J, 1991, J PHYS I, V1, P19 WANG SC, 1993, PHYS REV LETT, V70, P41 ZUO JK, 1997, PHYS REV LETT, V78, P2791 TC 0 BP 15523 EP 15527 PG 5 JI Phys. Rev. B PY 1999 PD JUN 15 VL 59 IS 23 GA 210ZB J9 PHYS REV B UT ISI:000081134500094 ER PT J AU Park, S Jeong, H Kahng, B TI Numerical test of the damping time of layer-by-layer growth on stochastic models SO PHYSICAL REVIEW E NR 27 AB We perform Monte Carlo simulations on stochastic models such as the Wolf-Villain (WV) model and the Family model in a modified version to measure the mean separation l between islands in a submonolayer regime and the damping time (t) over tilde of layer-by-layer growth oscillations in one dimension. The: stochastic models are modified,allowing for diffusion within interval r upon deposition. It is found numerically that the mean separation and the damping time depend on the diffusion interval r,leading to the fact that the damping time is related to the mean separation as (t) over tilde similar to l(4/3) for the WV model and (t) over tilde similar to l(2) for the Family model. The numerical results are in excellent agreement with recent theoretical predictions. [S1063-651X(99)06505-8]. CR BAUER E, 1958, Z KRISTALLOGR, V110, P372 BRENDEL L, 1998, PHYS REV E, V58, P664 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 EHRLICH G, 1995, SURF SCI, V331, P865 FAMILY F, 1991, DYNAMICS FRACTAL SUR FAMILY F, 1986, J PHYS A-MATH GEN, V19, PL441 JEONG H, 1997, PHYSICA A, V245, P355 KALLABIS H, CONDMAT9806140 KALLABIS H, 1997, INT J MOD PHYS B, V11, P3621 LAI ZW, 1991, PHYS REV LETT, V66, P2348 PUNYINDU P, 1998, PHYS REV E, V57, PR4863 SCHROEDER M, 1995, PHYS REV LETT, V74, P2062 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SMILAUER P, 1994, PHYS REV B, V49, P5769 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 TANG LH, 1991, PHYS REV LETT, V66, P2899 THURMER K, 1995, PHYS REV LETT, V75, P1767 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VENABLES JA, 1984, REP PROG PHYS, V47, P300 VILLAIN J, 1991, J PHYS I, V1, P19 VILLAIN J, 1992, PHYS REV LETT, V69, P985 VILLAIN J, 1995, PHYSIQUE CROISSANCE WOLF DE, 1990, EUROPHYS LETT, V13, P389 WOLF DE, 1995, SCALE INVARIANCE INT, P215 ZINSMEISTER G, 1968, THIN SOLID FILMS, V2, P497 TC 0 BP 6184 EP 6187 PG 4 JI Phys. Rev. E PY 1999 PD MAY VL 59 IS 5 PN B GA 197TZ J9 PHYS REV E UT ISI:000080382900086 ER PT J AU Krauth, O Fahsold, G Pucci, A TI Asymmetric line shapes and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001) SO JOURNAL OF CHEMICAL PHYSICS NR 37 AB We have measured infrared transmission spectra of CO adsorbed on in situ grown iron films on MgO(001) under ultrahigh vacuum conditions. Even at normal incidence we observed strong absorption lines in the C-O stretch region with number, intensities, positions, and shapes dependent on CO coverage and Fe-film thickness and morphology. This absorption must be due to vibrational dipoles oblique to the substrate surface, e.g., due to molecules at island walls. The distinct absorption lines can be assigned to distinct adsorption sites on crystalline facets of epitaxial Fe islands on MgO(001). For each of the films the strongest CO line shows an asymmetric shape. Additionally, the observed absorption is enhanced by at least two orders of magnitude with respect to adiabatic intensities of, e.g., CO on NaCl. Line shapes and intensity let us suggest nonadiabatic coupling of the adsorbate vibration to electronic transitions. (C) 1999 American Institute of Physics. [S0021- 9606(99)70606-9]. CR BARTEL A, 1998, THESIS RUPRECHT KARL BENNDORF C, 1985, SURF SCI, V163, PL675 CHABAL YJ, 1985, PHYS REV LETT, V55, P845 ERLEY W, 1981, J VAC SCI TECHNOL, V18, P472 FAHSOLD G, IN PRESS FAHSOLD G, IN PRESS SURF SCI FAHSOLD G, UNPUB FANO U, 1961, PHYS REV, V124, P1866 FRANZ M, 1993, SURF SCI, V293, P114 GERLACH R, 1995, SURF SCI, V331, P1490 HARTSTEIN A, 1980, PHYS REV LETT, V45, P201 HEIDBERG J, 1992, SURF SCI, V269, P128 KRAUTH O, IN PRESS J MOL STRUC LANGRETH DC, 1985, PHYS REV LETT, V54, P126 LAWLER JF, 1997, J MAGN MAGN MATER, V165, P224 LEHMANN A, 1988, PHYS STATUS SOLIDI B, V148, P401 LU JP, 1989, SURF SCI, V217, P55 MARUYAMA T, 1994, SURF SCI, V304, P281 MEHANDRU SP, 1988, SURF SCI, V201, P345 MERRILL PB, 1992, SURF SCI, V271, P81 MOON DW, 1987, SURF SCI, V184, P90 NISHIKAWA Y, 1993, ANAL CHEM, V65, P556 NISHIKAWA Y, 1993, VIB SPECTROSC, V6, P43 ORDAL MA, 1985, APPL OPTICS, V24, P4493 OSAWA M, 1993, APPL SPECTROSC, V47, P1497 OSAWA M, 1997, B CHEM SOC JPN, V70, P2861 OSAWA M, 1993, J ELECTRON SPECTROSC, V64-5, P371 OSAWA M, 1991, J PHYS CHEM-US, V95, P9914 OSAWA M, 1992, SURF SCI LETT, V262, P6118 OTTO A, 1992, J PHYS-CONDENS MAT, V4, P1143 SOBNACK MB, 1998, PHYS REV LETT, V80, P5667 THURMER K, 1995, PHYS REV LETT, V75, P1767 URANO T, 1988, J PHYS SOC JPN, V57, P3403 WANZENBOCK HD, 1997, J MOL STRUCT, V410, P535 YAMAGUCHI T, 1974, THIN SOLID FILMS, V21, P173 YAMAGUCHI T, 1973, THIN SOLID FILMS, V18, P63 ZHANG ZY, 1989, PHYS REV B, V39, P10028 TC 3 BP 3113 EP 3117 PG 5 JI J. Chem. Phys. PY 1999 PD FEB 8 VL 110 IS 6 GA 163AJ J9 J CHEM PHYS UT ISI:000078379800044 ER PT J AU Siegert, M TI Coarsening dynamics of crystalline thin films SO PHYSICAL REVIEW LETTERS NR 30 AB The formation of pyramidlike structures in thin-film growth on substrates with a quadratic symmetry, e.g., {001} surfaces, is shown to exhibit anisotropic scaling as there exist two length scales with different time dependences. Numerical results indicate that for most realizations coarsening of mounds is described by an exponent n similar or equal to 1/4. However, depending on material parameters it is shown that n may lie between 0 (logarithmic coarsening) and 1/3. In contrast, growth on substrates with triangular symmetries ({111} surfaces) is dominated by a single length similar to t(1/3). CR AMAR JG, 1996, PHYS REV B, V54, P14742 BARTELT MC, 1993, SURF SCI, V298, P421 BRAY AJ, 1994, ADV PHYS, V43, P357 BRAY AJ, 1994, PHYS REV E, V49, P27 BRAY AJ, 1989, PHYS REV LETT, V62, P2841 CAHN JW, 1958, J CHEM PHYS, V28, P258 ERNST HJ, 1994, PHYS REV LETT, V72, P112 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 JORRITSMA LC, 1997, PHYS REV LETT, V78, P911 KRUG J, 1995, J PHYS I, V5, P1065 KRUG J, 1993, PHYS REV LETT, V70, P3271 LIFSHITZ IM, 1961, J PHYS CHEM SOLIDS, V19, P35 POLITI P, 1998, PHYS REV E, V58, P281 POROD G, 1951, KOLLOID Z, V124, P83 ROST M, 1997, PHYS REV E, V55, P3952 RUTENBERG AD, 1996, PHYS REV E, V54, PR2181 SHORE JD, 1992, PHYS REV B, V46, P11376 SIEGERT M, 1995, NATO ADV SCI INST SE, V344, P165 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1997, PHYS REV LETT, V78, P3705 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1997, PHYSICA A, V239, P420 SIEGERT M, UNPUB SMILAUER P, 1995, PHYS REV B, V52, P14263 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 SUN T, 1989, PHYS REV A, V40, P6763 THURMER K, 1995, PHYS REV LETT, V75, P1767 TSUI F, 1996, PHYS REV LETT, V76, P3164 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 TC 11 BP 5481 EP 5484 PG 4 JI Phys. Rev. Lett. PY 1998 PD DEC 21 VL 81 IS 25 GA 150HT J9 PHYS REV LETT UT ISI:000077659500002 ER PT J AU Fahsold, G Konig, G Theis, W Lehmann, A Rieder, KH TI Epitaxial FeO films from ultrathin fe on MgO(001) studied by he-atom scattering SO APPLIED SURFACE SCIENCE NR 52 AB With He-atom scattering, we investigated ultrathin iron oxide prepared by oxidation of an in-situ grown metal film that was deposited onto ultrahigh vacuum (UHV)-cleaved MgO(001). Three- dimensional metal island growth of Fe was suppressed by evaporation of a first atomic layer at 140 K and of a second layer at room temperature. This epitaxial two-monolayer iron film almost completely covers the substrate. However, a low specular intensity indicates poor crystalline quality. Exposure to oxygen and subsequent heating to 950 K of this ultrathin Fe film yields pseudomorphic FeO with high crystalline quality as proved by high specular intensity as well as by sharp inelastic features due to surface phonons. Only one surface phonon branch with a dispersion different to that of the MgO(001) surface mode was observed. This 'one-mode behaviour' should be correlated to the fact that chemical bonds in FeO, MgO, and at their mutual interface are very similar. (C) 1999 Elsevier Science B.V. All rights reserved. CR BARKER AS, 1975, REV MOD PHYS, V47, P51 BATE G, 1991, J MAGN MAGN MATER, V100, P413 BAUMER M, 1995, SURF SCI, V327, P321 BENEDEK G, 1992, PHYS REV LETT, V69, P2951 BENEDEK G, 1994, SURF SCI REP, V20, P1 BRUSDEYLINS G, 1992, SURF SCI, V272, P358 BRUSDEYLINS G, 1983, SURF SCI, V128, P191 CELLI V, 1991, PHYS REV LETT, V66, P3160 CHEN TS, 1978, PHYS REV B, V18, P958 CHUI J, 1990, PHYS REV B, V42, P9701 COMSA G, 1992, ATOMIC MOL BEAM METH, V2 COULTER K, 1995, CATAL LETT, V31, P1 DOAK RB, 1992, ATOMIC MOL BEAM METH, V2 DUAN J, 1992, SURF SCI, V272, P220 DURIEZ C, 1990, SURF SCI, V230, P123 ELLIS J, 1993, J ELECTRON SPECTROSC, V64-5, P725 ENGEL T, 1982, SPRINGER TRACTS MODE, V91 FAHSOLD G, IN PRESS FAHSOLD G, UNPUB GAINES JM, 1997, SURF SCI, V373, P85 GOYAL RP, 1979, PHYS STATUS SOLIDI B, V94, PK51 HALL B, 1985, PHYS REV B, V32, P4932 HEINRICH VE, 1994, SURFACE SCI METAL OX HENNING T, 1995, ASTRON ASTROPHYS SUP, V112, P143 KERN K, 1987, PHYS REV B, V35, P886 KOCH R, COMMUNICATION KONIG G, 1995, THESIS FREIE U BERLI KOOI BJ, 1996, THIN SOLID FILMS, V281, P488 KRESS W, 1991, SPRINGER SERIES SURF, V21 KUHNKE KE, 1994, PHYS REV B, V50, P18505 LAKSHMI G, 1980, PHYS REV B, V22, P5009 LI C, 1991, PHYS REV B, V43, P780 LI Y, 1997, PHYS REV B, V55, P16456 LIU C, 1992, J MAGN MAGN MATER, V111, PL225 LOCK A, 1990, KINETICS ORDERING GR MUHGE T, 1994, APPL PHYS A-MATER, V59, P659 REISSLAND JA, 1973, PHYSICS PHONONS RIEDER KH, 1982, SURF SCI, V118, P57 SAFRON SA, 1993, J PHYS CHEM-US, V97, P2270 SAKISAKA Y, 1984, PHYS REV B, V30, P6849 SCWENNICKE C, 1993, SURF SCI, V293, P57 STIERLE A, 1998, IN PRESS SURF SCI STIERLE A, 1994, J MATER RES, V9, P884 THURMER K, 1995, PHYS REV LETT, V75, P1767 TOENNIES JP, 1991, SPRINGER SERIES SURF, V21 VENKATESAN T, 1996, MAT SCI ENG B-SOLID, V41, P30 WEISS W, 1997, SURF SCI, V377, P943 WIGHT A, 1995, SURF SCI, V331, P133 WOLLSCHLAGER J, 1998, IN PRESS SURF SCI WOLLSCHLAGER J, 1997, SURF SCI, V383 WOLLSCHLAGER J, 1995, SURF SCI, V328, P325 ZHOU JB, 1997, SURF SCI, V375, P221 TC 0 BP 224 EP 235 PG 12 JI Appl. Surf. Sci. PY 1999 PD JAN VL 137 IS 1-4 GA 155BB J9 APPL SURF SCI UT ISI:000077925100030 ER PT J AU Jordan, SM Schad, R Herrmann, DJL Lawler, JF van Kempen, H TI Quantitative assessment of STM images of Fe grown epitaxially on MgO(001) using fractal techniques SO PHYSICAL REVIEW B-CONDENSED MATTER NR 28 AB We have assessed scanning tunneling microscope images of Fe grown on MgO(001) at various temperatures using two different methods. Evaluation of the height-height variance function reported a correlation length very close to the average island radius. The area-perimeter method reported the perimeters above which non-square-law scaling of the islands begins to be somewhat lower than the average perimeters of the discrete islands. A comparison of two common methods for evaluating length-dependent roughness is made. [S0163-1829(98)00143-X]. CR ALMQVIST N, 1996, SURF SCI, V355, P221 BARNAS J, 1996, PHYS REV B, V53, P5449 DUMPICH G, 1995, THIN SOLID FILMS, V260, P239 FEDER J, 1988, FRACTALS PHYSICS SOL FULLERTON EE, 1992, PHYS REV LETT, V68, P859 GOMEZRODRIGUEZ JM, 1992, ULTRAMICROSCOPY, V42, P1321 HEYVAERT I, 1996, PHYS REV E, V54, P349 JORDAN SM, 1988, J APPL PHYS, V84, P1499 JORDAN SM, 1998, J PHYS-CONDENS MAT, V10, PL355 KASER A, 1995, Z PHYS B CON MAT, V97, P139 KIELY JD, 1997, J VAC SCI TECHNOL B, V15, P1483 KRIM J, 1993, PHYS REV LETT, V70, P57 LUO EZ, 1994, PHYS REV B, V49, P4858 MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT PALASANTZAS G, 1994, PHYS REV LETT, V73, P3564 RAO MVH, 1994, APPL PHYS LETT, V65, P124 REISS G, 1990, J APPL PHYS, V67, P1156 SALVAREZZA RC, 1992, EUROPHYS LETT, V20, P727 SCHAD R, 1998, J PHYS-CONDENS MAT, V10, P61 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SIEGERT M, 1994, PHYS REV E, V50, P917 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SINHA SK, 1988, PHYS REV B, V38, P2297 TEMST K, 1995, APPL PHYS LETT, V67, P3429 THURMER K, 1995, PHYS REV LETT, V75, P1767 VILLAIN J, 1991, J PHYS I, V19, P1 VILLARRUBIA JS, 1994, SURF SCI, V321, P287 WILLIAMS JM, 1993, J PHYS CHEM-US, V97, P6249 TC 1 BP 13132 EP 13137 PG 6 JI Phys. Rev. B-Condens Matter PY 1998 PD NOV 15 VL 58 IS 19 GA 144CE J9 PHYS REV B-CONDENSED MATTER UT ISI:000077295500092 ER PT J AU Smilauer, P TI Unstable epitaxy and pattern formation on singular and vicinal surfaces SO VACUUM NR 14 AB Theoretical results for unstable homoepitaxy due to additional barriers to hopping at step edges are reviewed. Using both kinetic Monte Carlo simulations and numerical integration of a continuum equation, it was demonstrated that, on a singular surface, pyramidal features (mounds) appear whose size and slope increases according to a power law. On a vicinal surface, ripples are created due to an instability of step edges. The ripples then undergo a secondary instability and break-up leading to a surface morphology indistinguishable from the one observed on the singular surface. In addition, deposition noise is shown to be an important factor in mound coarsening during unstable homoepitaxial growth. Computer simulations identify two regimes, high-temperature deterministic coarsening and a low-temperature noisy regime. (C) 1998 Elsevier Science Ltd. All rights reserved. CR BALES GS, 1990, PHYS REV B, V41, P5500 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KRUG J, 1997, ADV PHYS, V46, P139 KRUG J, 1993, PHYS REV LETT, V72, P3271 POLITI P, 1996, PHYS REV B, V54, P5114 ROST M, 1996, SURF SCI, V369, P393 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 TANG LH, IN PRESS EUR PHYS B THURMER K, 1995, PHYS REV LETT, V75, P1767 VILLAIN J, 1991, J PHYS I, V1, P1 TC 1 BP 115 EP 120 PG 6 JI Vacuum PY 1998 PD MAY-JUN VL 50 IS 1-2 GA 102QF J9 VACUUM UT ISI:000074935100027 ER PT J AU Jordan, SM Lawler, JF Schad, R van Kempen, H TI Growth temperature dependence of the magnetic and structural properties of epitaxial Fe layers on MgO(001) SO JOURNAL OF APPLIED PHYSICS NR 26 AB We have studied the growth and magnetic properties of molecular beam epitaxy grown layers of bcc Fe(001) on MgO(001) substrates at a wide range of temperatures. For growth temperatures in the range 80-595 K, the iron forms islands which increase in lateral size with increasing temperature. Completed films in the same temperature range show the magnetic properties expected for a system with biaxial anisotropy, and a coercivity of < 10 Oe. The value of the first cubic anisotropy constant divided by the magnetization (K-1/M) remained constant. No evidence for uniaxial magnetic anisotropy in the films was found. Above 595 K, the films' structure and magnetic properties changed dramatically to those characteristic of a particulate system. (C) 1998 American Institute of Physics. [S0021-8979(98)06315-4]. CR BOZORTH RM, 1936, PHYS REV, V50, P1076 DABOO C, 1994, J APPL PHYS, V75, P5586 DABOO C, 1993, PHYS REV B, V47, P11852 DURAND O, 1995, J MAGN MAGN MATER, V145, P111 GESTER M, 1997, J MAGN MAGN MATER, V165, P242 GORYUNOV YV, 1995, PHYS REV B, V52, P13450 GU E, 1995, PHYS REV B, V51, P3596 HUANG DJ, 1993, J APPL PHYS, V73, P6751 HUANG Y, 1992, PHYS REV B, V47, P183 JORDAN SM, 1997, J MAGN MAGN MATER, V172, P69 JORDAN SM, 1996, REV SCI INSTRUM, V67, P4286 KOHMOTO O, 1992, JPN J APPL PHYS 1, V31, P2101 LAIRSON BM, 1995, J APPL PHYS, V78, P4449 LAWLER JF, 1997, J MAGN MAGN MATER, V165, P224 LI C, 1991, PHYS REV B, V43, P780 OHTA H, 1993, J PHYS SOC JPN, V62, P4467 PARK Y, 1995, PHYS REV B, V52, P12779 PARK YS, 1995, APPL PHYS LETT, V66, P2140 PASTOR G, 1985, J APPL PHYS, V58, P920 POSTAVA K, 1997, J MAGN MAGN MATER, V172, P199 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 STROSCIO JA, 1995, PHYS REV LETT, V75, P2960 THIBADI PM, 1996, PHYS REV B, V53, PR1048 THURMER K, 1995, PHYS REV LETT, V75, P1767 URANO T, 1988, J PHYS SOC JPN, V57, P3403 WIJN H, 1991, MAGNETIC PROPERTIES TC 3 BP 1499 EP 1503 PG 5 JI J. Appl. Phys. PY 1998 PD AUG 1 VL 84 IS 3 GA 108YT J9 J APPL PHYS UT ISI:000075294600057 ER PT J AU Tang, LH Smilauer, P Vvedensky, DD TI Noise-assisted mound coarsening in epitaxial growth SO EUROPEAN PHYSICAL JOURNAL B NR 18 AB Two types of mechanisms are proposed for mound coarsening during unstable epitaxial growth: stochastic, due to deposition noise, and deterministic, due to mass currents driven by surface energy differences. Both yield the relation H = (RWL)(2) between the typical mound height W, mound size L, and the film thickness H. hn analysis of simulations and experimental data shows that the parameter R saturates to a value which discriminates sharply between stochastic (R similar or equal to 1) and deterministic (R much less than 1) coarsening. We derive a scaling relation between the coarsening exponent 1/z and the mound-height exponent beta which, for a saturated mound slope, yields beta = 1/z = 1/4. CR AMAR JG, 1996, PHYS REV B, V54, P14742 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KAWAKATSU T, 1985, PROG THEOR PHYS, V74, P262 KOCH R, COMMUNICATION KRUG J, 1997, ADV PHYS, V46, P139 KRUG J, 1997, NONEQUILIBRIUM STAT, P305 POLITI P, 1996, PHYS REV B, V54, P5114 ROST M, 1997, PHYS REV E, V55, P3952 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SEIGERT M, 1996, PHYS REV E, V53, P307 SEIGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1997, PHYS REV LETT, V78, P3705 SMILAUER P, 1995, PHYS REV B, V52, P14263 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 THURMER K, 1995, PHYS REV LETT, V75, P1767 VILLAIN J, 1991, J PHYS I, V1, P1 TC 12 BP 409 EP 412 PG 4 JI Eur. Phys. J. B PY 1998 PD APR VL 2 IS 3 GA ZV579 J9 EUR PHYS J B UT ISI:000074319200014 ER PT J AU Tang, LH TI Unstable growth and coarsening in molecular-beam epitaxy SO PHYSICA A NR 15 AB The coarsening dynamics of three-dimensional islands on a growing film is discussed. It is assumed that the origin of the initial instability of a planar surface is the Ehrlich- Schwoebel step-edge barrier for adatom diffusion. Two mechanisms of coarsening are identified: (i) surface diffusion driven by an uneven distribution of bonding energies, and (ii) mound coalescence driven by random deposition. Semiquantitative estimates of the coarsening time are given in each case. When the surface slope saturates, an asymptotic dynamical exponent z=4 is obtained. (C) 1998 Elsevier Science B.V. All rights reserved. CR 1996, PHYS TODAY MAY, P22 AMAR JG, 1996, PHYS REV B, V54, P1742 BRAY AJ, 1994, ADV PHYS, V43, P357 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KAWAKATSU T, 1985, PROG THEOR PHYS, V74, P262 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1997, ADV PHYS, V46, P139 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 TANG LH, CONDMAT9703056 THURMER K, 1995, PHYS REV LETT, V75, P1767 VILLAIN J, 1991, J PHYS I, V1, P1 TC 1 BP 135 EP 145 PG 11 JI Physica A PY 1998 PD MAY 15 VL 254 IS 1-2 GA ZW585 J9 PHYSICA A UT ISI:000074426400014 ER PT J AU Jordan, SM Schad, R Lawler, JF Herrmann, DJL van Kempen, H TI Quantitative analysis of scanning tunnelling microscope images of Fe grown epitaxially on MgO(001) using length-dependent variance measurements SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 18 AB The roughness parameters of STM images of bce Fe grown epitaxially on MgO(100) were analysed as a function of growth temperature in the range between 295 K and 595 K. The images were evaluated by means of length-dependent variance measurements revealing both vertical and lateral roughness information. The correlation length increased from 15 to 30 nm and the rms roughness decreased with increasing growth temperature whereas the fractal dimension remained constant. CR DUMPICH G, 1995, THIN SOLID FILMS, V260, P239 GRIFFITH JE, 1993, J APPL PHYS, V74, PR83 HEYVAERT I, 1996, PHYS REV E, V54, P349 KASER A, 1995, Z PHYS B CON MAT, V97, P139 KIELY JD, 1997, J VAC SCI TECHNOL B, V15, P1483 LAWLER JF, 1997, J MAGN MAGN MATER, V165, P224 NIWA M, 1992, APPL SURF SCI, V60-1, P39 PALASANTZAS G, 1993, PHYS REV B, V48, P14472 PALASANTZAS G, 1994, PHYS REV LETT, V3564, P73 REISS G, 1990, J APPL PHYS, V67, P1156 SCHAD R, 1994, APPL PHYS LETT, V64, P3500 SCHAD R, 1998, J MAGN MAGN MATER, V182, P65 SIEGERT M, 1994, PHYS REV E, V50, P917 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 THOMPSON C, 1994, PHYS REV B, V49, P4902 THURMER K, 1995, PHYS REV LETT, V75, P1767 VILLAIN J, 1991, J PHYS I, V19, P1 VILLARRUBIA JS, 1994, SURF SCI, V321, P287 TC 2 BP L355 EP L358 PG 4 JI J. Phys.-Condes. Matter PY 1998 PD JUN 1 VL 10 IS 21 GA ZU415 J9 J PHYS-CONDENS MATTER UT ISI:000074194800004 ER PT J AU Thurmer, K Koch, P Schilbe, P Rieder, KH TI Pyramidal growth on bcc(001) stabilises facets close to {021}: A Monte Carlo study SO SURFACE SCIENCE NR 30 AB Epitaxial growth on bcc(001) has hem studied by means of a realistic Monte Carlo algorithm. When Ehrlich-Schwoebel barriers suppress step-down diffusion, the surface may be corrugated on a mesoscopic scale by a pattern of pyramid structures that, in agreement with recent theoretical and experimental work, grow in time according to a power law of t(1/4) Analysis of the surface current of different vicinal surfaces substantiates the preference to facets with slopes lying between that of {013} and {012} in a wide range of the growth parameters. (C) 1998 Elsevier Science B.V. CR AMAR JG, 1996, PHYS REV B, V54, P14071 AMAR JG, 1996, PHYS REV B, V54, P14742 AMAR JG, 1995, PHYS REV B, V52, P13801 AMAR JG, 1995, PHYS REV LETT, V74, P2066 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BAUER E, 1958, Z KRISTALLOGR, V110, P372 BOTT M, 1992, SURF SCI, V272, P161 CLARKE S, 1991, SURF SCI, V255, P91 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1990, PHYS REV B, V41, P5410 HWANG RQ, 1991, PHYS REV LETT, V67, P3279 JACOBSEN J, 1995, PHYS REV LETT, V74, P2295 JAMES F, 1990, COMPUT PHYS COMMUN, V60, P329 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KOCH R, 1996, J MAGN MAGN MATER, V159, PL11 KUNKEL R, 1990, PHYS REV LETT, V65, P733 PASTOR GM, 1989, PHYS REV B, V40, P7642 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1993, PHYS REV B, V47, P4119 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 TERSOFF J, 1994, PHYS REV LETT, V72, P266 THURMER K, 1995, PHYS REV LETT, V75, P1767 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 WITTEN TA, 1981, PHYS REV LETT, V47, P1400 TC 7 BP 12 EP 22 PG 11 JI Surf. Sci. PY 1998 PD JAN 1 VL 395 IS 1 GA YW600 J9 SURFACE SCI UT ISI:000071952800008 ER PT J AU Kallabis, H Brendel, L Krug, J Wolf, DE TI Damping of oscillations in layer-by-layer growth SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B NR 36 AB We present a theory for the damping of layer-by-layer growth oscillations in molecular beam epitaxy. The surface becomes rough on distances larger than a layer coherence length which is substantially larger than the diffusion length. The damping time can be calculated by a comparison of the competing roughening and smoothening mechanisms. The dependence on the growth conditions, temperature and deposition rate, is characterized to be a power law. The theoretical results are confirmed by computer simulations. CR AMAR JG, 1992, PHYS REV A, V45, P5378 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BAUER E, 1958, Z KRISTALLOGR, V110, P372 BRENDEL L, 1994, THESIS U DUISBURG EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 FAMILY F, 1991, DYNAMICS FRACTAL SUR JENSEN P, 1997, PHYS REV B, V55, P2556 KANG HC, 1992, SURF SCI, V271, P321 KRUG J, IN PRESS ADV PHYS KRUG J, 1993, PHYS REV LETT, V70, P3271 LAI ZW, 1991, PHYS REV LETT, V66, P2348 MARKOV I, 1994, PHYS REV B, V50, P11271 MOSER K, 1992, SURFACE DISORDERING, P21 PIMPINELLI A, 1992, PHYS REV LETT, V69, P985 POLITI P, 1996, PHYS REV B, V54, P5114 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1992, PHYS REV LETT, V68, P2035 SMILAUER P, 1995, PHYS REV B, V52, P14263 SOMFAI E, 1996, J PHYS I, V6, P393 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 SUN T, 1989, PHYS REV A, V40, P6763 TANG LH, 1991, PHYS REV LETT, V66, P2899 THURMER K, 1995, PHYS REV LETT, V75, P1767 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VENABLES JA, 1984, REP PROG PHYS, V47, P300 VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VILLAIN J, 1991, J PHYS I, V1, P19 VILLAIN J, 1995, PHYSIQUE CROISSANCE WOLF DE, 1990, EUROPHYS LETT, V13, P389 WOLF DE, 1995, SCALE INVARIANCE INT, P215 ZINSMEISTER G, 1971, THIN SOLID FILMS, V7, P51 ZINSMEISTER G, 1969, THIN SOLID FILMS, V4, P363 ZINSMEISTER G, 1968, THIN SOLID FILMS, V2, P497 TC 9 BP 3621 EP 3634 PG 14 JI Int. J. Mod. Phys. B PY 1997 PD DEC 20 VL 11 IS 31 GA YP940 J9 INT J MOD PHYS B UT ISI:000071331300002 ER PT J AU Chame, A Lancon, F Politi, P Renaud, G Vilfan, I Villain, J TI Three mysteries in surface science SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B NR 62 AB The story of some not yet solved problems is presented, putting emphasis on the respective role of instrumentation, ab initio theories, phenomenology and simulations. CR AMAR J, 1995, PREPRINT BALIBAR S, 1993, J PHYS I, V3, P1475 BLAKELY JM, 1962, ACTA METALL, V10, P565 BONZEL HP, 1984, APPL PHYS A-MATER, V35, P1 BONZEL HP, 1992, LANDOLTBORNSTEIN BONZEL HP, 1954, SURF SCI, V145, P20 BONZEL HP, 1975, SURFACE PHYSICS MATE, V2, P279 BOURDIN JP, 1988, J PHYS F MET PHYS, V18, P1801 BRAY AJ, 1994, ADV PHYS, V43, P357 BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 CAUSA M, 1989, SURF SCI, V215, P259 CHANG CC, 1968, J APPL PHYS, V39, P5570 DUPORT C, IN PRESS J PHYSIQUE, V1 EAGLESHAM DJ, 1990, PHYS REV LETT, V65, P1223 EAGLESHAM DJ, 1993, SURFACE DISORDERING EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELKINANI I, 1994, J PHYS I, V1, P1991 ERNST HJ, 1994, PHYS REV LETT, V72, P112 FRENCH TM, 1970, J PHYS CHEM-US, V74, P2489 GAUTIER M, 1994, J AM CERAM SOC, V77, P323 GAUTIER M, 1991, SURF SCI, V250, P71 GILLET E, 1992, SURF SCI, V273, P427 GODIN TJ, 1994, PHYS REV B, V49, P7691 HAGER J, 1995, SURF SCI, V324, P365 HALDANE FDM, 1981, J PHYS-PARIS, V42, P1673 HIRAYAMA H, 1991, NUCL INSTRUM METH B, V59, P207 HUNT AW, 1994, EUROPHYS LETT, V27, P611 JIANG Z, 1996, IN PRESS PHYS REV B JIANG Z, 1989, PHYS REV B, V40, P316 JIANG Z, 1989, PHYS REV B, V40, P4833 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KRUG J, 1995, THESIS JUELICH LANCON F, 1990, KINETICS ORDERING GR MACKRODT WC, 1989, J CHEM SOC F2, V85, P54 MACKRODT WC, 1987, J CRYST GROWTH, V80, P441 MANASSIDIS I, 1994, J AM CERAM SOC, V77, P335 MANASSIDIS I, 1993, SURF SCI, V285, PL517 MCTAGUE JP, 1979, PHYS REV B, V19, P5299 MOLLER PJ, 1991, THIN SOLID FILMS, V201, P267 MULLINS WW, 1959, J APPL PHYS, V30, P77 MULLINS WW, 1957, J APPL PHYS, V28, P333 OZDEMIR M, 1990, PHYS REV B, V42, P5013 POKROVSKY VL, 1979, PHYS REV LETT, V42, P65 POLITI P, IN PRESS PHYS REV B RENAUD G, 1993, MATER RES SOC S P, V297, P312 RENAUD G, 1994, PHYS REV LETT, V73, P1825 RETTORI A, 1988, J PHYS-PARIS, V49, P257 SAENZ JJ, 1985, SURF SCI, V155, P24 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SEARSON PC, 1995, PHYS REV LETT, V74, P1395 SELKE W, 1995, PHYS REV B, V52, P17468 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 SPOHN H, 1993, J PHYS I, V3, P69 STOLTZE P, 1994, J PHYS-CONDENS MAT, V6, P9495 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STUMPF R, 1994, PHYS REV LETT, V72, P254 TASKER PW, 1988, ADV CERAM, V10, P176 THURMER K, 1995, PHYS REV LETT, V75, P1767 VERMEERSCH M, 1990, SURF SCI, V235, P5 VILLAIN J, 1995, IN PRESS PHYS CROISS VILLAIN J, 1991, J PHYS I, V1, P19 TC 0 BP 3657 EP 3671 PG 15 JI Int. J. Mod. Phys. B PY 1997 PD DEC 20 VL 11 IS 31 GA YP940 J9 INT J MOD PHYS B UT ISI:000071331300005 ER PT J AU Yang, HN Zhao, YP Chan, A Lu, TM Wang, GC TI Sampling-induced hidden cycles in correlated random rough surfaces SO PHYSICAL REVIEW B-CONDENSED MATTER NR 25 AB We show both experimentally and theoretically that the sampling-induced hidden cycles can exist in scale-invariant rough surfaces having a correlation length xi. If the sampling size L is sufficiently large, the oscillatory behavior will diminish with the fluctuation within an order of (xi/L)(d/2). This is consistent with the law of large numbers for the correlated systems: the average of N-correlated variables having a correlation length xi will converge to their mean within an order of root xi(d)/N. Based on this result, we propose that in order to distinguish the mound surface from the self-affine surface, the sampling condition root xi(d)/N much less than 1 and an average of a large number of images are required. CR BARABASI AL, 1995, FRACTAL CONCEPTS SUR CHAN A, 1996, THESIS RENSSELAER PO CHAN A, UNPUB FAMILY F, 1991, DYNAMICS FRACTAL SUR FAMILY F, 1995, MRS S P, V367 HUNT AW, 1994, EUROPHYS LETT, V27, P611 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 JULLIEN R, 1992, SURFACE DISORDERING KRUG J, 1991, SOLIDS FAR EQUILIBRI MA SK, 1993, STAT MECH MCKANE A, 1995, NATO ADV STUDY I B, V344 REICHL LE, 1980, MODERN COURSE STATIS ROSS SM, 1993, INTRO PROBABILITY MO SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 THURMER K, 1995, PHYS REV LETT, V75, P1767 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VICSEK T, 1992, FRACTAL GROWTH PHENO VILLAIN J, 1991, J PHYS I, V1, P19 YANG HN, 1993, DIFFRACTION ROUGH SU YANG HN, 1993, J APPL PHYS, V74, P101 YANG HN, 1996, PHYS REV LETT, V76, P3774 TC 6 BP 4224 EP 4232 PG 9 JI Phys. Rev. B-Condens Matter PY 1997 PD AUG 15 VL 56 IS 7 GA XR964 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997XR96400103 ER PT J AU Palasantzas, G TI Static and dynamic aspects of the rms local slope of growing random surfaces SO PHYSICAL REVIEW E NR 30 AB In this work, we investigated static and dynamic aspects of the rms local surface slope ''rho'' for self-affine random surfaces. The rms local slope is expressed as a function of the rms roughness amplitude sigma, the in-plane correlation length xi, and the roughness exponent H (00). CR AMAR JG, 1993, PHYS REV E, V47, P3242 CHURCH EL, 1991, P SOC PHOTOOPT INSTR, V1530, P71 CHURCH EL, 1986, SPIE, V615, P107 DASSARMA S, 1993, PHYS REV LETT, V71, P2510 DASSARMA S, 1992, PHYS REV LETT, V69, P3762 ERNST HJ, 1994, PHYS REV LETT, V72, P112 FAMILY F, 1991, DYNAMICS FRACTAL SUR FAMILY F, 1985, J PHYS A-MATH GEN, V18, PL75 JEFFRIES JH, 1996, PHYS REV LETT, V76, P4931 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KRIM J, 1995, INT J MOD PHYS B, V9, P599 KRIM J, 1993, PHYS REV E, V48, P1576 LAI ZW, 1991, PHYS REV LETT, V66, P2348 MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT MEAKIN P, 1993, PHYS REP, V235, P1991 PALASANTZAS G, 1994, PHYS REV B, V49, P5785 PALASANTZAS G, 1993, PHYS REV B, V48, P14472 PALASANTZAS G, 1994, PHYS REV E, V49, P1740 PALASANTZAS G, 1994, PHYS REV LETT, V73, P3564 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SINHA SK, 1988, PHYS REV B, V38, P2297 SMILAUER P, 1995, PHYS REV B, V52, P14263 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 THURMER K, 1995, PHYS REV LETT, V75, P1767 TONG WM, 1994, PHYS REV LETT, V72, P3374 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 WILLIAMS G, 1970, T FARADAY SOC, V66, P80 WOLF DE, 1990, EUROPHYS LETT, V13, P389 YANG HN, 1993, DIFFRACTION ROUGH SU YANG HN, 1994, PHYS REV LETT, V73, P2348 TC 8 BP 1254 EP 1257 PG 4 JI Phys. Rev. E PY 1997 PD JUL VL 56 IS 1 PN B GA XM377 J9 PHYS REV E UT ISI:A1997XM37700090 ER PT J AU Siegert, M TI Ordering dynamics of surfaces in molecular beam epitaxy SO PHYSICA A NR 36 AB The growth of thin films under conditions typical for molecular beam epitaxy is unstable, if potential barriers at step edges suppress the diffusion of adatoms to lower terraces, In these cases the dynamic evolution of the surface morphology is characterized by slope selection leading to pyramid-like structures and coarsening. The late stages of growth can be described by Langevin equations that are similar to equations that model spinodal decomposition or Ostwald ripening with the slope of the surface profile being the order parameter, It is shown that the surface evolution can be understood ill terms of domain ordering. however, the orientation of the domain walls is strongly influenced by lattice anisotropies. This coupling slows down the coarsening dynamics. CR BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BRAY AJ, 1994, ADV PHYS, V43, P357 BRAY AJ, 1990, PHYS REV B, V41, P6724 BRAY AJ, 1989, PHYS REV LETT, V62, P2841 CAHN JW, 1958, J CHEM PHYS, V28, P258 CHAKRAVERTY BK, 1967, J PHYS CHEM SOLIDS, V28, P2401 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1994, PHYS REV LETT, V72, P112 ESCH S, UNPUB EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS JW, 1990, PHYS REV B, V41, P5410 HUSE DA, 1986, PHYS REV B, V34, P7845 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KRUG J, 1993, PHYS REV LETT, V70, P3271 LIFSHITZ IM, 1961, J PHYS CHEM SOLIDS, V19, P35 MICHELY T, 1993, PHYS REV LETT, V70, P3943 MULLINS WW, 1957, J APPL PHYS, V28, P333 MULLINS WW, 1963, METAL SURFACES STRUC, P17 NOZIERES P, 1992, SOLIDS FAR EQUILIBRI ORME C, 1994, MATER RES SOC SYMP P, V340, P233 POLITI P, 1996, PHYS REV B, V54, P5114 RAO M, 1994, PHYS REV LETT, V72, P2911 SIEGERT M, 1995, NATO ADV SCI INST SE, V344, P165 SIEGERT M, 1996, PHYS REV E, V53, P3209 SIEGERT M, 1994, PHYS REV E, V50, P917 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1992, PHYS REV LETT, V68, P2035 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMITH GW, 1993, J CRYST GROWTH, V127, P966 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 THURMER K, 1995, PHYS REV LETT, V75, P1767 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 VVEDENSKY DD, 1993, PHYS REV E, V48, P852 WAGNER C, 1961, Z ELEKTROCHEM, V65, P581 TC 7 BP 420 EP 427 PG 8 JI Physica A PY 1997 PD MAY 1 VL 239 IS 1-3 GA XE559 J9 PHYSICA A UT ISI:A1997XE55900046 ER PT J AU Siegert, M Plischke, M Zia, RKP TI Contrasts between coarsening and relaxational dynamics of surfaces SO PHYSICAL REVIEW LETTERS NR 30 AB We discuss static and dynamic fluctuations of domain walls separating areas of constant but different slopes in steady- state configurations of crystalline surfaces both by an analytic treatment of the appropriate Langevin equation and by numerical simulations. In contrast to other situations that describe the dynamics in Ising-like systems such as models A and B, we find that the dynamic exponent z = 2 that governs the domain wall relaxation function is not equal to the inverse of the exponent n approximate to 1/4 that describes the coarsening process that leads to the steady state. CR ALLEN SM, 1979, ACTA METALL MATER, V27, P1085 BAUSCH R, 1988, INT J MOD PHYS B, V2, P1537 BAUSCH R, 1981, PHYS REV LETT, V47, P1837 BRAY AJ, 1994, ADV PHYS, V43, P357 BRAY AJ, 1994, PHYS REV E, V49, PR27 ELLIOTT WC, 1996, IN PRESS P NATO ASI ERNST HJ, 1994, PHYS REV LETT, V72, P112 HOHENBERG PC, 1977, REV MOD PHYS, V49, P435 JASNOW D, 1987, PHYS REV A, V36, P2243 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KRUG J, 1993, PHYS REV LETT, V70, P3271 LANGER JS, 1977, ACTA METALL MATER, V25, P1113 LIFSHITZ IM, 1961, J PHYS CHEM SOLIDS, V19, P35 LIU F, 1993, PHYS REV B, V48, P5808 MAZENKO GF, 1988, PHYS REV B, V38, P520 MULLINS WW, 1957, J APPL PHYS, V28, P333 MULLINS WW, 1963, METAL SURFACES STRUC ORME C, 1994, MATER RES SOC SYMP P, V340, P233 ROGERS TM, 1988, PHYS REV B, V37, P9638 ROST M, 1996, CONDMAT9611206 SIEGERT M, 1995, NATO ADV SCI INST SE, V344, P165 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 STEWART J, 1992, PHYS REV A, V46, P6505 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 THURMER K, 1995, PHYS REV LETT, V75, P1767 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 WAGNER C, 1961, Z ELEKTROCHEM, V65, P581 ZIA RKP, IN PRESS TC 5 BP 3705 EP 3708 PG 4 JI Phys. Rev. Lett. PY 1997 PD MAY 12 VL 78 IS 19 GA WY166 J9 PHYS REV LETT UT ISI:A1997WY16600029 ER PT J AU Rost, M Krug, J TI Coarsening of surface structures in unstable epitaxial growth SO PHYSICAL REVIEW E NR 28 AB We study unstable epitaxy on singular surfaces using continuum equations with a prescribed slope-dependent surface current. We derive scaling relations for the late stage of growth, where power law coarsening of the mound morphology is observed. For the lateral size of mounds we obtain xi similar to t(1/z) with z greater than or equal to 4. An analytic treatment within a self-consistent mean-field approximation predicts multiscaling of the height-height correlation function, while the direct numerical solution of the continuum equation shows conventional scaling with z=4, independent of the shape of the surface current. CR AMAR JG, 1996, PHYS REV B, V54, P14071 BALES GS, 1990, PHYS REV B, V41, P5500 BRAY AJ, 1994, ADV PHYS, V43, P357 CASTELLANO C, COMMUNICATION CONIGLIO A, 1989, EUROPHYS LETT, V10, P575 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1994, PHYS REV LETT, V72, P112 GRADSHTEYN IS, 1980, TABLES INTEGRALS SER HUNT AW, 1994, EUROPHYS LETT, V27, P611 JALLABIS H, COMMUNICATION JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KRUG J, IN PRESS ADV PHYSICS KRUG J, IN PRESS J STAT PHYS KRUG J, 1995, J PHYS I, V5, P1065 KRUG J, 1993, PHYS REV LETT, V70, P3271 MULLINS WW, 1959, J APPL PHYS, V30, P77 ORME C, 1995, J CRYST GROWTH, V150, P128 POLITI P, 1996, PHYS REV B, V54, P5114 ROST M, 1996, SURF SCI, V369, P393 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1995, SCALE INVARIANCE INT, P165 SMILAUER P, 1995, PHYS REV B, V52, P14263 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 THURMER K, 1995, PHYS REV LETT, V75, P1767 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P1 TC 20 BP 3952 EP 3957 PG 6 JI Phys. Rev. E PY 1997 PD APR VL 55 IS 4 GA WV249 J9 PHYS REV E UT ISI:A1997WV24900026 ER PT J AU Schwenger, L Folkerts, RL Ernst, HJ TI Bales-Zangwill meandering instability observed in homoepitaxial step-flow growth SO PHYSICAL REVIEW B-CONDENSED MATTER NR 34 AB The growth of Cu on vicinal Cu templates has been investigated with helium-atom beam scattering. Step Bow on Cu (1,1,17) below room temperature forces steps to strongly meander collectively in phase, leading to the appearance of facets parallel to the average step direction. We identify this ''fingering'' with the meandering instability predicted by Bales and Zangwill, resulting from the presence of an adatom uphill current. In contrast to Cu (1,1,17), step flow above room temperature on Cu (1,1,5) leads to a destabilization of the step train perpendicular to the step direction. Conceivable origins of this type of faceting are discussed. CR BALES GS, 1990, PHYS REV B, V41, P5500 BENNEMA P, 1973, CRYSTAL GROWTH BOISVERT G, 1995, PHYS REV LETT, V75, P469 BOURDIN JP, 1988, J PHYS F MET PHYS, V18, P1801 BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 CHAMBLISS DD, 1991, J VAC SCI TECHNOL B, V9, P928 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1995, PHYS REV B, V52, P8461 ERNST HJ, 1994, PHYS REV LETT, V72, P112 ERNST HJ, 1992, SURF SCI, V275, PL682 EVANS JW, 1990, PHYS REV B, V41, P5410 FAMILY F, 1996, MATER RES SOC SYMP P, V399, P67 FERRANDO R, 1996, PHYS REV LETT, V76, P2109 FRANK FC, 1958, GROWTH PERFECTIONS C GIESENSEIBERT M, 1993, PHYS REV LETT, V71, P3521 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KANDEL D, 1994, PHYS REV B, V49, P5544 KRUG J, 1993, PHYS REV LETT, V70, P3271 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LI YG, 1996, SURF SCI, V351, P189 LIGHTHILL MJ, 1955, P ROY SOC LOND A MAT, V229, P281 PIERRELOUIS O, 1996, PHYS REV LETT, V76, P4761 ROST A, 1996, SURF SCI, V369, P393 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1992, PHYS REV LETT, V68, P2035 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 THURMER K, 1995, PHYS REV LETT, V75, P1767 VILLAIN J, 1991, J PHYS I, V1, P19 VVEDENSKY DD, 1993, PHYS REV E, V48, P852 WANG SC, 1993, PHYS REV LETT, V71, P4147 WOLF DE, 1996, TRAFFIC GRANULAR FLO WULFHEKEL W, 1996, SURF SCI, V348, P227 YU BD, 1996, PHYS REV LETT, V77, P1095 TC 12 BP R7406 EP R7409 PG 4 JI Phys. Rev. B-Condens Matter PY 1997 PD MAR 15 VL 55 IS 12 GA WQ434 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997WQ43400030 ER PT J AU Hicken, RJ Gray, SJ Ercole, A Daboo, C Freeland, DJ Gu, E Ahmad, E Bland, JAC TI Magnetic anistropy in ultrathin epitaxial Fe/Ag(100) films with overlayers SO PHYSICAL REVIEW B-CONDENSED MATTER NR 82 AB In situ Brillouin light-scattering and magneto-optical Kerr effect measurements have been used to determine the values of the magnetic anisotropy constants in ultrathin epitaxial Fe/Ag(100) films both during the deposition of the Fe layer and also during the deposition of overlayers of Ag and Cr. The structural properties of the films have been investigated by means of reflection high-energy electron diffraction and low- energy electron diffraction. We show that the values of the cubic magnetocrystalline anisotropy constant K-l and the magnetic surface anisotropy constant K-s are strongly dependent upon the value of the Fe layer thickness d, and that they differ in sensitivity to the surface structure of the substrate. We find that the thickness of a Ag or Cr overlayer must be at least 3 ML thick before the value of K-s is saturated. Cr and Ag capping layers are found to have a qualitatively different effect upon the magnetic anisotropy which we attribute to the presence of magnetic order in the Cr. CR ABANOV A, 1995, PHYS REV B, V51, P1023 ARAYAPOCHET J, 1988, PHYS REV B, V38, P7846 BADER SD, 1994, J APPL PHYS, V76, P6419 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BEAUVILLAIN P, 1994, J APPL PHYS, V76, P6078 BERGER A, 1996, J APPL PHYS, V79, P5619 BERGER A, 1996, PHYS REV LETT, V76, P519 BLAND JAC, 1992, J MAGN MAGN MATER, V104, P1909 BLAND JAC, 1995, PHYS REV B, V51, P258 BURGLER D, UNPUB CABANEL R, 1990, J APPL PHYS, V67, P5409 CARL A, 1995, PHYS REV LETT, V74, P190 CELINSKI Z, 1991, J MAGN MAGN MATER, V99, PL25 CHEN J, 1992, PHYS REV B, V45, P3636 CHUI ST, 1995, PHYS REV LETT, V74, P3896 CICCACCI F, 1993, SOLID STATE COMMUN, V88, P827 COCHRAN JF, 1990, PHYS REV B, V42, P508 DAMON RW, 1961, J PHYS CHEM SOLIDS, V19, P308 DAVIES A, 1996, PHYS REV LETT, V76, P4175 DEROSSI S, 1994, SURF SCI, V307, P496 DRAAISMA HJG, 1988, J APPL PHYS, V64, P3610 DUTCHER JR, 1989, PHYS REV B, V39, P10430 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 EGELHOFF WFJ, 1994, ULTRATHIN MAGNETIC 1 ENGEL BN, 1994, J APPL PHYS, V75, P6401 ERCOLE A, UNPUB ERICKSON RP, 1992, PHYS REV B, V46, P861 ERICKSON RP, 1991, PHYS REV B, V44, P11825 ERICKSON RP, 1991, PHYS REV B, V43, P11527 ETIENNE P, 1993, J PHYS III, V3, P1581 EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS JW, 1990, PHYS REV B, V41, P5410 GAY JG, 1986, PHYS REV LETT, V56, P2728 HEINRICH B, 1993, ADV PHYS, V42, P523 HEINRICH B, 1996, J APPL PHYS, V79, P4518 HEINRICH B, 1991, J APPL PHYS, V70, P5769 HEINRICH B, 1988, J APPL PHYS, V63, P3863 HEINRICH B, 1993, PHYS REV B, V47, P5077 HEINRICH B, 1988, PHYS REV B, V38, P12879 HEINRICH B, 1987, PHYS REV LETT, V59, P1756 HICKEN RJ, 1996, J APPL PHYS, V79, P4987 HICKEN RJ, 1995, J APPL PHYS, V78, P6670 HICKEN RJ, 1992, PHYS REV B, V46, P11688 HILLEBRANDS B, 1996, PHYS REV B, V53, P10548 HILLEBRANDS B, 1987, PHYS REV B, V36, P2450 HILLEBRANDS B, TFPDAS3 JENSEN PJ, 1990, PHYS REV B, V42, P849 JONKER BT, 1986, PHYS REV LETT, V57, P142 KASHUBA A, 1993, PHYS REV LETT, V78, P3155 KASHUBA AB, 1993, PHYS REV B, V48, P10335 KCON NC, 1987, PHYS REV LETT, V59, P2463 KOHLHEPP J, 1995, J MAGN MAGN MATER, V139, P347 KOWALEWSKI M, COMMUNICATION LI H, 1990, PHYS REV B, V42, P9195 LI H, 1989, PHYS REV B, V40, P10241 MEZEY LZ, 1982, JPN J APPL PHYS 1, V21, P1569 MOSCHEL A, 1994, PHYS REV B, V49, P12868 NEEL L, 1954, J PHYS RADIUM, V15, P225 OHNISHI S, 1984, PHYS REV B, V30, P36 ORTEGA JE, 1992, PHYS REV LETT, V69, P844 PARKIN SSP, 1990, PHYS REV LETT, V64, P2304 PESCIA D, 1990, PHYS REV LETT, V65, P2599 PURCELL ST, 1988, J VAC SCI TECHNOL B, V6, P794 QIU ZQ, 1993, PHYS REV LETT, V70, P1006 QUI ZQ, 1994, PHYS REV B, V49, P8797 RICHTER R, 1985, PHYS REV LETT, V54, P2704 SCHURER PJ, 1995, PHYS REV B, V51, P2506 SMITH GC, 1982, SURF SCI, V119, PL287 STAMPANONI M, 1987, PHYS REV LETT, V59, P2483 STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P26 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TANG H, 1992, J MAGN MAGN MATER, V104, P1705 THURMER K, 1995, PHYS REV LETT, V75, P1767 TURTUR C, 1994, PHYS REV LETT, V72, P1557 TYSON WR, 1977, SURF SCI, V62, P267 UNGURIS J, 1992, PHYS REV LETT, V69, P1125 VENUS D, 1996, PHYS REV B, V53, PR1733 WIEDMANN MH, 1995, J MAGN MAGN MATER, V148, P125 WOOTEN CL, 1994, PHYS REV B, V49, P10023 YAFET Y, 1988, PHYS REV B, V38, P9145 TC 7 BP 5898 EP 5907 PG 10 JI Phys. Rev. B-Condens Matter PY 1997 PD MAR 1 VL 55 IS 9 GA WN218 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1997WN21800070 ER PT J AU Krug, J TI Origins of scale invariance in growth processes SO ADVANCES IN PHYSICS NR 421 AB This review describes recent progress in the understanding of the emergence of scale invariance in far-from-equilibrium growth. The first section is devoted to 'solvable' needle models which illustrate the relationship between long-range competition mediated, for example, through shadowing or a Laplacian field, and scale invariance. The following three sections, which comprise the hulk of the article, develop the theory of kinetic surface roughening in a comprehensive manner. The two large classes of kinetic roughening processes, characterized by non-conserved (Kardar-Parisi-Zhang) and conserved (ideal molecular beam epitaxy (MBE)) surface relaxation, respectively, are treated separately. For the former case, which has been extensively reviewed elsewhere, the focus is on recent developments. For the case of ideal MBE we give a systematic derivation of the various universality classes in terms of microscopic processes, and compare the predictions of continuum theory to computer simulations and experiments. CR ADAMS DP, 1993, APPL PHYS LETT, V63, P3571 ALANISSILA T, 1994, J STAT PHYS, V76, P1083 ALANISSILA T, 1993, J STAT PHYS, V72, P207 ALBRECHT M, 1993, SURF SCI, V294, P1 AMAR JG, 1992, PHYS REV A, V45, P5378 AMAR JG, 1993, PHYS REV E, V47, P3242 AMARAL LAN, 1995, PHYS REV E, V52, P4087 AMARAL LAN, 1995, PHYS REV E, V51, P4655 AMMER C, 1994, SURF SCI, V307, P570 ARSENIN I, 1994, PHYS REV E, V49, PR3561 BAHR HA, 1992, EUROPHYS LETT, V19, P485 BAHR HA, 1995, FRACTURE MECH CERAMI, V11 BAK P, 1987, PHYS REV LETT, V59, P381 BALENTS L, 1994, PHYS REV B, V49, P13030 BALES GS, 1991, J VAC SCI TECHNOL A, V9, P145 BALES GS, 1990, PHYS REV B, V41, P5500 BALES GS, 1990, SCIENCE, V249, P264 BALL RC, 1991, PHYS REV A, V44, PR828 BARABASI AL, 1995, FRACTAL CONCEPTS SUR BARABASI AL, 1992, PHYS REV LETT, V68, P3729 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BARTELT NC, 1993, PHYS REV B, V48, P15453 BECCARIA M, 1994, PHYS REV E, V50, P4560 BECKER V, 1992, EUROPHYS LETT, V19, P13 BENA I, 1993, PHYS REV B, V47, P7408 BHATTACHARJEE JK, 1996, PHYS REV E, V53, PR1313 BIHAM O, MODEL DIFFUSION ISLA BLUM T, 1995, PHYS REV E, V52, P4741 BOHR T, 1992, PHYS REV A, V46, P4791 BOHR T, 1993, PHYS REV LETT, V70, P2892 BOHR T, 1992, PHYSICA D, V59, P177 BONZEL HP, 1976, CRC CRIT R SOLID ST, V6, P171 BOTT M, 1992, SURF SCI, V272, P161 BOUCHAUD JP, 1993, PHYS REV E, V48, P635 BOUCHAUD JP, 1993, PHYS REV E, V47, PR1455 BRAY AJ, 1994, ADV PHYS, V43, P357 BRENDEL L, 1994, THESIS U DUISBURG BURGERS JM, 1974, NONLINEAR DIFFUSION BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 BUTTIKER M, 1987, Z PHYS B CON MAT, V68, P161 CABRERA N, 1958, GROWTH PERFECTION CR, P393 CAROLI B, 1991, SOLIDS FAR EQUILIBRI, P155 CATES ME, 1988, J PHYS-PARIS, V49, P2009 CATES ME, 1986, PHYS REV A, V34, P5007 CAVAILLE JY, 1978, SURF SCI, V75, P342 CHAKRABARTI A, 1990, J PHYS A-MATH GEN, V23, PL919 CHEVRIER J, 1994, J PHYS I, V4, P1309 CHIARELLO R, 1991, PHYS REV LETT, V67, P3408 CHOW CC, 1995, PHYSICA D, V84, P494 CLARKE S, 1987, PHYS REV LETT, V58, P2235 CLARKE S, 1991, SURF SCI, V255, P91 COHEN PI, 1989, SURF SCI, V216, P222 CORNELL SJ, 1991, PHYS REV B, V44, P12263 COTTA MA, 1994, J APPL PHYS, V75, P630 COTTA MA, 1993, PHYS REV LETT, V70, P4106 COUDER Y, 1990, PHYS REV A, V42, P3499 CSAHOK Z, 1993, J PHYS A-MATH GEN, V26, PL171 CUERNO R, 1995, PHYS REV E, V52, P4853 CUERNO R, 1995, PHYS REV LETT, V74, P4746 DASSARMA S, 1990, J VAC SCI TECHNOL A, V8, P2714 DASSARMA S, 1994, PHYS REV B, V49, P10693 DASSARMA S, 1996, PHYS REV E, V53, P359 DASSARMA S, 1994, PHYS REV E, V50, PR4275 DASSARMA S, 1994, PHYS REV E, V49, P122 DASSARMA S, 1993, PHYS REV LETT, V71, P2510 DASSARMA S, 1992, PHYS REV LETT, V69, P3762 DASSARMA S, 1991, PHYS REV LETT, V66, P325 DERRIDA B, 1993, J PHYS A-MATH GEN, V26, P1493 DERRIDA B, 1993, J PHYS A-MATH GEN, V26, P4911 DERRIDA B, 1991, J PHYS A-MATH GEN, V24, P4805 DERRIDA B, 1993, J PHYS I, V3, P311 DERRIDA B, 1995, J STAT PHYS, V79, P833 DEVILLARD P, 1992, J STAT PHYS, V66, P1089 DEVILLARD P, 1991, J STAT PHYS, V62, P443 DIEHL HW, 1980, Z PHYS B CON MAT, V36, P329 DOBBS HT, COMMUNICATION DOERING CR, 1994, PHYS REV LETT, V72, P2984 DOHERTY JP, 1994, PHYS REV LETT, V72, P2041 DURAND E, 1966, ELECTROSTATIQUE PARI EAGLESHAM DJ, 1995, J APPL PHYS, V77, P3597 EAGLESHAM DJ, 1990, PHYS REV LETT, V65, P1227 EAGLESHAM DJ, 1992, SURFACE DISORDERING, P69 EBELING W, 1984, J STAT PHYS, V37, P369 EDEN M, 1958, S INFORMATION THEORY, P359 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 EKLUND EA, 1993, SURF SCI, V285, P157 ELKINANI I, 1994, J PHYS I, V4, P949 ERNST HJ, 1994, J VAC SCI TECHNOL A, V12, P1809 ERNST HJ, 1994, PHYS REV LETT, V72, P112 ERNST HJ, 1992, SURF SCI, V275, PL682 EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS MR, 1992, J STAT PHYS, V69, P427 FAMILY F, 1991, DYNAMICS FRACTAL SUR FAMILY F, 1993, FRACTALS, V1, P753 FAMILY F, 1986, J PHYS A-MATH GEN, V19, PL441 FAMILY F, 1985, J PHYS A-MATH GEN, V18, PL75 FANG K, 1994, PHYS REV B, V49, P8331 FELLER W, 1957, INTRO PROBABILITY TH, V1 FISHER DS, 1991, PHYS REV B, V43, P10728 FISHER ME, 1986, J CHEM SOC FARAD T 2, V82, P1569 FISHER MPA, 1992, PHYS REV LETT, V69, P2322 FOGEDBY HC, 1995, PHYS REV LETT, V75, P1883 FOLTIN G, 1994, PHYS REV E, V50, PR639 FORGACS G, 1991, PHASE TRANSITIONS CR, V14 FORREST BM, 1990, PHYS REV LETT, V64, P1405 FORSTER D, 1977, PHYS REV A, V16, P732 FREY E, 1994, PHYS REV E, V50, P1024 FRIEDBERG R, 1994, PHYS REV E, V49, P4157 FUENZALIDA V, 1991, PHYS REV B, V44, P10835 FUJISAKA H, 1977, PROG THEOR PHYS, V57, P734 GHEZ R, 1988, IBM J RES DEV, V32, P804 GHEZ R, 1993, J APPL PHYS, V73, P3685 GIESENSEIBERT M, 1993, PHYS REV LETT, V71, P3521 GILMER GH, 1978, FARADAY S, V12, P59 GILMER GH, 1972, J APPL PHYS, V43, P1347 GILMER GH, 1980, J CRYST GROWTH, V49, P465 GOLUBOVIC L, 1991, PHYS REV LETT, V67, P2747 GOLUBOVIC L, 1991, PHYS REV LETT, V66, P321 GOLUBOVIC L, 1991, PHYS REV LETT, V66, P3156 GRAFF DS, 1993, PHYS REV E, V47, PR2273 GRANT M, 1988, PHYS REV B, V37, P5705 GRINSTEIN G, 1993, PHYS REV LETT, V70, P3607 GRINSTEIN G, 1990, PHYS REV LETT, V64, P1927 GRINSTEIN G, 1995, SCALE INVARIANCE INT, P261 GUMBEL EJ, 1958, STATISTICS EXTREMES GWA LH, 1992, PHYS REV A, V46, P844 HALPINHEALY T, 1995, PHYS REP, V254, P215 HALPINHEALY T, 1990, PHYS REV A, V42, P711 HALSEY TC, 1992, PHYS REV A, V46, P7793 HALSEY TC, 1994, PHYS REV LETT, V72, P1228 HANSEN A, 1993, J PHYS I, V3, P1569 HARA T, 1984, J THEOR BIOL, V109, P173 HE SJ, 1992, PHYS REV LETT, V69, P3731 HE YL, 1992, PHYS REV LETT, V69, P3770 HENZLER M, 1993, SURF SCI, V298, P369 HEY R, 1995, J CRYST GROWTH, V154, P1 HUNT AW, 1994, EUROPHYS LETT, V27, P611 HUSE DA, 1985, PHYS REV LETT, V55, P2924 HWA T, 1992, PHYS REV A, V45, P7002 HWA T, 1991, PHYS REV A, V44, PR7873 HWA T, 1995, PHYS REV B, V51, P455 HWA T, 1994, PHYS REV B, V49, P3136 HWA T, 1992, PHYS REV LETT, V69, P1552 JANOWSKY SA, 1992, PHYS REV A, V45, P618 JANSSEN HK, 1986, Z PHYS B CON MAT, V63, P517 JAYAPRAKASH C, 1994, PHYS REV LETT, V72, P308 JAYAPRAKASH C, 1993, PHYS REV LETT, V71, P12 JOHNSON MD, 1994, APPL PHYS LETT, V64, P484 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 JOHNSON MD, 1993, SURF SCI, V298, P392 JULLIEN R, 1985, J PHYS A-MATH GEN, V18, P2279 KADANOFF LP, 1986, PHYS TODAY FEB, P6 KANDEL D, 1992, EUROPHYS LETT, V20, P325 KANDEL D, 1994, PHYS REV B, V49, P5554 KANDEL D, 1993, PHYS SCRIPTA, VT49B, P622 KANG HC, 1992, SURF SCI, V271, P321 KANG HC, 1992, SURF SCI, V269, P784 KARDAR M, 1986, PHYS REV LETT, V56, P889 KARDAR M, 1985, PHYS REV LETT, V55, P2235 KARMA A, 1993, PHYS REV LETT, V71, P3810 KARUNASIRI RPU, 1989, PHYS REV LETT, V62, P788 KASSNER K, 1990, PHYS REV A, V42, P3637 KAWAKATSU T, 1985, PROG THEOR PHYS, V74, P11 KELLER JB, 1993, J APPL PHYS, V73, P3694 KESSLER DA, 1992, FALL M MAT RES SOC, P150 KESSLER DA, 1992, PHYS REV LETT, V69, P100 KIM D, 1995, PHYS REV E, V52, P3512 KIM JM, 1991, PHYS REV A, V44, P2345 KIM JM, 1995, PHYS REV E, V51, P1889 KIM JM, 1994, PHYS REV LETT, V72, P2903 KIM JM, 1989, PHYS REV LETT, V62, P2289 KIM Y, 1994, J PHYS A-MATH GEN, V27, PL533 KINZELBACH H, 1995, J PHYS A, V28, P6536 KLEMRADT U, 1996, IN PRESS GROWTH INDU KOLOMEISKY EB, 1995, PHYS REV B, V51, P8030 KONIG F, 1995, 3092 KFA KOPLIK J, 1985, PHYS REV B, V32, P280 KOTRLA M, 1992, EUROPHYS LETT, V20, P25 KOTRLA M, 1996, PHYS REV B, V53, P13777 KRIM J, 1995, INT J MOD PHYS B, V9, P599 KRUG J, 1993, EUROPHYS LETT, V27, P527 KRUG J, 1996, IN PRESS NONEQUILIBR KRUG J, 1990, J PHYS A-MATH GEN, V23, PL987 KRUG J, 1989, J PHYS A-MATH GEN, V22, PL769 KRUG J, 1995, J PHYS I, V5, P1065 KRUG J, 1993, J PHYS I, V3, P2179 KRUG J, 1991, J PHYS I, V1, P9 KRUG J, 1995, MATERIALWISS WERKST, V26, P22 KRUG J, 1995, MODERN QUANTUM FIELD, V2, P141 KRUG J, 1992, PHYS REV A, V46, PR4479 KRUG J, 1992, PHYS REV A, V45, P638 KRUG J, 1991, PHYS REV A, V44, PR801 KRUG J, 1991, PHYS REV A, V43, P900 KRUG J, 1989, PHYS REV A, V40, P2064 KRUG J, 1988, PHYS REV A, V38, P4271 KRUG J, 1987, PHYS REV A, V36, P5465 KRUG J, 1994, PHYS REV E, V50, P104 KRUG J, 1993, PHYS REV E, V47, PR17 KRUG J, 1995, PHYS REV LETT, V75, P1795 KRUG J, 1994, PHYS REV LETT, V73, P1947 KRUG J, 1994, PHYS REV LETT, V72, P2907 KRUG J, 1993, PHYS REV LETT, V70, P3271 KRUG J, 1992, PHYS REV LETT, V68, P722 KRUG J, 1991, PHYS REV LETT, V67, P1882 KRUG J, 1991, PHYS REV LETT, V66, P703 KRUG J, 1990, PHYS REV LETT, V64, P2232 KRUG J, 1995, SCALE INVARIANCE INT, P1 KRUG J, 1991, SOLIDS FAR EQUILIBRI, P479 KRUG J, 1992, SURFACE DISORDERING, P177 KRUG J, 1995, Z PHYS B CON MAT, V97, P281 KURAMOTO Y, 1984, CHEM OSCILLATIONS WA LAI ZW, 1991, PHYS REV LETT, V66, P2348 LAM CH, 1993, PHYS REV E, V48, P979 LAM PM, 1991, PHYS REV A, V44, P4854 LANCZYCKI CJ, 1994, PHYS REV E, V50, P213 LANDAUER R, 1988, J STAT PHYS, V53, P233 LANGER JS, 1971, ANN PHYS-NEW YORK, V65, P53 LANGER JS, 1991, SOLIDS FAR EQUILIBRI, P297 LAQUEY RE, 1975, PHYS REV LETT, V34, P391 LARSEN PK, 1988, REFLECTION HIGH ENER LASSIG M, 1995, NUCL PHYS B, V448, P559 LEAMY HJ, 1980, CURRENT TOPICS MATER, V6, P309 LEBELLAC D, 1995, EUROPHYS LETT, V32, P155 LEE NE, 1996, PHYS REV B, V53, P7876 LIAU ZL, 1990, J APPL PHYS, V67, P2434 LIPOWSKY R, 1985, J PHYS A-MATH GEN, V18, PL585 LIPOWSKY R, 1991, NATURE, V349, P475 LIU D, 1988, PHYS REV B, V386, P4781 LIU F, 1993, PHYS REV B, V48, P5808 LUSE CN, 1992, SURF SCI, V274, PL535 LVOV V, 1994, PHYS REV LETT, V72, P307 LVOV VS, 1993, EUROPHYS LETT, V22, P419 LVOV VS, 1993, NONLINEARITY, V6, P25 LVOV VS, 1992, PHYS REV LETT, V69, P3543 MAJANIEMI S, 1996, PHYS REV B, V53, P8071 MAJUMDAR SN, 1994, PHYS REV LETT, V73, P182 MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT MARKOV I, 1994, PHYS REV B, V50, P11271 MARMORKOS IK, 1992, PHYS REV B, V45, P11262 MARMORKOS IK, 1990, SURF SCI, V237, PL411 MATSUSHITA M, 1988, PHYS REV A, V37, P3645 MEAKIN P, 1990, EUROPHYS LETT, V11, P7 MEAKIN P, 1986, J CHEM PHYS, V85, P2320 MEAKIN P, 1987, J PHYS-PARIS, V48, P1651 MEAKIN P, 1988, PHASE TRANSITIONS CR, V12 MEAKIN P, 1993, PHYS REP, V235, P189 MEAKIN P, 1992, PHYS REV A, V46, P3390 MEAKIN P, 1992, PHYS REV A, V46, P4654 MEAKIN P, 1986, PHYS REV A, V34, P5091 MEAKIN P, 1986, PHYS REV A, V33, P1984 MEDINA E, 1989, PHYS REV A, V39, P3053 MERIKOSKI J, 1995, PHYS REV B, V52, PR8715 MEYER G, 1990, SURF SCI, V231, P64 MEYER JA, 1995, PHYS REV B, V51, P14790 MILLER DJ, 1992, EUROPHYS LETT, V19, P27 MISBAH C, 1991, J PHYS I, V1, P585 MOORE MA, 1995, PHYS REV LETT, V74, P4257 MOSER K, 1993, THESIS U COLOGNE MULLINS WW, 1963, METAL SURFACES STRUC MYERSBEAGHTON AK, 1991, PHYS REV A, V44, P2457 MYERSBEAGHTON AK, 1990, PHYS REV B, V42, P5544 NAGATANI T, 1991, J PHYS A-MATH GEN, V24, PL449 NATTERMANN T, 1991, EUROPHYS LETT, V14, P603 NATTERMANN T, 1988, PHASE TRANSIT, V11, P5 NATTERMANN T, 1989, PHYS REV A, V40, P4675 NATTERMANN T, 1988, PHYS REV LETT, V61, P2508 NEAVE JH, 1985, APPL PHYS LETT, V47, P400 NEEGAARD J, 1995, PHYS REV LETT, V74, P730 NELKIN M, 1974, PHYS REV A, V9, P388 NEWMAN TJ, 1996, J PHYS, V6, P385 OLAMI Z, 1995, PHYS REV E, V52, P3402 ORME C, 1994, APPL PHYS LETT, V64, P860 ORME C, 1995, J CRYST GROWTH, V150, P128 PACZUSKI M, 1992, PHYS REV LETT, V69, P2735 PAL S, 1994, PHYS REV B, V49, P10597 PALASANTZAS G, 1994, PHYS REV B, V49, P10544 PALASANTZAS G, 1993, PHYS REV B, V48, P2873 PALASANTZAS G, 1994, PHYS REV LETT, V73, P3564 PARK H, 1991, J PHYS A-MATH GEN, V24, PL1391 PARK K, 1994, PHYSICA A, V210, P146 PELLEGRINI YP, 1991, PHYS REV A, V43, P920 PETERS HP, 1979, Z PHYS B CON MAT, V34, P399 PHILLIPS R, 1991, PHYS REV LETT, V67, P220 PLISCHKE M, COMMUNICATION PLISCHKE M, 1994, PHYS REV E, V50, P3589 PLISCHKE M, 1993, PHYS REV LETT, V71, P2509 PLISCHKE M, 1992, PHYS REV LETT, V68, P2854 PLISCHKE M, 1984, PHYS REV LETT, V53, P415 PROCACCIA I, 1992, PHYS REV A, V46, P3220 PROVATAS N, 1995, PHYS REV E, V51, P4232 PUTKARADZE V, 1995, 9504 NBI RACZ Z, 1991, PHYS REV A, V43, P5275 RACZ Z, 1994, PHYS REV E, V50, P3530 ROLAND C, 1991, PHYS REV LETT, V66, P2106 ROSSI G, 1987, PHYS REV A, V35, P2246 ROSSI G, 1986, PHYS REV A, V34, P3543 ROST M, COMMUNICATION ROST M, 1995, PHYS REV LETT, V75, P3894 ROST M, 1995, PHYSICA D, V88, P1 ROUX S, 1991, J PHYS A-MATH GEN, V24, PL295 RUBIO MA, 1989, PHYS REV LETT, V63, P1685 RUDNICK J, 1994, WILEY SER ION CHEM P, P535 RYU CS, 1995, PHYS REV E, V52, P2424 RYU CS, 1995, PHYS REV E, V51, P3069 SALDITT T, 1995, EUROPHYS LETT, V32, P331 SALDITT T, 1995, PHYS REV B, V51, P5617 SALDITT T, 1994, PHYS REV LETT, V73, P2228 SANDER LM, 1991, PHYS REV A, V44, P4885 SARGENT RB, 1990, P SOC PHOTOOPT INSTR, V1324, P13 SCHIMSCHAK M, 1995, PHYS REV B, V52, P8550 SCHROEDER M, 1993, EUROPHYS LETT, V24, P563 SCHROEDER M, 1993, THESIS U DUISBURG SCHULMAN LS, 1981, TECHNIQUES APPLICATI SCHULZ U, 1988, J STAT PHYS, V51, P1 SCHUTZ G, 1993, J STAT PHYS, V72, P277 SCHWARTZ M, 1992, EUROPHYS LETT, V20, P301 SCHWARZER S, 1990, PHYS REV LETT, V65, P603 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SHORE JD, COMMUNICATION SIEGERT M, 1993, J PHYS I, V3, P1371 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1996, PHYS REV E, V53, P3209 SIEGERT M, 1994, PHYS REV E, V50, P917 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1992, PHYS REV LETT, V68, P2035 SIEGERT M, 1995, SCALE INVARIANCE INT, P165 SINHA SK, 1994, J PHYS III, V4, P1543 SINHA SK, 1988, PHYS REV B, V38, P2297 SIVASHINSKY GI, 1983, ANNU REV FLUID MECH, V15, P179 SMILAUER P, COMMUNICATION SMILAUER P, 1994, EUROPHYS LETT, V27, P261 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1995, PHYS REV B, V51, P14798 SMILAUER P, 1994, PHYS REV B, V49, P5769 SMILAUER P, 1993, PHYS REV B, V48, P17603 SMILAUER P, 1993, PHYS REV B, V47, P4119 SMILAUER P, 1993, SURF SCI, V291, PL733 SMITH GW, 1993, J CRYST GROWTH, V127, P966 SNEPPEN K, 1992, PHYS REV A, V46, PR7351 SPOHN H, 1993, J STAT PHYS, V71, P1081 STEPANOW S, 1995, J PHYS-CONDENS MAT, V7, PL605 STOLTZE P, 1994, J PHYS-CONDENS MAT, V6, P9495 STRICKLAND B, 1995, PHYS REV B, V51, P5061 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 SUDIJONO J, 1992, PHYS REV LETT, V69, P2811 SUN T, 1989, PHYS REV A, V40, P6763 SUN T, 1995, PHYS REV E, V51, P6316 SUN T, 1994, PHYS REV E, V50, P3370 SUN T, 1994, PHYS REV E, V49, P5046 SUN T, 1992, SURFACE DISORDERING, P45 SZNITMAN AS, 1996, PROBAB THEORY REL, V105, P1 TAMBORENEA PI, 1993, PHYS REV E, V48, P2575 TANG C, 1994, PHYS REV LETT, V71, P2769 TANG C, 1990, PHYS REV LETT, V64, P772 TANG LH, 1995, ANN REV COMPUTATIONA, V2, P137 TANG LH, COMMUNICATION TANG LH, 1992, GROWTH PATTERNS PHYS TANG LH, 1991, J PHYS A, V25, PL1193 TANG LH, 1992, J STAT PHYS, V67, P819 TANG LH, 1992, PHYS REV A, V45, P7156 TANG LH, 1995, PHYS REV LETT, V74, P920 TANG LH, 1993, PHYS REV LETT, V71, P2745 TANG LH, 1991, PHYS REV LETT, V66, P2899 TAUBER UC, 1995, PHYS REV E, V51, P6319 THOMPSON C, 1994, PHYS REV B, V49, P4902 THURMER K, 1995, PHYS REV LETT, V75, P1767 TONG WM, 1994, ANNU REV PHYS CHEM, V45, P401 TU YH, 1992, PHYS REV A, V46, PR729 TU YH, 1994, PHYS REV LETT, V73, P3109 VANBEIJEREN H, 1985, PHYS REV LETT, V54, P2026 VANDEREERDEN JP, 1986, PHYS REV LETT, V57, P2431 VANHOVE JM, 1983, J VAC SCI TECHNOL B, V1, P741 VANNOSTRAND JE, 1995, J VAC SCI TECHNOL B, V13, P1816 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VICSEK T, 1989, FRACTAL GROWTH PHENO VICSEK T, 1990, PHYSICA A, V167, P315 VILLAIN J, 1992, COMMENTS COND MAT PH, V16, P1 VILLAIN J, 1992, J PHYS I, V2, P2107 VILLAIN J, 1991, J PHYS I, V1, P19 VLIEG E, 1988, PHYS REV LETT, V61, P2241 VRIJMOETH J, 1994, PHYS REV LETT, V72, P3843 VVEDENSKY DD, 1993, PHYS REV E, V48, P852 VVEDENSKY DD, 1994, PHYS WORLD MAR, P30 VVEDENSKY DD, 1990, SURF SCI, V225, P373 WANG SC, 1993, PHYS REV LETT, V70, P41 WANG SC, 1982, SURF SCI, V121, P85 WANG XR, 1989, PHYS REV A, V40, P6767 WEBER W, 1992, PHYS REV B, V46, P7953 WEEKS JD, 1979, ADV CHEM PHYS, V40, P157 WEEKS JD, 1980, ORDERING STRONGLY FL, P293 WESTOBY M, 1984, ADV ECOL RES, V14, P167 WHITE J, 1981, J THEOR BIOL, V89, P475 WILBY MR, 1993, PHYS REV B, V47, P16068 WILBY MR, 1992, PHYS REV B, V46, P12896 WITTEN TA, 1983, PHYS REV B, V27, P5686 WITTEN TA, 1981, PHYS REV LETT, V47, P1400 WITTMER JP, 1996, EUROPHYS LETT, V33, P397 WOLF DE, 1990, EUROPHYS LETT, V13, P389 WOLF DE, 1991, PHYS REV LETT, V67, P1783 WOLF DE, 1990, PHYS REV LETT, V65, P1591 WOLF DE, 1995, SCALE INVARIANCE INT, P215 WU F, 1993, PHYS REV LETT, V71, P4190 WUTTKE J, 1991, PHYS REV B, V44, P13042 YAKHOT V, 1981, PHYS REV A, V24, P642 YAN H, 1992, PHYS REV LETT, V68, P3048 YANG HN, 1995, PHYS REV B, V51, P2479 YANG HN, 1995, PHYS REV B, V51, P14293 YANG HN, 1994, PHYS REV B, V50, P7635 YANG HN, 1994, PHYS REV LETT, V73, P2348 YAO JH, 1992, PHYS REV A, V45, P3903 YAO JH, 1993, PHYS REV E, V47, P1007 ZALESKI S, 1989, PHYSICA D, V34, P427 ZANGWILL A, COMMUNICATION ZANGWILL A, 1995, MICROSTRUCTURAL EVOL ZAPOTOCKY M, 1991, PHYS REV LETT, V67, P3463 ZENG H, 1995, PHYS REV LETT, V74, P582 ZHANG J, 1992, PHYSICA A, V189, P383 ZHANG YC, 1990, J PHYS-PARIS, V51, P2129 TC 118 BP 139 EP 282 PG 144 JI Adv. Phys. PY 1997 PD MAR-APR VL 46 IS 2 GA WM268 J9 ADVAN PHYS UT ISI:A1997WM26800001 ER PT J AU Levi, AC Kotrla, M TI Theory and simulation of crystal growth SO JOURNAL OF PHYSICS-CONDENSED MATTER NR 185 AB Crystal growth phenomena are discussed with special reference to growth from vapour. The basic concepts of crystal growth are recalled, including the different growth modes, the dependence of the growth rate on disequilibrium and temperature, and the atomic processes relevant for growth. The methods used in crystal growth simulations are reviewed, with special reference to kinetic Monte Carlo methods. The roughness of growing surfaces, and the roughness properties of the discrete and continuum growth models (the latter being described via stochastic differential equations) are discussed, together with the special phenomena occurring in the vicinity of the roughening temperature. A number of simulations based on the six-vertex model and on kinetic counterparts of the BCSOS model are reviewed. Finally, the instabilities arising during growth an considered, including a discussion of phenomena such as dendritic growth and ramified cluster growth and reviewing the recent, extensive studies concerning unstable MBE growth. CR ALBRECHT M, 1993, SURF SCI, V294, P1 AMMER C, 1994, SURF SCI, V307, P570 AVRON JE, 1980, PHYS REV LETT, V45, P814 BALES GS, 1990, PHYS REV B, V41, P5500 BALIBAR S, 1980, J PHYS LETT-PARIS, V41, PL329 BARABASI AL, 1995, FRACTAL CONCEPTS SUR BARBERO M, 1996, IN PRESS SURF SCI BARBIERI A, 1987, PHYS REV A, V35, P1802 BARTELT MC, 1994, SURF SCI, V314, PL835 BECKER R, 1935, ANN PHYSIK, V24, P719 BENAMAR M, 1986, EUROPHYS LETT, V2, P307 BENJACOB E, 1990, NATURE, V343, P523 BENNEMA P, 1993, J CRYST GROWTH, V128, P97 BINDER K, 1979, MONTE CARLO METH, V7, P1 BINDER K, 1979, MONTE CARLO METH, V7, P225 BINDER K, 1988, SPRINGER SERIES SOLI, V80 BLANDIN P, 1994, PHYS REV B, V49, P16637 BLUE JL, 1995, PHYS REV E, V51, PR867 BORTZ AB, 1975, J COMPUT PHYS, V17, P10 BRENER E, 1992, INT J MOD PHYS C, V3, P825 BUDEVSKI E, 1975, J CRYST GROWTH, V29, P316 BUNDE A, 1994, FRACTALS SCI BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 CAMILLONE N, 1994, J CHEM PHYS, V101, P11031 CAR R, 1985, PHYS REV LETT, V55, P2471 CAROLI B, 1991, SOLIDS FAR EQUILIBRI, P155 CHUI ST, 1978, PHYS REV LETT, V40, P733 CLARKE S, 1991, SURF SCI, V255, P91 DASSARMA S, 1992, PHYS REV LETT, V69, P3762 DASSARMA S, 1991, PHYS REV LETT, V66, P325 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELKINANI I, 1994, J PHYS I, V4, P949 ERNST HJ, 1994, PHYS REV LETT, V72, P112 ERZAN A, 1995, REV MOD PHYS, V67, P545 EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS JW, 1993, REV MOD PHYS, V65, P1281 FAMILY F, 1986, J PHYS A-MATH GEN, V19, PL441 FAMILY F, 1985, J PHYS A-MATH GEN, V18, PL75 FERRANDO R, 1997, IN PRESS SURF SCI FERRANDO R, 1996, PHYS REV LETT, V76, P2109 FERRANDO R, 1994, SURF SCI, V311, P411 FICHTHORN KA, 1991, J CHEM PHYS, V95, P1090 FRANK FC, 1949, DISCUSS FARADAY SOC, V5, P48 FRENKEL J, 1932, PHYS Z SOWJETUNION, V1, P498 GALLET F, 1987, J PHYS-PARIS, V48, P369 GARROD C, 1991, J STAT PHYS, V63, P987 GARROD C, 1990, SOLID STATE COMMUN, V75, P375 GILMER GH, 1972, J APPL PHYS, V43, P1347 GILMER GH, 1972, J CRYST GROWTH, V13, P148 GIORGINI S, 1995, J PHYS I, V5, P815 GLAUBER RJ, 1963, J MATH PHYS, V4, P294 GLIOZZI A, 1994, PHYSICA A, V203, P347 GODRECHE C, 1991, SOLIDS FAR EQUILIBRI GULACSI M, 1994, PHYS REV E, V49, P3843 GULACSI M, 1993, PHYS REV E, V47, P2473 GWA LH, 1992, PHYS REV A, V46, P844 GWA LH, 1992, PHYS REV LETT, V68, P725 HAIDER N, 1995, COMPUT PHYS, V9, P85 HALPINHEALY T, 1995, PHYS REP, V254, P215 HEERMANN DW, 1990, COMPUTER SIMULATION HERRING C, 1957, PHYSICS POWDER METAL, P143 HERRMANN HJ, 1986, PHYS REP, V136, P153 HERTZ H, 1882, ANN PHYS, V17, P177 HONTINFINDE F, 1995, SURF SCI, V338, P236 HONTINFINDE F, 1996, UNPUB HUNT AW, 1994, EUROPHYS LETT, V27, P611 HURLE DTJ, 1993, HDB CRYSTAL GROWTH HWANG RQ, 1991, PHYS REV LETT, V67, P3279 INDIVERI G, 1996, IN PRESS INDIVERI G, 1996, IN PRESS THIN SOLID IVANTSOV GP, 1947, DOKL AKAD NAUK SSSR, V58, P567 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KADANOFF LP, 1985, J STAT PHYS, V39, P267 KAISCHEW R, 1994, P EWSSW 94 PAMP KANG HC, 1989, J CHEM PHYS, V90, P2824 KARDAR M, 1986, PHYS REV LETT, V56, P889 KELLOGG GL, 1994, SURF SCI REP, V21, P1 KESHISHEV KO, 1981, ZH EKSP TEOR FIZ, V53, P362 KOLMOGOROFF AN, 1937, B ACAD SCI URSS SCI, V3, P355 KOTRIA M, 1996, P 8 PHYS COMP C KRUK, V64, P479 KOTRLA M, 1996, COMPUT PHYS COMMUN, V97, P82 KOTRLA M, 1992, CZECH J PHYS, V42, P449 KOTRLA M, 1992, EUROPHYS LETT, V20, P25 KOTRLA M, 1992, J PHYS A-MATH GEN, V25, P3121 KOTRLA M, 1991, J STAT PHYS, V64, P579 KOTRLA M, 1996, PHYS REV B, V53, P13777 KOTRLA M, 1994, SURF SCI, V317, P183 KRUG J, 1997, IN PRESS ADV PHYS KRUG J, 1995, J PHYS I, V5, P1065 KRUG J, 1993, PHYS REV LETT, V70, P3271 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LAI ZW, 1991, PHYS REV LETT, V66, P2348 LANCZYCKI CJ, 1996, PHYS REV LETT, V76, P780 LANGER JS, 1980, REV MOD PHYS, V52, P1 LEVI AC, 1993, NUOVO CIMENTO D, V15, P485 LEVI AC, 1993, PHYS SCRIPTA, VT49B, P593 LEVI AC, 1996, UNPUB PHYSICA A LIEB EH, 1972, PHASE TRANSITIONS CR, V1 LIFSHITZ IM, 1961, J PHYS CHEM SOLIDS, V19, P35 LIU CL, 1995, INT J MOD PHYS B, V9, P1 MADHUKAR A, 1988, CRIT REV SOLID STATE, V14, P1 MAKSYM PA, 1988, SEMICOND SCI TECH, V3, P594 MARITAN A, 1992, PHYS REV LETT, V69, P3193 MAZZEO G, 1992, J PHYS A-MATH GEN, V25, PL967 MCCONNELL HM, 1991, ANNU REV PHYS CHEM, V42, P171 MEAKIN P, 1988, PHASE TRANSITIONS CR, V12, P335 MEAKIN P, 1993, PHYS REP, V235, P189 MEAKIN P, 1983, PHYS REV A, V27, P604 MEAKIN P, 1983, PHYS REV A, V27, P1495 METIU H, 1992, SCIENCE, V255, P1088 METROPOLIS N, 1953, J CHEM PHYS, V21, P1087 MULLERKRUMBHAAR H, 1979, SPRINGER TOPICS CURR, V7, P261 MULLINS WW, 1964, J APPL PHYS, V35, P444 MULLINS WW, 1957, J APPL PHYS, V28, P333 NIELSEN AE, 1994, KINETICS PRECIPITATI NOZIERES P, 1987, J PHYS-PARIS, V48, P353 OPPO S, 1993, PHYS REV LETT, V71, P2437 PASTORSATORRAS R, 1995, PHYS REV E, V51, P5994 PAULING L, 1935, J AM CHEM SOC, V57, P2680 POLITI P, 1997, IN PRESS PHYS REV B POMEAU Y, 1991, SOLIDS FAR EQUILIBRI, P365 PREDOTA M, 1997, IN PRESS PHYS REV E PREDOTA M, 1995, THESIS CHARLES U PRA RACZ Z, 1991, PHYS REV A, V43, P5275 RANGARAJAN SK, 1973, J ELECTROANAL CHEM, V46, P125 RICCIARDI O, 1996, THESIS U GENOVA RIETZ R, 1993, BER BUNSEN PHYS CHEM, V97, P1394 ROST M, 1997, IN PRESS SURF SCI ROST M, 1994, PHYS REV E, V49, P3709 ROTTMAN C, 1981, PHYS REV B, V24, P6274 RYS F, 1963, HELV PHYS ACTA, V36, P537 SAITO Y, 1989, PHYS REV A, V40, P3408 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SHITARA T, 1992, PHYS REV B, V46, P6815 SHITARA T, 1992, PHYS REV B, V46, P6825 SHOCHET O, 1992, PHYSICA A, V187, P87 SHOCHET O, 1992, PHYSICA A, V181, P186 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1994, PHYS REV E, V50, P917 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1992, PHYS REV LETT, V68, P2035 SLATER JC, 1941, J CHEM PHYS, V9, P16 SMILAUER P, 1994, EUROPHYS LETT, V27, P261 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1993, PHYS REV B, V47, P4119 SMILAUER P, 1993, SURF SCI, V291, PL733 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STUMPF R, 1994, PHYS REV LETT, V72, P254 SWENDSEN RH, 1976, J CRYST GROWTH, V35, P73 THURMER K, 1995, PHYS REV LETT, V75, P1767 TREGLIA G, 1994, SURF SCI, V307, P531 TREGLIA G, 1994, SURF SCI, V307, P561 TREGLIA G, 1992, SURF SCI, V274, P297 TRUSHIN O, UNPUB TSUI F, 1996, PHYS REV LETT, V76, P3164 TU YH, 1992, PHYS REV A, V46, PR729 TURKEVICH LA, 1986, FRACTALS PHYSICS VALLEAU JP, 1991, NATO ASI SERIES E, V205, P67 VANBEIJEREN H, 1977, PHYS REV LETT, V38, P993 VANDERLICK TK, 1990, J PHYS CHEM-US, V94, P886 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VANKAMPEN NG, 1981, STOCHASTIC PROCESSES VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VENABLES JA, 1994, SURF SCI, V299, P798 VICSEK T, 1989, FRACTAL GROWTH PHENO VILLAIN J, 1991, J PHYS I, V1, P1 VILLAIN J, 1995, PHYSIQUE CROISSANCE VILLARBA M, 1994, SURF SCI, V317, P15 VOLMER M, 1939, KINETIK PHASENBILDUN VOLMER M, 1931, Z PHYS CHEM A LPZ, V156, P1 VVEDENSKY DD, 1990, KINETICS ORDERING GR, P297 VVEDENSKY DD, 1993, SEMICONDUCTOR INTERF, P45 WAGNER C, 1961, Z ELEKTROCHEM, V65, P581 WEEKS JD, 1979, ADV CHEM PHYS, V40, P157 WILSON HA, 1900, PHILOS MAG, V50, P238 WITTEN TA, 1981, PHYS REV LETT, V47, P1400 WOLF DE, 1990, EUROPHYS LETT, V13, P389 WOLF DE, 1995, NATO ADV SCI INST SE, V344, P215 XIAO RF, 1991, PHYS REV A, V43, P2977 YANG CN, 1966, PHYS REV, V150, P321 YANG CN, 1966, PHYS REV, V150, P327 ZELDOVICH YB, 1942, ZH EKSP TEOR FIZ, V12, P525 ZIA RKP, 1986, J STAT PHYS, V45, P801 TC 29 BP 299 EP 344 PG 46 JI J. Phys.-Condes. Matter PY 1997 PD JAN 13 VL 9 IS 2 GA WG357 J9 J PHYS-CONDENS MATTER UT ISI:A1997WG35700001 ER PT J AU Rost, M Smilauer, P Krug, J TI Unstable epitaxy on vicinal surfaces SO SURFACE SCIENCE NR 36 AB Epitaxial growth on a vicinal surface in the step how regime, where the diffusion length exceeds the step spacing, is studied by simulation of a continuum equation and a solid-on-solid model. Such a surface is known to undergo a meandering instability if step edge barriers suppress downward interlayer transport. We show that the resulting ripple pattern is itself unstable, and evolves at long times into an essentially isotropic mound morphology which is qualitatively and quantitatively indistinguishable from that obtained on singular surfaces. CR BALES GS, 1990, PHYS REV B, V41, P5500 BENA I, 1993, PHYS REV B, V47, P7408 BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, 1994, PHYS REV LETT, V72, P112 ESCH S, UNPUB HUNT AW, 1994, EUROPHYS LETT, V27, P611 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KRUG J, IN PRESS ADV PHYS KRUG J, 1995, J PHYS I, V5, P1065 KRUG J, 1993, PHYS REV LETT, V70, P3271 KRUG J, 1995, Z PHYS B CON MAT, V97, P281 LEAMY HJ, 1975, SURFACE PHYSICS MAT MAJANIEMI S, 1996, PHYS REV B, V53, P8071 MULLINS WW, 1959, J APPL PHYS, V30, P77 NIZIERES P, 1991, SOLIDS FAR EQUILIBRI ORME C, 1995, J CRYST GROWTH, V150, P128 PIMPINELLI A, 1994, J PHYS-CONDENS MAT, V6, P2661 ROST M, IN RPESS ROST M, 1995, PHYS REV LETT, V75, P3894 SAITO Y, 1994, PHYS REV B, V49, P10677 SATO M, 1995, EUROPHYS LETT, V32, P639 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1995, SCALE INVARIANCE INT, P165 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1993, SURF SCI, V291, PL733 SMITH GW, 1993, J CRYST GROWTH, V127, P996 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 THURMER K, 1995, PHYS REV LETT, V75, P1767 TSUI F, 1996, PHYS REV LETT, V76, P3164 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1992, J PHYS I, V2, P2107 VILLAIN J, 1991, J PHYS I, V1, P19 TC 29 BP 393 EP 402 PG 10 JI Surf. Sci. PY 1996 PD DEC 20 VL 369 IS 1-3 GA WD216 J9 SURFACE SCI UT ISI:A1996WD21600043 ER PT J AU Elliott, WC Miceli, PF Tse, T Stephens, PW TI Temperature and orientation dependence of kinetic roughening during homoepitaxy: A quantitative X-ray-scattering study of Ag SO PHYSICAL REVIEW B-CONDENSED MATTER NR 46 AB Kinetic roughening during homoepitaxial growth was studied for Ag(111) and Ag(001). For Ag(111), from 150 to 500 K, the rms roughness exhibits a power law, sigma proportional to t(beta) over nearly three decades in thickness. beta approximate to 1/2 at low temperatures, and there is an abrupt transition to smaller values above 300 K. In contrast, Ag(001) exhibits layer-by-layer growth with a significantly smaller beta. These results are the first to establish the evolution of surface roughness quantitatively for abroad thickness and temperature range, as well as for the case where growth kinetics are dominated by a step-ledge diffusion barrier. CR AMAR JG, 1996, PHYS REV B, V54, P14071 AMAR JG, 1995, PHYS REV B, V52, P13081 AMMER C, 1994, SURF SCI, V307, P570 ARROTT AS, 1990, KINETICS ORDERING GR, P321 BARABASI AL, 1995, FRACTAL CONCEPTS GRO BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BEDROSSIAN P, 1995, SURF SCI, V334, P1 BOTT M, 1992, SURF SCI, V272, P161 BROMANN K, 1995, PHYS REV LETT, V75, P667 CHEVRIER J, 1991, EUROPHYS LETT, V16, P737 CHIARELLO R, 1991, PHYS REV LETT, V67, P3408 DASSARMA S, 1992, PHYS REV LETT, V69, P3762 DASSARMA S, 1991, PHYS REV LETT, V66, P325 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 ELLIOTT WC, 1996, PHYSICA B, V221, P65 ERNST HJ, 1994, J VAC SCI TECHNOL A, V12, P1809 ERNST HJ, 1994, PHYS REV LETT, V72, P112 FAMILY F, 1991, DYNAMICS FRACTAL SUR FAMILY F, 1996, MATER RES SOC SYMP P, V399, P67 GOLUBOVIC L, 1996, MATER RES SOC S P, V399, P257 HE YL, 1992, PHYS REV LETT, V69, P3770 JACOBSEN J, 1995, PHYS REV LETT, V74, P2295 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KRIM J, 1993, PHYS REV LETT, V70, P57 KRUG J, 1992, SOLIDS FAR EQUILIBRI KUNKEL R, 1990, PHYS REV LETT, V65, P733 LUO EZ, 1995, APPL PHYS A-MATER, V60, P19 MEAKIN P, 1993, PHYS REP, V235, P189 PALASANTZAS G, 1994, PHYS REV LETT, V73, P3564 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1993, PHYS REV B, V47, P4119 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 SUDIJONO J, 1992, PHYS REV LETT, V69, P2811 SUZUKI Y, 1988, JPN J APPL PHYS 2, V27, PL1175 THOMPSON C, 1994, PHYS REV B, V49, P4902 THURMER K, 1995, PHYS REV LETT, V75, P1767 TONG WM, 1994, PHYS REV LETT, V72, P3374 VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 VRIJMOETH J, 1994, PHYS REV LETT, V72, P3843 YOU H, 1993, PHYS REV LETT, V70, P2900 ZHANG CM, UNPUB ZHANG Z, COMMUNICATION ZHANG ZY, 1993, PHYS REV B, V48, P4972 TC 14 BP 17938 EP 17942 PG 5 JI Phys. Rev. B-Condens Matter PY 1996 PD DEC 15 VL 54 IS 24 GA WD553 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996WD55300096 ER PT J AU Amar, JG Family, F TI Critical temperature for mound formation in molecular-beam epitaxy SO PHYSICAL REVIEW B-CONDENSED MATTER NR 32 AB The results of an analytic calculation of the surface current and selected mound angle as a function of the Ehrlich-Schwoebel step barrier E(B) and substrate temperature T are presented for a model of epitaxial growth on bcc(100) and fcc(100) surfaces. Depending on the sign of E(B) and the magnitude of the prefactor for diffusion over a step, various scenarios are possible, including the existence of a critical temperature T-c for mound formation above which (for a positive step barrier) or below which (for a negative step barrier) quasi-layer-by- layer growth will be observed. For the case of Fe/Fe(100) deposition our calculation implies an upper bound for T-c which is consistent with experiment. The weak parameter dependence of our estimates for the mound angle confirms and explains the good agreement found in previous estimates assuming different values of the step barrier. We also clarify the transition to layer-by-layer growth at low and high temperature including the effect of a finite diffusion length on reentrant behavior at low temperature. CR ALBRECHT M, 1993, SURF SCI, V294, P1 AMAR JG, IN PRESS PHYS REV B AMAR JG, 1996, SURF SCI, V65, P177 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 BROMANN K, 1995, PHYS REV LETT, V75, P677 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELLIOTT WC, UNPUB ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1990, PHYS REV B, V41, P5410 FAMILY F, 1996, MATER RES SOC SYMP P, V399, P67 FANG K, 1994, PHYS REV B, V49, P8331 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KANG HC, 1992, SURF SCI, V271, P321 KRUG J, 1993, PHYS REV LETT, V70, P3271 KUNKEL R, 1990, PHYS REV LETT, V65, P733 ORME C, 1994, APPL PHYS LETT, V64, P860 ROSENFELD G, 1993, PHYS REV LETT, V71, P895 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMITH GW, 1993, J CRYST GROWTH, V127, P966 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 TERSOFF J, 1994, PHYS REV LETT, V72, P266 THURMER K, 1995, PHYS REV LETT, V75, P1767 TUCKWELL H, 1988, ELEMENTARY APPL PROB VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 TC 12 BP 14071 EP 14076 PG 6 JI Phys. Rev. B-Condens Matter PY 1996 PD NOV 15 VL 54 IS 19 GA VV264 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996VV26400099 ER PT J AU Amar, JG Family, F TI Effects of crystalline microstructure on epitaxial growth SO PHYSICAL REVIEW B-CONDENSED MATTER NR 52 AB The results of kinetic Monte Carlo simulations of epitaxial growth on fcc(100) and bcc(100) surfaces in which the correct crystal geometry is taken into account are reported. The existence of downward funneling to fourfold hollow sites leads to a downward current for large angles and to angle selection as observed in a variety of experiments. We have used our model to simulate Fe/Fe(100) deposition at room temperature and have compared our results with recent experiments. Excellent agreement is found for the selected angle, mound coarsening exponent n, and kinetic roughening exponent beta as well as for the mound morphology. A theoretical analysis also leads to an accurate prediction of the observed mound angle for Fe/Fe(100) deposition at room temperature. The general dependence of the surface skewness, mound angle, and coarsening kinetics on temperature, deposition rate, and strength of the step barrier to interlayer diffusion is also studied and compared with recent experiments. While for a moderate step barrier we find an effective coarsening, exponent n similar or equal to 0.16- 0.25, for the case of a very large step barrier we find n similar or equal to 1/3, which is significantly larger than found in previous models but in agreement with recent experiments on Rh/Rh(111). CR ALBRECHT M, 1993, SURF SCI, V294, P1 AMAR JG, 1996, MATER RES SOC SYMP P, V399, P95 AMAR JG, 1995, PHYS REV B, V52, P13801 AMAR JG, 1993, PHYS REV E, V47, P3242 AMAR JG, 1995, PHYS REV LETT, V74, P2066 AMAR JG, 1996, SURF SCI, V365, P177 BARTELT MC, 1995, PHYS REV LETT, V75, P4250 DAS S, 1991, PHYS REV LETT, V66, P325 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 EHRLICH G, 1969, J APPL PHYS, V40, P614 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 EHRLICH G, 1995, SURF SCI, V331, P868 ELKINANI I, 1994, J PHYS I, V4, P949 ELLIOTT WC, UNPUB ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1990, PHYS REV B, V41, P5410 FAMILY F, 1992, DYNAMICS FRACTAL SUR GOLUBOVIC L, 1996, MATER RES SOC S P, V399, P251 GOLUBOVIC L, UNPUB HE YL, 1992, PHYS REV LETT, V69, P3770 HUNT AW, 1994, EUROPHYS LETT, V27, P611 HUSE DA, 1986, PHYS REV B, V34, P7845 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KANG HC, 1992, SURF SCI, V271, P321 KRUG J, 1995, J PHYS I, V5, P1065 KRUG J, 1993, PHYS REV LETT, V70, P3271 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LANCZYCKI CJ, 1996, PHYS REV LETT, V76, P780 LIFSHITZ IM, 1961, J PHYS CHEM SOLIDS, V19, P35 MEYER JA, 1995, PHYS REV B, V51, P14790 SCHROEDER M, 1993, EUROPHYS LETT, V24, P563 SIEGERT M, 1996, PHYS REV E, V53, P307 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1992, PHYS REV LETT, V68, P2035 SMILAUER P, 1995, PHYS REV B, V52, P14263 SMILAUER P, 1995, PHYS REV B, V51, P14798 SMILAUER P, 1993, PHYS REV B, V48, P17603 SMITH GW, 1993, J CRYST GROWTH, V127, P966 SOMFAI E, UNPUB STROSCIO JA, COMMUNICATION STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 STROSCIO JA, 1993, PHYS REV LETT, V70, P3615 STUMPF R, 1994, PHYS REV LETT, V72, P254 THURMER K, 1995, PHYS REV LETT, V75, P1767 TSAO JY, 1993, MAT FUNDAMENTALS MOL TSUI F, 1996, PHYS REV LETT, V76, P3164 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 WANG SC, 1995, PHYS REV LETT, V75, P2964 WOLF DE, 1990, EUROPHYS LETT, V13, P389 ZHANG ZY, 1993, PHYS REV B, V48, P4972 TC 36 BP 14742 EP 14753 PG 12 JI Phys. Rev. B-Condens Matter PY 1996 PD NOV 15 VL 54 IS 20 GA VX717 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996VX71700075 ER PT J AU Amar, JG Family, F TI Step-adatom attraction as a new mechanism for instability in epitaxial growth SO PHYSICAL REVIEW LETTERS NR 24 AB We show that short-range attraction of adatoms towards clusters and ascending steps leads to an instability towards mound formation in epitaxial growth. This instability is studied both analytically and via Monte Carlo simulations on bcc/fcc(100) surfaces. The origin of this instability in terms of second- layer nucleation and its implications for surface morphology and interpretation of recent experiments are also discussed. CR AMAR JG, 1996, PHYS REV B, V54, P14071 AMAR JG, 1996, PHYS REV B, V54, P14748 AMAR JG, 1995, PHYS REV LETT, V74, P2066 AMAR JG, 1996, SURF SCI, V365, P177 BIHAM O, IN PRESS COPEL M, 1989, PHYS REV LETT, V63, P632 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELLIOTT WC, IN PRESS ERNST HJ, 1994, PHYS REV LETT, V72, P112 EVANS JW, 1990, PHYS REV B, V41, P5410 FAMILY F, 1991, DYNAMICS FRACTAL SUR HE YL, 1992, PHYS REV LETT, V69, P3770 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KANG HC, 1992, SURF SCI, V271, P321 KRUG J, 1993, PHYS REV LETT, V70, P3271 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SHI ZP, 1996, PHYS REV LETT, V76, P4927 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMITH GW, 1993, J CRYST GROWTH, V127, P966 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 THURMER K, 1995, PHYS REV LETT, V75, P1767 VILLAIN J, 1991, J PHYS I, V1, P19 WANG SC, 1993, PHYS REV LETT, V70, P41 TC 22 BP 4584 EP 4587 PG 4 JI Phys. Rev. Lett. PY 1996 PD NOV 25 VL 77 IS 22 GA VU502 J9 PHYS REV LETT UT ISI:A1996VU50200026 ER PT J AU Koch, R Weber, M Thurmer, K Rieder, KH TI Magnetoelastic coupling of Fe at high stress investigated by means of epitaxial Fe(001) films SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS NR 22 AB ME (magnetoelastic) effects frequently are held responsible for altered magnetic anisotropies of thin films. We show that at typical intrinsic stress values (> 0.1 GPa) the ME properties of thin films may deviate significantly from that described by the linear ME coupling constants of the bulk. Quantitative measurements on epitaxial Fe(001) films with a cantilever beam magnetometer provide a second order ME coupling constant of Fe, D-11 = 1.1 GJ/m(3), yielding for the first time an experimental bulk value of a magnetic element. CR BARANDIARAN JM, 1987, PHYS REV B, V35, P5066 BARKER RA, 1978, SOLID STATE COMMUN, V25, P375 BECKER R, 1939, FERROMAGNETISMUS BRUNO P, 1989, APPL PHYS A-MATER, V49, P499 DELACHEISSERIE EDT, 1994, J MAGN MAGN MATER, V136, P189 FRITZSCHE H, 1995, PHYS REV B, V51, P15933 HULPKE E, 1989, PHYS REV B, V40, P1338 KANAJI T, 1973, VACUUM, V23, P55 KLOKHOLM E, 1976, IEEE T MAGN, V12, P819 KOCH R, IN PRESS KOCH R, 1994, J PHYS-CONDENS MAT, V6, P9519 KOCH R, 1995, SURF SCI, V331, P1398 KUNKEL R, 1990, PHYS REV LETT, V65, P733 LEHMANN A, IN PRESS OUNADJELA K, 1989, J APPL PHYS, V65, P1230 SCHULZ B, 1994, PHYS REV B, V50, P13467 SIEGERT M, 1994, PHYS REV E, V50, P917 SONG O, 1994, APPL PHYS LETT, V64, P25593 THURMER K, 1995, PHYS REV LETT, V75, P1767 URANO T, 1988, J PHYS SOC JPN, V57, P3403 WEBER M, 1994, PHYS REV LETT, V73, P1166 ZUBEREK R, 1988, J PHYS-PARIS, V49, P1761 TC 16 BP L11 EP L16 PG 6 JI J. Magn. Magn. Mater. PY 1996 PD JUN VL 159 IS 1-2 GA VH552 J9 J MAGN MAGN MATER UT ISI:A1996VH55200003 ER PT J AU Politi, P Villain, J TI Ehrlich-Schwoebel instability in molecular-beam epitaxy: A minimal model SO PHYSICAL REVIEW B-CONDENSED MATTER NR 36 AB The instability of a growing crystal Limited by a high-symmetry surface in molecular-beam epitaxy is studied in the limit where terrace size is very large compared to the atomic distance. In that case, everything is deterministic except the nucleation of new terraces. Moreover, exchange of atoms between steps is ignored. If the typical terrace size l(c) is chosen as length unit, the model depends on a single parameter (l(s)/l(c)) which characterizes the strength of step-edge barriers (''Ehrlich- Schwoebel effect''). Numerical simulations are supported by nonlocal evolution equations relating the time and space derivatives of the surface height, The first mounds which appear have a radius lambda(c)(inf) proportional to l(c) root l(c)/l(s). In contrast with other authors who studied different models, coarsening is found to become extremely slow after the mounds have reached a radius lambda(c)(sup) of order l(c)(2)/l(s). CR ALBRECHT M, 1993, SURF SCI, V294, P1 AMAR J, IN PRESS PHYS REV B BURTON WK, 1951, PHILOS T ROY SOC A, V243, P299 DASSARMA S, 1991, PHYS REV LETT, V66, P325 EAGLESHAM DJ, 1990, PHYS REV LETT, V65, P1223 EAGLESHAM DJ, 1993, SURFACE DISORDERING EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELKINANI I, 1994, J PHYS I, V1, P1991 ELKINANI I, 1993, SOLID STATE COMMUN, V87, P105 ERNST HJ, 1994, J VAC SCI TECHNOL A, V12, P1809 ERNST HJ, 1994, PHYS REV LETT, V72, P112 HUNT AW, 1994, EUROPHYS LETT, V27, P611 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KARDAR M, 1986, PHYS REV LETT, V56, P889 KRUG J, 1995, J PHYS I, V5, P1065 KRUG J, 1995, THESIS JUELICH DUESS LANCZYCKI CJ, 1996, PHYS REV LETT, V76, P780 ORME C, 1994, APPL PHYS LETT, V64, P860 POLITI P, IN PRESS P MAT C SUR SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SMILAUER P, 1995, PHYS REV B, V52, P14263 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, 1995, PHYS REV LETT, V75, P4246 SUN T, 1989, PHYS REV A, V40, P6763 THURMER K, 1995, PHYS REV LETT, V75, P1767 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VILLAIN J, 1991, J PHYS I, V1, P19 VILLAIN J, 1994, PHYSIQUE CROISSANCE WOLF DE, 1990, EUROPHYS LETT, V13, P389 ZHANG ZY, 1993, PHYS REV B, V48, P4972 ZINNSMEISTER G, 1971, THIN SOLID FILMS, V7, P51 ZINNSMEISTER G, 1968, THIN SOLID FILMS, V2, P497 TC 34 BP 5114 EP 5129 PG 16 JI Phys. Rev. B-Condens Matter PY 1996 PD AUG 15 VL 54 IS 7 GA VE488 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1996VE48800104 ER PT J AU Siegert, M TI Formation of pyramids and mounds in molecular beam epitaxy SO PHYSICAL REVIEW E NR 47 AB One of the generic scenarios in molecular beam epitaxy is the growth of three-dimensional structures such as mounds and pyramids. These structures are a nonequilibrium effect thought to be due to a combination of the microscopic Ehrlich-Schwoebel barriers and the breaking of detailed balance by the deposition process. We propose and investigate by computer simulation a simple microscopic model that displays (i) slope selection, (ii) pyramid and moundlike structures, and (iii) coarsening. The characteristic length scale of our three-dimensional features grows as R(t) similar to t(n) with n between 0.17 and 0.26. We discuss these results in the light of recent experiments and continuum models of molecular beam epitaxy. CR BARTELT MC, 1992, PHYS REV B, V46, P12675 BARTELT MC, 1993, SURF SCI, V298, P421 BLACKMAN JA, 1991, EUROPHYS LETT, V16, P115 EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ERNST HJ, COMMUNICATION ERNST HJ, 1994, PHYS REV LETT, V72, P112 FAMILY F, 1986, J PHYS A-MATH GEN, V19, PL441 FAMILY F, 1985, J PHYS A-MATH GEN, V18, PL75 GRANT M, 1985, PHYS REV B, V31, P3027 HUNT AW, 1995, NATO ADV STUDY I B, V344, P249 JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KAWAKATSU T, 1985, PROG THEOR PHYS, V74, P11 KELLOGG GL, 1993, PHYS REV LETT, V70, P1631 KELLOGG GL, 1990, PHYS REV LETT, V64, P3143 KRUG J, 1993, PHYS REV LETT, V70, P3271 LIU F, 1993, PHYS REV B, V48, P5808 ORME C, 1994, APPL PHYS LETT, V64, P860 ORME C, 1995, J CRYST GROWTH, V150, P128 ORME C, 1994, MATER RES SOC SYMP P, V340, P233 PALASANTZAS G, 1994, PHYS REV LETT, V73, P3564 POROD G, 1952, KOLLOID Z, V125, P51 POROD G, 1951, KOLLOID Z, V124, P83 RATSCH C, 1994, PHYS REV LETT, V72, P3194 RATSCH C, 1995, SURF SCI, V329, PL599 SCHROEDER M, 1995, PHYS REV LETT, V74, P2062 SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614 SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682 SIEGERT M, 1995, NATO ADV SCI INST SE, V344, P165 SIEGERT M, 1994, PHYS REV E, V50, P917 SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1992, PHYS REV LETT, V68, P2035 SIEGERT M, 1995, THESIS GERHARD MERCA SMILAUER P, 1993, PHYS REV B, V47, P4119 SMILAUER P, 1995, UNPUB HLRZ JULICH RE SMITH GW, 1993, J CRYST GROWTH, V127, P966 STEWART J, 1992, PHYS REV A, V46, P6505 STOYANOV S, 1981, CURRENT TOPICS MATER, V7, P69 STROSCIO JA, 1994, PHYS REV B, V49, P8522 STROSCIO JA, UNPUB THURMER K, 1995, PHYS REV LETT, V75, P1767 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VENABLES JA, 1984, REP PROG PHYS, V47, P399 VILLAIN J, 1992, J PHYS I, V2, P2107 VILLAIN J, 1991, J PHYS I, V1, P19 VVEDENSKY DD, 1993, PHYS REV E, V48, P852 WANG SC, 1993, PHYS REV LETT, V70, P41 TC 33 BP 307 EP 318 PG 12 JI Phys. Rev. E PY 1996 PD JAN VL 53 IS 1 PN A GA TR117 J9 PHYS REV E UT ISI:A1996TR11700042 ER PT J AU SMILAUER, P VVEDENSKY, DD TI COARSENING AND SLOPE EVOLUTION DURING UNSTABLE EPITAXIAL-GROWTH SO PHYSICAL REVIEW B-CONDENSED MATTER NR 48 AB We present simulations of a solid-on-solid model to characterize the formation and evolution of pyramidlike structures (mounds) that occur during epitaxial growth. Our model includes a nonthermal short-range mobility upon deposition, and surface diffusion with step-edge barriers to interlayer migration. The average mound size is found to vary according to a power law, proportional to(time)(n), with the exponent n approximate to 0.19 to 0.26 at later stages of growth. Depending on the model parameters, the slope of the mounds stays approximately constant or grows according to a power law. We observe a competition between coarsening and steepening of the mounds. The surface width (roughness) evolution is determined by the behavior of the mound size and slope. Dependence of the rates of coarsening and steepening of the mounds on the model parameters and growth conditions is studied, and the initial stages of the surface morphology evolution discussed. CR ALBRECHT M, 1993, SURF SCI, V294, P1 AMMER C, 1994, SURF SCI, V307, P570 BOTT M, 1992, SURF SCI, V272, P161 CHEVRIER J, 1991, EUROPHYS LETT, V16, P737 CLARKE S, 1987, PHYS REV LETT, V58, P2235 CLARKE S, 1991, SURF SCI, V255, P91 EGELHOFF WF, 1989, PHYS REV LETT, V62, P921 EHRLICH G, 1966, J CHEM PHYS, V44, P1039 ELKINANI I, 1994, J PHYS I, V4, P949 ERNST HJ, 1994, PHYS REV LETT, V72, P112 ERNST HJ, 1992, SURF SCI, V275, PL682 EVANS JW, 1991, PHYS REV B, V43, P3897 EVANS JW, 1990, PHYS REV B, V41, P5410 FERRON J, 1992, PHYS REV B, V46, P10457 HE YL, 1992, PHYS REV LETT, V69, P3770 HUNT AW, 1994, EUROPHYS LETT, V27, P611 JOHNSON MD, COMMUNICATION JOHNSON MD, 1994, PHYS REV LETT, V72, P116 KANG HC, 1989, J CHEM PHYS, V90, P2824 KOTRLA M, 1992, CZECH J PHYS, V42, P449 KOZIOL C, 1987, APPL PHYS LETT, V51, P901 KRUG J, 1995, 3031 FORSCH ZENTR JU KRUG J, 1995, J PHYS I, V5, P1065 KRUG J, 1993, PHYS REV LETT, V72, P3271 KRUG J, 1990, SOLIDS FAR EQUILIBRI, P479 KUNKEL R, 1990, PHYS REV LETT, V65, P733 MEAKIN P, 1993, PHYS REP, V235, P189 MEYER JA, 1995, PHYS REV B, V51, P14790 ORME C, 1994, APPL PHYS LETT, V64, P484 PALASANTZAS G, 1994, PHYS REV LETT, V73, P3564 RATSCH C, 1994, PHYS REV LETT, V72, P3194 SIEGERT M, COMMUNICATION SIEGERT M, 1994, PHYS REV LETT, V73, P1517 SIEGERT M, 1995, SCALE INVARIANCE INT, P165 SIEGERT M, UNPUB SMILAUER, UNPUB SMILAUER P, 1995, PHYS REV B, V51, P14798 SMILAUER P, 1993, PHYS REV B, V48, P17603 SMILAUER P, 1993, PHYS REV B, V47, P4119 SMITH GW, 1993, J CRYST GROWTH, V127, P966 STOLTZE P, 1993, PHYS REV B, V48, P5607 STROSCIO JA, UNPUB THURMER K, 1995, PHYS REV LETT, V75, P1767 VANNOSTRAND JE, 1995, PHYS REV LETT, V74, P1127 VILLAIN J, 1991, J PHYS I, V1, P19 WANG SC, 1993, PHYS REV LETT, V70, P41 WEEKS JD, 1979, ADV CHEM PHYS, V40, P157 WOLF DE, 1995, SCALE INVARIANCE INT, P215 TC 71 BP 14263 EP 14272 PG 10 JI Phys. Rev. B-Condens Matter PY 1995 PD NOV 15 VL 52 IS 19 GA TG780 J9 PHYS REV B-CONDENSED MATTER UT ISI:A1995TG78000081 ER